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Abstract

While Deep-Learning approaches beat Nearest-Neighbor classifiers in an in-
creasing number of areas, searching existing uncertain data remains an ex-
clusive task for similarity search. Numerous specific solutions exist for dif-
ferent types of data and queries. This thesis aims at finding fast and general
solutions for searching and indexing arbitrarily typed time series.

A time series is considered a sequence of elements where the elements’
order matters but not their actual time stamps. Since this thesis focuses
on measuring distances between time series, the metric space is the most
appropriate concept where the time series’ elements come from. Hence, this
thesis mainly considers metric time series as data type. Simple examples
include time series in Euclidean vector spaces or graphs.

For general similarity search solutions in time series, two primitive com-
parison semantics need to be distinguished, the first of which compares the
time series’ trajectories ignoring time warping. A ubiquitous example of
such a distance function is the Dynamic Time Warping distance (DTW) de-
veloped in the area of speech recognition. The Dog Keeper distance (DK) is
another time-warping distance that, opposed to DTW, is truly invariant under
time warping and yields a metric space. After canonically extending DTW to
accept multi-dimensional time series, this thesis contributes a new algorithm
computing DK that outperforms DTW on time series in high-dimensional vec-
tor spaces by more than one order of magnitude. An analytical study of
both distance functions reveals the reasons for the superiority of DK over
DTW in high-dimensional spaces.

The second comparison semantic compares time series in Euclidean vec-
tor spaces regardless of their position or orientation. This thesis proposes
the Congruence distance that is the Euclidean distance minimized under all
isometric transformations; thus, it is invariant under translation, rotation,
and reflection of the time series and therefore disregards the position or ori-
entation of the time series. A proof contributed in this thesis shows that
there can be no efficient algorithm computing this distance function (unless
P=NP). Therefore, this thesis contributes the Delta distance, a metric dis-
tance function serving as a lower bound for the Congruence distance. While
the Delta distance has quadratic time complexity, the provided evaluation
shows a speedup of more than two orders of magnitude against the Con-
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gruence distance. Furthermore, the Delta distance is shown to be tight on
random time series, although the tightness can be arbitrarily bad in corner-
case situations.

Orthogonally to the previous mentioned comparison semantics, similar-
ity search on time series consists of two different types of queries: whole
sequence matching and subsequence search. Metric index structures (e. g.,
the M-Tree) only provide whole matching queries natively. This thesis con-
tributes the concept of metric subset spaces and the SuperM-Tree for in-
dexing metric subset spaces as a generic solution for subsequence search.
Examples for metric subset spaces include subsequence search regarding the
distance functions from the comparison semantics mentioned above. The
provided evaluation shows that the SuperM-Tree outperforms a linear search
by multiple orders of magnitude.
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Chapter 1

Introduction

Section 1.1 provides an intuitive understanding of the topics and issues ad-
dressed in this thesis. Section 1.2 briefly describes some related work. The
contributions and cooperations regarding these contributions are declared
in Section 1.3 and 1.4, respectively. Section 1.5 outlines this thesis.

1.1 Motivation

Time-warping invariant distance: Many multimedia retrieval applica-
tions require to find similar time series to a given query time series [41,66,72].
One common application of finding similar time series is multimedia re-
trieval, including motion gesture recognition, speech recognition, and classi-
fication of handwritten letters. All these tasks have in common that the time
series of the same classes (e. g., same spoken words or same gestures) follow
a similar path in space but have some temporal distortion. Another example
is tracking the GPS coordinates of two cars driving the same route. If these
two time series shall be recognized as similar, temporal differences result-
ing from driving style, traffic lights, and traffic jams need to be dealt with.
Time-warping distance functions considered in Chapter 3 (e. g., Dynamic
Time Warping (DTW) [80], edit distance with real penalties (ERP) [33], and
the Dog Keeper distance (DK) [9,10,40]) respect this semantic requirement.

Isometric invariant distance: Time series of the same class (e. g., same
written characters or same gestures) may differ by temporal and spatial dis-
placements [59]. While time-warping distance functions are robust against
temporal displacements, they generally fail when the time series are ro-
tated or translated in space. Distance functions that measure the (approxi-
mate) congruence of two time series are defined and analyzed in Chapter 4.
Thereby, the distance between two time series S and T shall be 0 iff S can
be transformed into T by rotation, translation, and mirroring; in this case,

1



2 CHAPTER 1. INTRODUCTION

S and T are said to be congruent. A value greater than 0 shall correlate to
the amount of transformation needed to turn the time series into congruent
ones.

Query types: While some applications compare whole time series against
each other, other applications need to search for shorter sequences within
long time series, e. g., when searching for a specific pathological sample
within a long-term ECG1. These tasks are refered to as whole sequence
matching and subsequence matching, respectively [41].

Indexing: Notably, this thesis takes into account subsequence search on
multi-dimensional time series using time warping and congruence distance
functions, respectively. Since datasets increase in size, computational perfor-
mance remains crucial when designing new algorithms and data structures
for these tasks. To improve the runtime performance, one can improve the
computation time of the comparison function and reduce the number of
overall comparisons. Two common approaches for pruning comparisons are
lower bounds for the distance function and index structures.

Elegant solutions exist for index structures providing range queries on
ordered data (e. g., the B+-Tree [36]), range queries on spatial data in vector
spaces (e. g., the R∗-Tree [16]), and range queries on data in metric spaces
(e. g., the M-Tree [35]). In particular, metric index structures elegantly
separate the semantics of the comparison and the indexing technique [48]:
The algorithms of the index structure only depend on specific properties of
the distance function. Hence, the program code for the index structure and
the distance function can be maintained separately.

Problem statement and solution approach: Unfortunately, comput-
ing time-warping distance functions seems to have quadratic time complex-
ity [15,25,26]. Chapter 3 even provides proof that the runtime of similarity
search applications using DTW strongly suffers under the curse of dimension-
ality, i. e., the runtime decreases drastically with increasing dimensionality.
This thesis addresses these performance issues by providing fast algorithms
for the DK distance that yield similar quality in classification tasks [9].

When measuring the degree of congruence of two time series, only rota-
tion on two-dimensional time series has been considered [5, 59]. Chapter 4
discusses measuring the congruence on time series with arbitrary dimension-
ality regarding arbitrary isometric transformations (i. e., the transformation
moves the time series by translation, rotation, and reflection).

Since metric distance functions are not applicable for subsequence search,
Chapter 5 fills this gap by introducing metric subset spaces. The corre-
sponding subset distance functions are naturally designed for containment

1An electrocardiogram (short ECG) shows the electrical activity of the heart over time.



1.2. RELATED WORK 3

comparison (in particular subsequence search). The Euclidean distance, the
Dog Keeper distance, and even a distance function on sets of metric ele-
ments (i. e., the Hausdorff distance) can be canonically extended such that
they yield metric subset spaces. Furthermore, Chapter 5 contributes the
SuperM-Tree that is an index structure for any metric subset space, and
thus achieves the same separability as metric index structures for metric
spaces.

1.2 Related Work

Similarity search is used in various ways, some of which describe the re-
lation of two objects, and some of which solve classification or regression
tasks. Examples relating two objects to each other include content-based
video copy detection (CBCD) and cover song recognition. CBCD applica-
tions, for example, search for similar videos that originate from the same
source while transformations such as resolution change or fast-forwarding
might have changed the video [66,86]. On the other hand, Song cover recog-
nition allows similar songs to be from different sources, but they shall have
similar melody and arrangements [37,54]. Possible implementations for both
applications use distance functions to perform similarity search on a set of
features describing the data objects. Predicting an answer to a query by us-
ing the labels of objects that are similar to the query object is a common way
to implement simple classifiers or regressors (e. g., text categorization [21]
and melting point prediction [75], respectively). Despite the numerous sim-
ilarity search applications, this thesis focuses on fundamental research on
similarity search concepts, while in-depth studies of its applications are out
of scope for this thesis.

Time series representations: In the area of similarity search on real-
valued time series, much research aims to improve the algorithm’s runtime
by using different (mostly approximating) representations of the time se-
ries. Some of the approaches reduce the representational dimensionality,
e. g., the Piecewise Linear Approximation (PLA) [34], or the Singular Value
Decomposition (SVD) [62]. PLA reduces the dimensionality by averaging
successive elements (i. e., by reducing the length of the time series). SVD
considers a set of one-dimensional time series as a huge matrix, performs the
singular value decomposition, and then ignores all but the most dominant
Eigenvectors. Other representational changes transform the time series into
their frequency domain, e. g., the Discrete Fourier Transform (DFT) [1,42],
the Discrete Wavelet Transform (DWT) [30,61], or the Symbolic Fourier Ap-
proximation (SFA) [81]. The latter compresses the Fourier coefficients using
symbolic constants for ranges of values, which opens a third category of rep-
resentational changes. The earliest published approach that proposed such
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symbolic constants is the Symbolic Aggregate approXimation (SAX) [68,69].
Numerous further compression and dimensionality reduction techniques ex-
ist. However, despite their success, they consider mainly one-dimensional
time series, which is a severe limitation for this thesis’ goals. Hence, this
thesis does not study the optimization of a query’s runtime by changing the
time series’ representation.

Time-warping distance functions: Numerous distance functions ex-
ist for the uncountable applications that yield different semantic require-
ments to the distance function [38, 41]. Time-warping distance functions
consider distortion in time, e. g., Dynamic Time Warping (DTW) [80], the
Dog Keeper distance (DK) [43], and the edit distance with real penalties
(ERP) [33].2 While DTW is the most famous time-warping distance function,
the DK distance is the oldest one, presented by M. Fréchet in 1906. Re-
garding their semantic, the difference is analogous to the difference between
the Euclidean norm and the Maximum norm of n-dimensional real-valued
vectors.

Since the runtime complexity for several time-warping distance functions
is proven to be quadratic [15, 25, 26], some approaches aim at reducing the
expected computation time [3, 9, 14], other approaches aim at improving
the runtime using approximations. For example, the restriction of time-
warping to a maximum distance in time improves the runtime by a constant
factor (e. g., the Sakoe-Chiba band [80] or the Itakura parallelogram [51]);
cheap to compute lower bounds to the distance function allow pruning the
computation of the expensive, actual distance function if the lower bound
promises a value beyond a certain threshold [58, 60, 64, 88]; the time series’
representational changes mentioned above improve the runtime at the cost
of approximated distances.

Instead of proposing a new time-warping aware distance function or a
lower bound for one of the distance functions, this thesis presents a close
study and comparison of DTW vs. DK. This thesis does, however, propose
Sparse Dog Keeper, a new algorithm for the computation of the DK distance.

Congruence of time series: Some applications require distance func-
tions that measure the congruence of two time series. For example, Keogh
et al. adapted DTW to approximate the congruence of two shapes [59] by cre-
ating a time series per shape that measures the distance of the shape’s center
to the furthest point of the shape in each direction, respectively; these time
series are then compared using DTW. While this approach works well for this
specific application, it does not apply to high-dimensional time series and
arbitrary isometric transformations. Alt et al. categorized groups of con-
gruence transformations; they distinguished between translation, rotation,

2Details on these distance functions are presented in Section 2.4.1.
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reflection, scaling, reordering of the points, and combinations of those [5].
They further identified different tasks, i. e., whether the allowed error for
the approximation is already given or to be determined; in the former case,
the congruence problem becomes a decision problem. Various studies con-
sidered two- and three-dimensional spaces: Atkinson proposed an algorithm
that solved the congruence problem in quasi-linear time on sets of three-
dimensional points [7]; Heffernan and Schirra considered congruence prob-
lems in two-dimensional spaces [45]; Indyk and Venkatasubramanian even
achieved a near-linear complexity algorithm by applying of Hall’s Theorem;
their distance function, however, relaxes the one-to-one condition of the
mapping [50]. Cabello, Giannopolos, and Knauer showed that the exact
congruence problem on unordered point sets is equivalent to graph isomor-
phism [27]. Akutsu provided a randomized algorithm for the congruence
problem in arbitrary Euclidean spaces that is exponential in the dimension-
ality and polynomial in the cardinality of the sets [2]. This thesis studies the
congruence of ordered point sets with unbound dimensionality regarding ar-
bitrary isometric transformations. Moreover, this thesis provides proof that
the decision of the approximated congruence problem under these circum-
stances already is NP-hard.

Index structures for complex data types: Numerous index structures
exist offering queries on complex data types such as time series, including
index structures for sets and set containment joins [53, 63, 87], for strings
and similarity search regarding the Edit distance [84], for one-dimensional
time series and Dynamic Time Warping [28, 57, 58]. These index structures
are, however, domain-specific solutions or at least specific to fixed distance
functions. On the other hand, metric index structures that support nearest
neighbor queries in any metric space [19, 23, 35, 76] are more generic and
support range queries on a wide range of different complex data types. These
index structures use the triangle inequality to estimate distances and prune
parts of the indexed dataset. This thesis is inspired by the ideas of metric
spaces and metric index structures and enhances them to enable new query
types for metric time series.

Index structures supporting subsequence queries: Indexing time
series and supporting subsequence queries is even more challenging. Falout-
sos, Ranganathan, and Manolopoulos propose the ST-index for subsequence
search regarding the Euclidean distance [42]. For each indexed time series,
they store all subsequences’ two most dominant Fourier coefficients in an
R∗-Tree [16]. At query time, they exploit that the Euclidean distance of
such Fourier coefficients is a lower bound for the actual Euclidean distance
of the time series; thus, a range query on the R∗-Tree returns a set of candi-
date time series. Rakthanmanon et al. built an algorithm for searching huge
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amounts of time series; they support subsequence queries regarding DTW [78].
Their main runtime improvement results from a well-chosen cascade of lower
bounds to DTW. Bhaduri et al. improve the runtime of subsequence queries
by exploiting the triangle inequality on subsequences within a large time se-
ries and pruning candidate positions within the large time series, i. e., they
built an index structure that holds a set of subsequences that are all of the
same lengths [20]. This thesis proposes the SuperM-Tree, an index structure
for subsequence search that is as generic as any metric index structure.

1.3 Contributions

The following contributions originate from this work:

• two dataset generators for multi-dimensional time series (RAM and the
multi-dimensional CBF) applicable for benchmarking time-warping and
congruence distance functions;

• an analytical and experimental evaluation of LBBox (a generalization of
Keogh’s lower bound for DTW to multi-dimensional time series) regard-
ing the curse of dimensionality;

• a proof in modern mathematical notation showing that the Dog Keeper
distance (DK) satisfies the triangle inequality3;

• a fast algorithm for DK and an experimental evaluation and comparison
of DK against DTW and LBBox;

• a proof showing that there is no fast algorithm for the congruence
distance function unless the complexity classes P and NP are equal;

• a fast approximating algorithm for the congruence distance;

• the concept of metric subset spaces including corresponding indexing
techniques;

• an implementation of an index structure for metric subset spaces
(SuperM-Tree), including an experimental evaluation.

1.4 Cooperations

Most of the contributions presented in this thesis are public already. The
following list references these publications and circumscribes the part of the
work of the co-authors.

3A different proof by Maurice Fréchet exists [43]. However, it is written in french and
it uses a hard to read mathematical notation.
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• The time series generators described in Section 2.5 have been published
in [12]. The co-author J.-C. Freytag supervised the work.

• The proof of DK’s triangle inequality (see Section 2.4) is published
in [9]. The co-author J.-C. Freytag supervised the work.

• The contents of Chapter 3 have been published in [9] and [10]. The
co-author J.-C. Freytag supervised the work.

• The definition of the Congruence distance in Chapter 4 and the proof
of its hard computation have been published in [13]. The co-authors
J.-C. Freytag and Nicole Schweikardt supervised the work. Nicole
Schweikardt further found a mistake in the first draft of the proof.
Jörg P. Schäfer, the author of this thesis, corrected the proof before
publishing [13]. Benjamin Hauskeller helped to implement and run
the experiments.

• The approximating algorithms in Chapter 4 have been published in
[11]. The co-author J.-C. Freytag supervised the work.

• The contents of Chapter 5 have been published in [8].

1.5 Outline

The rest of this thesis is structured as follows: Chapter 2 introduces the
main work with basic notations in Section 2.1, preliminaries to metric spaces
and metric index structures in Section 2.2, and time series, distance func-
tions on time series, and time series datasets and dataset generators in
Section 2.3, 2.4, and 2.5, respectively.

Chapter 3 discusses time-warping distance functions. After describing
specific nomenclature in Section 3.2, Section 3.3 introduces LBBox as canon-
ical extension to Keogh’s lower bound on DTW for multi-dimensional time
series. Section 3.3 further shows that LBBox suffers from the curse of dimen-
sionality. Section 3.4 provides alternative algorithms for the DK distance.
The algorithms provided in Section 3.3 and 3.4 are compared and evaluated
in Section 3.5.

Chapter 4 discusses distance functions considering congruence of time
series. After motivating this topic and the problem statement in Section 4.1,
the Congruence distance is introduced in Section 4.2. Moreover, Section 4.2
shows that any possible algorithm computing the Congruence distance up
to a certain precision has at least exponential runtime unless the complexity
classes P and NP are equal. Various approximating algorithms with different
properties are discussed in Section 4.3 and evaluated in Section 4.4.

Chapter 5 presents a new index method for subsequence search. Af-
ter introducing to the topic and the approach followed in this chapter in
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Section 5.1, Section 5.2 presents the new formal concept of metric subset
spaces as well as three basic examples which cover the distance functions
from Chapter 3 and 4. Section 5.3 describes the SuperMTree, which is an in-
dex structure for metric subset spaces; Section 5.4 presents empirical results
on the three former examples.

Chapter 6 concludes this thesis.



Chapter 2

Preliminaries

This chapter clarifies the basic notation, nomenclature, and concepts used
throughout the rest of this work. This chapter also describes the dataset
generators used in the experiments in the following chapters.

2.1 Notation

Sets of numbers: Sets are denoted using brackets, i. e., {x, y, z} is a set
of three elements. For a set A, the boolean term x ∈ A is true, iff x is an
element in A. For two sets A and B, A ∪ B, A ∩ B, and A \ B denote the
union, the intersection, and the difference of both sets, respectively. The set
of non-negative integers, the set of reals, and the set of all reals > c, for some
c ∈ R are denoted by N, R, and R>c, respectively. The cardinality of a set
A is denoted by #A. Having a numeric function f , arg min {f(x) | x ∈M}
returns an argument x which minimizes the function f . For a, b ∈ R, a ≈ b
denotes that they are equal, approximately.

Logic: For two boolean variables F,G the logical and and or are denoted
as F ∧ G and F ∨ G, respectively. The logical implication is denoted by
=⇒. The logical and and or of a set of boolean variables F1, . . . , Fn is
denoted by

∧
16i6n Fi := F1 ∧ · · · ∧ Fn and

∨
16i6n Fi := F1 ∨ · · · ∨ Fn,

respectively. The all quantor is denoted by ∀, and the exists quantor is
denoted by ∃. For a parametrized boolean term F , the term ∃x∃yF (x, y) is
abbreviated with ∃x, y : F (x, y). The term ∃x ∈ A : F (x) is written instead
of ∃x : x ∈ A⇒ F (x) for better readability.

Mappings: For mappings f : A −→ B and g : B −→ C, f(A) :=
{f(x) | x ∈ A} denotes the image of f and g ◦ f : x 7→ g(f(x)) denotes the
concatenation of g and f . Furthermore, inf f and sup f are the infimum and
the supremum of f(A), respectively. The absoloute mapping | · | : R −→ R>0

is defined by |x| := max {x,−x}.

9
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Intervals: For numbers x, y the interval consisting of all numbers z with
x 6 z 6 y is denoted by [x, y]. Furthermore, [x, y) := [x, y] \ {y}. If
I = [x, y] declares an index set, it is restricted to the set of integers, e. g.,
for a given set S = {s1, · · · , s9} and an interval [2, 4], it is I = {2, 3, 4} and
SI = {s2, s3, s4}. The d-dimensional cartesian product is denoted using the
symbol

⊗
, thus

⊗
16j6d[li, ui] denotes the set of vectors v with lj 6 vj 6 uj

for 1 6 j 6 d.

Vector spaces: For k ∈ N, the set of all vectors of length k is denoted by
Rk. For a vector v ∈ Rk, the term vi denotes its entry at position i. The
i-th unit vector in Rk is denoted by ei, i.e., the vector with entry 1 in the
i-th position and entry 0 in all other positions. The usual scalar product on
Rk is denoted by 〈·, ·〉; i.e., 〈u, v〉 =

∑k
i=1 uivi for u, v ∈ Rk.

Vector norms: For p ∈ R>1 the usual p-norm on Rk is denoted by ‖·‖p;
i.e., ‖v‖p =

(∑k
i=1 |vi|p

)1/p
for all v ∈ Rk. In particular, ‖·‖1 denotes the

Manhatten norm, ‖·‖2 denotes the Euclidean norm, and ‖·‖∞ denotes the
Maximum norm. Note, that ‖v‖2 =

√
〈v, v〉 for all v ∈ Rk.

In general, a vector norm is an arbitrary mapping ‖·‖ : Rk −→ R>0 that
satisfies the following axioms:

∀ v ∈ Rk : ‖v‖ = 0 =⇒ v = 0.

∀ λ ∈ R, v ∈ Rk : ‖λv‖ = |λ| · ‖v‖.
∀ u, v ∈ Rk : ‖u+ v‖ 6 ‖u‖+ ‖v‖.

Matrices: An m×n matrix is denoted by A = (ai,j). The set of all (k×k)-
matrices with entries in R is denoted by Rk×k, for k ∈ N. Given a matrix
A ∈ Rk×k, Ai,j denotes the element in the i-th row and j-th column. A
matrix M ∈ Rk×k is called orthogonal if the absolute value of its determinant
is 1. Equivalently, M is orthogonal iff 〈mi,mi〉 = 1 and 〈mi,mj〉 = 0 for all
i, j ∈ [1, k] with i 6= j, where mi denotes the vector in the i-th column of
M . The set of all orthogonal matrices in Rk×k is denoted by MO(k). The
product of the matrix M ∈ Rk×k and the vector v ∈ Rk is denoted by Mv
and M · v. The terms λv, λ · v, λM , and λ ·M denotes the product of the
number λ ∈ R with the vector v and the matrix M , respectively. Recall
that two vectors u, v ∈ Rk are orthogonal iff 〈u, v〉 = 0 and that angles and
lengths are invariant under multiplication with orthogonal matrices, i. e.:

∀ u, v ∈ Rk, M ∈MO(k) : 〈Mu,Mv〉 = 〈u, v〉.
∀ u ∈ Rk, M ∈MO(k) : ‖Mu‖2 = ‖u‖2.
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Matrix norms: A matrix norm is a mapping ‖ · ‖ : Rk×k −→ R>0 satis-
fying the following axioms:

∀ M ∈ Rk×k : ‖M‖ = 0 =⇒ M = 0.

∀ λ ∈ R, M ∈ Rk×k : ‖λM‖ = |λ| · ‖M‖.
∀ M,M ′ ∈ Rk×k : ‖M +M ′‖ 6 ‖M‖+ ‖M ′‖.

The particular matrix norms considered in this thesis are the max column

norm ‖ · ‖m and the p-norm ‖·‖p, for p ∈ R>1, which are defined as follows:

For all M ∈ Rk×k,

‖M‖m := max
j∈[1,k]

( k∑
i=1

|mi,j |
)
,

‖M‖p :=
( k∑
i=1

k∑
j=1

|mi,j |p
)1/p

.

Sequences: Sequences (e. g., time series) are usually written using capital
letters, e. g., S = (s1, · · · , sn) is a sequence of length n. The length of a
finite sequence S is denoted by #S. Suppose si ∈ Rd, then si,j denotes the
j-th element of the i-th vector in the sequence S. The projection to the
j-th dimension is denoted by Sj , i. e., Sj = (s1,j , · · · , sn,j). For a set M,
the term MN denotes for the union

⋃
n∈NMn. Hence, MN denotes the set of

sequences over M of arbitrary lengths. For an infinite sequence S = (si)i∈N,
the limit is denoted by S −→ s∗ for i→∞.

Operations on sets and sequences: If there are no ambiguities, oper-
ations on sets and sequences apply elementwise: f(S) := {f(s1), · · · , f(sn)}
for a set S ⊂ M and a function on M and f(T ) := (f(t1), · · · , f(tn))
for a sequence in M and a function on M, e. g., |S| = {|s1|, · · · , |sn|}
and

√
T =

(√
t1, · · · ,

√
tn
)
. Analogously, binary operations apply elemen-

twise, i. e., M · S = {Ms1, · · · ,Msn}, S + v = {s1 + v, · · · , sn + v}, M ·
T = (M · t1, · · · ,M · tn), and T + v = (t1 + v, · · · , tn + v) for a set S =
{s1, · · · , sn}, a sequence T = (t1, · · · , tn) in Rk, a matrix M ∈ Rk×k, and a
vector v ∈ Rk, respectively.

Random variables: For a random variable X over R, its mean is denoted
by E[X], its variance is denoted by V[X], and the probability measure is
denoted by P, i. e., P[X < a] is the probability that the value of X is less
than a ∈ R. The standard normal distribution is denoted by Φ0,1.
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Algorithms: Abbreviations of algorithms are usually written in capital
letters (e. g., DTW for Dynamic Time Warping or CBF for Cylinder-Bell-Funnel
generator). Helper functions for algorithms are written in mono space fonts
(e. g., helperFunction).

2.2 Similarity search and metric spaces

Similarity search or nearest neighbor search is a common problem in com-
puter science [41, 49, 70]. For a given dataset and query, the problem is to
find the nearest neighbor to the query in the dataset regarding a certain
distance or similarity function. The difference between distance and simi-
larity functions is that a distance function returns 0 for exact matches and a
higher value otherwise, whereas similarity functions return larger values for
more similar input data [90]. This thesis considers distance functions only.
Some distance functions even yield a metric space [31]; thus, metric index
structures are applicable for improving the runtime of queries.

This section repeats both the concept of metric spaces, including simple
examples, and the M-Tree, a well known metric index structure [35].

2.2.1 Metric spaces

A metric space consists of a set of objects and a function providing the
distance between two objects [31, 47]. There are two main query types for
searching in metric spaces: the ε-nearest neighbor query (also called range
queries) and the k-nearest neighbor query. The ε-nearest neighbor query
(ε-NN query) returns all elements from the dataset having a distance of at
most ε to the query object. The k-nearest neighbor query (k-NN query)
returns those k elements having the smallest distance to the query object.

Definition 1 (Pseudo metric space). A pseudo metric space (M, d) consists
of a set M and a distance function d : M×M −→ R>0 satisfying the following
axioms:

∀ x, y ∈M : d(x, y) = d(y, x).

∀ x, y, z ∈M : d(x, z) 6 d(x, y) + d(y, z).

Definition 2 (Metric space). A metric space is a pseudo metric space which
also satisfies the reflexivity :

∀ x, y ∈M : d(x, y) = 0 ⇐⇒ x = y

Example 1. Note, if ‖·‖ is an arbitrary vector norm and d(·, ·) is defined as
d(u, v) := ‖u− v‖, then (Rk, d) is a metric space [47]. If ‖·‖ is an arbitrary
matrix norm and d(·, ·) is defined as d(M,M ′) := ‖M −M ′‖ for all matrices
M,M ′ ∈ Rk×k, then (Rk×k, d) is a metric space.
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P

Q

C

r(P)

Figure 2.1: Sketch of three objects P,Q,C in a metric space where Q
represents a query with radius ε and P represents a ball with
center P and radius r(P ) which covers C.

The Euclidean vector distance is denoted by d2(·, ·) = ‖ · − · ‖2, the
Manhatten distance is denoted by d1(·, ·) = ‖ · − · ‖1, and the maximum
distance is denoted by d∞(·, ·) = ‖ · − · ‖∞.

Example 2. Given a finite, undirected graph G = (V,E) with vertices V
and edges E ⊆ V × V , the shortest path distance d : V × V → R>0 yields a
metric space (V, d) [38].

Please note, that for each pseudo metric space (M, d) the equivalence
relation x ≡ y ⇐⇒ d(x, y) = 0 yields a metric space (M′, d) where M′ is the
set of equivalence classes. Further metric distance functions on time series
are discussed in Chapters 3 and 4.

2.2.2 Metric index structures

Similar to other index structures, the purpose of metric index structures is
to improve the query runtime. Moreover, they are flexible and modular by
indexing arbitrary data as long as it comes with a metric distance function.
Despite common index structures as the B+-Tree [36] for ordered data or the
R∗-Tree [16] for vector spaces, a metric index structure does not consider the
properties of the elements themself but instead indexes the elements using
the distances between them.

Metric index structures improve the runtime by pruning comparison of
the query object to dataset objects whenever those can be excluded for sure.
Therefore, they use the triangle inequality on the distances of the query
object to already seen objects and the stored distances of objects within the
dataset to estimate the distance of the query object to a candidate object
in the dataset. See Figure 2.1 for an example of an ε-NN query where Q is
the query element, P is an already seen object from the dataset, and C is a
potential candidate for the result of the nearest neighbor query: The triangle
inequality of distances d(P,Q) 6 d(P,C) + d(C,Q) holds, i. e., d(C,Q) >
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d(P,Q)−d(P,C) > d(P,Q)−r(P ) > ε and thus C is no candidate for the ε-
NN query. The details of how metric spaces’ properties are used exactly vary
between different index structures, e. g., the M-Tree [35], the Cover Tree [19],
the M-Index [76], and the VP-Tree [89]. Chávez et al. published a very
detailed survey on searching and indexing techniques in metric spaces [31].

2.2.3 M-Tree

This section describes the basic structure and algorithms of the M-Tree [35],
which is the basis for the SuperM-Tree in Chapter 5. Similar to the B+-
Tree, the R∗-Tree, and any other generalized search tree [46], the M-Tree is
a balanced tree with nodes of a specific capacity.

Inner nodes contain a set of routing objects, each associated with one
subtree. A routing object further describes a subset1 of the metric space
covering all objects in the corresponding subtree. Leaf nodes contain the
actual entries (i. e., the metric objects that are to be indexed) and some
optional user-defined data.

The insert algorithm first chooses the leaf node in which to insert the
new element. If a node is overfilled after adding the new element, i. e., if it
exceeds the capacity, then the node is split, and the old routing object in the
parent node is replaced by two new routing objects covering the elements
beneath the two new nodes. Thereby the size of the parent node increases
by one. This process repeats recursively until either a node is not overfilled
or the root node is split; in the latter, case a new root with two routing
objects is created, and the height of the tree increases by one.

Similarly, the delete algorithm deletes objects from the leaf nodes and
recursively applies the merge strategy on underfilled nodes.

Structure of M-Tree nodes

Leaf nodes store the indexed objects (key objects), whereas internal nodes
store routing objects, which help in pruning and navigating through the tree.

Each routing object Or is associated with a pointer to the root node
T (Or) of its subtree, called the covered tree of Or. The routing objects are
also associated with a radius r(Or) > 0 called the covering radius of Or, as
well as the distance d(P (Or), Or) to their parent P (Or). All indexed objects
in the covered tree of Or are within the distance r(Or) from Or.

Leaf nodes store the objects Oj and their distance d(P (Oj), Oj) to the
parent routing object. In real-world scenarios, leaf nodes contain additional
information (e. g., data pointer or tuple identifier) per key object.

1The M-Tree describes a subset S of a metric space (M, d) with a center element p
and a radius r: S = {x ∈M | d(x, p) 6 r}.
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Figure 2.2: Sketch of the partitions within a metric space created by an
M-Tree.

A B C

D E F

X
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Z

Figure 2.3: Sketch of the data structure tree created by the M-Tree that
is sketched in Figure 2.2.

Figure 2.2 sketches an example for the structure of an M-Tree and its
partitioning of the metric space. Note that the partitions may be overlap-
ping. In the example, the root node contains three routing objects A,B, and
C; the routing object B consists of the center object Y of the metric space
and the covering radius r(B); the covered subtree of B contains the routing
objects D (with X as center object) and E; the subtree of D contains the
elements X and Y . Note that both A and C cover the element Z. Sill, the
insertion in the data structure takes place in one path only; in this case,
it is inserted under the routing object F that is covered by C. Figure 2.3
sketches the data structure of this M-Tree.

Similarity queries

The M-Tree supports ε-nearest neighbor queries (range queries) and k-
nearest neighbor queries. Since k-nearest neighbor queries adapt the search
radius while traversing the tree, we only discuss ε-nearest neighbor queries
here.
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For an object Q ∈M, the range query mtree.range(Q, ε) selects all data
base objects Oj with d(Oj , Q) 6 ε. Algorithm 1 provides the pseudo-code
for the range query. It uses Lemma 12 and 23 to prune subtrees.

Lemma 1. If d(Or, Q) > r(Q) + r(Or), then d(Oj , Q) > r(Q) holds for
each object Oj in the covered subtree of Or.

Proof. Let Oj be an arbitrary but fixed object in the covered tree of Or. By
definition of metric spaces, the triangle inequality

d(Or, Q) 6 d(Or, Oj) + d(Oj , Q)

holds. The structure of the M-Tree requires d(Or, Oj) 6 r(Or), thus

d(Or, Q) 6 r(Or) + d(Oj , Q) and

d(Oj , Q) > d(Or, Q) − r(Or).

Together with the prerequisite d(Or, Q) > r(Q) + r(Or) of the lemma, the
desired inequality

d(Oj , Q) > r(Q) + r(Or) − r(Or) = r(Q)

holds. �

Lemma 2. If d(P (Or), Q ) > r(Q) + r(Or) + d
(
P (Or), Or

)
, then

d(Oj , Q) > r(Q) holds for each object Oj in the covered subtree of Or.

Proof. Let Oj be an arbitrary but fixed object in the covered tree of Or.
Applying the triangle inequality twice yields

d
(
P (Or), Q

)
6 d

(
P (Or), Or

)
+ d(Or, Oj) + d(Oj , Q).

Since d(Or, Oj) 6 r(Or) holds by definition of the structure of the M-Tree
and d(P (Or), Q) > r(Q) + r(Or) + d(P (Or), Or) is a prerequisite,

r(Q) + r(Or) + d
(
)P (Or), Or

)
< d

(
P (Or), Or

)
+ r(Or) + d(Oj , Q)

holds, and thus r(Q) < d(Oj , Q). �

2In Euclidean vector spaces, Lemma 1 yields that no element of the covered subtree
can be within the search range if the covered area of the subtree and the search area do
not overlap.

3Lemma 2 is used as optimization in the implementation of the M-Tree: It might prune
the subtree T (Or) without evaluating the distance of the query object Q to the routing
object Or. Therefore, it uses the distance value of the query object to the parent P (Or) of
the routing object, which at that time is already evaluated (cf. Line 12 in Algorithm 1).
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Algorithm 1 M-Tree: Range query

1 Algorithm: mtree.range

2 Input: node N (default: root node), query object Q,
search radius r(Q)

3 R := ∅
4 if N is a leaf node

5 for each Oj ∈ N
6 if d(Oj , Q) 6 r(Q)
7 R := R ∪ {Oj}
8 return R
9 // else

10 for each Or in N
11 if r(Q) < d(P (Or), Q)− d(Or, P (Or))− r(Or)
12 skip // pruned using Lemma 2
13 if r(Q) < d(Or, Q)− r(Or)
14 skip // pruned using Lemma 1
15 R := R∪ mtree.range(T (Or), Q, r(Q))
16 return R

Building the M-Tree

The M-Tree is a generalized search tree (GiST [46]), i. e., algorithms for
insertion and deletion of objects manage overflow and underflow of nodes 4

using split and merge operations.

The mtree.insert algorithm recursively descends the M-Tree down to
the leaf node where to insert the object. For ambiguous cases, different
strategies exist for choosing the routing object at each node. A simple
strategy chooses the routing object with the closest distance to the new
element. Further strategies are discussed in the original work [35]. At each
routing object of the insertion path, the algorithm ensures that the covering
radius r(Or) covers the newly inserted element by increasing the radius
if necessary. Algorithm 2 provides the pseudo-code for the mtree.insert

algorithm.

Split management Various split strategies exist for the M-Tree. They
consist of a promotion and a partition algorithm (see Algorithm 3). Split-
ting a node N makes it two nodes N1 and N2, each getting a new parent
routing object. The direct children of N are partitioned and distributed
among the new nodes N1 and N2.

4An overflow or underflow occurs when a node’s size exceeds the capacity or deceeds
(i. e., is less than) a fixed fracture of the capacity, respectively
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Algorithm 2 M-Tree: Insert

1 Algorithm: mtree.insert

2 Input: node N, object O
3 if N is a leaf node

4 N := N ∪ {O} // insert O to N
5 else

6 Or := arg min {d(Or, O) | Or ∈ N}
7 r(Or) := max {r(Or), d(Or, O)}
8 childSplit, O1, O2 := mtree.insert(T (Or), O)
9 if childSplit

10 N := N \ {Or} ∪ {O1, O2}
11 didSplit, O1, O2 :=split(N) // cf. Algorithm 3

12 if didSplit and N is root node

13 set new root node {O1, O2}
14 return didSplit, O1, O2

Algorithm 3 M-Tree: Split

1 Algorithm: mtree.split

2 Input: node N, object O
3 if |N | 6 capacity
4 return false, nil, nil

5 foundPromotion, O1, O2 := promote(N) // cf. Algorithm 4

6 if not foundPromotion:

7 return false, nil, nil

8 N1, N2 := partition(N,O1, O2) // cf. Algorithm 5

9 T (O1) := N1

10 T (O2) := N2

11 r(O1) := max {d(O1, O) | O ∈ N1}
12 r(O2) := max {d(O2, O) | O ∈ N2}
13 return true, O1, O2
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First, the promote algorithm provides the two routing objects (one for
each new partition) that both replace the old routing object in the parent
node. The authors of the M-Tree figured that the choice of the promotion
strategy is a trade-off between computation time for building the tree and
computation time for querying the tree [35]. This thesis focuses on the
strategy that promotes two objects minimizing the sum of the new nodes’
covering radii (cf. Algorithm 4). If N is the root node, a new root node is
created filled with the two promoted routing objects.

Given the promoted routing objects, the partition algorithm disjointly
distributes the elements of the node N among the two nodes N1 and N2.
Here, the generalized hyperplane strategy is presented, which puts each ob-
ject to its nearest routing object (cf. Algorithm 5).

Algorithm 4 M-Tree: Promote

1 Algorithm: mtree.promote

2 Input: node N
3 e :=∞
4 P1 := nil
5 P2 := nil
6 foundPromotion:=false

7 for each pair O1, O2 ∈ N
8 N1, N2 := partition(N,O1, O2) // cf. Algorithm 5

9 // get penalty for this partition
10 r1 := max {d(O1, O) | O ∈ N1}
11 r2 := max {d(O2, O) | O ∈ N2}
12 if r1 + r2 < e // if new best candidate pair is found
13 foundPromotion:=true

14 P1 := O1

15 P2 := O2

16 return foundPromotion, P1, P2

Algorithm 5 M-Tree: Partition

1 Algorithm: mtree.partition

2 Input: node N, routing objects O1, O2

3 N1 := {Oj ∈ N | d(O1, Oj) < d(O2, Oj)}
4 N2 := N \N1

5 return N1, N2
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2.3 Data type: time series

Various definitions of the data type time series exist [32, 41]. Example
distinctions include finite versus infinite time series and time series with
time stamps versus simple sequences without time stamps. Furthermore,
various compression techniques exist for representing time series [29,41,69].
This thesis only considers time series as finite sequences consisting of metric
space elements and disregards any compression technique.

Examples with real-valued elements include stock market data and tem-
perature measurements. Two-dimensional examples include trackings of
GPS coordinates and gestures on touch screens. A sophisticated example
that shows this data type’s universality is tracking an element in a graph
(e. g., a social web).

Definition 3 (Time series). A time series T of length ` over a metric space
M is a sequence T = (t1, · · · , t`) with ti ∈M for 1 6 i 6 `.

Note, that Definition 3 covers the default definition of real valued time
series [32, 41]. The rest of this thesis considers M = Rk for some k ∈ N,
although some results do not depend on this restriction.

The suffix of a time series defined by Tail(T ) := (t2, · · · , tn) removes
the first element of the time series. A subsequence of T starting at index i
with length k is denoted by T ki := (Ti, · · · , Ti+k−1).

2.4 Time series distance functions

While various distance functions on time series exist [33, 44, 65, 80, 82], this
thesis only considers some of them and categorizes them by their seman-
tics. The first type of distance function considered is time-warping distance
functions. They aim at comparing time series while being robust against
time distortion [41]. Various reasons cause time distortion, such as sensor
inaccuracies, sensor failures, or even purpose by different people perform-
ing the same gesture with different accelerations on a touch screen. The
second type of distance functions considered in this thesis is robust against
isometric transformations, i. e., when a transformation translates, rotates,
and reflects a time series without changing the shape of the time series [5].
This section provides examples for both of these types.

In the rest of this work, distance functions on time series are denoted via
greek letters (e. g., δ : MN ×MN −→ R>0) and distance functions on their
elements are denoted via arabic letters (e. g., d : M×M −→ R>0). Given a
distance function d on the elements of two time series S and T , the p-norm
on the vector of all pairs d(si, ti) is denoted via ‖d‖p := p

√∑n
i=1 d(si, ti)p. If

a particular distance function is meant, it is denoted via its name (e. g., DK
or DTW).
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2.4.1 Time-warping distance functions

Numerous time-warping distance functions considering time distortion (i. e.,
temporal displacements) exist. They all share the same approach for finding
a good alignment between the elements of two time series. Common exam-
ples include Dynamic Time Warping (DTW) [80], the Levenshtein distance
(a specific edit distance) [65], the Dog Keeper distance (DK) [40, 43], and
the edit distance with real penalties (ERP) [33]. Although these functions
are defined recursively (which yields exponential runtime in the length of
the time series), algorithms using dynamic programming exist that reduce
the complexity to quadratic runtime (e. g., [40,80,83]). This section repeats
algorithms and properties of DTW, ERP, and DK. Although this thesis focuses
on DTW and DK in later sections, ERP is included in this section to understand
the common approach of time-warping distance functions.

The algorithms for the computation of DTW, ERP, and DK are very similar.
They differ in how they handle a time-warping step and how they aggregate
the distances of the elements of the time series: DTW and ERP sum up the
values while the DK distance takes the maximum.

For a formal definition, let S = (s1, · · · , sm) and T = (t1, · · · , tn) be
two time series, gap a globally constant element (e. g., 0 as proposed by the
authors of ERP), and d(s, t) any distance function on the elements of the
time series. The well known distance function DTW is defined as follows.

DTW(S, ()) =∞
DTW((), T ) =∞
DTW((), ()) = 0

DTW(S, T ) = d(s1, t1) + min


DTW(Tail(S), Tail(T ))

DTW(S, Tail(T ))

DTW(Tail(S), T )

Following the path in the recursion tree which provides the minimum at
each step provides a set of correspondences between the elements of S and
T where the first correspondence is always (s1, t1). These correspondences
define the alignment or warping path between S and T .

Example 3. Figure 2.4 sketches two time series S and T . The sequence
((s1, t1), (s2, t2), (s2, t3), (s3, t4), (s4, t4), (s5, t5)) describes the alignment re-
garding DTW. Note that s2 is associated with two elements of T , and t4 is
associated with two elements of S. Hence, the computation of DTW results
in

DTW(S, T ) = d(s1, t1) + d(s2, t2) + d(s2, t3) + d(s3, t4) + d(s4, t4) + d(s5, t5)

= 17.
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Figure 2.4: A sketched example showing the alignment (dotted lines)
between two time series S and T regarding DTW (left) and
the table of pairwise distances of the elements (right).

Note, that DTW corresponds to the Manhatten norm on the vector of distances
regarding the best alignment:

DTW(S, T ) =
∥∥∥(d(s1, t1), d(s2, t2), d(s2, t3), d(s3, t4), d(s4, t4), d(s5, t5)

)∥∥∥
1

Sometimes, the Euclidean norm is used instead [24,64].

The ERP distance function differs from DTW by including gap elements to
the time series on warping steps. Hence, the only element which may appear
multiple times in the warping path is the gap element.

ERP(S, ()) =
∑
si∈S

d(si, gap)

ERP((), T ) =
∑
ti∈T

d(gap, ti)

ERP((), ()) = 0

ERP(S, T ) = min


d(s1, t1) + ERP(Tail(S), Tail(T ))

d(gap, t1) + ERP(S, Tail(T ))

d(s1, gap) + ERP(Tail(S), T )

The DK distance is similar to DTW and differs by taking the maximum distance
instead of the sum along the warping path:

DK(S, ()) =∞
DK((), T ) =∞

DK((s), (t)) = d(s, t)

DK(S, T ) = min


max {d(s1, t1), DK(Tail(S), Tail(T ))}
max {d(s1, t1), DK(S, Tail(T ))}
max {d(s1, t1), DK(Tail(S), T )}
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Hence, the alignments of the time series in Example 3 are the same for DK

and DTW, but the distance value DK(S, T ) = 4 differs from that of DTW. Note
that this is not necessarily always the case.

It is easy to see that ERP and DK are symmetric. Moreover, they satisfy
the triangle inequality [33, 43], which makes them pseudo metric distance
functions. Still, ERP is not considered any further in this thesis since the
distance value relies on the choice of the gap element, which results in un-
intuitive semantics. Furthermore, ERP is not truly invariant under time
warping, as the following example shows.

Example 4. Let S = (1, 2) and T = (1, 1, 2) be two real-valued time se-
ries. The computation of ERP(S, T ) with gap = 0 results in the alignment
((s1, t1), (gap, t2), (s2, t3)) and thus ERP(S, T ) = 0 + 1 + 0 = 1. At the same
time, the expected result of a distance function that is truly invariant under
time warping would be 0 since both time series follow the same path in space
but have only temporal displacements (i. e., s1 occurs twice in T ).

Dog Keeper yields a metric: The DK distance is a special case of the
Fréchet distance [43] that is defined on pairs of continuous trajectories
f : R −→ Rn for some interval R ⊆ R and n ∈ N. This section also abbre-
viates the Fréchet distance with DK. The proof that shows that the Fréchet
distance satisfies the triangle inequality is written in French and an old style
of mathematical language [43]. Hence, this section provides a new proof in
a modern mathematical language that shows that the Fréchet distance (and
thereby the Dog Keeper distance) satisfies the triangle inequality.

Let M := Rk be the space of states and d : M×M −→ R>0 be a metric
on all states. The set of all (piecewise continous) curves over [0, 1] ⊂ R is
denoted by

T := {f : [0, 1] −→M}

and the set of all warping functions over [0, 1] is denoted by

Σ := {σ : [0, 1] −→ [0, 1]} ,

where all σ ∈ Σ are continuous, strictly monotonically increasing, inf σ = 0,
and supσ = 1. For f, g ∈ T , let δ∞(f, g) := maxx∈[0,1] d(f(x), g(x)) be the
maximum distance of f and g.

Definition 4 (Fréchet Distance). Let f, g ∈ T be two curves over [0, 1].
The Fréchet distance DK of f and g is defined as

DK(f, g) := inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ)

Definition 4 is well defined since DK(f, g) has 0 as lower bound and thus
the infimum exists. It is easy to see that DK satisfies the symmetry. The
following theorem claims that DK also satisfies the triangle inequality and
therefore is a pseudo metric distance function.
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Theorem 1. The Fréchet distance DK satisfies the triangle inequality, i. e.,

∀f, g, h ∈ T : DK(f, h) 6 DK(f, g) + DK(g, h).

The following two lemmas are necessary to prove the triangle inequality.
First, Lemma 3 shows that the δ∞ distance does not change when applying
the time warping on both curves. Then, Lemma 4 reduces the search to all
warping functions applied to one time series only.

Lemma 3. Let f, g ∈ T be two arbitrary curves, and let σ ∈ Σ be an
arbitrary warping function. Then, the following equation holds:

δ∞(f, g) = δ∞(f ◦ σ, g ◦ σ)

Proof. Consider the mappping

θ : [0, 1] −→ R>0

x 7−→ d(f(x), g(x)).

Then,

δ∞(f, g) = sup (θ([0, 1])) , and

δ∞(f ◦ σ, g ◦ σ) = sup (θ ◦ σ([0, 1]))

Since θ([0, 1]) = θ(σ([0, 1])), the desired equation δ∞(f, g) = δ∞(f ◦σ, g ◦σ)
follows. �

Lemma 4. Let f, g ∈ T be two arbitrary curves. Then, the following
equation holds:

DK(f, g) = inf
σ∈Σ

δ∞(f, g ◦ σ)

Proof. Consider two sequences (σi)i∈N and (τi)i∈N with σi, τi ∈ Σ for i ∈ N,
such that

δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g).

Since each σi is invertable, Lemma 3 can be applied on δ∞(f ◦σi, g ◦τi) with
σ−1
i , i. e.

δ∞(f, g ◦ τi ◦ σ−1
i ) =δ∞(f ◦ σi ◦ σ−1

i , g ◦ τi ◦ σ−1
i )

=δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g). (2.1)

Equation 2.1 yields a sequence (θi)i∈N := (τi ◦σ−1
i )i∈N with θi ∈ Σ for i ∈ N,

such that δ∞(f, g ◦ θi)
i→∞−−−−→ DK(f, g).
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Furthermore,

DK(f, g) = inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ) 6 inf
θ∈Σ

δ∞(f, g ◦ θ).

Hence, DK(f, g) = infθ∈Σ δ∞(f, g ◦ θ). �

Proof of Theorem 1. Consider arbitrary but fixed curves f, g, h ∈ T . Since
DK(f, g) = infσ∈Σ δ(f, g ◦ σ) holds by Lemma 4, an infinite sequence (σi)i∈N
exists with σi ∈ Σ for all i ∈ N, such that

δ∞(f, g ◦ σi)
i→∞−−−−−−−→ DK(f, g).

Analogously, a sequence (τ ′i)i∈N with τ ′i ∈ Σ for all i ∈ N exists, such that

δ∞(g, h ◦ τ ′i)
i→∞−−−−−−−→ DK(g, h).

Considering the sequence (τi)i∈N with τi = τ ′i ◦ σi ∈ Σ and using Lemma 3
yields

δ∞(g ◦ σi, h ◦ τi) = δ∞(g ◦ σi ◦ σ−1
i , h ◦ τi ◦ σ−1

i )

= δ∞(g, h ◦ τ ′i)
i→∞−−−−−−−→ DK(g, h).

Recall, that (T , δ∞) is a metric space, thus the triangle inequality holds for
each i ∈ N:

δ∞(f, h ◦ τi) 6 δ∞(f, g ◦ σi) + δ∞(g ◦ σi, h ◦ τi)

Since DK(f, h) = infτ∈Σ δ∞(f, h ◦ τ), the triangle inequality holds:

DK(f, h) 6 lim
i→∞

δ∞(f, h ◦ τi)

6 lim
i→∞

δ∞(f, g ◦ σi) + lim
i→∞

δ∞(g ◦ σi, h ◦ τi)

= DK(f, g) + DK(g, h)

�

2.4.2 Congruence of time series

This section first outlines geometric point pattern matching to induce an
understanding of the latter congruence of time series. The introduction to
the congruence of time series then uses the same notation.

Two sets A and B are said to be congruent iff µ(A) = B holds for
some isometry µ (i. e., for some distance preserving function) [27]. Isometric
functions consist of rotation, translation, reflection, and any concatenation
of these operations. Note that the correspondence of the points of A to the
points of B is not known beforehand.
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Figure 2.5: A time series T (right) with ε-balls around each element
and a time series S (left) which is rotated and translated via
transformation µ to fit into the ε-balls of T .

Various problem statements regarding congruence of sets exist [4, 5].
They distinguish between exact and approximated congruence. More rel-
evant to this thesis is the approximated case which is more realistic by
allowing errors: The points of A are to be mapped into ε-neighborhoods of
the points of B, i. e., A and B are ε-approximately congruent iff each µ(a)
(a ∈ A) is in the ε-neighborhood of a distinct b ∈ B for some isometry µ
(cf. Figure 2.5).5

Given sets A and B, the CONGRUENCE problem is to decide whether
A and B are congruent [2, 7, 27]. Given a further error value ε, the ap-
proximated CONGRUENCE problem with tolerance ε is to decide whether
A and B are ε-approximately congruent [4–6, 50]. This thesis aims at find-
ing a minimal ε (and possibly the corresponding transformation function µ),
such that A and B are (approximately) congruent with tolerance ε [4,5].6 As
stated in the two referenced surveys [4,5], only a little research exists in find-
ing a minimal tolerance ε for the approximated congruence. Furthermore,
most of the research either considers two- and three-dimensional point sets
or considers the exact CONGRUENCE problem in high dimensional space.

This section formally introduces the congruence of time series over Eu-
clidean vector spaces. Thereby, two time series S and T are said to be
congruent, iff µ(S) = T (i. e., µ(si) = ti for each 1 6 i 6 #S) holds for
some isometry µ. The difference to point pattern matching is that the cor-
respondence between the points of the two time series is already known. In
the approximated case, an error of ε is tolerated, i. e., S and T are con-
gruent with tolerance ε iff ‖si − µ(ti)‖ 6 ε holds for some isometry µ and
each 1 6 i 6 #S. In general, taking the maximum of some error values
is vulnerable to noise and can be improved by summing the error values.
Therefore, it is useful to generalize the congruence: S and T are congruent

5Most commonly, congruence problems are considered in Euclidean vector spaces.
6This thesis aims at finding minimal distances regarding congruence of time series.
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with tolerance ε regarding some norm ‖ · ‖, iff

inf
µ
{‖d2‖(S, µ(T ))} 6 ε

where ‖d2‖(S, µ(T )) := ‖(d2(si, µ(ti)))16i6#S)‖, i. e., the Euclidean distance
d2 is applied on the pairs of corresponding elements while the norm ‖ · ‖ is
applied on the vector of these distances. The time complexity (regarding the
dimensionality as the parameter) of any algorithm computing the congru-
ence regarding the sum norm is analyzed in Chapter 4. Chapter 4 further
proposes fast algorithms computing lower bounds for the exact value.

2.5 Time Series Datasets and Synthesizers

Fast algorithms for time series distance functions are necessary in order to
achieve fast query runtimes. There are some evaluations of different time
warping distance functions on different datasets [85], but their performance
has not been evaluated concerning growing dimensionality. Furthermore,
datasets are necessary for the evaluation of the proposed congruence dis-
tance functions (see Chapter 4) as well as the proposed index structure (see
Chapter 5).

Computation time of distance function: To evaluate the computa-
tion time of a distance function concerning growing dimensionality, datasets
with similar properties (e. g., size of the dataset, length of time series, data
distribution) but different dimensionality are necessary. Existing datasets
of different dimensionality exist but have different properties. This thesis
uses synthesized data to achieve similar properties on datasets with different
dimensionality.

Tightness of lower bounds: Nearest neighbor queries are also acceler-
ated by pruning distance computations using cheap lower bounds [58,78]: If
a lower bound claims a large distance, there is no need to compute the ex-
act but expensive distance value. The lower bound proposed by Keogh was
extended to multi-dimensional time series [71] (here called LBBox), but there
is no evaluation available regarding growing dimensionality. Again, having
datasets with similar properties for different dimensionality is necessary for
these evaluations. Those datasets could also be used to evaluate pruning
strategies of index structures specialized to DTW [74] or metric index struc-
tures [19, 23, 35, 76] applicable for metric time series distances (e. g., DK [9]
and ERP [33]).
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Accuracy of classifiers: Nearest neighbor search appears in supervised
machine learning, for example, one-nearest neighbor classifiers. Labeled
datasets are necessary to compare the properties of two classifiers using two
different distance functions. Since the comparison is meaningless when both
classifiers are perfectly accurate, the difficulty of classification tasks needs
to be controllable. Thus, when designing dataset generators to compare
the strength of two classifiers, parameters to control the difficulty (e. g., the
distortion or fuzziness of data) need to be implemented.

Time distortion of trajectories: Some of the evaluation tasks addressed
in this thesis consider time-warping distance functions that require time dis-
torting dataset generators. Otherwise, evaluations would prefer implemen-
tations of distance functions that have an advantage in comparing perfectly
aligned time series. The results of those evaluations were not transferable
to datasets with time distorted time series.

Contribution: This thesis proposes two dataset generators for multi-
dimensional, labeled, and time distorted time series to make such evaluation
scenarios feasible. Both generators provide tuning parameters to control the
difficulty of generated classification tasks.

The rest of this section is structured as follows. Section 2.5.1 presents
the first dataset generator which is an extension of the well known cylinder-
bell-funnel dataset [79]. Section 2.5.2 presents the RAM dataset generator
which adapts ideas from Brownian motions. The datasets are evaluated
using DTW in Section 2.5.4 in order to confirm that DTW yields an applicable
one-nearest neighbor classifier and that its classification errors correlate with
the difficulty parameters.

2.5.1 Cylinder-Bell-Funnel

N. Saito proposed the well known one-dimensional cylinder-bell-funnel data-
set in his Ph.D. thesis [79]. It is an artificial dataset consisting of three
different time series classes: cylinder, bell, and funnel.

For the time series synthesizer, let ` > 0 be a fixed length of the time
series, and N be a standard normal distributed random variable. Further-
more, fixate a and b uniformly distributed over

[
` · 1

8 , ` ·
2
8

]
and

[
` · 6

8 , ` ·
7
8

]
,

respectively, and ν = 6 + N , each of which is sampled per generated time
series. Each time series has a prefix P of length a and suffix S of length
`− b containing standard normal distributed random numbers (N , · · · ,N ).

The middle parts of random cylinder (C), bell (B), and funnel (F) time
series are a plateau, a rising linear function, and a falling linear function,



2.5. TIME SERIES DATASETS AND SYNTHESIZERS 29

-4

-2

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140

x(
t)

time t

-4

-2

 0

 2

 4

 6

 8

 0  20  40  60  80  100  120  140

x(
t)

time t

-4

-2

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140

x(
t)

time t

Figure 2.6: Three examples for cylinder (left top), bell (right top), and
funnel (bottom) time series, respectively.

respectively. Their length is b− a; thus,

C := P × (· · · , ν +N , · · · )× S

B := P ×
(
· · · , ν · i− a

b− a
+N , · · ·

)
× S

F := P ×
(
· · · , ν · b− i

b− a
+N , · · ·

)
× S

with 0 6 i 6 b − a, where ν = 6 + N is chosen once per time series (cf.
Figure 2.6).

In this thesis, the CBF dataset generator is canonically extended to gener-
ate multi-dimensional time series by generating one of these types for each
dimension with the same starting and ending positions a and b (cf. Fig-
ure 2.7 for a two-dimensional example). Thus, the input parameters are the
length of the time series and a vector t with values c (for cylinder), b (for
bell), and f (for funnel) that labels the type to synthesize per dimension.
Given the dimensionality n, the multi-dimensional CBF generator produces a
maximum number of 3n different classes, which is the set of all combinations
of c, b, and f .

2.5.2 Random Accelerated Motion Generator

The RAM generator produces classes by first generating base time series using
impulse-driven motions with random acceleration. It then generates Rep-
resentatives of the classes by distorting the base time series in space and
time.
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Figure 2.7: An example for a two-dimensional CBF time series (top).
Its first dimension is a bell (left bottom) and its second di-
mension is a cylinder (right bottom).

Base Time Series Generator

The Brownian motion is a standard model of random motion in physics,
e. g., to model molecules’ movement in gases. It delivers each next position
of a molecule as a randomized position around the current position.

To achieve more curve-like time series, an impulse vector is kept and
added to the current position to obtain the next position. In each step, a
normal distributed random vector adds to the impulse vector. Hence the
time series are generated by distorting the first derivative instead of the
current position.

To model edges in the generated time series, the movement is restricted
to a ball with a constant radius R. When the time series is about to leave
the restricted area, it instead bounces off the sphere; thus, the time series
remains interior. Algorithm 6 provides the pseudocode for data generation
and Figure 2.8 shows an example for a two-dimensional time series. The
algorithm uses uniformBall to obtain a uniformly distributed vector from
the interior of a unit sphere and uniformSphere to obtain a uniformly dis-
tributed vector on a union sphere.

Generating Representatives

Representatives of a class corresponding to a base time series are generated
by distorting the time series in space and time separately.
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Algorithm 6 Random Accelerated Motion Generator

1 Algorithm: rambase

2 Input: length l, dimensionality n, radius r
3 Output: time series S
4

5 v := 0 ∈ Rn
6 ν := normal(0, 1)
7 s1 := uniformBall(r)
8 for i from 2 to l
9 v := v+ uniformSphere(r)

10 si := si−1 + v
11 if ‖si‖2 > r
12 // rescale si to stay within the ball with radius r
13 si := si · r

‖si‖2
14 v := reflect v on sphere at point si
15 return S := (s1, · · · , sl)
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Figure 2.8: Two examples for a random accelerated motion in a two-
dimensional vector space.
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Figure 2.9: Two time series representatives from two classes of the char-
acter trajectories dataset, respectively [67].
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Figure 2.10: Two time series (yellow) and their spatio-distorted deriva-
tive (blue); length: 100; dimensionality: 2; distortion: 5
(left) and 25 (right).

Distortion in space Figure 2.9 shows examples from the character tra-
jectories dataset [67]. Naturally, the representatives of a class do not match
exactly. The RAM generator imitates this property by adding normally dis-
tributed noise to the first derivative of the time series.7 The generator also
limits the new time series’ maximum distance to the base time series by a
distortion parameter to prevent large divergence on long time series. Fig-
ure 2.10 shows two example time series and a copy for each with distorted
derivatives.

Distortion in time In order to apply distortion in time, the time series
is interpreted as a continuous curve. Points between two adjacent points of
the time series are computed using linear interpolation. Then, the curve is
reparameterized in terms of the arc length instead of the time. Finally, the
time distorted time series consists of the first element of the time series, a
set of points uniformly distributed on the reparameterized curve, and the
last element of the time series. Algorithm 7 provides the pseudocode for the
time distortion and Figure 2.11 shows two examples of time distorted time
series.

7Also, the first element is distorted to prevent time series of the same class from equaling
in the first position.
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Algorithm 7 Time Distortion of a Time Series

1 Algorithm: timedistortion

2 Input: time series s of length L
3 Output: time series s̃
4

5 // get arc length up to each point of the time series

6 `i =
∑i

j=1 ‖sj − sj−1‖2
7 // get uniformly distributed values along the complete arc
8 t = (0, `L−1)
9 repeat L− 2 times

10 t = t ◦ uniform([0, `L−1])
11 // interpolate between reparameterized points
12 s̃ = ()
13 for x in sort(t)
14 // find correct index
15 i = min {i | `i 6 x < `i+1}
16 // interpolation parameter

17 u = x−`i
`i+1−`i

18 s̃ = s̃ ◦ ((1− u) · si + u · si+1) < ++ >
19 return s̃
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Figure 2.11: Two time series (yellow squares) and their time distorted
versions (blue circles); length: 100; dimensionality: 2.
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Figure 2.12: Two base time series (yellow squares) and their distorted
versions (blue circles); length: 100; dimensionality: 2; ra-
dius: 75, distortion: 5 (left) and 25 (right).

2.5.3 Dataset generator

As mentioned at the beginning of this section, the base time series generator
produces the different classes. The time distortion and space distortion
algorithms generate the actual representatives of the classes.

Hence, to generate a dataset D with C classes, each of which has N
representatives, the generator first calls rambase C times to generate Ti,0
(1 6 i 6 C). Then, for each 1 6 i 6 C, the generator calls timedistortion
and spacedistortion N times to generate Ti,j (1 6 j 6 N). The dataset
consists of each Ti,j for 1 6 i 6 C and 1 6 j 6 N .

C := {Ti,0 = rambase(L, n, r) | 1 6 i 6 C}
Ri :=

{
Ti,j = spacedistortion

(
timedistortion(Ti,0), D

)}
D :=

⋃
i=1,··· ,j

Ri

where n is the desired dimensionality, r is the radius of the bounding sphere,
L is the desired length of the time series, and D is the desired degree of
distortion within each class. Figure 2.12 shows two examples of a base time
series and their time and space distorted representatives.

2.5.4 Evaluation

The two dataset generators CBF and RAM are supposed to produce datasets
that are applicable for benchmarking time-warping distance functions. In
order to verify whether the datasets are suitable for this task, two one-
nearest neighbor classifiers are applied: a classifier based on the Euclidean
distance function (ED) and a DTW-based classifier. If the scores of the ED-
based classifier are low while the DTW-based classifier achieves high scores,
it is reasonable to assume that the datasets are suitable for benchmarking
time-warping distance functions. Furthermore, this section’s evaluation ver-
ifies whether the parameters controlling the classification tasks’ difficulty
correlate with the DTW-based classifier’s error.
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Cylinder-Bell-Funnel

The CBF dataset has no distortion parameter, which makes it harder to eval-
uate the classification strength of time-warping distance functions. However,
the classification task’s difficulty can be influenced by changing the number
of representatives per class.

The heatmap in Figure 2.13 shows that the classification score increases
with growing class size for each dimensionality of the CBF dataset. However,
Figure 2.14 shows that there are a few cases where the classification score
slightly decreases with growing class size. Hence, the class size can roughly
control the classification task’s difficulty, but it may not be considered a
reliable parameter for this purpose.

Figure 2.13 also shows that the classification strength decreases on higher
dimensionality. Various experiments showed that this behavior neither de-
pends on the length of the time series nor the number of classes.

Figure 2.13 and 2.14 both show that DTW achieves remarkably higher
classification scores than the Euclidean distance. Hence, it appears that
time-warping distance functions (such as DTW) are necessary to achieve good
classification scores on this dataset.
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Figure 2.13: Classification scores for CBF dataset using DTW (left) and ED

(right); length: 125; number of classes: 27
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Figure 2.14: Classification score for CBF dataset using DTW (left) and ED

(right); length: 125; dimensionality: 10
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Random Acceleration Motion

As mentioned in Section 2.5.2, RAM generates datasets of multi-dimensional
labeled time series. Similar to the CBF datasets, Figure 2.15 shows that the
classification score increases with growing class size. Also, this generator
has a distortion parameter to control the noisiness of the time series. This
parameter of the RAM synthesizer impacts the classification score as expected:
The score decreases with increasing distortion.

Regarding the dimensionality, the RAM synthesizer seems to be comple-
mentary to the CBF synthesizer, as the classification scores increase with
growing dimensionality (c. f. Figure 2.16).

Figure 2.15 furthermore shows that the DTW distance performs better
than the Euclidean distance. Again, it appears that time-warping distance
functions are better suited for solving classification tasks on these datasets.
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Figure 2.15: Classification score using DTW (left) and ED (right) for an
example parameter set: radius 50, length 100, dimension-
ality: 3, number of classes 200.
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Figure 2.16: Classification score using DTW (left) and Euclidean distance
(right) for an example parameter set: radius 50, length 100,
number of classes 200, distortion: 5.
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2.5.5 Conclusion

This section introduced two new dataset generators producing multi-dimen-
sional labeled time series. The datasets are applicable for classification
tasks using time-warping distance functions such as Dynamic Time Warp-
ing (DTW). Both generators provide parameters adjusting the difficulty of
the classification task. Since the classification scores using DTW increase
with growing dimensionality on the RAM datasets while decreasing on the CBF
dataset, they seem to have some complementary properties. Thus, both syn-
thesizers seem to be well suited for evaluating classifiers using time-warping
distance functions concerning the dimensionality. Still, further evaluations
using the CBF generator need to consider the unreliability of its difficulty
parameter.
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Chapter 3

Time-Warping Distance
Functions

Dynamic Time Warping (DTW) is one of the most used distance functions to
compare time series, e. g., in nearest neighbor classifiers [41]. However, fast
state-of-the-art algorithms only compare one-dimensional time series effi-
ciently. One of these state-of-the-art algorithms uses a lower bound (LBKeogh)
introduced by E. Keogh to prune expensive DTW computations [78]. This sec-
tion presents LBBox as a canonical extension to LBKeogh on multi-dimensional
time series. A conceptual and experimental evaluation of the performance
of LBBox shows that its pruning power decreases drastically with increas-
ing dimensionality; thus, an alternative to DTW with LBBox is necessary for
multi-dimensional time series. Therefore, this section also proposes a new
algorithm for the Dog Keeper distance (DK), an alternative distance func-
tion to DTW that outperforms DTW with LBBox by more than one order of
magnitude on high-dimensional time series.

3.1 Introduction

Multimedia retrieval is a typical application that requires finding similar
time series to a given input time series. Motivating examples are gesture
recognition with modern virtual reality motion controllers, GPS tracking,
speech recognition, and classification of handwritten letters.

All these examples share the property that the time series of the same
classes (e. g., same written characters, or same gestures) follow the same
path in space but have some temporal displacements. Tracking the GPS
coordinates of two cars driving the same route from A to B is an illustra-
tive example. These two time series shall be recognized as similar, although
driving style, traffic lights, and traffic jams might result in temporal dif-
ferences. Time-warping distance functions, such as Dynamic Time Warping
(DTW) [80], the Dog Keeper distance (DK) [40], and the edit distance with real

39
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penalties (ERP) [33], respect this semantic requirement. They map pairs of
time series representing similar trajectories to small distances.

Unfortunately, these time-warping distance functions usually have qua-
dratic runtime [15, 25, 26]. A common approach for improving the runtime
of nearest neighbor queries is pruning as much distance computations as
possible using lower bounds to the expensive distance function: If the lower
bound exceeds a certain threshold (e. g., the largest distance to the k-nearest
neighbors found so far), it implies a larger value for the expensive distance
function, and thus the expensive computation can be skipped.

E. Keogh proposed one of the state-of-the-art algorithms for nearest
neighbor queries with DTW on one-dimensional time series. His main contri-
bution is the lower bound function LBKeogh [58,78] successfully pruning many
expensive DTW computations under certain limitations.

Contributions: The contributions of this chapter are the following:

• This chapter introduces LBBox, a canonical extension to LBKeogh for
multi-dimensional time series in Section 3.3, i. e., LBBox is a lower bound
for DTW on multi-dimensional time series and equals LBKeogh on one-
dimensional time series.1

• Section 3.3 examines LBBox theoretically and shows that it suffers from
an effect similar to the curse of dimensionality. Section 3.5 confirms
the theoretical results with experiments on two synthesized and several
real-world datasets.

• Section 3.4 proposes a new algorithm to compute the DK distance that
is faster than DTW with LBBox by more than one order of magnitude
on high-dimensional time series. The comparisons of DK and DTW with
LBBox in terms of accuracy and computation time are presented in
Section 3.5.

3.2 Preliminaries

DTW and DK are distance functions on time series [80] (cf. Section 2.4.1).
Their benefit is a dynamic time alignment; thus, they are robust against
time distortion or temporal displacements.

Well known algorithms computing DTW and DK in quadratic time exist [40,
80]. Although the algorithms are defined on real-valued time series, they can
be extended canonically to time series over the metric space (Rk, d). These
algorithms first build the cross product of both time series S and T using
the distance function d. The resulting distance matrix consists of entries
d(si, tj), where d(s1, t1) is in the bottom left cell and d(sm, tn) is in the

1Remark, that this approach already exists as a technical report [71].
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Figure 3.1: A table of pairwise distances of the two time series in Exam-
ple 3 (left) and the corresponding warping matrix after com-
putation of DTW (right). The highlighted cells in the warping
matrix represent the warping path (i. e., the alignment of
both time series).

top right cell (cf. Figure 2.4 in Example 3). The algorithms then compute
the cheapest path from the bottom left to the top right cell by cell. For
each cell, they replace its value with a combination of that value and the
smallest value of one of the possible predecessors: the left, the lower, and
the left lower neighbor cell, yielding the warping matrix. Figure 3.1 shows
the warping matrix for the time series in Example 3. Unfortunately, any
algorithm computing DTW or DK has quadratic runtime complexity in worst
case [25,26].

3.2.1 DTW and the Sakoe-Chiba band

The Sakoe-Chiba band changes the semantics of DTW to DTWr by constraining
the possible paths in the warping matrix to a diagonal band of a particular
bandwidth r [80]. Thus, time-warping is constrained, but the computation
time decreases since a considerable part of the distance matrix does not
need to be considered. In other words, the computation of DTWr with a
Sakoe-Chiba band of bandwidth r only considers the diagonal and r upper
and lower co-diagonals. Figure 3.2 shows the computation of DTW and DTWr
for the time series in Example 3 with and without a Sakoe-Chiba band,
respectively. For a real value 0 < R < 1, DTWR derives the bandwidth as a
fracture R of the length of the time series. In his work, E. Keogh proposed a
bandwidth of R = 10% [58]. In the example of Figure 3.2, the best warping
path also fits in the Sakoe-Chiba band, and thus the result remains the same.
Although the runtime complexity remains quadratic, smaller bandwidths
quadratically decrease the runtime, e. g., for a bandwidth of R = 10%, the
Sakoe-Chiba band only covers 10% ∗ 10% = 1% of the warping matrix, and
thus only 1% of the cells need to be computed. On the other hand, the
distance function gets less flexible regarding time warping.
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Figure 3.2: The warping matrix after computation of plain DTW (left)
and DTWr with Sakoe-Chiba band and a bandwidth of r = 1
(right). The highlighted cells in the warping matrix rep-
resent the warping path (i. e., the alignment of both time
series).
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3.2.2 Keogh’s lower bound for DTW

Cheap lower bounds are used to prune many complete DTW computations
and thus improve the overall computation time of nearest neighbor queries:
If the lower bound already exceeds a desired threshold, then the final re-
sult of the expensive DTW distance function will be larger as well. Keogh
proposed one of the most successfull lower bounding functions to the con-
strained DTWr [58,78]. His lower bound LBKeogh depends on the Sakoe-Chiba
Band that constrains finding the best time alignments to a maximum time
distance of a specific bandwidth.

The derivation of this lower bound is the following (cf. Figure 3.3 for an
illustration): Consider two time series S = (s1, · · · , sm) and T = (t1, · · · , tn)
and map each si ∈ S to the interval of all possible aligned values within the
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time range (i. e., the Sakoe-Chiba band) i− r and i+ r:

li := min {ti−r, · · · , ti+r}
ui := max {ti−r, · · · , ti+r} (3.1)

Summing up the shortest square distances of si to each interval [li, ui] is a
lower bound for DTWr

2 since DTWr aligns each si to at least one of the values
within [li, ui], i. e.,

LBKeogh(S, T ) :=
m∑
i=1

d (si, [li, ui])
2 6 DTWr(S, T )

where

d (si, [li, ui]) := min
x∈[li,ui]

d(si, x) =


li − si iff si < li

si − ui iff ui < si

0 else

(3.2)

The size of the intervals [li, ui] is monotonically decreasing with decreas-
ing Sakoe-Chiba bandwidth r, which will in turn increase LBKeogh’s tightness
to DTWr. On the other hand, considering a bandwidth of r = 100%, LBKeogh
is also a lower bound to DTW but its effictiveness degrades to a function
comparing the minimum and maximum values of two time series.

The computation of the intervals [li, ui] takes linear time when using the
algorithm of Daniel Lemire [64]. Hence, the computation time of LBKeogh is
linear in the length of the time series as well.

3.3 LBKeogh on Multi-dimensional Time Series

Consider two time series S = (s1, · · · , sm) and T = (t1, · · · , tn) with si, tj ∈
Rk, i. e., S and T are multi-dimensional time series, and let

d(si, tj) := ‖si − tj‖2

be the Euclidean distance of the two vectors si and tj . In this section,
the lower bound LBKeogh of DTWr is canonically extended using the interpreta-
tion presented in Section 3.2.2: Each si is assigned an axis aligned minimal
bounding box for all vectors {ti−r, · · · , ti+r}. This section proves that sum-
ming up the shortest square distances of si to their bounding boxes is a
lower bound for DTWr on multi-dimensional time series again.

2Note, that Keogh applies the square norm on the warping path [58]. Therefore, DTWr
with squared distances of the elements is considered here. For readability, the square root
in the end of the computation is omitted.
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Similar to the lower and upper bounds in Equation (3.1), the following
vectors li and ui define a minimal axis aligned bounding box Bi of the values
ti−r, · · · , ti+r:

Bi :=
⊗

16j6k

[li,j , ui,j ] :=
⊗

16j6k

[
min
−r6θ6r

ti+θ,j , max
−r6θ6r

ti+θ,j

]
.

The distance of a vector to the bounding box is the distance to the nearest
element within the bounding box:

d (si, Bi)
2 := min

t∈Bi

d (si, t)
2

= min
t∈Bi

‖si − t‖22

= min
t∈Bi

∑
16j6k

|si,j − tj |2

=
∑

16j6k

min
tj∈Bi,j

|si,j − tj |2

=
∑

16j6k

d (si, [li,j , ui,j ])
2

Considering the definition of DTWr, the following function is a lower bound
for DTWr:

LBΣmin(S, T ) :=

m∑
i=1

min
−r6θ6r

d (si, ti+θ)
2 6 DTWr(S, T )

The runtime of the distance function LBΣmin scales with the length of the
time series and the width of the Sakoe-Chiba band. To improve the runtime,
the following lower bound is used:

LBΣmin(S, T ) > LBBox(S, T ) :=
m∑
i=1

d (si, Bi)
2

=

m∑
i=1

k∑
j=1

d (si, [li,j , ui,j ])
2

=

k∑
j=1

LBKeogh
(
Sj , T j

)
(3.3)

As it turns out, the estimation is not only a canonical extension of the lower
bound proposed by Keogh but it can also be computed by using his pro-
posed algorithm on the different dimensions of the time series. In particular,
LBBox ≡ LBKeogh holds for one-dimensional time series.
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Figure 3.4: Two two-dimensional time series. DTWr with Sakoe-Chiba
Band associates qi with at least one of ti−r, · · · , ti+r.
LBBox compares qi with the corresponding bounding box
[li,1, ui,1]⊗ [li,2, ui,2].

Curse of dimensionality: Consider the bounding box of a subsequence
(ti−r, · · · , ti+r) as illustrated in Figure 3.4. For two-dimensional time series,
the following situation might happen: The time series T moves along the
left and then along the bottom edge of the bounding box. The query point
si is at the top-right vertex of the bounding box. Hence, a perfect alignment
of DTWr (or even DTW) would still result in

LBΣmin(S, T ) = · · ·+ min
−r6θ6r

d (si, ti+θ)
2 + · · · > 0

at the alignment of si with ti−r, · · · , ti+r. Simplifying the distance function
to the bounding box results in

LBBox(S, T ) = · · ·+
k∑
j=1

d (si, [li,j , ui,j ])
2 + · · ·

= · · ·+ 0 + · · ·

Thus, there is a clear divergence of DTWr and LBBox. With increasing dimen-
sionality, there is more space for the time series to sneak past the query
point, i. e., the probability of this situation increases. For this reason, the
tightness (i. e., the ratio LBBox

DTWr
) of the lower bound gets worse with increas-

ing dimensionality, and therefore fewer computations of the expensive DTWr



46 CHAPTER 3. TIME-WARPING DISTANCE FUNCTIONS

function can be pruned in nearest neighbor queries. This effect is similar to
that of the Curse of Dimensionality for metric index structures [31].

The goal of this section is the proof of Theorem 2 that claims the exis-
tence of the Curse of Dimensionality on the lower bound LBBox to DTWr.

Theorem 2. Let S and T be two time series in Rk with length n and
independent but identically distributed elements. Then

E [LBBox(S, T )]

E [DTWr(S, T )]
−→ 0

for k, n→∞.

The Curse of Dimensionality does not affect trivial datasets, e. g., when
the time series only move within one dimension, then the dataset effectively
remains one-dimensional, although the representational dimensionality may
increase arbitrarily. Hence, proof for the existence of the Curse of Dimen-
sionality requires non-trivial datasets. Therefore, Theorem 2 studies the
Curse of Dimensionality on finite datasets of time series with independent
but identically distributed elements. This assumption makes the proof fea-
sible while presuming as little knowledge about the dataset as possible. Al-
though this is not a realistic assumption (e. g., because succeeding elements
of a time series are usually close by each other), Section 3.5 confirms the
theoretical results experimentally on real-world datasets.

The following lemmas are used in the proof of Theorem 2.

Lemma 5. Let Dθ,j be independent but identically distributed random vari-
ables for 1 6 θ 6 r and 1 6 j 6 k.3 Furthermore, let µr := E [min16θ6rDθ,j ]
and µ := E [Dθ,j ]. Then,

E
[∑k

j=1 min16θ6rDθ,j

]
E
[
min16θ6r

∑k
j=1Dθ,j

] −→ µr
µ

for k →∞. (3.4)

Proof. Let µ := E [Dθ,j ] be the mean and σ2 := V [Dθ,j ] be the variance of
the identically distributed variables Dθ,j . The following inequation holds
using calculation rules for expected values:

E

 k∑
j=1

min
16θ6r

Dθ,j

 = k · E
[

min
16θ6r

Dθ,1

]
= k · µr (3.5)

3Remember, that this section considers time series in Rk.
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To estimate the denominator, first the Markov inequality as well as some
basic transformations are applied:

E

 min
16θ6r

k∑
j=1

Dθ,j

 > a · P
 min

16θ6r

k∑
j=1

Dθ,j > a


> a · P

 ∧
16θ6r

k∑
j=1

Dθ,j > a


= a · P

 k∑
j=1

D1,j > a

r

= a ·

1− P

 k∑
j=1

Dθ,j 6 a

r

= a ·

(
1− P

[∑k
j=1D1,j − k · µ

σ
√
k

6
a− k · µ
σ
√
k

])r
(3.6)

Now, let ρ := E
[∣∣∣D3

θ,j

∣∣∣]. Since only finite datasets are considered for the

nearest neighbor queries, ρ < ∞ can safely be assumed. For a theoretical
analysis on datasets with an infinite number of elements, this property is a
necessary preliminary for the Berry-Esseen Theorem4, which is used for the
further estimation of the denominator from Equation (3.6):

E

 min
16θ6r

k∑
j=1

Dθ,j

 > a ·(1− P

[∑k
j=1D1,j − k · µ

σ
√
k

6
a− k · µ
σ
√
k

])r

> a ·
(

1−
(

Φ0,1

(
a− k · µ
k
√
k

)
+

C · ρ
σ3 ·
√
k

))r
= k · µ ·

(
1−

(
C · ρ
σ3 ·
√
k

))r
for a = k · µ (3.7)

The Berry-Esseen Theorem used in Inequation (3.7) also claims the existence
of the constant C, which is independent of k.

Using Equation (3.5) and Inequation (3.7) yields the desired convergence:

E
[∑k

j=1 min16θ6rDθ,j

]
E
[
min16θ6r

∑k
j=1Dθ,j

] 6 k · µr
k · µ ·

(
1−

(
C·ρ
σ3·
√
k

))r −→ µr
µ

for k →∞

�

4The Berry-Esseen Theorem claims that the sum of random variables converges to a
normal distribution for increasing number of summands [18].
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For r = R · n (0 < R 6 1), the following Lemma 6 shows that the value
µr
µ from Lemma 5 converges to 0 for n→∞.

Lemma 6. Let Xi > 0 be independent but identically distributed random
variables for 1 6 i 6 n, such that P [Xi > x] < 1 for each x > 0. Then,
E [min16i6nXi] −→ 0 for n→∞.

Proof. The expected value can be calculated as follows:

E
[

min
16i6n

Xi

]
=

∫ ∞
0

P
[

min
16i6n

Xi > x

]
dx

=

∫ ∞
0

P [X1 > x ∧ · · · ∧Xn > x] dx

=

∫ ∞
0

P [Xi > x]n dx

Since P [Xi > x] is Lebesgue-measurable and P [Xi > x]n −→ 0 for x > 0,
the last integral converges to zero for n→∞. �

Lemma 5 and 6 are used to prove that LBBox suffers from the curse of
dimensionality.

Proof of Theorem 2 on random time series. As mentioned earlier, it is as-
sumed that the time series elements are independent but identically dis-
tributed random variables. Therefore, the distances between any two ele-
ments

Di,j := d (si, tj)
2

are independent but identically distributed random variables as well. Let
r = R ·n (0 < R 6 1 constant) be the width of the Sakoe-Chiba band. Then,
the claimed convergence follows using the definition of LBBox and LBΣmin as
well as Lemma 5 and 6:

E [LBBox(S, T )]

E [DTWr(S, T )]
6

E
[∑n

i=1

∑k
j=1 d (si, [li,j , ri,j ])

2
]

E [LBΣmin(S, T )]

6
E
[∑n

i=1

∑k
j=1 min−r6θ6rDi+θ,j

]
E
[∑n

i=1 min−r6θ6r
∑k

j=1Di+θ,j

]
=
n · E

[∑k
j=1 min16θ62r+1Dθ,j

]
n · E

[
min16θ62r+1

∑k
j=1Dθ,j

]
−→ µr

µ
for k →∞

−→ 0 for n→∞

�
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3.4 Algorithms for the Dog Keeper Distance

Practical implementations of DTW (with and without a Sakoe-Chiba band
constraint) speed up the computation process by stopping early when a
promised lower bound already exceeds a certain threshold. For example,
when processing the (constrained) warping matrix while computing DTW, the
minimum value of a column or row is a lower bound for the final distance
value.

Since DTW sums up values along a warping path through the distance ma-
trix, the values of the warping matrix in the early computation time exceed a
certain threshold less probable than the values at a later computation time.
This observation does not hold when computing the DK distance [9]. This
insight yields the idea that the matrix filled out during computation of the
DK distance might be very sparse regarding cells that exceed the threshold.

Therefore, the approach followed in this section improves the computa-
tion time of the DK distance by computing the distance matrix using a sparse
matrix algorithm (cf. Section 3.4.2). A low threshold is necessary to avoid
computing most of the cells of the distance matrix. Such a threshold is found
using a cheap upper bound for the DK distance. Specifically, Section 3.4.1
proposes a greedy algorithm to the time warping alignment problem.

3.4.1 Greedy Dog Keeper

Consider two arbitrary but fixed time series S = (s1, · · · , sm) and T =
(t1, · · · , tn). The greedy Dog Keeper distance (GDK) starts by aligning s1

and t1. It then successively steps to one of the next pairs aligning (si+1, tj),
(si, tj+1), or (si+1, tj+1) with the lowest distance. When it reaches the align-
ment of sm to tn, the maximum distance value along the chosen path yields
the final distance value. Algorithm 8 provides the pseudo-code for the algo-
rithm.

Algorithm 8 Greedy Dog Keeper distance

1 Algorithm: greedydogkeeper

2 Input: time series S, T of length m,n, resp.; threshold ε
3 Output: upper bound d
4

5 let (i, j) = (1, 1)
6 let g = d (si, tj)
7 while i 6= m and j 6= n and g 6 ε
8 // non defined distances yield ∞
9 (i, j) = arg min {d(si+1, tj), d(si+1, tj+1), d(si, tj+1)}

10 g = max {g, d(si, tj)}
11 return g
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Since GDK does not necessarily choose the optimal warping path, it is an
upper bound to DK. The application of a Sakoe-Chiba band is possible as
well but left out for the sake of readability.

The GDK distance matches whole sequences against each other. In order
to support subsequence matching, alter the algorithm as follows: First, find
the best match of s1 to any ti, i. e., tleft := arg min16i6n d(s1, ti). Then, let
GDK start its computation at tleft and stop the computation as soon as sm
is aligned to one of the ti. For details, call for Algorithm 9.

Algorithm 9 Greedy Dog Keeper for subsequence search

1 Algorithm: greedydogkeeper

2 Input: time series S and T of length m and n, resp.;

threshold ε
3 Output: upper bound d
4

5 let (i, j) = (1, arg min16j6n {d(s1, tj)})
6 let g = d (si, tj)
7 while i 6= m
8 // non defined distances yield ∞
9 (i, j) = arg min {d(si+1, tj), d(si+1, tj+1), d(si, tj+1)}

10 g = max {g, d(i, j)}
11 if g > ε then return g
12 return g

Both algorithms have linear complexity since the while loop runs at
maximum m+ n times.

3.4.2 Sparse Dog Keeper Distance

The sparse Dog Keeper algorithm essentially works the same as the origi-
nal algorithm, except that it only visits those neighbor cells of the distance
matrix with a value not larger than a given threshold. Algorithm 10 pro-
vides the pseudo-code for the algorithm: Similar to the original algorithm,
it computes the (sparse) warping matrix column by column (cf. Line 10).
The variables I and J store the cells’ indices to visit in the current and
successor columns. If the value at the current cell of the matrix is not larger
than the threshold (cf. Line 13), the right, upper right, and upper cells also
need to be visited (cf. Lines 15 and 16). The columns’ actual values are
stored in D (current column) and E (previous column). After finishing the
column’s computation, the variables to enter the next column are prepared
(cf. Lines 19 to 26).

The algorithm performs subsequence search iff passing true for the pa-
rameter SUB. It differs from the whole matching version by considering each
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Algorithm 10 Sparse Dog Keeper distance

1 Algorithm: sparsedogkeeper

2 Input: time series S and T of length m and n, resp.;

threshold ε; boolean SUB

3 Output: distance d
4

5 I = {1}
6 J = ∅
7 D = (∞, · · · )
8 E = (∞, · · · )
9

10 for k = 1 to n
11 if SUB then d =∞
12 for i ∈ I
13 if d (Si, Tk) 6 ε
14 Di = max {d (Si, Tk) ,min {Di−1, Ei, Ei−1}}
15 I = I ∪ {i+ 1}
16 J = J ∪ {i, i+ 1}
17 else

18 I = I \ {i}
19 if SUB then d = min {d,Dm}
20 E = D
21 // reset D to (∞, · · · )
22 for i ∈ I
23 Di =∞
24 if SUB then I = J ∪ {1}
25 else I = J
26 J = ∅
27 if not SUB and I is empty

28 return ε
29 if SUB then return d
30 else return Dm
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position of the super sequence as the possible start of a match (cf. Line 24)
and considering each position as the possible end of a match (cf. Line 19).

3.4.3 Nearest Neighbor Search

The nearest neighbor search algorithm that uses the sparse DK distance re-
quires a good upper bound as a threshold. Hence, the first step is to loop
over all time series and find the lowest upper bound using the GDK distance.
A standard nearest neighbor search is then performed by scanning the time
series using the threshold of the GDK distance.

3.5 Evaluation

Section 3.5.1, experimentally evaluates Theorem 2 on both, synthetic data-
sets (cf. Section 2.5) and real world datasets [67]. To that, DTWr (with
r = 10% and LBBox as lower bound) is compared against the proposed sparse
DK distance in terms of runtime in Section 3.5.2. It is shown that DK out-
performs DTW on high dimensional time series. Only subsequence matching
algorithms are considered as this is the more challenging task and yields
results for whole matching algorithms. Since DTWr and DK slightly differ in
their semantics, both distance functions are compared on classification tasks
using one-nearest neighbor classifiers in Section 3.5.3. They are shown to
yield similar accuracy.

Synthetic data sets: Results are not presented for all parameters of the
dataset generators, but the following set of parameters yield the most in-
teresting results: If not mentioned otherwise, the time series are generated
with distortion 25, radius 50, 50 distinct classes, and 2 representatives per
class using the RAM generator (i. e., 100 time series per dataset) and 27 dis-
tinct classes with 3 representatives per class using the CBF generator (i. e.,
81 time series per data set).

Implementation: The implementation of LBBox is based on LBKeogh from
the UCR Suite [78]. The time series’ normalization is skipped on some
datasets to improve the runtime and accuracy of LBBox. While adapting the
UCR Suite to work on multi-dimensional time series, the runtime has been
verified to remain stable for one-dimensional time series; thus, no result
for runtime comparison is implementation-dependent. All experiments were
executed on one core of an Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz
with 24GB Memory.
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Figure 3.5: Heat maps presenting the average tightness of LBBox (left)
and the pruning power of LBBox in percent (right) on the RAM

dataset.

Experiments: For each dataset, a one-nearest neighbor query has been
performed as a linear scan with both DK and DTWr. In the latter case, the
runtime of the queries improved with the lower bound LBKeogh [78]. The
runtime and the classification scores of each query have been measured and
recorded. Also, the pruning power for the nearest neighbor queries with DTWr
and LBBox has been recorded, i. e., it has been counted how many time series
could be pruned with the result of the lower bound, already. The real-world
datasets consist of a training and a test data set. A one-nearest neighbor
query has been performed for each test dataset element against the complete
training dataset. On the synthetic datasets, leave-one-out cross-validation
has been performed, i. e., a one-nearest neighbor query was executed for each
element of a dataset against the rest of the dataset, respectively.

3.5.1 Curse of dimensionality:

Theorem 2 claims that the tightness of the lower bound function LBBox to
DTWr gets worse with increasing dimensionality and length of the time series.
This theorem is evaluated experimentally on datasets generated by the two
synthesizers CBF and RAM (cf. Section 2.5).

Tightness: Figure 3.5 demonstrates that the tightness of LBBox to DTWr is
decreasing down to zero for increasing length, which confirms Theorem 2.
The theorem also claims that the tightness drops to a constant value for
increasing dimensionality but constant length. With Figure 3.5 this claim
is confirmed for the RAM datasets. It is shown even more that the tightness
converges (drops down) already for moderate dimensionality (e. g., three-
dimensional time series). The same results can be observed on the CBF

datasets (cf. Figure 3.6) although the dimensionality has a larger impact on
the tightness while the length has a smaller impact.
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Figure 3.6: Heat maps presenting the average tightness of LBBox (left)
and the pruning power of LBBox in percent (right) on the CBF

dataset.

Pruning power: The right hand side heat maps of Figures 3.5 and 3.6
show the effects of the dimensionality and length of the time series on the
pruning power, respectively. They confirm the correlation between the drop-
ping of the tightness of LBBox and the pruning power’s dropping in nearest
neighbor queries.

As can be seen, the dimensionality has a larger impact on the pruning
power than it has on the tightness of the time series. The reason is the curse
of dimensionality on retrieval tasks [31], which claims that the variance
of distance values between random elements of a dataset decreases with
increasing dimensionality. In this case, even if the tightness of a lower bound
such as LBBox equals on two distinct datasets, pruning is still less probable
in the higher dimensional dataset. Figure 3.7 illustrates an example for this
effect: Here, q is the query, y is the nearest neighbor found so far during a
search, and x is the next candidate element of the data set. Assume that
l(q, x) = α · d(q, x) for 0 6 α 6 1 holds in both, the low-dimensional and
the high-dimensional dataset, i. e., the tightness of the lower bound function
equals in both datasets. In the lower-dimensional dataset, the lower bound
l(q, x) to the candidate is larger than the best distance d(q, y) found so far,
and thus the next element x can be pruned from the search. In the higher-
dimensional dataset, the variance of distances is smaller, and thus the best
distance d(q, y) found so far is probably larger than the lower bound l(q, x)
to the candidate, in which case x needs to be examined closer by computing
the expensive distance d(q, x). Hence, since d(q, x) and d(q, y) converge on
datasets with increasing dimensionality (this is the curse of dimensionality),
l(q, x) < d(q, y) is more probable with higher dimensionality, and thus the
pruning power decreases. Note that this insight holds for any lower bound
driven approaches.

Both Figures 3.5 and 3.6 show that LBBox loses its advantage already for
moderate dimensionality.

For the evaluation of the runtime of the sparse DK algorithm, the runtime
of DTWr with LBBox is considered as the baseline. Figures 3.8 and 3.9 show the
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Figure 3.7: Sketch of the distance distribution of two datasets (left: low-
dimensional; right: high-dimensional), a query q, a nearest
neighbor y, and a candidate x.
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Figure 3.8: Speedup of DK to DTWr with LBBox on the CBF data set. Di-
mensionality (left): 10; Length (right): 100.

speedup of the sparse DK implementation against DTWr with LBBox on the RAM
and CBF datasets, respectively. The speedup decreases for longer time se-
ries while increasing with growing dimensionality. Figure 3.10 confirms this
observation on an even larger parameter set. Thus, the sparse DK implemen-
tation outperforms DTWr with LBBox on rather short and multi-dimensional
time series.

3.5.2 Computation Time

The same experiments have been repeated on the following real-world data
sets from the UCI Machine Learning Repository [67] to ensure that the re-
sults do not depend on the generated synthetic datasets: Character Trajec-
tories (CT), Activity Recognition system based on Multi-sensor data fusion
(AReM) [77], EMG Physical Action (EMGPA), Australian Sign Language
2 (ASL) [56], Arabic Spoken Digits (ASD), and Vicon Physical Action (VI-
CON). The ECG data proposed by Keogh [78] for querying in one very
long time series has been examined. Columns 1 and 2 of Table 3.1 show
that the speedup increases with growing dimensionality. Again, this demon-
strates that the sparse DK distance outperforms DTWr with LBBox in terms of
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Figure 3.9: Speedup of DK to DTWr with LBBox on the RAM data set. Di-
mensionality (left): 10; Length (right): 100.
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Table 3.1: Speedup and Accuracy of DTWr with LBBox and DK on real
world data sets.

data set dim. speedup acc. DTWr acc. DK

ECG 1 0.05 - -
CT 2 4.5 0.94 0.93

AReM (without Z-Normalization) 6 1.2 0.81 0.75
EMGPA 8 31 0.21 0.26

ASD 13 45 0.98 0.96
ASL 22 33 0.85 0.88

VICON 27 62 0.12 0.09
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Figure 3.11: Accuracy of DK and DTWr with LBBox on the CBF data set.
Dimensionality: 10 (left); Length: 100 (right).

computation time especially on multi-dimensional time series.

3.5.3 Retrieval Quality

Figures 3.11 and 3.12 reveal that the accuracy of both distance functions,
DK and DTWr, decreases on CBF while increasing on RAM with growing dimen-
sionality. While DK outperforms DTWr on the CBF data set it looses on the
RAM data set.

Columns 1, 3, and 4 of Table 3.1 also show that there is no clear winner
regarding accuracy. Hence, DTWr and DK seem to be exchangeable when it
comes to the semantics of comparisons.

3.6 Conclusion

This chapter introduced the lower bound LBBox as a canonical extension of
Keogh’s lower bound LBKeogh to DTW with Sakoe-Chiba band (DTWr) on multi-
dimensional time series, including a proof for its correctness. Not only do
lower bounds suffer from the curse of dimensionality even if their tightness
remains constant, but it was also proven that the tightness of LBBox decreases



58 CHAPTER 3. TIME-WARPING DISTANCE FUNCTIONS

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100  150  200  250  300  350  400  450  500

ac
cu

ra
cy

length

DK
DTW

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10

ac
cu

ra
cy

dimensionality

DK
DTW

Figure 3.12: Accuracy of DK and DTWr with LBBox on the RAM data set.
Dimensionality: 10 (left); Length: 100 (right).

with increasing length and dimensionality of the time series. On the other
hand, this chapter presented and proposed an alternative algorithm for the
computation of the long-known DK distance, which is similar to DTWr in
various aspects (e. g., its semantic and the formal definition). Note that the
DK distance satisfies the triangle inequality and thus is applicable in metric
indexes (cf. Section 2.4).

The evaluation in this chapter confirmed the theory that LBBox, an exten-
sion of LBKeogh, suffers from the curse of dimensionality. The proposed sparse
DK implementation was shown to outperform DTWr with LBBox on multi-
dimensional synthesized datasets and real-world datasets in computation
time by more than one order of magnitude. On the other hand, DTWr and DK

seem to be exchangeable since there is no clear winner regarding retrieval
tasks’ accuracy. Hence, regarding time-warping distance functions, this the-
sis concludes with the proposition to stay with LBKeogh on one-dimensional
time series while choosing the DK distance on multi-dimensional time series.



Chapter 4

Congruence Distance

Quite some research is devoted to comparing and indexing time series. Chap-
ter 3 considers the comparison of functions that are not affected by time-
warping. However, for many application scenarios (e. g., motion gesture
recognition in virtual reality), the invariance under isometric spatial trans-
formations (i. e., rotation, translation, and reflection) is as crucial as the
invariance under time-warping. Distance functions on time series that are
invariant under isometric transformations can be seen as a measurement for
the congruence of two time series. The congruence distance proposed in this
chapter is the canonical example of such a distance function.

Section 4.2 proves that there is no fast algorithm computing the con-
gruence distance. Several approximations for the congruence distance are
developed in Section 4.3 to overcome this issue. Two of these approximations
even satisfy the triangle inequality and thus can be used with metric index
structures. Section 4.3 also shows that the presented approximations serve
as a lower bound for the congruence distance. The evaluation in Section 4.4
shows that they achieve remarkable tightness while providing a speedup of
more than two orders of magnitude to the congruence distance.

4.1 Introduction

The distance functions defined and analyzed in this chapter measure the
(approximate) congruence of two time series. Thereby, the distance be-
tween two time series S and T shall be 0 iff S can be transformed into
T by rotation, translation, and reflection; in this case, S and T are said
to be congruent. A value greater than 0 shall correlate to the amount of
transformation necessary to turn the time series into congruent ones.

The classical Congruence problem determines whether two point sets
A,B ⊆ Rk are congruent considering isometric transformations (i. e., rota-
tion, translation, and reflection) [5, 45]. For 2- and 3-dimensional spaces,
there are results providing algorithms with runtime O(n · log n) when n is

59
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the size of the sets; for larger dimensionalities, an algorithm with runtime
O(nk−2 · log n) exists [5]. For various reasons (e. g., bounded precision of
floating-point numbers or physical measurement errors), the approximated
Congruence problem is of much more interest in practical applications.
Different variations of the approximated Congruence problem have been
studied (e. g., regarding the types of transformations that are used; whether
the assignment of points from A to B is known; regarding the applied met-
ric) [4, 5, 45,50].

The Congruence problem is related to this work since the problem is
concerned with the existence of isometric functions that map point sets to
other point sets. The main difference is that this thesis considers ordered
lists of points (i. e., time series) rather than sets. As shown in this chapter,
solving the approximated Congruence problem is NP-hard regarding the
length and dimensionality (cf. Section 4.2).

This chapter contributes by analyzing the congruence distance in Sec-
tion 4.2 and evaluating it with an implementation based on a nonlinear
optimizer in Section 4.4. Several approximations to the congruence distance
are proposed in Section 4.3. Some of them are (pseudo) metric distance func-
tions; some have quasi-linear runtime regarding the time series’ length. All
of the proposed approximations have linear runtime regarding the dimen-
sionality of the time series’ elements. The approximations are evaluated
experimentally in Section 4.4.

Since computational geometry inspired this topic, this chapter only con-
siders time series in Euclidean vector spaces. Still, the results might be
transferred to and examined in other metric spaces (e. g., graphs with the
shortest path distance).

4.1.1 Basic Notation

This chapter introduces additional notations. The set of all powers of two
is denoted by 2N := {1, 2, 4, 8, · · · }. The identity matrix is denoted by I
and the transposed of a matrix M by MT . For a matrix M in Rk, the
matrix holding the absoloute values is denoted by |M | := (|Mi,j |)06i,j<k. In
this chapter, indices of the sequences’ elements start with 0 for convenience
reasons, e. g., S = (s0, · · · , sn−1) is a sequence of length n. The abbreviation
δp := ‖d2‖p is used, i. e., δp(S, T ) = ‖(d2(si, ti))06i<n‖p for two time series
S = (s0, · · · , sn−1) and T = (t0, · · · , tn−1).

4.1.2 Congruence Distance

This chapter considers the metric space M := Rk and T := Mn for arbitrary
but fixed k, n ∈ N. The following definition formally declares the exact
congruence of two time series (cf. Section 2.4.2).
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Definition 5 (Congruence of time series). Consider the Euclidean metric
space (Rk, d2). Two time series S and T of the same length are called
congruent, which S ∼=C T denotes, if they can be transformed into each
other by rotation, translation, and reflection, i. e.,

S ∼=C T ⇐⇒ ∃M ∈MO(k) ∃v ∈M : T = M · S + v.

It is easy to see that for each n ∈ N, the congruence relation ∼=C is an
equivalence relation on the set of all time series over Rk of length n.

This thesis aims at a distance measure that regards two time series S and
T as close to each other if they are congruent to a certain degree, particularly
that meets the following congruence requirement.

Definition 6 (Congruence Requirement). Let T = Mn. A function δ :
T × T −→ R>0 meets the congruence requirement iff for all time series
S, T ∈ T the equivalence

δ(S, T ) = 0 ⇐⇒ S ∼=C T.

holds.

The following example highlights some intuition for the congruence dis-
tance function that is provided in Definition 7.

Example 5. Consider the time series

S :=

((
−4
0

)
,

(
0
0

)
,

(
1
0

))
and T :=

((
0
3

)
,

(
0
0

)
,

(
1
0

))
.

Obviously, δ1(S, T ) = 5. Rotating T counterclockwise by 90 degrees, i. e.,
computing M · T for the matrix

M :=

(
0 −1
1 0

)
yields

M · T =

((
−3
0

)
,

(
0
0

)
,

(
0
1

))
and δ1(S,M ·T ) = 1 +

√
2 < 5.

Thus without rotation, a vector of length 5 needs to be added to the first
state of T to transform T into S. However, after rotating T by 90 degrees
counterclockwise, only a vector of length 1 and a vector of length

√
2 needs

to be added to the first and third state of M · T , respectively, to obtain the
time series S.

Adding vectors to the time series’ individual states can be interpreted as
investing energy to make both time series have the same structure, i.e., being
congruent. Hence, the congruence distance defined below can be interpreted
as a measure for the minimum amount of energy necessary to make both
time series congruent.
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Definition 7 (Congruence Distance). Let p ∈ R>1. The congruence dis-
tance δCp (S, T ) of two time series S, T ∈ T is

δCp (S, T ) := min
M∈MO(k), v∈Rk

δp (S, M · T + v) .

Similarities to time-warping distance functions: The distance func-
tion DTW is (nearly) invariant under time-warping while comparing two time
series S and T (cf. Chapter 3). In detail, considering σ(S) and τ(T ) as time-
warping by duplicating elements (e. g., σ(S) = (s0, s1, s1, s2, s3, s3, · · · ))
yields that DTW minimizes the L1 distance ¸over all time warps:

DTW(S, T ) := min
σ,τ
‖d (σ(S), τ(T )) ‖1 with #σ(S) = #τ(T ).

Analogously, this statement holds for the DK distance.
On the other hand, the congruence distance is invariant under all iso-

metric transformations. The difference to DTW is that it minimizes the L1
distance by multiplying an orthogonal matrix and adding a vector:

δC1 (S, T ) := min
M,v
‖d (S,M · T + v) ‖1

Congruence distance as an optimization problem: Considering fixed
time series S and T , the computation of δC1 (S, T ) is an optimization problem

δC1 (S, T ) := min
M,v

f(M,v)

where f :=
∑n−1

i=0 d2 (si,M · ti + v) corresponds to the objective function.
For time series in Rk, the orthogonality of M yields a set of k2 equality-
based constraints:

〈mi,mj〉 =

{
1 iff i = j

0 else

4.2 Time Series Congruence

Section 4.2.1 studies properties of the congruence distance: The results
are that the congruence distance is well defined, invariant under isometric
transformations, and a pseudo metric distance function. In Section 4.2.2,
the congruence distance is shown to be hard to compute.

4.2.1 Properties of the Congruence Distance

Although MO(k) and Rk are infinite sets, the following lemma shows that
the “min” used in Definition 7 of the congruence distance δCp does exist,

i. e., for given S, T there are M ∈MO(k) and v ∈ Rk such that δCp (S, T ) =
δp(S, M · T + v).



4.2. TIME SERIES CONGRUENCE 63

Lemma 7. Definition 7 is well-defined.

Proof. It is necessary to show that M∗ ∈ MO(k) and v∗ ∈ Rk exist such
that

δCp (S, T ) = δp (S, M∗ · T + v∗) . (4.1)

To that, the range of parameters is restricted to a bounded set first. Then,
the Bolzano-Weierstrass theorem1 is used to show that such M∗ and v∗ exist.

Now, consider arbitrary but fixed S, T ∈ T , M ∈ MO(k), and v ∈ Rk.
The static time series consisting only of v and 0 ∈ Rk are denoted by v̄ :=
(v, · · · , v) ∈ T and 0̄ = (0, · · · , 0) ∈ T with #v̄ = #0 = #S, respectively.

At first, a finite boundary for the vector v∗ in Equation 4.1 is necessary.
To that, the following inequation is crucial since it finds an estimation that is
independent of the transformation matrix M . To simplify the calculation, a
first step is to exploit the equivalence of all norms in finite dimensional vector
spaces, i. e., for fixed #S <∞, a constant C > 0 exists with ‖·‖p > C ·‖ ·‖1;
and therefore, δp > C · δ1. Furthermore, it uses the definition of δ1 and the
axioms of a norm2:

δp(S, M · T + v) > C · δ1(S, M · T + v)

> C · (δ1(M · T + v, 0̄)− δ1(S, 0̄))

> C · (δ1(v̄, 0̄)− δ1(M · T, 0̄)− δ1(S, 0̄))

= C · (δ1(v̄, 0̄)− δ1(T, 0̄)− δ1(S, 0̄)) (4.2)

Since δ1(v̄, 0̄) = ‖d2(v̄, 0̄)‖1 = n · ‖v‖2, Inequation 4.2 yields

δp(S, M · T + v) > C · (n · ‖v‖2 − δ1(T, 0̄)− δ1(S, 0̄)) . (4.3)

Now, consider r as boundary with

r :=
1

C
· δ1(S, T ) + C · δ1(T, 0̄) + C · δ1(S, 0̄)

n
.

For v ∈ Rk with ‖v‖2 > r, substituting ‖v‖2 in Inequation 4.3 yields

δp(S, M · T + v) > δp(S, T ) > inf
M ′∈MO(k), v′∈Rk

δp
(
S, M ′ · T + v′

)
for every M ∈ MO(k).3 Hence, it suffices to restrict attention to v′ ∈ Rk

with ‖v′‖2 6 r, i. e.,

1The Bolzano-Weierstrass theorem claims that each bounded sequence of elements in
a metric space contains a convergent subsequence.

2This calculation uses the trick ‖A‖ = ‖A−B+B‖ 6 ‖A−B‖+‖B‖ ⇐⇒ ‖A‖−‖B‖ 6
‖A−B‖ for A,B ∈ Rk.

3For the latter inequality, consider v′ = 0 ∈ Rk and M ′ the identity matrix.
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δCp (S, T ) = inf
M ′∈MO(k), v′∈V

δp
(
S, M ′ · T + v′

)
,

for V :=
{
v ∈ Rk : ‖v‖2 6 r

}
.

To apply the Bolzano-Weierstraß theorem, the distance function is rein-
terpreted as follows: Let X :=MO(k)×V , let Y := R>0, and let f : X −→
Y be defined via

f(M,v) := δp(S, M · T + v).

Furthermore, consider each element (M, v) ∈ X as a vector in Rk2+k and
choose the Euclidean distance d2 as a metric on X. It is straightforward to
see that, with respect to this metric,

(1) X is a bounded set, and

(2) f is a continuous function.

Now, consider an arbitrary sequence ξ := (Mi, vi)i∈N with Mi ∈MO(k) and
vi ∈ V for all i ∈ N such that

δCp (S, T ) = lim
i→∞

δp(S, Mi · T + vi) = lim
i→∞

f(Mi, vi).

So far, it is not clear that the sequence of parameters ξ converges even though
the sequence of values f(Mi, vi) converges. However, since X =MO(k)×V
is a bounded set (w.r.t. d2) the sequence ξ is bounded. Therefore, the
Bolzano-Weierstrass theorem is applicable and yields a convergent subse-
quence ξ′ = (Mij , vij )j∈N with i1 < i2 < · · · .

In the image space, both sequences f(ξ) and f(ξ′) converge against
the same value since ξ′ is a subsequence of ξ, i. e., limj→∞ f(Mij , vij ) =
limi→∞ f(Mi, vi). In the parameter space, let (M∗, v∗) ∈ X be the limit of
the sequence ξ′, i. e.,

(M∗, v∗) := lim
j→∞

(Mij , vij ).

Considering that f is a continuous function, the following equation holds:

δCp = lim
i→∞

f(Mi, vi)

= lim
j→∞

f(Mij , vij )

= f(M∗, v∗)

= δp(S, M
∗ · T + v∗)

Therefore, Definition 7 is well-defined. �
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Lemma 8. The congruence distance δCp is invariant under rotation, trans-
lation, and reflection.

Proof. Let S, T ∈ T be two time series with n = #S = #T . For M ∈
MO(k), the equation

δp(S, T ) := ‖ d2(S, T ) ‖p
:=
∥∥ (‖ si − ti ‖2 )06i<n

∥∥
p

=
∥∥ (‖ M(si − ti) ‖2 )06i<n

∥∥
p

=
∥∥ (‖ (M · si + v) − (M · ti + v)) ‖2)06i<n

∥∥
p

= δp(M · S + v, M · T + v) (4.4)

holds. Therefore, δCp is invariant under isometric transformations when both
time series are transformed equally.

Using Equation (4.4) and considering M∗ ∈ MO(k) and v∗ ∈ Rk such
that δCp (S, T ) = δp(S,M

∗ · T + v∗), which exist according to Lemma 7, the
inequation

δCp (S, T )‖ = δp ( S, M∗ · T + v∗ )

= δp ( M · S + v, M ·M∗ · T + (M · v∗ + v) )

> inf
M ′∈MO(k),v′∈Rk

δp
(
M · S + v, M ′ · T + v′

)
= δCp (M · S + v, T ) (4.5)

holds. For M∗ ∈ MO(k) and v∗ ∈ Rk with δCp (M · S + v, T ) = δp(M · S +
v, M∗ · T + v∗),

δCp (M · S + v, T )‖ := inf
M ′∈MO(k),v′∈Rk

δp
(
M · S + v, M ′ · T + v′

)
= δp ( M · S + v, M∗ · T + v∗ )

= δp
(
S, M−1 ·M∗ · T +

(
M−1 · v∗ − v

) )
> inf

M ′∈MO(k),v′∈Rk
δp(S, M

′ · T + v′)

= δCp (S, T ) (4.6)

holds analogously. Equation (4.5) and (4.6) yield δCp (S, T ) = δCp (M ·S+v, T )

for every M ∈ MO(k) and v ∈ Rk, i. e., δCp is invariant under isometric
transformations on the first argument.4

4Note that multiplication with an arbitrary matrix M ∈ MO(k) and adding an arbi-
trary vector v ∈ Rk represents all isometric transformations already.
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For arbitrary M1,M2 ∈ MO(k) and v1, v2 ∈ Rk, both results prove the
claim of the lemma when considering inverse transformations:

δCp (S, T ) = δCp ( M2 · S + v2, M2 · T + v2 )

= δCp
(
M−1

2 (M2 · S + v2)−M−1
2 · v2, M2 · T + v2

)
= δCp ( S, M2 · T + v2 )

= δCp ( M1 · S + v1, M2 · T + v2 )

�
Utilizing Lemma 8, the following proposition shows that the congruence

distance δCp yields a pseudo metric space. Although this proposition is not
used further on, it is an interesting result relevant to the topic of this thesis.

Proposition 1. (Tn, δCp ) is a pseudo metric space.

Proof. It is easy to see that δp and thus δCp are symmetric functions, i.e.,

δCp (S, T ) = δCp (T, S). Furthermore, the triangle inequality for δp follows
from the axioms of the norm.

To prove the triangle inequality of δCp , let M1,M2 ∈ MO(k) and

v1, v2 ∈ Rk such that δCp (S, T ) = δp(M1 · S + v1, T ) and δCp (T,U) =
δp(T,M2 ·U + v2). These vectors and matrices exist according to Lemma 7
and Lemma 8. Then, the triangle inequality follows:

δCp (S,U) = δCp (M1 · S + v1, M2 · U + v2)

6 δp(M1 · S + v1, M2 · U + v2)

6 δp(M1 · S + v1, T ) + δp(T, M2 · U + v2)

= δCp (S, T ) + δCp (T,U).

�

Calculating δCp (S, T ) for arbitrary S, T ∈ T is a nonlinear optimiza-
tion problem that can be solved using numeric solvers. Unfortunately, the
problem is computationally difficult: The next subsection shows that the
calculation of δC1 is NP-hard already.

4.2.2 NP-Hardness

This section restricts attention to δ1 = ‖d2‖1 and the according congruence
distance δC1 . Consider the following problem:

δC1 -Computation

Input: A number k ∈ N and two time series S and T in Rk of
equal length.

Task: Compute (a suitable representation of) the number δC1 (S, T ).
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This section’s main result is:

Theorem 3. If P 6= NP then δC1 -Computation cannot be solved in poly-
nomial time.

The remainder of this section is devoted to the proof of Theorem 3, which
constructs a reduction from the NP-complete problem 1-in-3-Sat. Recall
that 1-in-3-Sat is the problem where the input consists of a propositional
formula Φ in 3-cnf, i.e., in conjunctive normal form where each clause is a
disjunction of literals over three distinct variables. The task is to decide
whether there is an assignment α that maps the variables occurring in Φ to
the truth values 0 or 1 such that in each disjunctive clause of Φ exactly one
literal is satisfied by α; such an assignment α will be called a 1-in-3 model
of Φ.

Outline: The reduction from 1-in-3-Sat to the δC1 -Computation will
proceed as follows: A given 3-cnf formula Φ with k variables will be mapped
to two time series S̄Φ and T̄Φ over Rk that represent the formula Φ and its
variables, respectively. The basic idea for the choice of S̄Φ and T̄Φ is that
each dimension of Rk represents exactly one of the variables. An orthogonal
matrix mirroring the i-th dimension will then correspond to negating the
i-th variable. The construction of S̄Φ and T̄Φ will ensure that the following
is true for a certain number c(Φ): δC1 (S̄Φ, T̄Φ) = c(Φ) ⇐⇒ there is a 1-in-3
model of Φ.

Notation: The following notation will be convenient to formulate the
proof. For a propositional formula Φ with k variables, V1, . . . , Vk denote
the variables occurring in Φ. A literal over a variable Vi is a formula Li ∈
{Vi,¬Vi}. A disjunctive (conjunctive) 3-clause is a formula ΨI =

∨
i∈I Li

(ΨI =
∧
i∈I Li) with Li ∈ {Vi,¬Vi}, #I = 3, and I ⊆ [1, k]5. A 3-cnf for-

mula is a formula Φ =
∧m
j=1 Ψj where m > 1 and each Ψj is a disjunctive

3-clause.
Furthermore, the following notation is used for concatenating time series.

Let ` > 1, nj ∈ N for 1 6 j 6 `, and let Sj = (sj0, · · · , s
j
nj−1) be a time series

over Rk for each j ∈ [1, `]. Then, their concatenation is denoted as

S1 × · · · × S` :=
(
s1

1, · · · , s1
n1
, · · · , s`1, · · · , s`n`

)
.

If i1 < · · · < i` is an increasing sequence of integers and Sij is a time series
over Rk for each j ∈ [1, `] then for I := {i1, · · · , i`} the concatenation is
abbreviated with ⊗

i∈I
Si := Si1 × · · · × Si` .

5Except the proof of Theorem 3, this section assumes no trivial 3-clauses, e. g., Ψ =
Vi ∧ ¬Vi and Ψ = Vi ∨ Vi are excluded.
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Figure 4.1: A mapping of the two formulas A∧¬B ∧C (left) and ¬A∧
B ∧D (right) to Rk

From a 3-cnf formula Φ to the time series S̄Φ and T̄Φ: Let k be the
number of variables occurring in a given 3-cnf formula Φ =

∧m
j=1 Ψj where

m > 1 and each Ψj =
∨
i∈Ij Li is a disjunctive 3-clause with Li ∈ {Vi,¬Vi},

#Ij = 3, and Ij ⊆ [1, k].
For a disjunctive 3-clause Ψ =

∨
j∈I Lj , let

Ψ′ :=
∨
j∈I

(
Lj ∧

∧
i∈I\{j}

¬Li︸ ︷︷ ︸
=: Γj

)
.

Clearly, an assignment α satisfies Ψ′ iff it is a 1-in-3 model of Ψ; and α
satisfies Φ′ :=

∧m
j=1 Ψ′j iff it is a 1-in-3 model of Φ =

∧m
j=1 Ψj . The

formulas Γj for j ∈ I are called the conjunctive 3-clauses implicit in Ψ.
Regarding formulas as purely syntactical constructs, an embedding of

formulas into Rk can be defined recursively. To that, consider the following
embedding θ of variables, literals, and conjunctive 3-clauses into Rk: For
each i ∈ [1, k] let

θ(Vi) := ei.

For each formula Φ with (at most) k variables, let

θ(¬Φ) := −θ(Φ).

For a conjunction Γ =
∧
i∈I Li, let

θ(Γ) :=
∑
i∈I

θ(Li).

Figure 4.1 sketches some examples of this mapping. In particular, for an
implicit conjunctive 3-clause Γj as defined above, the mapping yields

θ(Γj) = θ

Lj ∧ ∧
i∈I\{j}

¬Li

 := θ (Lj)−
∑

i∈I\{j}

θ(Li).



4.2. TIME SERIES CONGRUENCE 69

For each index set I ⊆ [1, k], let

eI :=
∑
i∈I

ei

and for each disjunctive 3-clause Ψ =
∨
i∈I Li define the following time

series over Rk:

S′Ψ :=
⊗
i∈I

(6ei,−6ei) , T ′Ψ :=
⊗
i∈I

(6ei, 6ei),

SΨ :=
⊗
j∈I

(γj) , TΨ := ( eI , eI , eI ), (4.7)

S̃Ψ := S′Ψ × SΨ , T̃Ψ := T ′Ψ × TΨ.

To anticipate an understanding of the choice of these time series, figure that
δC1 (S′Ψ, T

′
Ψ) will be minimized with a transformation that rotates around

each axis by either 0 degrees or 180 degrees, i. e., these sub time series force
a minimizing transformation matrix to enter binary states regarding the
transformation of each ei, respectively. On the other hand, minimizing the
congruence distance of SΨ and TΨ corresponds to setting the propositional
variables such that the 3-clause Ψ is fulfilled.

For a 3-cnf formula Φ =
∧m
j=1 Ψj , all these time series will be concatened

to the two time series

SΦ :=
m⊗
j=1

(
S̃Ψj

)
, TΦ :=

m⊗
j=1

(
T̃Ψj

)
.

In the end, the time series are concatenated with their mirrored duplicates:6

S̄Φ := SΦ ×−SΦ , T̄Φ := TΦ ×−TΦ.

The aim is to compute a number c(Φ) such that the following is true:
δC1 (S̄Φ, T̄Φ) = c(Φ) iff Φ has a 1-in-3 model. Several steps are necessary to
obtain this equivalence, the first of which is to compute a number cMO(Φ)
such that Φ has a 1-in-3 model iff δMO1 (SΦ, TΦ) = cMO(Φ) where

δMO1 (S, T ) := min
M∈MO(k)

δ1(S, M · T ), (4.8)

i. e., Φ has a 1-in-3-model iff SΦ and TΦ are congruent with distance cMO(Φ)
while forcing the translation to be 0.

6For the congruence distance, this will force the translation vector of the minimizing
transformation to be 0.
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From MO(k) to propositional variable assignments: This section’s
Lemmas, Theorems, and Corollaries use the following definitions that relate
orthogonal matrices with propositional variable assignments.

Definition 8. A matrix M ∈MO(k) is called a Boolean matrix iff

∀1 6 i 6 k : M · ei ∈ {ei,−ei}.

The set of all Boolean matrices is denoted with O(k)L.

Definition 9. For each Boolean matrix MB ∈ O(k)L, let η(MB) be the
assignment α with

α(Vi) =

{
1 if mi,i = 1;

−1 else.

For each orthogonal matrix M ∈ MO(k), let η̂(M) be the assignment α
with

α(Vi) =

{
1 if mi,i > 0;

−1 else.

Clearly, η is a bijection between the Boolean matrices O(k)L and the set
of all assignments to the propositional variables V1, . . . , Vk. By definition,
η̂(MB) = η(MB) holds for each Boolean matrix MB ∈ O(k)L, i. e., η̂ is an
extension of η to all orthogonal matrices. Therefore, η̂ partitions MO(k),
i. e.,

MO(k) =
⋃

MB∈O(k)L

η̂−1(η(MB))

is disjunctive. This partition defines an equivalence relation via

M ≡M ′ :⇐⇒ η̂(M) = η̂(M ′)

for all orthogonal matrices M,M ′ ∈MO(k). Furthermore,

M ≡M ′ =⇒ η̂(M) |= Φ⇐⇒ η̂(M ′) |= Φ

holds by definition for arbitrary propositional formulas Φ.

Relating δMO1 (SΦ, TΦ) with 1-in-3 models of Φ: The next lemma lifts
Thales’ Theorem to multidimensional Vector Spaces, which will help prove
Theorem 3.

Lemma 9. Let M ∈ MO(k), i ∈ [1, k], ai := d2(ei,Mei), and bi :=
d2(−ei,Mei). Then,

bi =
√

4− a2
i and ai =

√
4− b2i .
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ci

bi ai

ei
-ei

Mei

Figure 4.2: Thales’ theorem sketched in Rk, where ei ∈ Rk and M ∈
MO(k). The side ci is a diameter; ai and bi connect both
endings to a third point (Mei) on the circle.

Figure 4.2 sketches the situation described by Lemma 9.

Proof. Let ci := d2(ei,−ei). For the special case where k = 2, Thales’
Theorem claims that a2

i + b2i = c2
i . The same holds for arbitrary k, as the

following computation shows.
Clearly, ci = d2(ei,−ei) = ‖2ei‖2 = 2, and thus c2

i = 4. Furthermore,

a2
i = d2(ei,Mei)

2

= ‖ei −Mei‖22
= 〈ei −Mei, ei −Mei〉
= 〈ei, ei〉+ 〈Mei,Mei〉 − 2〈ei,Mei〉
= 2− 2〈ei,Mei〉

and

b2i = d2(−ei,Mei)
2

= ‖−ei −Mei‖22
= ‖ei +Mei‖22
= 〈ei +Mei, ei +Mei〉
= 〈ei, ei〉+ 〈Mei,Mei〉+ 2〈ei,Mei〉
= 2 + 2〈ei,Mei〉.

Thus,

a2
i + b2i = 2− 2〈ei,Mei〉+ 2 + 2〈ei,Mei〉 = 4 = c2

i ,

and therefore bi =
√

4− a2
i and ai =

√
4− b2i . �
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For a disjunctive 3-clause Ψ and a matrix M ∈MO(k), let

δΨ(M) := δ1(S̃Ψ, M · T̃Ψ)

= δ1(S′Ψ, M · T ′Ψ) + δ1(SΨ, M · TΨ).

The next lemmas will gather information on the size of δΨ(M).

Lemma 10. Let Ψ =
∨
i∈I Li be a disjunctive 3-clause, let M ∈ MO(k).

Then,

δ1(S′Ψ, M · T ′Ψ) = 6 ·
∑
i∈I

(
d2(ei,Mei) + d2(−ei,Mei)

)
.

Proof. Recalling that δ1 = ‖d2‖1, the lemma holds trivially for the particu-
lar choice of S′Ψ and T ′Ψ. �

Lemma 11. Let Ψ =
∨
i∈I Li be a disjunctive 3-clause.

(a) For each orthogonal matrix M ∈MO(k), the inequation

δ1(SΨ, M · TΨ) > BΨ(M)

− 3 ·
∑
i∈I

min(d2(ei,Mei), d2(−ei,Mei)) (4.9)

holds where BΨ(M) = 4
√

2 if η̂(M) |= Γ for some conjunctive
3-clause Γ implicit in Ψ and BΨ(M) ∈

{
6, 4 + 2

√
3, 6
√

2
}

else.

(b) For each Boolean matrix MB ∈ O(k)L,

δ1(SΨ, MB · TΨ) = BΨ(MB)

holds where BΨ(MB) is as in (a).

Proof. Let Γj , for j ∈ I, be the conjunctive 3-clauses implicit in Ψ, and let
γj = θ(Γj).

For proving (a), let M ∈MO(k) be an arbitrary orthogonal matrix. By
definition of SΨ and TΨ, the following holds:

δ1(SΨ, M · TΨ) =
∑
j∈I

d2(γj , MeI). (4.10)

The triangle inequality and the symmetry yield d(x, z) > d(x, y) − d(y, z)
for all pseudo metric spaces (M, d) and all x, y, z ∈M. Thus, for any vector
v ∈ Rk and for any j ∈ I the inequation

d2(γj ,MeI) > d2(γj , v) − d2(v,MeI),
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holds, and hence

δ1(SΨ,M · TΨ) >
∑
j∈I

(
d2(γj , v)− d2(v,MeI)

)

=

∑
j∈I

d2(γj , v)

− 3 · d2(v,MeI). (4.11)

Choose v ∈ Rk as follows: Let v :=
∑

i∈I siei where si := 1 if d2(ei,Mei) 6
d2(−ei,Mei), and si := −1 otherwise. Then,

d2(v,MeI) = ‖v −MeI‖2

=

∥∥∥∥∥∑
i∈I

(siei −Mei)

∥∥∥∥∥
2

6
∑
i∈I
‖siei −Mei‖2

=
∑
i∈I

d2(siei,Mei).

Note that d2(siei, Mei) is equal to ai if si = 1, and it is equal to d2(−ei,Mei)
if si = −1 (cf. Figure 4.2). Thus, due to the choice of si, the equation
d2(siei,Mei) = min(d2(ei,Mei), d2(−ei,Mei)) holds, and hence Inequa-
tion 4.11 continues with

δ1(SΨ,M · TΨ) >

∑
j∈I

d2(γj , v)


− 3 ·

∑
i∈I

min
(
d2(ei,Mei), d2(−ei,Mei)

)
. (4.12)

To reach Inequation (4.9) requires to show that
∑

j∈I d2(γj , v) > BΨ(M).
For simplicity, consider w. l. o. g. the case where I = {1, 2, 3}. Let li = θ(Li)
for i ∈ I; thus, li ∈ {ei,−ei}. Then, w. l. o. g.

γ1 = l1 − l2 − l3,
γ2 = −l1 + l2 − l3, and

γ3 = −l1 − l3 + l3.

The following case distinction according to v shows that
∑

j∈I d2(γj , v) >
BΨ(M).
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Case 1: v = γi for some i ∈ I, i. e., η̂(M) |= Γi by definition of v. In
this case, d2(γi, v) = 0. Then, d2(γj , v) resolves to

√
8 = 2

√
2

for each j ∈ I \ {i} by substituting the values from above. Thus,∑
j∈I d2(γj , v) = d2(γ1, v) + d2(γ2, v) + d2(γ3, v) = 4

√
2 ≈ 5.66.

Case 2: v = −l1− l2− l3. Then, the equation d2(γj , v) =
√

4 = 2 holds for
each j ∈ I; thus,

∑
j∈I d2(γj , v) = 3 · 2 = 6.

Case 3: v = −γi for some i ∈ I. In this case, d2(γi, v) = 2 · ‖γi‖2 = 2
√

3.
Furthermore, d2(γj , v) resolves to

√
4 = 2 for each j ∈ I \ {i}; thus,∑

j∈I d2(γj , v) = 4 + 2
√

3 ≈ 7.46.

Case 4: v = l1 + l2 + l3. Then, for each j ∈ I the equation d2(γj , v) =√
4 + 4 =

√
8 = 2

√
2 holds; thus,

∑
j∈I d2(γj , v) = 3 · 2

√
2 = 6

√
2 ≈

8.49.

Note that Cases 1–4 comprise all possible cases for v and in all these
cases

∑
j∈I d2(γj , v) > BΨ(M). Especially,

∑
j∈I d2(γj , v) > 4

√
2 if there is

a conjunctive 3-clause Γj implicit in Ψ such that η̂(M) |= Γi (Case 1) and∑
j∈I d2(γj , v) > 6 else (Cases 2–4). Together with (4.12), this yields that

Inequation (4.9) is correct, which completes the proof of (a).

Now, for a Boolean matrix M ∈ O(k)L, M · eI = v holds by definition
of v. With this matrix and the case distinction from above, Equation (4.10)
resolves to

δ1(SΨ, M · TΨ) =
∑
j∈I

d2(γj , v) = BΨ(M),

which completes the proof of (b). �

The following corollary utilizes the previous two lemmas.

Corollary 1. Let Ψ be a disjunctive 3-clause. WithBΨ(M) as in Lemma 11,
the inequation

δΨ(M) > 36 + BΨ(M) (4.13)

holds for arbitrary orthogonal matrices M ∈MO(k) . For Boolean matrices
M ∈ O(k)L, the equality holds in Inequation (4.13).
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Proof. For M ∈MO(k), Lemmas 10 and 11 yield

δΨ(M) = δ1(S′Ψ,M · T ′ψ) + δ1(SΨ,M · TΨ)

> 6 ·
∑
i∈I

(d2(ei,Mei) + d2(−ei,Mei))

+ BΨ(M) − 3 ·
∑
i∈I

min(d2(ei,Mei), d2(−ei,Mei))

= BΨ(M) + 3 ·
∑
i∈I

(d2(ei,Mei) + d2(−ei,Mei))

+ 3 ·
∑
i∈I

max(d2(ei,Mei), d2(−ei,Mei))

> BΨ(M) + 3 ·
∑
i∈I

(d2(ei,M · ei), d2(M · ei,−ei))

> BΨ(M) + 3 ·
∑
i∈I

d2(ei,−e2)

= 36 + δΨ(M),

which proves the first part of the corollary.
For the second part of the corollary, let MB ∈ O(k)L be an arbitrary

Boolean matrix. Lemmas 10 and 11 yield

δΨ(MB) = δ1(S′Ψ, MB · T ′ψ) + δ1(SΨ, MB · TΨ)

= 6 ·
∑
i∈I

(
d2(ei,MBei) + d2(−ei,MBei)

)
+ BΨ(MB).

Since MB · ei ∈ {ei,−ei}, the following equation holds:

d2(ei,MB · ei) + d2(−ei,MB · ei) = d2(ei,−ei) = 2

Hence, with #I = 3,

6 ·
∑
i∈I

(
d2(ei,MB · ei) + d2(−ei,MB · ei)

)
= 6 · 3 · 2 = 36,

and thus

δΨ(MB) = 36 +BΨ(MB),

which proves the second part of the corollary. �
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Lemma 12. Let Φ =
∨m
j=1 Ψj be a 3-cnf formula with m disjunctive

3-clauses. Then, Φ has a 1-in-3 model iff

min
M∈MO(k)

δ1(SΦ, M · TΦ) = m · (36 + 4
√

2).

Furthermore, if Φ has no 1-in-3 model then

min
M∈MO(k)

δ1(SΦ, M · TΦ) > m · (36 + 4
√

2) + (6− 4
√

2).

Proof. Assume that α is a 1-in-3 model of Φ, i. e., α |= Ψj for each 1 6 j 6
m. Then, let MB := η−1(α). By Corollary 1 and the definition of BΨj (MB)

from Lemma 11, δΨj (MB) = 36 + 4
√

2 holds for each 1 6 j 6 k, and thus

δ1(SΦ,MB · TΦ) =
∑

16j6m

δ1(SΨj ,MB · TΨj )

= m · (36 + 4
√

2).

Note that, by Corollary 1, δ1(SΦ,MB · TΦ) cannot be any smaller, i. e.,

min
M∈MO(k)

δ1(SΦ, M · TΦ) = m · (36 + 4
√

2).

For the other direction, assume that there is no 1-in-3 model α for Φ.
Now, choose an arbitrary assignment α′ and an arbitrary M ∈MO(k) with
η̂(M ′) = α′. Since α′ is no 1-in-3 model of Φ, it is no 1-in-3 model for at
least one disjunctive 3-clause Ψj of Φ. By Corollary 1 and the definition of
BΨj (M

′) from Lemma 11, δΨj (M
′) > 42 holds. For the other disjunctive

3-clauses in Φ, Corollary 1 claims a lower bound of 36 + 4
√

2; thus,

δ1(SΦ, M
′ · TΦ) =

∑
16j6m

δ1(SΨj , M
′ · TΨj )

> (m− 1) · (36 + 4
√

2) + 42. (4.14)

Recall that η̂ partitions MO(k). The proof of this lemma is complete since
Inequation 4.14 holds for arbitrary assignments α′ and orthogonal matrices
M ′ ∈ η̂−1(α). �

Note that Lemma 12 establishes the goal formulated directly before equa-
tion (4.8): When choosing

cMO(Φ) := m · (36 + 4
√

2)

whenever Φ is a 3-cnf formula consisting of m disjunctive 3-clauses, then
Lemma 12 claims that Φ has a 1-in-3 model if, and only if, δMO1 (SΦ, TΦ) =
cMO(Φ). Furthermore, δMO1 (SΦ, TΦ) > cMO(Φ) + (6 − 4

√
2) whenever Φ

has no 1-in-3 model, which states a clear gap of 6 − 4
√

2 ≈ 0.34 between
the two cases.
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Relating δC1 (S̄Φ, T̄Φ) with 1-in-3 models of Φ: The former results only
considered transformations using orthogonal matrices. However, the con-
gruence distance δC1 allows distance minimization also by translating with
an arbitrary vector. The following lemma considers these transformations
of time series too.

Lemma 13. Let S and T be two time series of the same length over Rk
and let S̄ := S × −S and T̄ := T × −T . The following is true for every
M ∈MO(k) and every v ∈ Rk:

δ1(S̄, M · T̄ ) 6 δ1(S̄, M · T̄ + v)

Proof. Let S, T, v be as in the lemma’s assumption. Fixate an arbitrary
M ∈MO(k). Furthermore, let T ′ := M · T , denote S = (s0, · · · , sn−1), and
denote T ′ = (t0, · · · , tn−1). Then,

δ1

(
S̄,M · T̄

)
=

(
n−1∑
i=0

d2(si, ti)

)
+

(
n−1∑
i=0

d2(−si,−ti)

)

=
n−1∑
i=0

2 · ‖si − ti‖2 ,

and

δ1

(
S̄,M · T̄ + v

)
=

n−1∑
i=0

( ‖si − ti − v‖2 + ‖si − ti + v‖2 ) .

Letting ui := si − ti yields

δ1(S̄,M · T̄ ) =
n−1∑
i=0

2 ‖ui‖2 , and

δ1(S̄,M · T̄ + v) =
n−1∑
i=0

(
‖ui + v‖2 + ‖ui − v‖2

)
.

For proving the lemma, it therefore suffices to show that

2 ‖ui‖2 6 ‖ui + v‖2 + ‖ui − v‖2 (4.15)

is true for every i ∈ [0, n). In the following, Inequality (4.15) is proven in
fact to be true for every vector ui ∈ Rk. To that, the following claim will
be useful.
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Claim 1. |a+ b|+ |a− b| > 2|a| is true for all a, b ∈ R.

Proof of Claim 1: First, restrict attention to the case where a > 0. In this
case, the following is true:

|a+ b|+ |a− b| =

{
a+ b+ a− b = 2a, if a > |b|
a+ |b| − a+ |b| = 2|b|, if a < |b|

In both cases, |a+ b|+ |a− b| > 2|a|, and thus the proof is done for a > 0.

Now, consider the case where a < 0. Then, a′ := −a > 0 yields
|a+ b|+ |a− b| = |a′− b|+ |a′+ b| > 2|a′| = 2|a| with the case study from
above, which completes the proof of Claim 1. �

Now, let u be an arbitrary vector in Rk. Clearly, an M ′ ∈MO(k) exists
such that M ′u = ae1 for some a ∈ R. For this M ′, let b := M ′v; thus, b1 is
the first component of the vector M ′v. Then, the following is true:

2 ‖u‖2 = 2
∥∥M ′u∥∥

2
= 2|a|

and

‖u+ v‖2 + ‖u− v‖2 =
∥∥M ′(u+ v)

∥∥
2

+
∥∥M ′(u− v)

∥∥
2

=
∥∥M ′u+M ′v

∥∥
2

+
∥∥M ′u−M ′v∥∥

2

=
∥∥ae1 +M ′v

∥∥
2

+
∥∥ae1 −M ′v

∥∥
2

>|a+ b1| + |a− b1|.

By Claim 1, the inequation continues with ‖u+ v‖2 + ‖u− v‖2 > 2|a|. In
summary,

2 ‖u‖2 = 2|a| 6 ‖u+ v‖2 + ‖u− v‖2

is true for all u, v ∈ Rk, which completes the proof of Lemma 13. �

Finally, the following theorem relates 3-cnf formulas Φ with the congru-
ence distance of the corresponding time series S̄Φ and T̄Φ.

Theorem 4. Let Φ =
∨m
j=1 Ψj be a 3-cnf formula with m disjunctive

clauses. Then, Φ has a 1-in-3 model iff

δC1 (S̄Φ, T̄Φ) = m · (72 + 8
√

2).

Furthermore, if Φ has no 1-in-3 model then

δC1 (S̄Φ, T̄Φ) > m · (72 + 8
√

2) + (12− 8
√

2).
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Proof. Lemma 13 yields

δC1 (S̄Φ, T̄Φ) = min
M∈MO(k)

δ1(S̄Φ, M · T̄Φ).

Furthermore, by the choice of S̄Φ and T̄Φ,

δ1(S̄Φ, M · T̄Φ) = 2 · δ1(SΦ, M · TΦ).

holds for every M ∈ MO(k). Hence, by Lemma 12, Φ has a 1-in-3 model
iff

δC1 (S̄Φ, T̄Φ) = 2 · min
M∈MO(k)

δ1(SΦ, M · TΦ)

= 2 ·m · (36 + 4
√

2).

If, on the other hand, Φ has no 1-in-3 model then, by Lemma 12,

δC1 (S̄Φ, T̄Φ) = 2 · min
M∈MO(k)

δ1(SΦ, M · TΦ)

> 2 ·m · (36 + 4
√

2) + 2 · (6− 4
√

2).

�

An algorithm solving 1-in-3-Sat: The proof of Theorem 3 reduces the
1-in-3-Sat problem to δC1 -Computation. This reduction uses Theorem 4,
which only considers 3-cnf formulas consisting of no trivial disjunctive 3-
clauses. Therefore, the reduction of Theorem3 needs a transformation of a
3-cnf formula

Φ′ =
∧
j∈I

Ψ′j

with trivial disjunctive 3-clauses to a 3-cnf formula with no trivial disjunctive
3-clauses in polynomial time.

To that, consider the trivial 3-clause

Ψ′j∗ = Vi1 ∨ ¬Vi1 ∨ Li2

for some i1, i2 ∈ [1, k]. Clearly, removing Ψ′j∗ from Φ′ is feasible in polyno-
mial time; and Φ′ is equivalent to Φ :=

∧
j∈I\{j∗}Ψj .

For a trivial disjunctive 3-clause of the form

Ψ′j∗ = Li1 ∨ Li1 ∨ Li2

where Li1 is a literal over a variable Vi, consider a new variable V0 that is
not in Φ′. Then, Ψ′j∗ is equivalent to the following 3-cnf formula:

Φ1 :=
(
Li1 ∨ Li2 ∨ V0

)
∧
(
Li1 ∨ Li2 ∨ ¬V0

)
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Clearly, Φ′ and

Φ := Φ1 ∧
∧

j∈I\{j∗}

Ψ′j

are equivalent.
Analogously, for a trivial 3-clause of the form

Ψ′j∗ = Li1 ∨ Li1 ∨ Li1

consider two new variables V0 and V ′0 that are not in Φ′. Then, Ψj∗ is
equivalent to

Φ2 :=
(
Li1 ∨ V0 ∨ V ′0

)
∧
(
Li1 ∨ V0 ∨ ¬V ′0

)
∧
(
Li1 ∨ ¬V0 ∨ V ′0

)
∧
(
Li1 ∨ ¬V0 ∨ ¬V ′0

)
and Φ′ and

Φ := Φ2 ∧
∧

j∈I\{j∗}

Ψ′j

are equivalent.
If multiple trivial disjunctive 3-clauses have to be replaced in Φ′, the

new variables V0 and V ′0 can be reused, i. e., the transformation adds at
most two new variables to the 3-cnf formula while iteratively applying the
transformation rules above. Furthermore, the length of the 3-cnf formula
extends at most by a factor of four. Clearly, this reduction is feasible in
polynomial time regarding the length of the 3-cnf formula Φ′.

Proof of Theorem 3. Assume that A is an algorithm that, upon the input of
the dimensionality k and two time series S and T of equal length, computes
δC1 (S, T ). The problem 1-in-3-Sat can be solved by using this algorithm as
follows.

First, apply the transformation above to the input 3-cnf formula Φ′ to
gain a 3-cnf formula Φ that only consists of non-trivial disjunctive 3-clauses.
Then, construct the time series S̄Φ and T̄Φ. Clearly, this is feasible in poly-
nomial time regarding the size of Φ′. Letting k be the number of variables
occurring in Φ, run the algorithm A with input k, S̄Φ, and T̄Φ. After a num-
ber of steps polynomial in the size of Φ, A will output the number δC1 (S, T )
(up to a precision of 12−8

√
2 ≈ 0.69). Now, check if this number is equal

to (a suitable representation of) the number m · (72 + 8
√

2) where m is the
number of disjunctive 3-clauses of Φ. If so, output “yes”; otherwise, output
“no”.

Theorem 4 yields that the algorithm’s output is “yes” if, and only if,
Φ (and therefore Φ′) has a 1-in-3 model. Thus, the construction of a
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Mti+v

S

MT+v

Mtj+v

sj
si

Figure 4.3: A sketch of a time series S and a time series T that is trans-
formed by M ∈ MO(k) and v ∈ Rk. The dashed lines
represent distances.

polynomial-time algorithm solving the NP-complete problem 1-in-3-Sat is
done. Such an algorithm, however, cannot exist in case that P 6= NP. �

Note that according to the proof above, already the restriction of the
problem δC1 -Computation to input time series over

{0, 1,−1, 6,−6}k

cannot be accomplished in polynomial time, unless P = NP.
The numbers computed in the proof of Theorem 3 are to be computed

up to a precision of 12 − 8
√

2 ≈ 0.69. This precision is constant for all
input sizes. Thus, the precision of the floating-point numbers needs to grow
logarithmically with the input size.

4.3 Approximating the Congruence Distance

Consider two time series S and T of equal length and an isometric transfor-
mation consisting of an orthogonal matrix M ∈MO(k) and a vector v ∈ Rk
as sketched in Figure 4.3. The approximations proposed in this section all
derive from the following estimation: The triangle inequality yields

d(si, sj) 6 d(si,Mti + v) + d(Mti + v,Mtj + v) + d(Mtj + v, sj)

= d(si,Mti + v) + d(ti, tj) + d(Mtj + v, sj)

and

d(ti, tj) = d(Mti + v,Mtj + v)

6 d(si,Mti + v) + d(si, sj) + d(Mtj + v, sj)

and thus for each 0 6 i, j < #S:

|d(si, sj) − d(ti, tj)| 6 d(si,Mti + v) + d(sj ,Mtj + v). (4.16)
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Figure 4.4: A sketch of two time series S (top left) and T (top right) and
a visualization of their respective self-similarity matrices ∆S
(bottom left) and ∆T (bottom right). In the matrices, the
intensity corresponds to the distance values, i. e., dark pix-
els represent small distance values and light pixels represent
larger distance values.

The right hand side of Inequation 4.16 consists of elements from the
congruence distance δC1 (S, T ) =

∑n−1
i=0 d(si,Mti + v). Since the left hand

side of Inequation 4.16 is independent of the transformation used on the
right hand side, this inequation helps estimating the congruence distance
without actually solving an optimization problem (cf. Section 4.1.2 for an
interpretation of δCp (S, T ) as optimization problem). Using this insight, this
section proposes two approximating algorithms in Section 4.3.1 and 4.3.2.

To formalize the approximations of the congruence distance, the well-
known7 self-similarity matrix of time series is used.

Definition 10 (Self-Similarity Matrix). The self-similarity matrix of an
arbitrary time series T = (t0, . . . , tn−1) is the matrix

∆T :=
(
d (ti, tj)

)
06i,j<n.

Note that ∆Ti,j = ∆Tj,i and ∆Ti,i = 0 holds for each 0 6 i, j < n.
Figure 4.4 sketches two time series and a visualization of their respective
self-similarity matrices. The diagonals of the self-similarity matrices are
black because d(ti, ti) = 0 holds for each ti in a time series T . Furthermore,
the matrices are symmetric because the distance function d is symmetric.

Considering the self-similarity matrices ∆S and ∆T , the left-hand side
of Inequation (4.16) matches the entries of |∆S − ∆T |. The important
property that makes the self-similarity matrix useful for approximating the

7Usually, the self-similarity matrix is used to analyze a time series for patterns (e. g.,
using Recurrence Plots [39]).
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congruence distance is its invariance under isometric transformations, i. e.,
the self-similarity matrix ∆T completely describes the sequence T up to
congruence:

Theorem 5. Consider the metric space (Rk, d2), and let S, T be two time
series of length n over Rk. Then, S and T are congruent iff they have the
same self-similarity matrix, i. e.,

S ∼=C T ⇐⇒ ∆S = ∆T. (4.17)

Intuitively, Theorem 5 holds because the Euclidean Distance is invariant
under isometric transformations. Still, the proof is provided for the sake of
completeness.

Lemma 14. Let B = {b1, · · · , bn} be a basis of a vector space V ⊆ Rk and
u, v ∈ V . Then,

∀i ∈ [1, n] : 〈u, bi〉 = 〈v, bi〉 ⇐⇒ u = v.

Proof. Clearly, 〈u,w〉 = 〈v, w〉 holds for all w ∈ Rk if u = v.
The interesting direction is shown by induction over n: For B = {b1},

the statement is trivial. For n > 1, consider B = {b1, · · · , bn} and let

u′ := u− 〈u, bn〉 ·
1

‖bn‖22
· bn and

v′ := v − 〈v, bn〉 ·
1

‖bn‖22
· bn.

Then,

〈u′, bn〉 =

〈
u− 〈u, bn〉 ·

1

‖bn‖22
· bn, bn

〉
= 〈u, bn〉 − 〈u, bn〉 ·

1

‖bn‖22
· 〈bn, bn〉

= 〈u, bn〉 − 〈u, bn〉
= 0

holds, i. e., u′ ∈ span(b1, · · · , bn−1). Analogously, v′ ∈ span(b1, · · · , bn−1)
holds. By induction, u′ = v′ holds, and thus

u− 〈u, bn〉 ·
1

‖bn‖22
· bn = u′

= v′

= v − 〈v, bn〉 ·
1

‖bn‖22
· bn.

With 〈u, bn〉 = 〈v, bn〉, the induction step u = v is complete. �
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Proof of Theorem 5. Let S = (s0, · · · , sn−1) and T = (t0, · · · , tn−1). For
the direction “=⇒”, assume that S ∼=C T , i. e., T = M · S + v0 for some
orthogonal matrix M ∈MO(k) and some vector v0 ∈ Rk. Then, ∆S = ∆T
since the following equation holds for all i, j ∈ [0, n):

d(ti, tj) = d2(Msi + v0, Msj + v0)

= ‖Msi + v0 −Msj − v0‖2
= ‖M(si − sj)‖2
= ‖si − sj‖2
= d2(si, sj)

In the opposite direction, assume ∆S = ∆T . In order to find the trans-
forming matrix M ∈ MO(k), let S′ = (0, s′1, · · · , s′n−1) = S − s0 and
T ′ = (0, t′1, · · · , t′n−1) = T − t0. Then, ∆S′ = ∆S = ∆T = ∆T ′, and
thus d2(s′i, s

′
j) = d2(t′i, t

′
j) holds for i, j ∈ [1, n). Therefore, the equality

〈s′i − s′j , s′i − s′j〉 = d2(s′i, s
′
j)

2 = d2(t′i, t
′
j)

2 = 〈t′i − t′j , t′i − t′j〉,

and thus

〈s′i, s′i〉+ 〈s′j , s′j〉 − 2〈s′i, s′j〉 = 〈s′i − s′j , s′i − s′j〉
= 〈t′i − t′j , t′i − t′j〉
= 〈t′i, t′i〉+ 〈t′j , t′j〉 − 2〈t′i, t′j〉

holds for all i, j ∈ [1, n). Using further 〈s′i, s′i〉 = d2(0, s′i)
2 = d2(0, t′i)

2 =
〈t′i, t′i〉 for all i ∈ [1, n), the equality of the scalar products

〈s′i, s′j〉 = 〈t′i, t′j〉 (4.18)

follows. Now, Equation (4.18) helps defining the function which yields the
desired matrix M ∈ MO(k). To that, let B := {s′i1 , · · · , s

′
im
} be a basis of

the vector space
V := span(s′1, · · · , s′n−1)

and let W := span(t′i1 , · · · , t
′
im

) (using the same indices as in B). It is easy
to construct a function F ′ : V −→W with F ′(s′ij ) := t′ij for each j ∈ [1,m].

Because of Equation (4.18), the equality

〈F ′(s′ia), F ′(s′ib)〉 = 〈t′ia , t
′
ib
〉 = 〈s′ia , s

′
ib
〉

holds for all a, b ∈ [1,m]; thus, F ′ is an orthogonal function.Therefore,

〈t′j , t′ia〉 = 〈s′j , s′ia〉
= 〈F ′(s′j), F ′(s′ia)〉
= 〈F ′(s′j), t′ia〉
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holds for all j ∈ [1, n) and a ∈ [1,m]. Now, Lemma 14 yields F ′(s′j) = t′j for
j ∈ [1, n).

With basic linear algebra methods, F ′ can be extended to an orthogonal
function F : Rk −→ Rk. Consider the matrix M ∈MO(k) such that

F (v) = w ⇐⇒ Mv = w

is true for all v ∈ Rk. In particular, M · s′i = t′i is true for all i ∈ [1, n), and
thus M · S′ = T ′. Hence,

T − t0 = T ′ = M · S′ = M · (S − s0) = M · S − s0,

and therefore T = M · S + (t0 − s0), i. e., S ∼=C T . �

4.3.1 Metric Approximation

Equation (4.16) and (4.17) motivate the approach for approximating the
congruence: A distance function on the self-similarity matrices of two time
series S and T estimates their congruence distance. This approach yields a
(pseudo) metric distance function.

Definition 11 (Delta Distance). Let S, T be two time series of length n.
The delta distance δ∆(S, T ) is

δ∆(S, T ) :=
1

2
max

0<r<n

n−1∑
i=0

∣∣d2

(
si, s(i+r) mod n

)
− d2

(
ti, t(i+r) mod n

)∣∣ .
Proposition 2. The delta distance δ∆ satisfies the triangle inequality.

Proof. Consider three time series S, T, and U and fixate an r∗ that maxi-
mizes δ∆(R, T ) in Definition 11. Then,

δ∆(S,U) =
1

2

n−1∑
i=0

∣∣d2

(
si, s(i+r∗) mod n

)
− d2

(
ui, u(i+r∗) mod n

)∣∣
6

1

2

n−1∑
i=0

( ∣∣d2

(
si, s(i+r∗) mod n

)
+ d2

(
ti, t(i+r∗) mod n

)∣∣+
∣∣d2

(
ti, t(i+r∗) mod n

)
− d2

(
ui, u(i+r∗) mod n

)∣∣ )
6 δ∆(S, T ) + δ∆(T,U)

proves the triangle inequality. �

Since d2 is symmetric, δ∆ inherits its symmetry. Hence, δ∆ is a pseudo
metric on the set of time series of length n. Furthermore, δ∆ is a met-
ric on the set of equivalence classes regarding the congruence relation ∼=C .
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The complexity for computing the delta distance δ∆ in Definition 11 grows
quadratically with the time series’ length.

The next aim is to show that the the delta distance δ∆ provides a lower
bound for the congruence distance δC1 :

Theorem 6. For all time series S and T , the following inequation holds:

δ∆(S, T ) 6 δC1 (S, T ).

Proof. Fixate a range r∗ which maximizes δ∆(S, T ) in Definition 11. Using
the triangle inequality as in Equation (4.16) yields

δ∆(S, T ) =
1

2

n−1∑
i=0

∣∣d2

(
si, s(i+r∗) mod n

)
− d2

(
ti, t(i+r∗) mod n

)∣∣
=

1

2

n−1∑
i=0

∣∣∣d (si, s(i+r∗) mod n

)
− d2

(
M · ti + v,M · t(i+r∗) mod n + v

) ∣∣∣
6

1

2

n−1∑
i=0

(
d (si,M · ti + v)

+ d2

(
s(i+r∗) mod n,M · t(i+r∗) mod n + v

) )
=

n−1∑
i=0

d2 (si,M · ti + v)

= δC1 (S, T )

for arbitrary M ∈MO(k) and v ∈ Rk. �

On the one hand, Theorem 6 shows that the delta distances δ∆ provides
a lower bound for the congruence distance δC1 . On the other hand, the ratio
of the congruence distance and the delta distance can grow arbitrarily, as
shown with the following example.

Example 6. Consider M = R2. The following shows that time series S, T

exist for each C > 0 such that δC(S,T )
δ∆(S,T )

> C (cf. Figure 4.5). Let ε > 0,

a :=
√

1− ε2, and consider Sε = (s0, s1, s2), Tε = (t0, t1, t2) with

Sε :=

((
−a
0

)
,

(
0
0

)
,

(
a
0

))
, Tε :=

((
−a
0

)
,

(
0
ε

)
,

(
a
0

))
.

Then, δ∆(Sε, Tε) = 2(1− a) = 2(1−
√

1− ε2). If δC1 (Sε, Tε) > ε
2 then

δC1 (Sε, Tε)

δ∆(Sε, Tε)
>

1

4
· ε

1−
√

1− ε2

ε→0−−−−−−→ +∞.
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Figure 4.5: Two time series Sε and Tε in R2 with
dC

1 (Sε,Tε)

d∆
1 (Sε,Tε)

ε→0−−−→ +∞.

It remains to prove that δC1 (Sε, Tε) > ε
2 . To that, assume that M ∈MO(k)

and v0 ∈M exist such that

δ1(Sε,M · Tε + v0) <
ε

2
.

Then, considering the linear function

ι : M −→M
v 7−→M · v + v0,

the following inequality must hold for each i ∈ [0, 2]:

d2(si, ι(ti)) <
ε

2

Since ι is an isometric function and 1
2s0 + 1

2s2 − s1 = 0,

d2

(
s1,

ι(t0)

2
+
ι(t2)

2

)
=

∥∥∥∥ ι(t0)

2
+
ι(t2)

2
− s1

∥∥∥∥
2

=

∥∥∥∥ ι(t0)

2
− s0

2
+
ι(t2)

2
− s2

2
+
s0

2
+
s2

2
− s1

∥∥∥∥
2

6
1

2
d2(ι(t0), s0) +

1

2
d2(ι(t2), s2)

<
ε

2
,

holds, i. e., a contradiction rises with

d(s1, ι(t1)) > d2

(
ι(t1), ι

(
1

2
(t0 + t2)

))
︸ ︷︷ ︸

=d2(t1, 12 (t0+t2))=ε

−d2

(
s1, ι

(
1

2
(t0 + t2)

))

> ε− ε

2
.

Hence, δC1 (Sε, Tε) = minM∈MO(k),v0∈M δ1(Sε,M · Tε + v0) > ε
2 .

This subsection provided the delta distance that is a metric lower bound
for the congruence distance with quadratic runtime in the length and linear
runtime in the time series’ dimensionality.



88 CHAPTER 4. CONGRUENCE

4.3.2 Greedy Approximation

While the delta distance sums up values along each (wrapped) diagonal in
|∆S−∆T | and chooses the largest of these sums, another combination of ele-
ments within |∆S−∆T | as summands might provide a better approximation
of the congruence distance. Since it is a computationally expensive task to
try all combinations, the following approach tries to find a good combination
using a greedy algorithm for selecting the entries of |∆S −∆T |.

The greedy algorithm first sorts the elements di,j = |d2(si, sj)− d2(ti, tj)|
in descending order and stores them in a sequence Q = (di1,j1 , di2,j2 , · · · ).
While iterating over the sequence Q, it adds dir,jr to a global sum and masks
the indices ir and jr as already seen. In further iterations, the algorithm
skips elements in the queue that access already seen indices; thus, each in-
dex is used at most once. Basically, this is why the greedy delta distance
(denoted as δG(S, T )) is a lower bound for the congruence distance. The-
orem 7 proves this claim. Algorithm 11 provides the pseudo-code for the
computation of δG.

Algorithm 11 Greedy Delta Distance

1 Algorithm: greedydelta

2 Input: time series S, T of length n
3 Output: distance d
4

5 let Q = () // empty sequence
6 for i = 0, . . . , n− 2
7 for j = i+ 1, . . . , n− 1
8 append di,j := |d2 (si, sj)− d2 (ti, tj)| to Q
9 sort Q // (descending)

10 let S = ∅
11 let d = 0
12 for each dia,ja in Q
13 if ia ∈ S or ja ∈ S continue

14 let d = d+ dia,ja
15 let S = S ∪ {ia, ja}
16 return d

The complexity is dominated by sorting n2 elements, which in turn takes
n2 · log(n2) steps.

Theorem 7. For all time series S and T , the following inequation holds:

δG(S, T ) 6 δC1 (S, T ).
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Proof. Let Q∗ = (di1,j1 , · · · , dir,jr) be the list of elements from the queue in
Algorithm 11 which have not been skipped. Since each index is appears at
most once in this list, the following inequality holds for arbitrary orthogonal
matrices M and vectors v ∈ Rk:

δG(S, T ) =
r∑

a=1

dia,ja

=

r∑
a=1

|d2 (sia , sja) − d2 (M · tia + v,M · tja + v)|

6
r∑

a=1

(
d2 (sia ,M · tia + v) + d2 (sja ,M · tja + v)

)
6

n−1∑
i=0

d2 (si,M · ti + v)

Hence, δG(S, T ) 6 δC1 (S, T ). �

4.3.3 Runtime Improvement

The delta distance’s and greedy delta distance’s complexity are linear re-
garding the dimensionality but quadratic regarding the length. This section
motivates an optimization for both algorithms.

Time series usually do not contain random points but come from contin-
uous processes in the real world, i. e., the distance between two successive
elements is relatively small compared to the distance of two elements that
are far away in time. Hence, the distances d (ti, tj) and d (ti, tj+1) are prob-
ably relatively close to each other if i � j (i. e., if j is much larger than
i). This insight leads to the idea to only consider elements d (ti, tj) where
|i−j| is a power of two, i. e., less elements are considered for larger temporal
distances.

The Fast Delta Distance: Adapting the above described idea to the
delta distance δ∆ yields the following definition.

Definition 12 (Fast Delta Distance). Let S, T be two time series of length
n. The fast delta distance δ̃∆(S, T ) is

δ̃∆(S, T ) :=
1

2
max

0<δ<n,δ∈2N

n−1∑
i=0

∣∣d2

(
si, s(i+δ) mod n

)
− d2

(
ti, t(i+δ) mod n

)∣∣ .
Since δ̃∆ only omits values in comparison to δ∆ (cf. Definition 11), the

fast version δ̃∆ is a lower bound for δ∆:
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Corollary 2. For all time series S and T of equal length, the following
inequation holds:

δ̃∆(S, T ) 6 δ∆(S, T )

In particular, the fast delta distance also is a lower bound for the con-
gruence distance. For time series of length n, the complexity of the fast
delta distance δ̃∆ improves to n log n. On the down side, equivalence classes
regarding the fast delta distance might include time series which are not
congruent, as the following example shows.

Example 7. Let

S =

((
0
0

)
,

(
3
0

)
,

(
3
4

)
,

(
2
2

))
, T =

((
0
0

)
,

(
3
0

)
,

(
3
4

)
,

(
4
2

))
.

Then,

∆S =


0 3 5

√
8

3 0 4
√

5

5 4 0
√

5√
8
√

5
√

5 0

 , ∆T =


0 3 5

√
20

3 0 4
√

5

5 4 0
√

5√
20
√

5
√

5 0


and δ∆(S, T ) =

√
20 −

√
8, but δ̃∆(S, T ) = 0 because the fast version

does not consider d(s0, s3) and d(t0, t3).

The fast greedy delta distance: Incorporating the idea for improving
the runtime into the greedy delta distance changes Line 7 of Algorithm 11:
Only values for the variable j are considered that add a power of 2 to the
variable i. Algorithm 12 provides the pseudo-code for the fast greedy delta
distance δ̃G.

Example 8. Let

S =

((
0
0

)
,

(
36
2

)
,

(
36
−2

)
,

(
72
0

))
, T =

((
0
0

)
,

(
40
2

)
,

(
40
−2

)
,

(
80
0

))
.

With
√

362 + 22 ≈ 36.06 and
√

402 + 22 ≈ 40.05, the similarity matrices of
S and T are

∆S ≈


0 36.06 36.06 72

36.06 0 4 36.06
36.06 4 0 36.06

72 36.06 36.06 0

 and

∆T ≈


0 40.05 40.05 80

40.05 0 4 40.05
40.05 4 0 40.05

80 40.05 40.05 0

 ,
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Algorithm 12 Fast Greedy Delta Distance

1 Algorithm: fastgreedydelta

2 Input: time series S, T of length n
3 Output: distance d
4

5 let Q = () // empty sequence
6 for i = 0, . . . , n− 2
7 for j = i+ 1, i+ 2, i+ 4, . . . ,max

{
j∗ ∈ 2N | j∗ 6 n− 1

}
8 append di,j := |d2 (si, sj)− d2 (ti, tj)| to Q
9 sort Q // (descending)

10 let S = ∅
11 let d = 0
12 for each dia,ja in Q
13 if ia ∈ S or ja ∈ S continue

14 let d = d+ dia,ja
15 let S = S ∪ {ia, ja}
16 return d

respectively. Therefore, δG(S, T ) = 8 and δ̃G(S, T ) ≈ ¸8.02. It is easy
to find examples where δ̃G(S, T ) 6 δG(S, T ). Sill, this example shows that
analogous statements to Corollary 2 for δ̃G do not hold, i. e., time series S
and T exist with δ̃G(S, T ) > δG(S, T ).

The fast greedy delta distance δ̃G is again dominated by the sorting of
elements. This time, n log n elements have to be sorted, thus its complexity
is n log(n) log(n log n) which asymptotically behaves as n log(n)2. Hence,
the fast versions both have quasi-linear runtime regarding length and linear
runtime regarding dimensionality.

An inequality such as in Theorem 2 does not exist for the fast greedy
delta distance (cf. Example 8). Also, there is no correlation between the
(fast) delta distance and the (fast) greedy distance. The evaluation in Sec-
tion 4.4 shows that the greedy delta distance provides a much better ap-
proximation in most cases. Also, Section 4.4 evaluates the tightness of the
proposed approximations to the congruence distance.

4.4 Evaluation

The approximations’ evaluation is of higher interest than the evaluation
of the congruence distance itself since the exact computation of the con-
gruence distance is a computationally hard problem and thus not feasible
in practical applications. Unfortunately, there is no direct algorithm for
the computation of the congruence distance; thus, a numerical optimizer is
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necessary for the computation of the congruence distance interpreted as a
nonlinear optimization problem (cf. Section 4.1.2). For two time series S
and T , the distance value computed by such an optimizer is denoted with
δO(S, T ). Since an optimizer might not find the global optimum, all values
for the congruence distance (computed by an optimizer) in this section are
in fact upper bounds to the correct but unknown value of the congruence
distance, i. e., δC1 (S, T ) 6 δO(S, T ). This given circumstance complicates
the evaluation of the approximations to the congruence distance.

To deal with that problem, a first step is to estimate the error of the opti-
mizer regarding different hyperparameters (e. g., dimensionality and length
of time series) by evaluating it on pairs of time series for which the congru-
ence distance is known (cf. Section 4.4.1). For those hyperparameters that
yield a small error, the later estimation of the approximation’s tightness is
assumed to be accurate. On the other hand, for hyperparameters that yield
large errors, the estimation of the approximation’s tightness is assumed to
be loose, i. e., the approximation is probably tighter than the experiments
claim. Unfortunately, providing explicit statements is not feasible.

For a detailed explanation, consider a lower bound `(S, T ) to the con-
gruence distance (e. g., ` might be one of δG, δ̃G, δ∆, or δ̃∆) and suppose
δO(S, T ) = δC1 (S, T ) + ε, i. e., ε > 0 is the error of the optimizer. Then, the
following correlation between the estimated tightness and the real tightness
holds:

1 >
`(S, T )

δC1 (S, T )
=

`(S, T )

δO(S, T )− ε
>

`(S, T )

δO(S, T )

Hence, for small errors ε, the estimated tightness is accurate and for large
errors ε the tightness is underestimated. Section 4.4.2 and 4.4.3 evaluate
the tightness and the approximations speedup to the (optimizer based) con-
gruence distance, respectively.

4.4.1 Congruence Distance: An Optimization Problem

Consider fixed time series S and T in Rk with length n. The congruence
distance is a nonlinear optimization problem with equality based constraints.
The function to minimize is

f (M,v) =

n−1∑
i=0

d (si,M · ti + v)

while the k2 equality based constraints correspond to the constraints for
orthogonal matrices:

M ·MT = I.
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Figure 4.6: Sketch of two two-dimensional congruent time series.

To construct a problem for that the result is known, a random orthogonal
matrix M∗ and a small random vector v∗ transforms a time series T . The
optimizer is then urged to solve the optimization problem δC1 (T,M∗ ·T+v∗).
Clearly, the optimizer needs to find a solution with value 0 since both time
series are congruent, indeed. Here, the optimizer is considered not to work
properly whenever it claims large distance values.

In this thesis’ scope, different optimizer strategies have been tried. An
augmented lagrangian algorithm [22] with the BOBYQA algorithm [52] as
local optimizer has been chosen for further experiments because it promised
the best performance with these experiments. The implementation is based
on the algorithms provided by the NLopt library [55].

The first experiment evaluates the congruence distance on four datasets
with dimensionality 1 to 4, respectively. Each of the datasets consists of
200 RAM generated time series of length 100 (and bounding sphere radius
100) and 1 transformed version for each. Figure 4.6 shows an example of a
generated time series and its transformed version.

In total, the experiment conducts 800 optimization problems as described
above. The further evaluation discards the samples for that no reasonable
solution was found by the optimizer. Figure 4.7 shows the distance values
proposed by the optimizer (and therefore the error it makes) per dimen-
sionality. For experiments with dimensionality 5 or higher, the optimizer
failed to find any reasonable value near 0 within 24 hours of computation
time. Figure 4.7 also shows that the computation time rapidly increases with
increasing dimensionality. Because of the rising error and runtime with in-
creasing dimensionality, an evaluation of the congruence distance on higher
dimensionality is not feasible. Hence, all further evaluation only considers
up to 4-dimensional time series.
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Figure 4.7: Boxplot: distance values (left) and runtime (right) of the
optimizer on congruent time series.

4.4.2 Tightness of Approximations

To evaluate the tightness of the (fast) delta distance and (fast) greedy delta
distance to the congruence distance, the experiments in this section use
the RAM dataset generator and the real-world Character Trajectories dataset
(CT) that contains over 2800 two-dimensional time series [67]. Other real-
world datasets with higher dimensionality are not suitable because, on those,
the optimizer fails to compute reasonable results of the congruence distance.

Since making the (greedy) delta distance time-warping aware is future
work, another way is necessary to deal with time-warping here. To that, the
CT dataset is preprocessed such that each time series, seen as a trajectory,
moves with constant speed, i. e., for each dewarped time series, the following
holds for all suitable indices i and j:

d2 (ti, ti+1) ≈ d2 (tj , tj+1) .

This property is achieved by reinterpolating the time series regarding the
arc length.

Figure 4.8 shows the tightness of the approximations on the synthesized
datasets. As expected, the greedy delta distance provides the tightest ap-
proximation to the congruence distance (provided by the optimizer used in
this work).

As observed in Section 4.4.1, the optimizer’s error increases with in-
creasing dimensionality. Hence, the tightness of the optimizer to the actual
congruence distance is decreasing. Since a similar behavior can be observed
here (the tightness of the approximation is decreasing with increasing di-
mensionality), the reason might be the optimizer’s inaccuracy. Either way,
the tightness is above 50% in most cases. Especially when using the greedy
delta distance, the tightness is above 75% in most cases.

On the CT dataset, the delta distance and the greedy delta distance
achieved a tightness of 63% and 83%, respectively.
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Figure 4.8: Average tightness of the delta distance (top left), the fast
delta distance (top right), the greedy delta distance (bottom
left), and the fast greedy delta distance (bottom right) to the
congruence distance, respectively.
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Figure 4.9: Average speedup of the approximations to the optimizer.

4.4.3 Speedup of Approximations

Figure 4.9 shows the speedup of the approximations to the optimizer. As
expected, the speedup increases exponentially with increasing dimensional-
ity. While the fast delta distance is the fastest algorithm, it also provides
the worst approximation (compare with Figure 4.8). On the other hand,
the greedy delta distance provides the best approximation while being the
slowest algorithm. Still, the greedy delta distance is multiple orders of mag-
nitudes faster than our optimizer.

The approximating algorithms achieved the following speedups on the
character trajectory dataset: 1642 with the delta distance; 8040 with the
fast delta distance; 321 with the greedy delta distance; 2287 with the fast
greedy delta distance. The results are similar to those on the RAM generated
datasets.

4.4.4 Conclusion
This chapter analyzed the problem of measuring the congruence between two
time series. It showed that the computation of the congruence distance is
not (and will never be) feasible. On the other hand, it provides four approx-
imating distance functions that are at least two orders of magnitude faster
than the congruence distance itself, one of which is suitable for metric index
structures (delta distance), and one of which loses this benefit but seems to
achieve a tighter approximation (greedy delta distance). The delta distance
and greedy delta distance algorithms have linear complexity regarding the
dimensionality but quadratic worst-case runtime complexity regarding the
time series length. The other two approximations address this problem at
the cost of approximation quality; they have quasi-linear runtime regarding
the length.



Chapter 5

Subsequence Search using
Metric Index Structures

A common approach to accelerating similarity search algorithms is the usage
of index structures. In the case of metric distance functions, metric index
structures such as the M-Tree are applicable. On the other hand, many ap-
plications ask for approximate subsequences or subsets, e. g., searching for
a similar partial sequence of a gene, a similar scene in a movie, or a similar
object in a picture represented by a set of multi-dimensional features. Met-
ric index structures cannot be utilized for these tasks because subsequence
search is not symmetric, but metric distance functions are.

This chapter proposes an extension of the M-Tree, the SuperM-Tree,
that allows approximate subsequence and subset queries as nearest neighbor
queries. The SuperM-Tree indexes metric subset spaces, a new, generalized
concept of metric spaces. Various metric distance functions are extendable
to metric subset distance functions, e. g., the Euclidean distance (on sub-
sequences), the Hausdorff distance (on subsets), the Edit distance, and the
Dog Keeper distance (on subsequences); these examples subsume the appli-
cations mentioned above.

5.1 Introduction

The ubiquitous B+-Tree [36] has its home in relational database manage-
ment systems; it provides fast range queries on linearly ordered data. The
R∗-Tree [16] is the standard index structure for indexing spatial data; it
offers the capability of fast multi-dimensional range queries. Numerous in-
dex structures exist that offer more expressive queries on more complex
data types; this includes index structures for sets and set containment
joins [53, 63, 87], for strings and similarity search regarding the Edit dis-
tance [84], and for nearest neighbor queries in any metric space [19,23,35,76].

Metric index structures are more generic than the ones mentioned above.

97
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They support range queries on a wide range of different complex data types,
such as the Euclidean distance on sequences of the same length, the Edit
distance (ED) on strings, the Dog Keeper distance (DK) on sequences or
multi-dimensional trajectories of arbitrary lengths [9, 10], and the (two-
sided) Hausdorff distance on sets (e. g., on sets of integers or sets of fea-
ture vectors) [38]. However, the symmetry of a metric strongly constrains
the queries’ expressiveness and prevents containment queries that ask for
subsequences, subsets, and the like.

An index structure that supports approximate subset queries needs to
discard the symmetry, and it needs a relation regarding the size of the ob-
jects. Hence, this chapter introduces the metric subset space (M, d,v) con-
sisting of a set of objects M, a distance function d, and a total preorder
v (”smaller than or equal size”) ordering the objects by their size. The
concept of the metric subset space discards the symmetry and the reflexiv-
ity of d and reduces the necessity of the triangle inequality such that the
triangle inequality d(x, z) 6 d(x, y) + d(y, z) only needs to hold for objects
x, y, z ∈M with x v y v z.

Inspired by the M-Tree, this chapter proposes the SuperM-Tree that
indexes metric subset spaces. The SuperM-Tree supports k-nearest neighbor
and ε-nearest neighbor queries: Given a query object q, the result of a sub
query consists of objects p, such that p v q (p is not larger than q) and p is
similar to a part of q (regarding the semantic of the metric subset distance
function). As a demonstration of the generality of metric subset spaces, this
chapter provides several examples, including approximate set containment
queries and subsequence queries with various distance functions, such as the
Euclidean distance (on subsequences), the Hausdorff distance (on subsets),
and the Dog Keeper distance (on subsequences).

In summary, this chapter proposes a general index structure for database
systems that supports natural types of queries for a wide range of multimedia
data types.

The rest of this chapter is structured as follows: Section 5.2 describes the
concept of metric subset spaces and demonstrates it on examples. Section 5.3
introduces the data structure of the SuperM-Tree and the algorithms for
insertion and searching of objects. Section 5.4 evaluates the efficiency of the
SuperM-Tree on three different subset distance functions. The evaluation
shows that the speedup against a linear scan search algorithm increases with
increasing size of the dataset.

Note that this chapter is considered to be a proof of concept. Hence, not
all algorithms required in real-world applications are discussed here, e. g.,
this thesis avoids the algorithms for deleting objects from the SuperM-Tree,
since they are not necessary for evaluating the performance of the SuperM-
Tree.
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5.2 Metric Subset Spaces

Consider a set of objects M, for example, sequences of arbitrary lengths or
sets of multi-dimensional vectors. Natural queries put objects in a certain
“containment” relationship when they ask for subsets or subsequences. Here,
a total preorder (denoted with ’v’) describes this containment relationship.
Intuitively, this relationship requires each pair of objects (x, y) that x is
either not larger or not smaller than y (or both). Note that the preorder
does not consider similarity at all.

For an exact subsequence T ′ of T with d(T ′, T ) = 0, the reflexivity
would claim that T ′ = T , which prohibits the existence of exact subse-
quences. Hence, discarding the reflexivity is essential. Since the order of the
parameters of the distance function declares the subsequence relation (e. g.,
d(S, T ) is the distance of S to T with S being a subsequence), discarding
the symmetry is essential.1

Given an exact subsequence S of T and U (at the same time), S might
match T and U at different positions, e. g., S is the prefix of T and the suffix
of U . The triangle inequality claims that d(T,U) 6 d(S, T ) + d(S,U) = 0,
which is a contradiction to the possibility that T 6= U . Therefore, the
concept of the metric subset space restricts the demand for the triangle
inequality to hold on transitive chains of the preorder, i. e., d(x, z) 6 d(x, y)+
d(y, z) if x v y v z. Of course, the triangle inequality can hold for other
triplets x, y, z, but this is no must.

The following definitions formalize the idea motivated above.

Definition 13 (Total Preorder). A total preorder on M is a relation v on
M×M that satisfies the following axioms:

∀x ∈M : x v x
∀x, y ∈M : x v y ∨ y v x
∀x, y, z ∈M : x v y ∧ y v z −→ x v z

Note that a total preorder defines an equivalence relation ≡ by

x ≡ y ⇐⇒ x v y ∧ y v x.

Examples for a total preorder include comparing the length of time series
or the cardinality of finite sets.

Definition 14 (Metric Subset Space). A metric subset space is a 3-tuple
(M,v, d) consisting of a set M, a total preorder v on M, and a function
d :M×M→ R>0 that satisfies the following axiom:

S) ∀x, y, z ∈M : x v y v z −→ d(x, z) 6 d(x, y) + d(y, z)
1Remark that two the time series S and T are in subsequence relation in both directions

(with more or less similarity), e. g., when considering time-warping distance functions.
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Compared to metric spaces, Axiom S relaxes the triangle inequality;
and it discards the reflexivity and symmetry. Considering the trivial total
preorder that relates all objects (i. e., ∀x, y : x v y), each metric space also
is a metric subset space; thus, metric subset spaces generalize metric spaces.

The following Corollary 3 claims that switching the parameters in the
total preorder and the distance function yields another metric subset space.
In other words, the following corollary converts subset ordering to superset
ordering and vice versa.

Corollary 3. For a metric subset space (M,v, d), let y w x :⇐⇒ x v y
and d̃(y, x) := d(x, y) for all x, y ∈ M. Then, (M,w, d̃) is a metric subset
space.

The following three examples (that are typical applications) show the
generality of metric subset spaces.

5.2.1 Euclidean Distance on Subsequences

Let M be the set of real valued time series and let S = (s0, · · · , sm−1), T =
(t0, · · · , tn−1) ∈ M be such two time series with m = #S and n = #T .
The canonical total preorder for subsequence search is the “shorter or equal
than” relation, i. e., S v T :⇐⇒ #S 6 #T . For sequences with S v T , a
common approach for subsequence search is the windowing approach with
the Euclidean distance [42]:2

δ2(S, T ) := min
06j6n−m

δ2(S, Tj,m).

The following proposition shows that this model for subsequence dis-
tances yields a metric subset space.

Proposition 3. (M,v, δ2) is a metric subset space.

The proposition even holds for subsequences of elements from another
metric space (e. g., n-dimensional vectors).

Proof. Consider three time series

S = (s0, · · · , sm−1),

T = (t0, · · · , tn−1), and

U = (u0, · · · , uk−1)

with S v T v U and fix s, t ∈ N such that

δ2(S, T ) = δ2 (S, Ts,m) and

δ2(T,U) = δ2 (T, Ut,n) .
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Figure 5.1: Sketch for the variables choice in the proof of Proposition 3.
The striped lines indicate the best matches of the subse-
quences (yellow: S in T , T in U ; blue: S in U).

Figure 5.1 sketches this situation. The following three inequalities help to
prove the triangle inequality.

1: Since δ2 is a metric on common length sequences, the following triangle
inequality holds:

δ2(S,Ut+s,m) 6 δ2 (S, Ts,m) + δ2 (Ts,m, Ut+s,m) (5.1)

2: The monotonicity of δ2 regarding the length yields the second inequality:

δ2 (Ts,m, Ut+s,m)2 =
∑

s6i<s+m

d (Ti, Ut+i)
2

6
n−1∑
i=0

d (Ti, Ut+i)
2

= δ2 (T,Ut,n)2 (5.2)

3: The last inequality uses the properties of the windowing approach,
which is scanning for the best match:

δ2 (S,U) = min
06j6k−m

δ2 (S, Uj,m) 6 δ2 (S, Ut+s,m) (5.3)

Combining inequalities (5.1),(5.2), and (5.3) completes the proof:

δ2(S,U) 6 δ2 (S, Ut+s,m)

6 δ2 (S, Ts,m) + δ2 (Ts,m, Ut+s,m)

6 δ2 (S, Ts,m) + δ2 (T, Ut,n)

= δ2(S, T ) + δ2(T,U)

�

2Recall that Ti,l denotes the subsequence of T starting at index i with length l.
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5.2.2 Dog Keeper Distance on Subsequences

Again, let M be a set of real valued time series; let S, T, U ∈M with

S = (s0, · · · , sm−1),

T = (t0, · · · , tn−1), and

U = (u0, · · · , uk−1);

and let v be the length comparison.

Since the Dog Keeper distance DK is able to stretch the “time” axis, the
method presented here generalizes the windowing approach to windows of
arbitrary length:

S-DK(S, T ) := min
0 6 j < n

1 6 ` 6 n− j

DK (S, Tj,`)

The difference to the windowing approach in Section 5.2.1 is that the length
of the subsequence in T is not bound to the length of S. The computation
of S-DK has quadratic runtime complexity since it is a simple modification of
the DK distance similar to modifying DTW to achieve its subsequence version
S-DTW [73].

The subsequence distance function S-DK yields a metric subset space.

Proposition 4. (M,v, S-DK) is a metric subset space.

Proof. Similar to Proposition 3, it suffices to prove the triangle inequality
for arbitrary S, T, U ∈ M with S v T v U . To that, fix sa, s`, ta, t` ∈ N
such that

S-DK(T,U) = DK (T, Uta,t`) and

S-DK(S, T ) = DK (S, Tsa,s`) .

Figure 5.2 sketches this situation.

Recall that the computation of DK (T,Uta,t`) maps elements of T to ele-
ments of U ; thus, it maps each subsequence of T to a certain subsequence of
U . In particular, ua and u` exist such that the subsequence Tsa,s` is mapped
to Uua,u` . Since this is a part of the mapping of T to U , the inequality

DK (Tsa,s` , Uua,u`) 6 DK (T,Uta,t`) (5.4)

holds. For these subsequences, the triangle inequality of the metric distance
function DK [9] is applicable. Thus,

DK (S,Uua,u`) 6 DK (S, Tsa,s`) + DK (Tsa,s` , Uua,u`) . (5.5)
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Figure 5.2: Sketch for the variables choice in the proof of Proposition 4.
The striped lines indicate the best matches of the subse-
quences (yellow: S in T , T in U ; blue: S in U).

Together with Inequation (5.4) and by the choice of sa, s`, ta, and t`, this
yields the triangle inequality for S-DK:

S-DK(S,U) 6 DK (S,Uua,u`)

6 DK (S, Tsa,s`) + DK (Tsa,s` , Uua,u`)

6 DK (S, Tsa,s`) + DK (T,Uta,t`)

= S-DK (S, T ) + S-DK (T,U)

�

5.2.3 Hausdorff Distance on Subsets

To provide an example for metric subset spaces from another data domain,
let the members of M be sets of real values. Here, the total preorder com-
pares the cardinalities of sets A,B ∈ M, i. e., A v B :⇐⇒ #A 6 #B.
The Hausdorff distance is a common metric distance function on sets:

Hausdorff(A,B) := max

{
max
a∈A

min
b∈B
|a− b|, max

b∈B
min
a∈A
|a− b|

}
In more general, the Hausdorff distance is a metric for sets of arbitrary
elements from any other metric space (e. g., Euclidean vector spaces). This
example sticks to sets of real values to maintain readability.

In the case of subset comparison, the symmetry of the Hausdorff dis-
tance is not necessary. The following definition derived from the Hausdorff
distance yields a subset distance function (S-HD) with similar semantics:

S-HD(A,B) := max
a∈A

min
b∈B
|a− b|
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A

B
C

Figure 5.3: Sketch for illustrating the proof of Proposition 5. The arrows
indicate the mappings from A to B, from B to C, and from
A to C.

While S-HD tries to match A to a subset of B, the original Hausdorff
distance does this in both directions, i. e.,

Hausdorff(A,B) = max
{
S-HD(A,B), S-HD(B,A)

}
.

Proposition 5. (M,v, S-HD) is a metric subset space.

Proof. As in the proofs of Proposition 3 and 4, it suffices to prove the triangle
inequality for arbitrary A,B,C ∈ M with A v B v C. Therefore, fixate
mappings f : A −→ B and g : B −→ C such that

∀a ∈ A : f(a) = arg min
b∈B
|a− b| and

∀b ∈ B : f(b) = arg min
c∈C
|b− c|,

i. e., f and g map all elements to their corresponding nearest neighbor.
Hence,

S-HD(A,B) = max
a∈A
|a− f(a)| and

S-HD(B,C) = max
b∈B
|b− g(b)|.

Now, for arbitrary a ∈ A, the inequation

min
c∈C
|a− c| 6 |a− g(f(a))|

6 |a− f(a)| + |f(a)− g(f(a))|

6 S-HD(A,B) + S-HD (f(A), C)

6 S-HD(A,B) + S-HD(B,C)

holds, and thus S-HD(A,C) 6 S-HD(A,B) + S-HD(B,C). �



5.3. THE SUPERM-TREE 105

5.3 The SuperM-Tree

The SuperM-Tree is derived from the M-Tree [35] and differs due to indexing
metric subset spaces (M,v, d) instead of metric spaces. The basic properties
are the same (cf. Section 2.2.3): It is a balanced tree with nodes of a specific
capacity (either of fixed size or variable size as in [17]). Inner nodes contain
routing objects that cover a nearby part of the metric subset space. The
covered objects include all objects in the corresponding subtree. Leaf nodes
contain the actual entries.

Additionally, the SuperM-Tree needs the objects along each path from
the root to a leaf to be ordered according to the metric subset space’s to-
tal preorder. That way, the data structure assures the preliminary of the
triangle inequality in metric subset spaces, i. e., the data structure assures
that the triangle inequality holds to prune certain subtrees. Consider, for
example, the tree in Figure 2.3. There, the relations B v D, B v X, and
D v X need to hold. On the other hand, C v X or X v D is not necessary.

Also, the insert and delete algorithms (including the split and merge
strategies) need adjustment to keep the ordering condition. This section
provides a proof of concept for the SuperM-Tree. To that, the deletion
algorithms are not necessary and therefore not included here.

For the rest of this section, let (M,v, d) be an arbitrary metric subset
space.

5.3.1 Structure of SuperM-Tree Nodes

Since the structure of the SuperM-Tree is derived from the M-Tree [35], this
thesis uses the same notation. Leaf nodes store the indexed (key) objects,
whereas internal nodes store a set of routing objects that help in pruning
subtrees and navigating through the tree.

Each routing object Or consists of

• T (Or), the covered subtree, i. e., a reference to the root node of its
subtree;

• r(Or), the covering radius; and

• d
(
Or, P (Or)

)
, the distance of Or to its parent node P (Or) (or nil if

Or is in the root node of the tree).

In addition to the M-Tree, the SuperM-Tree expects that Or v Oj for each
object Oj in its covered tree. All indexed objects in the covered tree of Or
are within the distance r(Or) from Or.

Leaf nodes store a set of indexed objects Oj and their distance to the
parent d

(
P (Oj), Oj

)
, respectively. In real-world scenarios, leaf nodes store

additional information per object, e. g., a data pointer or tuple identifier.
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5.3.2 Similarity Queries

The SuperM-Tree supports range queries and nearest neighbor queries. This
section only discusses range queries since nearest neighbor queries are sim-
ple range queries that adapt the search radius while traversing the tree,
analogously to the M-Tree.

For an object Q ∈ M, a range query selects all database objects that
are in the search area and that are not larger than the query object, i. e.,

NN
(
Q, r(Q)

)
:=
{
Oj ∈M | d(Oj , Q) 6 r(Q) ∧ Oj v Q

}
Algorithm 13 provides the pseudo-code for the range query. The algorithm
uses Lemma 15 and 16 to prune subtrees.3

Algorithm 13 Range query on SuperM-Tree

1 Algorithm: supermtree.range

2 Input: node N (default: root node), query object Q,
search radius r(Q)

3 R := ∅
4 if N is a leaf node

5 for each Oj ∈ N
6 if Oj v Q and d(Oj , Q) 6 r(Q)
7 R := R ∪ {Oj}
8 return R
9 // else

10 for each Or in N
11 if not Or v Q
12 skip // prune subtree by ‘‘size’’
13 if r(Q) < d(P (Or), Q)− d(Or, P (Or))− r(Or)
14 skip // subtree pruned using Lemma 16
15 if r(Q) < d(Or, Q)− r(Or)
16 skip // subtree pruned using Lemma 15
17 R := R ∪ supermtree.range(T (Or), Q, r(Q))
18 return R

Lemma 15. If d(Or, Q) > r(Q) + r(Or), then d(Oj , Q) > r(Q) holds for
each object Oj with Oj v Q in the covered subtree of Or.

Remark that, since only objects Oj with Oj v Q are included in the
search result by definition, the additional constraint Oj v Q of Lemma 15 in
comparison to Lemma 1 causes no different usage of the lemma for the search
algorithm. In other words, analogously to Lemma 1, Lemma 15 implies that

3Lemma 15 and 16 are the metric subset versions of Lemma 1 and 2, respectively.



5.3. THE SUPERM-TREE 107

the subset search algorithm can safely prune the covered subtree with root
T (Or). The same holds true for Lemma 16 in comparison to Lemma 2.

Proof. Let Oj be an arbitrary but fixed object in the covered tree of Or with
Oj v Q. The ordering Or v Oj v Q holds by definition of the SuperM-
Tree’s structure. Now, by definition of metric subset spaces, the triangle
inequality

d(Or, Q) 6 d(Or, Oj) + d(Oj , Q)

holds. The structure of the SuperM-Tree requires d(Or, Oj) 6 r(Or); thus,

d(Or, Q) 6 r(Or) + d(Oj , Q) and

d(Oj , Q) > d(Or, Q)− r(Or).

Together with the prerequisite d(Or, Q) > r(Q) + r(Or) of the lemma, the
desired inequality

d(Oj , Q) > r(Q) + r(Or) − r(Or) = r(Q)

holds. �

Lemma 16. If d
(
P (Or), Q

)
> r(Q) + r(Or) + d

(
P (Or), Or

)
, then

d(Oj , Q) > r(Q) holds for each object Oj with Oj v Q in the covered
subtree of Or.

Proof. Let Oj be an arbitrary but fixed object in the covered tree of Or with
Oj v Q. The ordering P (Or) v Or v Oj v Q holds by definition of the
structure of a SuperM-Tree. Hence, the triangle inequality yields

d
(
P (Or), Q

)
6 d

(
P (Or), Or

)
+ d(Or, Oj) + d(Oj , Q).

Now, since d(Or, Oj) 6 r(Or) holds by definition and d
(
P (Or), Q

)
> r(Q)+

r(Or) + d
(
P (Or), Or

)
is a prerequisite, the inequality

r(Q) + r(Or) + d
(
P (Or), Or

)
< d

(
P (Or), Or

)
+ r(Or) + d(Oj , Q)

holds; thus, r(Q) < d(Oj , Q). �

5.3.3 Building the SuperM-Tree

The SuperM-Tree is a generalized search tree (GiST [46]), i. e., algorithms
for insertion and deletion of objects manage an overflow or underflow of the
nodes using split and merge operations, respectively.

The insert algorithm recursively descends the SuperM-Tree down to
a leaf node that receives the new object. At each inner node, it follows
the routing object with the smallest distance to the new object. Here, two
events may occur:
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1. Inserting the new object below the chosen routing object violates the
total preorder condition of the SuperM-Tree. In this case, an exchange
of the routing object is necessary.

2. After inserting the new object below the chosen routing object (or in
the current leaf node), the node is overfilled. This case triggers a split
of the node.

Also, at each routing object of the insertion path, the insert algorithm
needs to assure that the covering radius r(Or) covers the newly inserted
object. It does so by extending the covering radius as much as necessary.
Algorithm 14 provides the pseudo-code for the insert algorithm.

Algorithm 14 SuperM-Tree Insert

1 Algorithm: supermtree.insert

2 Input: node N (default: root node), new object O∗

3 if N is a leaf node

4 N := N ∪ {O∗} // insert O∗ to N
5 else

6 Or := arg min
(
{d(Or, O

∗) | Or v O∗} ∪ {d(O∗, Or) | O∗ v Or}
)

7 childSplit, O1, O2 :=insert(T (Or), O
∗)

8 if childSplit

9 N := N \ {Or} ∪ {O1, O2}
10 else if not Or v O∗ // preorder condition violated
11 T (O∗) := T (Or) // configure new routing object
12 r(O∗) := maxOc∈T (O∗) {d(O∗, Oc) + r(Oc)}
13 N := N \ {Or} ∪ {O∗} // exchange routing object
14 didSplit, O1, O2 := split(N) // cf. Algorithm 15

15 if didSplit and N is root node

16 set new root node {O1, O2}
17 return didSplit, O1, O2

Split Management

As any other GiST tree, the SuperM-Tree provides a split strategy consisting
of a promotion and a partition algorithm (cf. Algorithm 15). Splitting a
node N makes it two nodes N1 and N2, each getting a new parent routing
object.

The promote algorithm provides the two routing objects that ought to
replace the old routing object in the parent node. If N is the root node,
a new node filled with the two promoted routing objects will serve as the
tree’s new root node.
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The partition algorithm distributes the objects of the node N among
the two new nodes N1 and N2. The algorithm in this thesis follows the
generalized hyperplane strategy that puts each object to its nearest promoted
routing object (cf. Algorithm 16).

Algorithm 15 SuperM-Tree Split

1 Algorithm: supermtree.split

2 Input: node N, object O
3 if #N 6 capacity
4 return false, nil, nil

5 foundPromotion, O1, O2 := promote(N) // cf. Algorithm 17

6 if not foundPromotion:

7 return false, nil, nil

8 N1, N2 := partition(N,O1, O2) // cf. Algorithm 16

9 T (O1) := N1

10 T (O2) := N2

11 r(O1) := max{d(O1, O) | O ∈ N1}
12 r(O2) := max{d(O2, O) | O ∈ N2}
13 return true, O1, O2

A particular combination of a promote and partition strategy is called
a split policy. This thesis only discusses the split policy presented by the
following sections since it suffices for the SuperM-Tree’s proof of concept.

Algorithm 16 SuperM-Tree Partition

1 Algorithm: supermtree.partition

2 Input: node N, routing objects O1, O2

3 N1 := {Oj ∈ N | d(O1, Oj) < d(O2, Oj) ∧O1 v Oj}
4 N2 := N \N1

5 return N1, N2

Promotion Strategy

This subsection explains the details of the promotion strategy used in this
thesis (cf. Algorithm 17). Although the implementation calls the partition
algorithm multiple times in the pseudo-code, the final implementation actu-
ally merges both the promote and partition function to improve runtime
performance.

The motivation for the choice of the promotion strategy is based on the
following fact: Minimizing the overlap of covering areas in a node turned
out to be crucial for the performance of multi-dimensional index structures,
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S
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Figure 5.4: Example for two very distinct time series (T and U) being
similar to a third one (S).

including the R∗-Tree [16], and the M-Tree [35]. Considering a node N
with two routing objects S and T in an M-Tree, the distance between both
covering areas is ψ := d(S, T ) − r(S) − r(T ). Both covering areas overlap
when this value ψ becomes negative. The overlap gets larger the more this
value ψ shrinks below zero. Furthermore, the probability increases that
a query overlaps both covering areas. Hence, maximizing ψ decreases the
probability of having to descend multiple paths.

Since the concept of the volume of an overlap does not exist generally
for metric spaces, the negative of this value ψ is considered as overlap, i. e.,
ω(S, T ) := r(S) + r(T )− d(S, T ).

Virtual distance and overlap: The following situation shows that the
concept of the overlap as described above does not fit in metric subset spaces:
Consider the time series S, T , and U that are sketched in Figure 5.4, and
consider T and U to be actual routing objects, one of which covers S. While
T and U are not similar at all (and thus might yield no overlap for sufficiently
small radii), S has a small distance to both objects T and U , i. e., a query for
a time series Q containing S4 would need to traverse both paths through the
routing objects T and U . To avoid such situations, the concept of overlap
needs to consider the objects in the covered subtrees of the routing objects.

This example motivates introducing the concept of virtual distances re-
garding a set of third party objects.

Definition 15. Let R ⊂ M be a set of metric subset objects, and let
S, T ∈M. Then,

vR(S, T ) := min
{
d(T,R) + d(S,R) | R ∈ R, S v R, T v R

}
is called the virtual distance of S and T regarding R.

Consider a node with routing objects R and two arbitrary objects S
and T . If the virtual distance vR(S, T ) is small then there is an R ∈ R
with S, T v R such that both distances d(T,R) and d(S,R) are small. This

4Here, Q “containing” S means that S v Q and d(S,Q) is small.
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routing object R probably has a child C with R v C such that d(R,C) is
small.5 The triangle inequality yields that d(S,C) 6 d(S,R) + d(R,C) and
d(T,C) 6 d(T,R)+d(R,C), i. e., d(S,C) and d(T,C) are small too. If S and
T ought to be promoted to become routing objects in the same node as R
then a query that matches C would probably need to search the subtrees for
S and T too. Hence, the promotion of S and T increases the computation
time of range queries, which makes them a bad choice for promotion.

On the other hand, if the virtual distance vR(S, T ) is large then at least
one of d(T,R) and d(S,R) for each R ∈ R with S, T v R is large. Assume
that S and T are promoted as routing objects in the same node as R. Then,
a query for an object Q is less likely to descend the tree through both S and
T if the query matches an object below any of the R ∈ R with S, T v R.
Therefore, this section proposes a promotion strategy that promotes a pair
of objects minimizing the virtual overlap r(S) + r(T )− vR(S, T ) where r(S)
and r(T ) are the radii after partitioning is the set of (routing) objects within
the node.

Definition 16. For two routing objects S, T andR ⊂M, the virtual overlap
of S and T regarding R is

ωR(S, T ) := r(S) + r(T )− vR(S, T ).

Strict order in insertion paths: The SuperM-Tree maintains the strict
order P v T for objects T with parent P . To keep this property, the
promotion strategy chooses two of the smallest objects of a node (cf. Line 3–
5 in Algorithm 17).

Partition Strategy

M-Trees that are built with the geometric approach (cf. generalized hyper-
plane in [35]) are superior in query performance compared to trees built
with the balanced strategy (i. e., splitting to partitions of equal size). Since
the SuperM-Tree is derived from the M-Tree, this insight is assumed to hold
for the SuperM-Tree as well. For this reason, the algorithm in this thesis
implements the geometric approach.

However, during the development process of the SuperM-Tree, the fol-
lowing effect occurred: Given a small object (e. g., a time series of length
1) and a larger object, the former has a lower expected distance to a third
object than the latter. When promoting two objects, one of them is usually
smaller than the other. Hence, most other node objects are more similar
to the smaller object, and the partitions become more unbalanced after
multiple insertions. At some point, partitions even degraded such that the

5This statement assumes that routing objects are (nearly) centered representatives of
clusters.
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Algorithm 17 SuperM-Tree Promote Algorithm

1 Algorithm: supermtree.promote

2 Input: node N
3 C := {O | ∀Oi ∈ N : O v Oi}
4 if #C = 1 // make sure #C > 2
5 C := C ∪ {O | ∀Oj ∈ N \ C : O v Oj}
6 e := ∞
7 P1 := nil

8 P2 := nil

9 foundPromotion := false

10 for each pair O1, O2 ∈ C
11 N1, N2 := partition(N,O1, O2) // cf. Algorithm 16

12 if overfilled nodes allowed and (#N1 6 1 or #N2 6 1)
13 skip // ignore O1, O2

14 else if ωN (O1, O2) < e
15 foundPromotion := true

16 P1 := O1

17 P2 := O2

18 e := ωN (O1, O2)
19 return foundPromotion, P1, P2

split algorithm only moves one object (the larger promoted object) out of
the node. The resulting tree degraded to a large trunk with lots of thin
branches, often holding only one object. This structure results in slow query
performance since pruning thin branches converges to a linear scan search
algorithm’s behavior.

Ignoring the maximum capacity of a node prevents the behavior de-
scribed above: Instead of strictly splitting nodes when they exceed the ca-
pacity, a split is realized if the proposed partitions are not degenerated (cf.
Line 12 in Algorithm 17). Section 5.4 shows that this strategy outperforms
the strict split execution.

5.4 Evaluation

This section provides an evaluation of the runtime when building and when
querying the SuperM-Tree.

A second goal is to evaluate the flexibility of the concept of metric subset
spaces. To this end, the evaluation consists of experiments on three modular
metric subset distance functions: the Euclidean distance on subsequences,
the Dog Keeper distance on subsequences, and the Hausdorff distance on
subsets. For each application, the evaluation compares both split policies
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described in Section 5.3.3 (i. e., fixed capacities; and allowing large nodes)
against a linear scan search algorithm. The experiments executing a linear
scan search algorithm speedup the runtime already by using lower bounds
to the considered distance function (cf. [10]).

Runtime comparisons: To understand the influence of the dataset’s dif-
ferent properties, most experiments are based on synthetic datasets. The
sequence-based distance functions (δ2 and S-DK) are applied on random se-
quences of uniformly distributed lengths between 1 and 128. The set-based
distance function (Hausdorff) is applied on random sets of uniformly dis-
tributed cardinality between 1 and 32. The elements of all sequences and
sets are uniformly distributed over a fixed finite interval. The evaluation
of the runtime’s dependency on the dataset’s size conducts experiments on
datasets with 28 to 223 elements.

The node’s capacity is set to 128.6. Each experiment averages the run-
time over 100 queries. Figure 5.5 shows the runtime for building the tree
with successive insert operations, and Figure 5.6 shows the average query
times on the resulting trees.

To compare the results with real-world examples, the evaluation con-
ducts the same experiments for both sequence-based applications on the
UCR time series benchmark suite [67]. The UCR time series suite consists
of multiple datasets, each of which is split into a training and a test set. A
tree is built for both sequence-based distance functions from each training
set of these datasets, respectively. For each tree, the query runtime is av-
eraged over all samples from the corresponding test sets. Since the UCR
suite is not designated for subsequence queries, the training sequences are
cropped down to random subsequences with a uniformly distributed length
between 1 and 128. Figure 5.7 shows that the speedup follows the same
trend as in the experiments with the synthetic datasets.

Fixed capacity vs. large nodes: Figure 5.5 shows that the dynamic
capacity split policy (large nodes) outperforms the static capacity split pol-
icy (fixed capacity) by more than one order of magnitude while building the
tree. During the experiments with the fixed capacity strategy, keeping track
of the node’s size revealed a drastic fall down of the sizes towards an average
of approximately one for small datasets already (i. e., a few thousand ob-
jects). This observation confirmed the assumption that the tree degenerates
as explained in Section 5.3.3.

6During the development process of the SuperM-Tree, the node’s capacity had no
significant impact on the performance, i. e., runtimes were stable for node capacities from
64 to 512.
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Figure 5.5: SuperM-Tree: Building time with synthetic data in seconds
(top: δ2; middle: S-DK; bottom: S-HD).
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Figure 5.6: SuperM-Tree: Average query time of 100 1-NN queries on
synthetic data(top: δ2; middle: S-DK; bottom: S-HD).
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Figure 5.7: SuperM-Tree: Average Speedup against linear scan on UCR
datasets with L2 (top) and S-DK (bottom)

The effect of dimensionality: The curse of dimensionality is a well-
studied effect and occurs in the SuperM-Tree as well. The effect appears
as seen in other multi-dimensional index structures. Since there is no new
insight in this, this section skips presenting experimental results on this
topic.

Variance of the object’s sizes: As mentioned earlier, the sequences
are cropped down to subsequences of random lengths. Earlier experiments
showed that this is a crucial step for gaining speedup.7 Hence, the perfor-
mance strongly depends on having small elements in the dataset.

While splitting overfilled nodes, the smaller objects are being promoted
as routing objects. Intuitively, these objects form a space with lower (in-
trinsic) dimensionality in the higher levels of the tree (i. e., closer to the
root).8 Thus, the curse of dimensionality is alleviated in the higher levels;
the pruning works better in the higher levels; and the overall number of
pruned objects increases. On the other hand, datasets with only large ob-
jects form a high dimensional space in the higher levels already, and thus
the curse of dimensionality affects the query runtime.

Extending the metric subset space with a function generating smaller
(promotion) objects from a given set of objects might solve that problem.
Alternatively, small random elements could be inserted as meta elements
manually before or during the whole insertion process. However, this opens
new research areas for each metric subset space, respectively.

7Detailed information is not included here since it gains no more insight.
8 For an example, consider the Euclidean distance on real-valued time series of equal

length: There, the length of the time series defines the dimensionality of the time series
space.
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5.5 Conclusion

This section introduced metric subset spaces as a semantic extension of
metric spaces. Three applications from different fields show the flexibility
of this concept.

This section further introduced the SuperM-Tree, a data structure for
metric subset spaces derived from the M-Tree. The SuperM-Tree provides
nearest neighbor queries searching for subobjects (e. g., subsequences or sub-
sets). The experiments show that the index structure outperforms the linear
scan by multiple orders of magnitude on large datasets. However, the ex-
periments also revealed that small objects are necessary in the dataset since
they act as low dimensional routing objects, and therefore alleviate the curse
of dimensionality. As future work, these small objects could be inserted as
meta elements manually or generated in a new promotion strategy depend-
ing on the specific metric subset space.
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Chapter 6

Summary

This chapter summarizes the results of this thesis in Section 6.1. Section 6.2
discusses the results, including possible approaches for improving them. Fi-
nally, Section 6.3 concludes this thesis.

6.1 Summary of Results

This thesis categorized well-established distance functions regarding two se-
mantic properties: Do they consider time warping? Do they consider congru-
ence (isometric) transformations? Both properties have been axiomatized
formally, and the runtime of corresponding metric distance functions has
been analyzed theoretically.

For the Dog Keeper distance, this thesis provides a new algorithm and
shows that it outperforms a canonical extension of LBKeogh for DTW in high
dimensional spaces. This thesis proves that, unfortunately, there is no fast
algorithm computing the congruence distance unless P=NP. On the other
hand, this thesis provides fast metric distance functions tightly approximat-
ing the congruence distance.

Furthermore, this thesis enhances time-warping and congruence metric
distance functions by introducing the novel concept of metric subset spaces
and metric subset distance functions to support subsequence search. As a
proof of concept, this thesis presents the SuperM-Tree that is an index struc-
ture similar to metric index structures but indexing metric subset spaces.
Similar to metric index structures, it provides nearest neighbor queries on
the indexed datasets. The experiments show that it outperforms fast linear
scan algorithms, especially on large datasets (millions of elements).

119
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6.2 Discussion

This section discusses various benefits, drawbacks, interesting side-effects,
and possible future work of the results summarized in Section 6.1.

Time-warping – robustness vs. computation time: The comparison
of DTW and DK in Section 3.5 showed that both yield similar accuracy on
synthetic and real-world datasets.

However, DK is more vulnerable to noisy data while DTW with LBKeogh
1 is

vulnerable to datasets with larger temporal distortion. The reason for DTW

being more robust against noisy data is that it computes the L1-norm along
a warping path, and noisy entries or outliers drown in the sum of all small
distance values. The DK distance computes the L∞-norm along a warping
path, and outliers dominate the L∞-norm no matter how long the warping
path is.

On the other hand, DK is much faster to compute because early abandon-
ing works well on the L∞-norm: While the computation of DTW exceeds a
given threshold more likely in the later computation steps, the computation
of DK does that more likely in the early computation steps.

The insights mentioned above yield to use the Lp norm for some p ∈
R with 1 6 p 6 ∞. This parameter would enable a trade-off between
computation speed and robustness against noise: For values closer to 1,
the computation is slower but more robust; for values closer to ∞, the
computation is faster but less robust against noise. However, any value
smaller than ∞ will violate the triangle inequality of the DK distance and
hence prohibit the usage of metric index structures.

Time-warping – triangle inequality vs. Sakoe-Chiba band: The re-
striction of temporal distortion such as the Sakoe-Chiba band or the Itakura
parallelogram is also applicable to the DK distance. On the other hand, the
application of this restriction violates the triangle inequality of the DK dis-
tance.

It is possible, however, to apply the Sakoe-Chiba band to the DK distance
such that the triangle inequality holds under certain circumstances, i. e.,
when the bandwidths are adapted accordingly. For example, the triangle
inequality DK(A,C) 6 DK(A,B) + DK(B,C) holds for time series A, B, and
C if the bandwidth in DK(A,C) is the sum of the bandwidths in DK(A,B)
and DK(B,C). The downside of such an approach is that index structures for
metric (subset) spaces need adaption to comply with this limitation, i. e.,
they are not as generic anymore but rather fixed to this specific distance
function.

1Considering pure DTW without any lower bounds is not practical because of its slow
runtime.
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Congruence – strength of theory: The main contribution of Chapter 4
was the proof of Theorem 3 that claims that the approximated congruence
problem is hard to compute unless P=NP. A close study of the proof reveals
that the theorem is true even if only rotation and reflection of the time series
were allowed. Still, the proof only works for the congruence distance based
on the L1-norm. Can this proof be extended to work on any other norm?

Congruence – application on other domains: An interesting appli-
cation for the congruence distance (or at least one of its approximations)
is the distances of subgraphs in huge graphs, e. g., the web or tweets on
Twitter2. In these examples, a time series can specify an ordered list of web
pages visited by a user or the ordered list of channels on that a tweet was
retweeted, respectively. Congruent time series could indicate similar brows-
ing or broadcasting behavior. Finding such similar time series is easy if they
are considered as congruent time series. In this case, the (fast) delta distance
describes a way to construct a hash value for each time series. Congruent
time series (i. e., similar browsing or broadcasting behavior) are then easy
to find using index structures for multi-dimensional data. Behavior analysis
would be possible by clustering these hash values.

Congruence – discussion on approximations: The (fast) delta dis-
tance seems like an ad-hoc solution for an approximation to the congruence
distance. Indeed, the delta distance’s purpose is to show the basic idea for
how to approximate the congruence distance. The greedy delta distance
uses this idea and improves it already. On the other hand, the greedy delta
distance does not satisfy the triangle inequality anymore and is therefore
not applicable for metric index structures. Given a particular dataset, a
statistical analysis of the indices picked by the greedy delta distance might
provide a static set of indices that improve the tightness over that of the
(fast) delta distance but still preserving the metric properties.

Congruence aware time-warping distance functions: In the end, ro-
bustness against time-distortion is indispensable for distance functions on
time series. It is probably even more essential than being invariant under
isometric transformations (i. e., congruence distance functions). Still, the
question arises whether time-warping is applicable to the congruence dis-
tance, e. g., can time-warping be applied on the self-similarity matrices of
time series? That approach would yield a time-warping aware congruence
measure. While this is canonically possible by interpreting the columns of
the self-similarity matrix as elements in a time series, the implementation is
not feasible with dynamic programming algorithms as they compute DTW or
DK. Is there a better way to solve this issue?

2Twitter is a communication platform that allows users to tweet short messages, follow
the channels of other users, and retweet other users’ messages on their own channel.



122 CHAPTER 6. SUMMARY

SuperM-Tree – discussion on metric subset spaces: Metric subset
spaces seem to be a promising extension of metric spaces to support nearest
neighbor queries on sized objects. It is unclear at this point what mathe-
matical results can be expected on metric subset spaces. While the total
preorder of metric subset spaces describes the size of objects, it leaves open
whether the different equivalence classes regarding the size correspond to
natural numbers, real numbers, or even something else. Considering the
distance functions, an intuitive comparison of metric spaces and metric sub-
set spaces sketches metric spaces as flat areas and metric subset spaces as
hierarchies.

SuperM-Tree – subset vs. superset queries: The SuperM-Tree seems
to work better if the top-level nodes contain small objects that yield a small
intrinsic dimensionality [31]. Although Corollary 3 claims that superset
queries are technically possible, this insight reveals that such trees would
not perform well because they would have large objects inducing a high
intrinsic dimensionality in the top-level nodes. Hence, the SuperM-Tree
should rather be used for subset queries, i. e., queries that search for similar
(labeled) snippets of the query in the dataset.

SuperM-Tree – improving query runtime: For datasets that do not
contain small elements inducing low intrinsic dimensionality in the higher
levels of the tree, the SuperM-Tree performs worse, which is a crucial hand-
icap. Additionally to the distance function, a function that produces small
objects out of large ones might solve this issue. The SuperM-Tree could use
such a chopping function in the promotion algorithm to promote smaller ob-
jects to the tree’s higher levels. Nevertheless, this moves the SuperM-Tree
further away from the generic solution that it is supposed to be. Although
the SuperM-Tree provides a hint for a possible direction of a generic, effi-
cient index structure for subsequence search, it remains an open challenge
to find such.
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6.3 Conclusion

This thesis aims to provide new methods for nearest neighbor search algo-
rithms that are efficient on metric time series, in particular high-dimensional
time series. Regarding time-warping distance functions, Chapter 3 achieved
this goal by pointing towards the DK distance that is superior to DTW on high-
dimensional time series. Chapter 4 showed that measuring the congruence
of time series in Euclidean spaces is a difficult problem; thus, approxima-
tions are essential for practical applications.3 Moreover, Chapter 4 provides
a template for constructing such approximations. In the end, Chapter 5 pro-
vides the concept of metric subset spaces, a new basis for building generic
index structures for a large variety of nearest neighbor queries asking for
subsets. The solutions proposed in the previous chapters are examples of
distance functions that are compatible with this new concept. Hence, this
thesis opens new opportunities for an established topic that still remains
challenging.

3On the other hand, the existence of a polynomial-time algorithm that computes the
congruence of two time series up to a certain precision proves P=NP.
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