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ABSTRACT

We present a parallel implementation of a 2D seismic ray tracer on a
graphics processing unit of the compact Jetson Nano by Nvidia. Ray
tracing is commonly used in seismic imaging as an intermediate step
in reconstructing subsurface structures. We employ a gradient-based
ray tracer that requires a travel time map. Here, we make use of the
fast iterative method that computes a travel time map in a parallel
fashion. Since a ray path is independent from any other ray path, the
tracing can be implemented in parallel as well. To this end, we use a
graphics processing unit and implement ray tracing using the CUDA
programming language. For performance evaluations we compare
our implementation on the Jetson Nano to a state-of-the-art sequen-
tial seismic ray tracer on a desktop CPU and show that speedups
with factors of up to three can be achieved. The results indicate that
edge devices such as the Jetson Nano can play a relevant role for to-
mographic applications particularly in scenarios where mobility of
processing devices and compactness are important.

Index Terms— Parallel computing, CUDA, GPGPU, seismic
ray tracing, Jetson Nano, edge devices, multi-agent seismic explo-
ration

1. INTRODUCTION

Seismic data from extra-terrestrial bodies is highly relevant in
current planetary missions [1]. In recent years, concepts for au-
tonomous seismic surveys conducted by multiple mobile robotic
platforms on e.g. Mars or Moon have been proposed [2, 3]. In par-
ticular, we proposed to perform seismic imaging within a network
of multiple agents that are connected over wireless links without the
need of a central entity. To this end, distributed subsurface imaging
schemes for travel time tomography and full waveform inversion
are applicable and have been proposed [4, 5, 6, 7]. However, to
enable imaging on mobile robotic platforms, efficient hardware im-
plementations of respective algorithms are required. For instance,
in travel time tomography, ray tracing is required and an efficient
implementation is desired to speed up imaging. Graphics processing
units (GPUs) offer the capability to implement algorithms in a paral-
lelized fashion and with high efficiency. In particular, edge devices
such as Nvidia’s Jetson Nano are equipped with a GPU and offer
the possibility to implement highly efficient, parallelized software
on a compact, mobile device. Especially, the compact form is highly
relevant for mobile robotic applications as described above.

An important ingredient of travel time tomography is ray trac-
ing [8]. The latter also finds applications in ,e.g., computer graphics
[9], astronomy [10] and optical systems [11]. In seismic imaging it
is required to reconstruct ray paths between source and receivers for
the first arrival times. Based on the ray paths the forward calculation
of travel times can be linearized and an inversion for a subsurface

model with respect to (wrt.) the P -wave velocity can be performed.
Under various ray tracing methods those that employ the gradient of
travel times are commonly used [12]. To compute travel time gra-
dients, a travel time map is required. Here, the fast iterative method
(FIM) proposed in [13] can be used that performs a parallel com-
putation of travel times on a GPU. Since a ray path is independent
of any other ray path its computation can be parallelized. Such par-
allel implementations of seismic ray tracers on GPUs exist, see e.g.
[14, 15, 16]. All of them achieve faster computation times than com-
parable implementations on a central processing unit (CPU). How-
ever, none of these considers the implementation and performance
evaluation of ray tracers on an edge device such as the Jetson Nano
where computational resources are rather limited compared to GPUs
on graphics cards.

In this work, we present and evaluate a parallel implementation
of a gradient-based seismic ray tracer on the compact Jetson Nano in
the compute unified device architecture (CUDA) programming lan-
guage. The required travel time map is provided by the FIM that
is also implemented in parallel on the Jetson Nano. Since then the
travel time map is in the GPU memory the ray tracer can directly
access it without additional memory transfer. We investigate our
parallelized implementation on the Jetson Nano to a state-of-the-art
sequential seismic ray tracer on a desktop CPU for different subsur-
face models with differing grid sizes. Our parallel implementation
shows total speed-ups by factors up to three.

2. PARALLEL EIKONAL SOLVER IN CUDA

In the following, we briefly summarize the FIM that computes a
travel time map required for the gradient-based ray tracer. For a
brief overview of CUDA the reader is referred to Appendix A.

To synthesize a map of first arrival travel times over a spatial
domain Ω ⊂ R2 the eikonal equation needs to be solved. With a
subsurface model m(x) that describes the P -wave velocity over the
spatial coordinate x = (x, z) ∈ R2 the eikonal equation is given as

|∇T (x)|2 =
1

m(x)2
, s.t. T (xs) = 0,x ∈ Ω, (1)

where ∇ is the gradient operator, T (x) is the travel time function
and xs is the source position. At source position, the travel time
needs to be 0 s, hence the respective initial condition at xs.

To solve the eikonal equation (1) wrt. the travel times T (x)
several numerical methods exist such as the fast marching method
(FMM) or the fast sweeping method (FSM) [17, 18]. However, both
methods do not allow for a parallel computation which is a prereq-
uisite for an efficient implementation on a GPU. To enable a parallel
implementation the fast iterative method (FIM) has been proposed
in [13]. The main idea of FIM is to solve the eikonal equation using



an active list of grid points that keeps track of all travel times which
require updating. All travel times in this active list are updated si-
multaneously without any order. This avoids the use of complex data
structures such as a heap in FMM and thus enables parallelization
and efficient implementation on GPU architectures. Travel times in
the active list are updated until the absolute difference between cur-
rent and updated travel time is below a certain threshold, at which
the corresponding travel time is removed from the active list.

To solve (1) numerically finite differences with a regular grid
discretization can be applied. To this end, the computational do-
main Ω is discretized with a distance ∆x and ∆z between grid points
in the x and z-direction, respectively. A grid point is described by
the index pair (i, j) that represents the spatial coordinate (xi, zj). To
compute travel times at a specific grid point (i, j) Godunov upwind
discretization is used and the eikonal equation is then changed into

[max(Ti,j−T xmin
i,j , 0)]2+[max(Ti,j−T zmin

i,j , 0)]2 =
1

m2
i,j

, (2)

where T xmin
i,j = min(Ti−1,j , Ti+1,j) and T zmin

i,j = min(Ti,j−1,
Ti,j+1). To obtain Ti,j from (2), a quadratic solver can be used
[13]. The travel time for one grid point in the active list is com-
puted on one CUDA core enabling parallelization of these computa-
tions. Algorithmic and implementation details with pseudo-code can
be found in [13]. In addition, FIM separates the discretized compu-
tational domain into blocks of grid points to optimize memory ac-
cess. Each block consists of 64 grid points and is processed by one
streaming multiprocessor (SM) on the GPU. Each block is indexed
by the CUDA internal variable blockIdx. While processing one
block the fast L1 cache of the SM can be accessed by all threads that
update the travel times of the respective grid points. However, grid
points that lie at the border of a block are accessed over the slower
L2 cache that can be accessed by all SMs. This is done to enable a
block to access grid points that belong to a neighboring block and
thus, are not stored in its L1 cache.

3. PARALLEL GRADIENT-BASED SEISMIC RAY
TRACING IN CUDA

In seismic inversion ray tracing is an important step to obtain an
image of the subsurface. Here, seismic waves are approximated by
rays that travel from source to receivers. This simplification is valid
for a high frequency approximation of the wave physics [8]. The
ray paths are needed to build the sensitivity matrix that linearizes the
forward model given by the eikonal equation (1). Doing so, enables
a linearized inversion for the model parameters in m(x), i.e., the
spatial distribution of P -wave velocities in the subsurface Ω.

3.1. General concept

Various methods exist to trace seismic ray paths, see [8] for a de-
tailed overview. When a travel time map T (x) is available, as in
our case, ray tracing based on gradient-descent can be used. The
key idea here is to use a travel time gradient in order to reach the
global minimum of the travel time map. This minimum is located
at the source position xs since here the travel time T (xs) is zero,
cf. (1). Hence, by following the steepest descent in the travel time
map, i.e. the negative gradient, the ray can be traced back from re-
ceiver to source. Since each ray path between receiver and source is
independent of any other ray path the ray tracer can be implemented
in parallel. For instance, each ray path can be traced separately by
one CUDA core on the GPU. Algorithm 1 summarizes the general
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(a) Illustration of Eq. (4).
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Fig. 1: Computation of angle θ and possible paths for 16 grid points.

pseudo-code of a parallel gradient-based ray tracer. For the steepest-
descent update an appropriate step site µ > 0 needs to be selected to
enable convergence to the global minimum T (xs) = 0.

Algorithm 1 Gradient descent-based parallel ray tracer

Require: Travel time map T , receiver positions xr , ray array R
for each receiver position xr in parallel do

Initialize empty ray path vector r
Add xr to r
xk = xr

while ||xs − xk||22 > min(∆x,∆z) do
Compute gradient dk ← ∇T (x)|x=xk

Compute next ray coordinate xk ← xk + µ · dk

Add xk to r
end while
Add r to R

end for

3.2. Implementation details

To implement Algorithm 1 numerically, we first need to approximate
the travel time gradient ∇T (x). Such approximation gives us a di-
rection of the ray path at the grid point (i, j). To this end, a first
order finite difference can be applied on the travel times as in [19]:

Tx =
∂T

∂x
≈ (Ti+1,j − Ti,j) + (Ti+1,j+1 − Ti,j+1)

2∆x
(3a)

Tz =
∂T

∂z
≈ (Ti,j+1 − Ti,j) + (Ti+1,j+1 − Ti+1,j)

2∆z
(3b)

Here, the travel time gradients in x and z direction are approximated
by taking the average of two adjacent gradients to improve accu-
racy of the numerical approximation. For receivers/sources placed
at the borders of the domain, we assume that FIM provides these ad-
ditional travel times by enlarging the domain accordingly. Based on
the approximated gradients Tx and Tz an angle θ can be calculated
that gives the direction of the ray path where θ is measured counter-
clockwise from the positive horizontal axis. Figure 1a illustrates the
computation of the ray angle θ. The angle θ is then given by

θ = arctan (Tz/Tx) + π (4)

with the approximated gradients in (3). Note that the ray path direc-
tion is opposite to the travel time gradient as the rays are traced in
reverse direction using steepest descent. Therefore, π is added to the



Region of θ Next grid point
θ ≤ 22, 5◦ or θ > 337.5◦ (i+ 1, j)
22.5◦ < θ ≤ 67.5◦ (i+ 1, j + 1)
67.5◦ < θ ≤ 112.5◦ (i, j + 1)
112.5◦ < θ ≤ 157.5◦ (i− 1, j + 1)
157.5◦ < θ ≤ 202.5◦ (i− 1, j)
202.5◦ < θ ≤ 247.5◦ (i− 1, j − 1)
247.5◦ < θ ≤ 292.5◦ (i, j − 1)
292.5◦ < θ ≤ 337.5◦ (i+ 1, j − 1)

Table 1: Decision boundaries of angle θ and corresponding next grid
points for an example of 8 possible ray paths from (i, j).

right-hand side of (4). Depending on the angle θ the next grid point
in the vicinity of the current point (i, j) is chosen for the ray path.
Table 1 gives the decision boundaries for a ray path for an example
of eight possible grid points in the direct vicinity of (i, j). If more
accurate ray paths are required the number of possible grid points
can be analogously extended to include grid points that are further
away. In our implementation, we used 16 possible grid points by
including points that are two cells away from the current point (i, j)
resulting in the possible paths shown in Figure 1b. Based on the de-
cision boundaries, the next grid cell of the ray path is chosen. This
step approximates the gradient computation and steepest descent up-
date in Algorithm 1. By doing so, the ray path can be traced back
until the respective grid point of the source position xs is reached.

Again, due to independence of rays, the gradient computation
can be parallelized. To this end, computations of gradients (3), an-
gle θ in (4) and decision on the next grid point for the ray are done
in parallel. On a GPU, each ray is then traced by one thread in one
CUDA core where all threads are executed by one SM. The complete
ray tracing is done without memory transfer from the GPU until ter-
mination using the travel time map in the global GPU memory that
has been computed by FIM as described in Section 2. One issue
is the initialization of arrays that represent each ray path. Each ray
path is likely to include a different number of grid points. However,
the CUDA kernels use fixed size static arrays as a means of repre-
sentation. To mitigate this issue, the static arrays for the ray paths
are initialized with the theoretically possible maximum length for a
ray in the given environment. This maximum length is given by the
sum of the grid points in x- and z-direction of the spatial domain Ω.
Doing so, guarantees that each static array has sufficient size to store
a ray path.

4. PERFORMANCE EVALUATION

We test our parallel ray tracing implementation in multiple scenarios
and compare it against ttcrpy, a sequential implementation of seismic
ray tracing from [12] that runs on a desktop CPU. We use a laptop
running Python 3.9 on an i7-1185G7 to test the sequential imple-
mentation and an Nvidia Jetson Nano 2GB which has 2 SMs of the
Maxwell architecture to run our parallelized ray tracer together with
the FIM for travel time computation. We evaluate the performance
in nine scenarios that include different velocity models m(x) and
domain sizes. We consider a homogeneous model with constant ve-
locity, a model that contains two layers with differing velocity and a
model with a velocity gradient. For each model we test three differ-
ent domain sizes, namely 100× 100, 200× 200 and 500× 500 grid
points. Also, we use a regular grid with ∆x = ∆z = 1. Velocity
models and parameters do not have a physical unit by default but can
be given meaning by assigning the respective unit to the grid spac-
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Fig. 2: Visualization of results for a 500×500 homogeneous model.
Receivers are marked by white triangles.

ing or the velocity value. For the homogeneous model the source
is placed in the middle of the domain while we place 16 receivers
around the domain edges. In the layer and gradient case the seis-
mic source is placed at xs = (0, 0), i.e., the upper left corner of the
domain while we employ 19 receivers placed in a line array on the
surface.

Figures 2 - 4 show the velocity model and corresponding travel
time maps with the computed ray paths for all three models assuming
a domain size of 500×500. For the homogeneous model, rays follow
a straight line between the source in the center to the receivers on the
domain boundaries. Due to a constant velocity these ray paths give
the shortest paths between source and receivers as expected. For the
layered model, the phenomenon of refraction can be observed. Since
the second layer has a higher velocity of 5 than the first layer, after a
certain distance to the source rays start travelling in the second layer
before they hit the receiver. This path gives the lowest travel time
and is due to refraction known from Snell’s Law. In particular, these
rays travel at the critical angle, i.e., the refracted angle is 90◦ leading
to a horizontal ray path in the second layer. If the distance between
source and receiver is below a certain value, the direct ray over the
surface gives the smallest travel time. This is visible for receivers
that are closer to the source. A similar effect can be observed for the
gradient model in Fig. 4. However, since here the velocity is grad-
ually changing over the depth, rays do not take a distinct horizontal
path but a rather bent path between source and receiver.

To evaluate the run time performance, we compare our imple-
mentation to ttcrpy [12]. For a fair comparison we disable the sub-
grids for ray tracing in ttcrpy such that rays are only traced between
the grid vertices as in our implementation. We average the perfor-
mance results over five runs for both implementations. Table 2 gives
the profiling results for all tested scenarios. We report the computa-
tional time, the total time and the ratio between computational time
and total time for both implementations. The computational time
considers the time required for the pure computation of travel time
map and ray tracing only. The total time additionally includes time
consumption caused by memory allocation and data transfer between
CPU and GPU. Such transfer is only relevant for the GPU imple-
mentation where data is moved between host and device. Further-
more, we list the resulting speedups of the parallel implementation
for the computational and the total times. It can be clearly observed
that despite having only 2 SMs on the Jetson Nano that our paral-
lel implementation of the ray tracer is faster than ttcrpy running on



Scenario & Comp. Comp. Total Comp. Comp. Total Comp. Total
grid size time [s] ratio [%] time [s] time [s] ratio [%] time [s] speedup speedup

CPU CPU CPU Jetson Jetson Jetson Jetson/CPU Jetson/CPU
Homogeneous
100× 100 5.43 95.47 5.69 3 75.19 3.98 1.81 1.43
200× 200 21.65 95.83 22.60 5.03 51.88 9.70 4.30 2.33
500× 500 139.20 96.11 144.83 20.45 42.08 48.63 6.81 2.98

Layer
100× 100 5.56 96.15 5.79 3.84 78.27 4.91 1.45 1.18
200× 200 22.24 96.01 23.16 7.89 63.52 12.43 2.82 1.86
500× 500 145.56 96.04 150.33 29.36 51.07 57.50 4.96 2.61
Gradient
100× 100 5.20 95.17 5.46 4 80.37 4.99 1.30 1.09
200× 200 21.62 95.66 22.60 7.99 65.13 12.31 2.71 1.84
500× 500 142 95.80 148.23 30.45 51.67 58.93 4.66 2.52

Table 2: Profiling results for the considered models and domain sizes using ttcrpy [12] on a CPU and our implementation on a Jetson Nano.
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Fig. 3: Visualization of results for a 500 × 500 layered model. Re-
ceivers are marked by white triangles.

a desktop CPU. In particular, with increasing grid size the benefit
of parallelization becomes more apparent, visible in speedup factors
between two and nearly three. If we only consider the computational
time, i.e., the time required for the computation of the travel time
map and ray paths alone, the speedup is even higher with factors up
to seven. Furthermore, for higher grid sizes we observe that more
time is consumed for transferring data from the GPU to the CPU re-
flected in the decreasing ratio. This is due to an increasing amount
of data for the travel time map and ray paths caused by a larger grid.

5. CONCLUSION

In this paper, we describe a parallel implementation of a seismic ray
tracer for 2D subsurface models on an Nvidia Jetson Nano device.
The ray tracer is based on gradient-descent and therefore, requires a
travel time map. This travel time map is obtained by the FIM that is
also implemented in parallel on the Jetson Nano. Numerical results
show that our implementation on the Jetson Nano achieves speedup
factors of up to three compared to a sequential seismic ray tracer
running on a desktop CPU. If only the computation time is consid-
ered speedup factors of up to seven could be observed. The results
indicate that GPU-based edge devices such as the Jetson Nano can
be promising candidates for autonomous seismic explorations by a
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multi-agent network of mobile rovers. Here, our implementation
will allow for a fully distributed architecture where computations are
done by each rover carrying a GPU. For future work, implementing
a complete seismic inversion on a Jetson Nano is of great interest.

A. APPENDIX: BRIEF INTRODUCTION TO CUDA

We give a short introduction to the CUDA hardware architecture to
provide context. Further information can be found in [20]. CUDA
allows offloading of computationally heavy but parallelizable code
from execution on the CPU to the massively parallel GPU. This is
done in the form of kernels that are launched on the GPU. In the
CUDA terminology the CPU is known as the host and the GPU as
the device. Host and device have separated dedicated memory and
memory hierarchy. The device is made up of a global device memory
and the graphics processor itself with its core and cache hierarchy.
The graphics processor is comprised of a shared L2 cache, a global
thread scheduler and multiple streaming multiprocessors (SM). SMs
are further subdivided into 64 CUDA cores where each core executes
one thread. Threads running on the same SM additionally have ac-
cess to the L1 cache which allows faster access than the L2 cache.
Parallelization is achieved by running computations concurrently on
multiple CUDA cores.
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