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Cvava sero po tute
i kerava
jek sano ot mori
i taha jek jak kon kasta
vasu ti baro nebo
avi ker

Kon ovla so mutavia
kon ovla
ovla kon ascovi
me gava palan ladi
me gava
palan bura ot croiuti

Poserò la testa sulla tua spalla
e farò
un sogno di mare
e domani un fuoco di legna
perché l’aria azzurra
diventi casa

Chi sarà a raccontare
chi sarà
sarà chi rimane
io seguirò questo migrare
seguirò
questa corrente di ali

I’ll lay my head on your shoulder
and I’ll dream
a dream of sea
and tomorrow a fire of woods
so the blue air
will become home

Who will narrate
who will be
it will be who’s gonna stay
I’ll follow this migration
I’ll follow
this stream of wings

Fabrizio De André, Ivano Fossati
Khorakhané (A forza di essere vento)
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Abstract
The present work focuses on developing a fast and accurate algorithm to find fea-
sible trajectories for reusable rockets’ landing while minimizing their fuel consump-
tion. Trajectory exploits aerodynamic forces, thus an Optimal Aerodynamic Pow-
ered Landing Problem is faced. A hybrid strategy is adopted, combining convex
direct optimization with a novel indirect collocation scheme. A Covector Mapping
Theorem is exploited to bridge the two methods. Development of the algorithm
is organized in two steps: firstly, the structure of the optimal solution is derived
solving the problem with a single shooting indirect method combined with a double
homotopic continuation scheme; in second instance, an algorithm tailored on the
optimal solution structure is presented and discussed. The suggested strategy is
finally compared with the homotopic continuation scheme considering accuracy and
computational times. Outcome is a net superiority of the designed algorithm over
the homotopic technique; the power of a hybrid approach is therefore demonstrated
over traditional solution methods.

Keywords: Hybrid Methods, Indirect Collocation, Convex Optimization, Rocket
Trajectories, Aerodynamic Forces, Powered Landing
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Sommario
Lo studio presentato in questa tesi si focalizza sullo sviluppo di un algoritmo rapido
ed accurato per ottimizzazione di traiettorie; l’obiettivo è di individuare traietto-
rie di atterraggio per lanciatori riutilizzabili, compatibili con i vincoli di missione e
che minimizzino il consumo di propellente. Le forze aerodinamiche sono sfruttate
nell’ottimizzazione: il problema affrontato è quindi quello dell’Atterraggio Aero-
dinamico e Propulso Ottimale. Tecniche di ottimizzazione diretta convessa sono
combinate con un innovativo schema indiretto di collocazione, delineando così una
strategia di risoluzione ibrida; un Teorema di Mappatura dei Covettori è utilizzato
da ponte di collegamento fra i due tipi di tecniche. Per lo sviluppo dell’algoritmo si
sono resi necessari due passaggi: in prima istanza si è determinata la struttura della
traiettoria ottimale usando uno shooting indiretto combinato con un doppio schema
di continuazione omotopica; l’algoritmo definitivo è quindi ’cucito’ sulla soluzione
precedentemente trovata, così da poter gestire problemi con peculiarità simili. A con-
clusione, la velocità della strategia proposta è confrontata con quella dello schema di
continuazione, mantenendo in considerazione l’accuratezza della soluzione trovata.
I risultati mostrano una netta superiorità della strategia proposta rispetto alla tec-
nica di continuazione omotopica; la potenza di un approccio ibrido rispetto ad i
tradizionali è quindi dimostrata.

Parole chiave: Metodi Ibridi, Collocazione Indiretta, Ottimizzazione Convessa,
Traiettorie di Lanciatori, Forze Aerodinamiche, Atterraggio Propulso
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1| Introduction

Turns out the procrastinator has a guardian angel,
[...] someone called The Panic Monster.

Tim Urban
Inside the mind of a master procrastinator

1.1 Historical framing

1.1.1 The forerunners of vertical landing

The idea of launchers vertical landing deeps its roots in the Cold War, when Amer-
icans and Soviets came face to face to assert their own space dominion.
The Soviet mission Luna 9 marked a milestone for planetary exploration: it per-
formed the first ever soft landing, on Moon’s surface on the 3th of February 1966 [1].
Soviets further pushed their probes towards other planets, demonstrating supremacy
in expansion capabilities: four years later than Luna 9, Venera 7 soft landed on
Venus, and the following year Mars 3 performed the first soft landing on Mars [2].
Americans focused instead on the Moon: Surveyor 1 landed on the Moon [3] with
few months delay over Soviets, but on 20th of July 1969 Americans gained back
ground by setting human foot on Moon, with Apollo 11. Probe Viking 1 was the
first American probe to soft land on Mars, in 1976 [4]; this year also marked the end
of Soviet program Luna: Soviets focused on Venera up the dissolution of the USSR.
Mars environment became research environment for US Entry, Descent and Landing
(EDL) technologies; progresses led to landing the rover Curiosity within an uncer-
tainty ellipse of 12.5 km [5], improving by far results of previous space missions. On
Earth surface, on the other hand, NASA successfully delegated further studies to
Masten Space Systems’ Xombie rocket (Fig. 1.1): tests in 2013 demonstrated online
computation of large divert maneuvers; the algorithm G-FOLD managed success-
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fully divert distances up to 750 m from an initial height of 400 m [6].
In addition to US, China recently made progress in landing vehicles development:
Chang’e 3 successfully landed on Moon surface in 2016 [7], while Tianwen-1 de-
ployed a rover on Mars surface at the beginning of 2021 [8].

1.1.2 The Faster, Better, Cheaper concept

Space probes and prototypes offered test benches to optimize landing performances,
due to strict mission requirements. On the other hand, launchers industry could
have benefited from such development: if landing capability had allowed launchers
cheap reuse, the perspectives for space industry development would have flourished.
This idea fitted in the management program of Daniel Goldin, NASA administrator
in 1992: reusable cheap vehicles would have made missions ’faster, better, cheaper’
[9].

On the 18th of August 1993, McDonnell Douglas’ DC-X (Fig. 1.1) successfully
landed vertically after a 100-meters-high ’hop’; it was the first vertical landing on
Earth, and a huge opportunity for NASA; the agency endorsed the project, repeat-
ing hops with a new vehicle, the DC-XA. This was however dismantled in 1996 [11],
signing the end of vertical landing concept within Goldin’s management. On the
other hand, in 1999 the Japan Aerospace Exploration Agency started the Reusable
Vehicle Testing campaign, on the model of DC-XA. Three flight series were per-
formed, in 1999, 2001 and 2003 [12].
We shall however wait until year 2015 to witness the first vertical landing of a proper
space vehicle: Blue Origin’s New Shepard, on 23rd November reached a peak altitude
of 100.5 kilometers, then returned to landing site, precisely landing on the launchpad
[13] (Fig. 1.1). After one year and a half, SpaceX successfully completed a satellite
injection using a launcher with a recovered first stage: it was the first launch em-
ploying a used stage recovered with autonomous vertical landing [14] (Fig. 1.1).
Rocket reusability has therefore taken place outside the US. Different efforts have
firstly focused on small demonstrators used for algorithms testing: it is the case
of EAGLE [15], developed within DLR and of FROG [16], the counterpart from
CNES; both had a tethering safety system and turbojet engines for propulsive re-
quirements. EmboROCKETH, from ETH, is a more recent example of a similar
design philosophy [17]. In a bigger picture, ArianeGroup plans on substituting the
expendable Ariane 6 with a reusable first stage-equipped rocket, ArianeNext [18].
In such framework different actors are being included: Themis, CALLISTO and
RETALT. Launcher Themis represents a forerunner for first stage reuse [18], flight-
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Figure 1.1: Overview of vertical landing vehicles - From the left:
(a) DC-X performs first Earth vertical landing
(b) Xombie completes large divert maneuver

(c) New Shepard for the first time lands vertically after having reached space
(d) First reused SpaceX Falcon 9 first stage lands after second successful mission

(e) Co-simulation on Simulink-FlightGear of CALLISTO RTLS mission [10]

qualifying Prometheus engines; the trilateral project CALLISTO (Fig. 1.1) gathers
DLR, JAXA and CNES [19, 20] to demonstrate Return-To-Landing-Site (RTLS)
operations [21] with a suborbital rocket; the H2020-funded RETALT aims at im-
proving technologies necessary for reusable launchers, with Elecnor Deimos leading
the advancement within GNC subsystem [22].
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1.2 Algorithms state of the art

Among the different mission aspects, it is evident trajectory optimization plays a
major role when it comes to landing; the problem quickly escalates in complexity
when constraints get included along launcher flight.
In such framework we can distinguish between offline and online optimization; the
former insists on solution optimality, the latter shall ensure a feasible solution is
generated with a sufficiently high update rate. Offline optimization algorithms can
either use a direct formulation, either insist on indirect ones. Meaning of such
definitions, along with successive ones, will be clarified later in the work. It is
sufficient understanding the latter are usually hard to lead to convergence, yet offer
the optimal solution; the former instead treat a discretized version of the continuous-
time problem to be solved, employ a large number of variables, and allow for straight
introduction of constraints. Online optimization, due to the robustness requirement,
always builds on direct algorithms.

1.2.1 Offline optimization

Common direct formulations treat state variables and control as equal unknowns,
leading to a Nonlinear Programming Problem (NLP). Such transcription is general-
izable but does not guarantee successful convergence.
SPARTAN is a pseudospectral NLP solver from DLR [23]: developed within SHEFEX-
3 project, it features automatic variables scaling and dual numbers for exact first-
order derivatives computation via operator overloading [24, 25].
GPOPS, GPOPS-II and CGPOPS are progressively complex algorithms developed
within University of Florida. The first is a pseudospectral global collocation method
[26]; the second features an hp mesh refinement strategy, with different discretiza-
tion nodes; the last, written in C++, features hyper-dual numbers for second-order
derivatives exact computation and mesh refinement strategy compatible with bang-
bang control profiles [27].
Among indirect methods, shooting algorithms [28] have been combined with contin-
uation schemes to provide solutions in highly constrained scenarios.
A different approach is provided by DIDO, a powerful algorithm building on pseu-
dospectral indirect collocation schemes providing guess-free capability [29, 30]; valu-
able uses feature the Zero-propellant maneuver of the ISS [31].
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1.2.2 Online optimization

A different approach is chosen to optimize trajectories online, i.e. integrating the
optimal trajectory generation in the control loop. The employed methods usually
deal with problem convexification[32]: problem is reformulated to increase conver-
gence robustness and eliminate the issue of guess generation. In addition, care is
provided to choosing the schemes that offer a better trade-off between accuracy and
speed, to guarantee fast solution generation [33, 34].
The most general approach involves sequential convexifications [35, 36], while the
most performing requires lossless convexifications, i.e. a reformulation of some orig-
inally nonconvex constraints to obtain an equivalent set of convex ones [37]. Both
in sequential and lossless convexifications Second-Order Cone (SOC) constraints
are commonly used: in sequential approach they can be used to introduce variable
trust regions and virtual controls, counteracting linearization inaccuracy and artifi-
cial infeasibility risks[38]; in lossless approach they can be used to relax quadratic
non-convex constraints [39]. For such flexibility, SOC constraints are widely diffused
within different dynamical environments [40, 41, 42, 43, 44, 45].
Successive convexification-based algorithms are being tested on Blue Origin’s New
Shepard, within NASA’s program SPLICE [32].
Lossless convexification has further been employed in the relevant application of
Xombie: the rocket runs on the algorithm G-FOLD (Guidance for Fuel Optimal
Large Divert), which enforces landing site position hardly [46, 6]. Case studies on
MSL’s Skycrane have also demonstrated lossless convexification is feasible for mini-
mization of landing site error [47]. Further developments have been applied to such
algorithms within DLR: first studies have employed a global pseudospectral colloca-
tion which increases solution accuracy [40]; hp collocation schemes have later been
employed as approaches to reduce CPU times leveraging Jacobian sparsity [41].
SpaceX’s Falcon 9, the current benchmark for pinpoint landing algorithms, is nomi-
nally guided exploiting convex problem formulation [48]; whether successive or loss-
less, this has never been publicly disclosed.

1.3 Research contribution

Within the presented framework, an ideal method would merge the solution accuracy
of indirect methods with the robustness of the direct ones. The Covector Mapping
Theorem (CMT) employed in DIDO provides a link between such two formulations:
it constitutes a valuable tool to exploit a convex formulation of the landing problem;
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moreover it has never been used to retrieve costates from a convexified form of the
original problem feeding them to an indirect solver. Therefore the first research
question.

1) Can the Covector Mapping Theorem provide a valid link between the
solution of the convexified form of the vertical landing problem and the
solution of the indirect form?

Typically, some optimal control problem solutions excel over the others since they
manage to exploit environmental disturbances to alleviate authority of subsystems.
In [39] a lossless convexification is employed to include aerodynamic forces in a 2-D
environment; however, such formulation discards the effects of sideslip forces, which
can instead be implemented within a 3-D environment; the second research question,
therefore, follows:

2) How does the optimization of lift forces affect the optimal solution of
the fuel-optimal landing problem? Does it lead to feasible solutions?

At last, few examples in literature employ indirect formulation in combination with
collocation schemes [29]: collocations techniques are indeed usually faster than
shooting ones. Moreover, vertical landing problems feature bang-bang type control
profiles, thus forcing to tailor the collocation scheme to face possibly discontinuities.
The last research question is formulated as

3) How can an indirect collocation scheme handle bang-bang type so-
lutions of an optimal control problem? Which are its performances in
terms of accuracy and speed?

1.4 Thesis structure

Thesis is organized to answer the research questions, providing the reader with the
necessary means to understand the logic behind the algorithms design. Therefore
Chap. 2 and 3 present the mathematical background and an overview of methods
used to solve optimal control problems. In Chap. 4 the structure of the solution of
the aerodynamic powered landing problem is presented, and the problem is solved
using a continuation scheme coupled with an indirect shooting. Such step creates a
benchmark to evaluate accuracy and computational speed of the algorithm presented
in the next chapter; moreover, by assessing the solution structure we can gather
enough information to tailor the indirect collocation scheme to the analyzed problem.
The hybrid algorithm merging direct convex formulation with the mentioned indirect
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collocation scheme is presented in Chap. 5. Research questions are answered in
Chap. 6, along with possible future development strategies.
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The guidance strategy aims at finding a control law optimizing a given performance
index in such a manner that resulting trajectory satisfies boundary conditions, and,
eventually, constraints. The trajectory design problem can be indeed formulated
as an optimization problem in the control domain, called Optimal Control Problem.
Mathematical reference is found afterwards in Eq. (2.12).

In a nutshell

Given a controllable physical system, the Optimal Control Problem (OCP)
consists of finding the control law that optimizes a scalar functional stem-
ming from controls and physical states; states evolution obeys to controls
and natural dynamics according to dynamical constraints, and shall satisfy
boundary conditions (BCs). Eventually, constraints on the applicable con-
trol and on the admitted states shall be satisfied. Such generalization of
the OCP is required to account for different physically relevant constraints
[28, 49].

OCP is aimed then at 1) optimizing a function and at 2) ensuring the physical states
evolve according to system dynamics and satisfy boundary conditions. Mathematical
methods solving the OCP either leverage an optimization problem, either augment
the dynamics, embedding the optimization within dynamics itself.
In the second case the original problem shall be dualized and optimality conditions
define the Boundary Value Problem to be solved.
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In a nutshell

A Boundary Value Problem (BVP) consists of finding an n-dimensional
state, over a provided domain, satisying differential conditions within the
domain and punctual conditions at two or more points. A function satisfy-
ing such conditions is a solution of the BVP [50].

The second option consists of embedding the dynamics constraints and BCs in prob-
lem formulation, focusing on optimizing the objective function; the original problem
shall be transcribed into its discrete-time form, and punctual dynamics constraints
define the nonlinear programming problem to be solved.

In a nutshell

Minimizing a nonlinear scalar function dependant on a finite number of
parameters whilst respecting a finite set of nonlinear constraints on the
parameters is the aim of the nonlinear programming (NLP) problem.

BVPs and NLP problems represent then the main tools to approach the solution of
Optimal Control Problems; OCPs, in turn, make up the most intuitive formulation
of the guidance problem.
The present chapter is organized as follows: the first two sections provide the math-
ematical formulations of NLP problems, along with two of its subclasses, and BVPs,
specialized to the case of Hamiltonian systems; the third provides an overview of
the OCP, along with its forms as BVP or NLP problem.

2.1 Parametric Optimization

2.1.1 Nonlinear Programming

Let us consider a vector x ∈ Rn, defined as NLP vector, and a scalar function
F (x) : Rn → R, called objective function.
Constraints are classified as equality constraints and inequality constraints, respec-
tively represented by h : Rn → Rp and g : Rn → Rq. The constraints may be
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assembled in the constraints vector c ∈ Rp+q as

c
(
x
)
=



h
(
x
)

g
(
x
)


=



h1

(
x
)

...

hp

(
x
)

g1
(
x
)

...

gq
(
x
)


(2.1)

c may be possibly divided in its active component ca ∈ Ra, with a < n and its
inactive component ci ∈ Ri, with i + a = p + q. A point x̄ for which the Jacobian
of the active constraints Jxca is full rank is said to satisfy the Linear Independence
Constraint Qualification (LICQ) [51].
The NLP problem can be mathematically formulated as follows [52]

min
x∈Rn

F (x) s.t.

 h
(
x
)
= 0

g
(
x
)
⪯ 0

(2.2)

2.1.2 Convex Programming

Despite its mathematical statement simplicity, solving the NLP problem becomes
rapidly challenging with the increase of NLP vector size [52]; the non linearity of
the objective function and the existence of different local minima play a central
role in the complexity of the NLP solution. On the other hand, as peremptorily
stated by Rockafellar [53], the property that grants main advantages when solving
an optimization problem is its convexity rather than linearity : a problem is defined
as convex when it is in the form

min
x∈Rn

f0(x) s.t.



f1(x) ≤ b1
...

fm(x) ≤ bm

fm+1(x) = bm+1

...

fm+n(x) = bm+n

(2.3)
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and f0, ..., fm+n : Rn → R ∀i = 0, ...,m + n are convex, namely satisfy the Jensen’s
inequality1

fi(αx+ βy) ≤ fi(αx) + fi(βy) ∀ x,y ∈ Rn, ∀ α, β ∈ R s.t.


α + β = 1

α ≥ 0

β ≥ 0

(2.4)
Linearity represents indeed a more restrictive property than convexity : this suggests
that a convexified form of an NLP problem represents a better trade-off between
computational advantages and generalizability of the technique wih respect to a
linearized form. Indeed, the original problem can in some cases be rearranged in
a lossless convexified form [37]: appropriate transformations allow for transferring
the non-convexities from some constraints (e.g. non-convex dynamics) to other
constraints. Such last non-convex constraints can be relaxed into convex ones: the
solution of such final form, can be demonstrated to be equivalent to the original
problem one. This is why such convex formulation is referred to as lossless.

Remark 2.1: Problems featuring high non linearities are likely to be not losslessly
convexifiable; however, in practical applications, a sequential programming strat-
egy is always employed, leading to a successive convexification approach [56, 57]:
this corresponds to convexifying the problem at each iteration of the optimization,
tackling eventual information loss due to the convexification process with multiple
sequential optimizations.

Remark 2.2: Convex problems solvability easiness over non-convex ones is mainly
associated with two factors: 1) since the optimum of a convex problem is its global
optimum, the guess choice does not influence the minimum that is reached; 2) if cou-
pled with proper algorithms, convex problems are solved with a number of operations
growing polynomially with respect to the problem dimensions; such algorithms in-
clude primal-dual interior-point methods, as employed in the solver ECOS [58]; NLP
problems, instead, feature exponential growth of operations number [59].
Several programming problems may be transformed into specific subsets of convex
problems; a problem hierarchy with increasing complexity and generality features,
1Johan Jensen’s work focused actually on the specific form of (2.4) with α = β = 0.5 [54]; nonethe-
less, Jensen’s inequality definition is often employed as referring to (2.4) [55], a generalized ex-
pression.
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in order, linear problems, quadratic problems and geometric programming ; general-
ized constraints and generalized objective function problems eventually account for
vectorial expressions of the objective function and constraints [55]. The choice of the
convex programming technique to convexify the problem with is traded-off account-
ing for convexification accuracy against efficient solving algorithms availability.

2.1.3 Second-Order Cone Programming

Convexification of the starting NLP problem as a particular quadratic one, namely
a Second-Order Cone Programming (SOCP) problem, has proved useful for different
applications; its general form is then hereafter described.
Let x ∈ Rn be the optimization variable and let f ∈ Rn be the cost function
coefficients vector; in addition, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R are associated
with quadratic inequality constraints, while P ∈ Rp×n, p ∈ Rp and Q ∈ Rq×n and
q ∈ Rq are respectively related to linear inequality and linear equality constraints2.
The general SOCP problem results then

min
x∈Rn

fTx s.t.


∥Aix+ bi∥2 ≤ cT

i x+ di i = 1, ..., m

P x ⪯ p

Qx = q

(2.5)

The inequality ∥Ax+ b∥2 ≤ cTx + d, with A ∈ Rr×n, is defined as second-order
cone constraint : it indeed defines a second order cone in Rr+1 for the variables y, t
obtained with the affine transformation y = Ax+ b, t = cTx+ d. Fig. 2.1 provides
a simplified representation of this concept: the region of admissible couples [y, t],
with y ∈ R2, is identified by the region bordered on the bottom by the represented
surface, a cone in R3.
2Linear inequality constraints actually define cones on orthants in n-dimensional spaces, thus can
be seen as subsets of second-order cone constraints; nonetheless, pure linear constraints are treated
by solvers with dedicated approaches [55], thus linear inequalities are explicitly defined.
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t

y2y1

Figure 2.1: Second order cone constraint in R3 : ∥y∥2 ≤ t

2.2 Boundary Value Problem

2.2.1 One-dimensional case

Let the vector x(t) ∈ Rn with t0 < t < tf flow according to the time varying
vector field f : Rn+1 → Rn. Given the two vectors x0 ∈ Rn and xf ∈ Rn, the
Two-Point Boundary Value Problem (TPBVP) for a set of first order ODEs can be
mathematized as follows [50]

Find x(t) s.t. ẋ = f(x, t) and

 x(t0) = x0

x(tf ) = xf

(2.6)

The TPBVP can be generalized to the Multi-Point Boundary Value Problem (MP-
BVP) by adding punctual constraints on x(t) at an arbitrary number i of instants
ti over the compact [t0, tf ].
Well-posedness and well-conditioning of a BVP are of paramount importance in the
context of practical applications: a well-posed BVP is characterized by 1) existing
and unique solution; 2) continuous dependance of the solution on the provided data
[60]. A well-conditioned BVP features instead small variations in the solution for
small variations in boundary conditions and dynamics equation.
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2.2.2 Hamiltonian systems

BVPs associated with Hamiltonian systems play a central role in the context of
OCPs: they make up the means to embed optimality conditions in problem formu-
lation, but intrinsically feature ill-conditioning.
A Hamiltonian system is a system of the form [61]

ṗ = −∇qH(q,p) q̇ = ∇pH(q,p) (2.7)

where q ∈ Rn is the vector of generalized coordinates and p ∈ Rn is the vector of
coordinates’ conjugate momenta.
q and p dynamics can be hardly ever decoupled; whatever boundary condition is
then added to (2.7), coordinates and momenta dynamics shall be integrated in the
same time direction. This leads to afore-mentioned ill-conditioning problems: loosely
speaking, the faster the forward-time convergence for coordinates, the faster the
forward-time divergence of the conjugate momenta; strictly speaking, coordinates
and momenta ODEs have an exponential dicothomy [50].
A simple geometric interpretation allows for deeper insights: if H ∈ C2(U ⊆ R2n),
the divergence of Hamiltonian differential operator is null; flow it is then said to make
up for a sympletic transformation, namely it makes up a hypervolume-preserving
operator in the phase space of coordinates and momenta [62]. Hence the coupled
converging-diverging behaviour of p and q.
Summing up, due to the opposite stability features of coordinates and momenta for
a Hamiltonian system, small changes in the boundary conditions do not imply small
changes in the solution of the associated BVP; the BVP itself is then ill-conditioned.

2.3 Optimal Control Problem

2.3.1 Problem Statement

Let us consider a physical system, described by the continuous-time varying state
x(t) ∈ Rn, with t ∈

[
t0, tf

]
, and characterized by a vector of known parameters

p ∈ Rl; its dynamics are described by f : Rn+m+l+1 → Rn according to the dynamical
constraint

ẋ = f
[
x(t),u(t),p, t

]
(2.8)

and driven by the continuous-time control u(t) ∈ Rm.
Dropping, for notation ease, the explicit dependancy with respect to time, it is
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possible to define a functional of {x,u, t}, the objective function J : Rn+m+1 → R
which reads

J
(
x,u, t

)
= ϕ

(
xf , tf

)
+

tf∫
t0

L
(
x,u, t

)
dt (2.9)

where ϕ : Rn+1 → R is the terminal cost and L : Rn+m+1 → R is the path cost [51].
Along the overall interval

[
t0, tf

]
, x and u shall further satisfy the path constraints

expressed by g : Rn+m+1 → Rp, according to

g
(
x,u, t

)
⪯ 0 categorized as


Pure control constraints: gp,u

(
u, t

)
⪯ 0

Pure state constraints3: gp,x
(
x, t

)
⪯ 0

Mixed constraints: gm
(
x,u, t

)
⪯ 0

(2.10)
Defining an inequality constraint as active if it is weakly satisfied and inactive

otherwise, the jacobian ∂ga/∂uT of the active inequality constraints ga, shall be full
rank. Necessary condition for such hypothesis to hold is that pure state constraints
are not present. Challenge of both cases follows in the work.
Control and states shall satisfy the initial and terminal constraint, linked to ψ0 :

Rn+m+1 → Rq and ψf : Rn+m+1 → Rr with q, r < n4, which respectively read

ψ0

(
x0,u0, t0

)
= 0

ψf

(
xf ,uf , tf

)
= 0

where


x0 = x(t0)

u0 = u(t0)

xf = x(tf )

uf = u(tf )

(2.11)

Controls satisfying (2.10) and (2.11) are said to belong to the set of admissible
controls U ⊆ Rm [65, 51].
3Pure state constraints are usually denoted as S

(
x, t

)
⪯ 0 [63, 64]; symbol S is therefore adopted

in the remainder of the present work.
4The relation linking q, r and n refers to the constraint usually found when dealing with practical
applications: boundary conditions as equations equalling the initial and final states to constant
or time dependant variables.



2| Mathematical fundamentals | 17

The Optimal Control Problem (OCP) can be finally mathematically formalized [52].

min
u
J
(
x,u, t

)
s.t.



ẋ = f
(
x,u,p, t

)
g
(
x,u, t

)
⪯ 0

ψ0

(
x0,u0, t0

)
= 0

ψf

(
xf ,uf , tf

)
= 0

(2.12)

Remark 2.3: Expression provided in (2.9) coincides with the Bolza formulation of
the problem, which is of interest due to the penalization of both final state and inte-
gral costs. It can be nonetheless shown [51] that provided formulation is equivalent
to the Lagrange formulation or the Mayer formulation, which account respectively
for the path cost or for the terminal cost only.

Remark 2.4: Despite the problem solution including only the control, no as-
sumption on the final time tf value has been made: the problem, as for landing
applications, may be a free-final time one, with solution u(t) valid as long as the
terminal constraints are satisfied; tf adds, in this generalized case, as further degree
of freedom.

Remark 2.5: For the remainder of this work, the initial time will always be con-
sidered as known and fixed.
The two features of the OCP are evident from statement (2.12): on the one hand
there is one functional to be optimized, on the other dynamics and boundary con-
straints to be satisfied. The two following sections explicitate the two possible
formulations of the OCP, along with the associated optimality necessary conditions.

2.3.2 OCP as BVP - Optimality Necessary Conditions

The OCP is by definition a continuous-time problem; the optimality can be embed-
ded in a BVP: first the original problem shall be dualized, then the dynamics and
the boundary conditions for the primal-dual system are retrieved from the first-order
optimality necessary conditions: the employed process follows.
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OCP dualization

For simplicity, let the dynamic function f embed the parameters p in its own defini-
tion. The constrained problem outlined in (2.12) can be condensed in the minimiza-
tion of an augmented cost function Ĵ : the path cost is substituted by its Legendre
transform based on the costates λ ∈ Rn and the path constraints Lagrange multipli-
ers µ ∈ Rp while the terminal cost is substituted by its Legendre transform based on
the initial and terminal constraints Lagrange multipliers ν0 ∈ Rq,νf ∈ Rr [61, 66,
67]; from Ĵ definition in (2.13), it is evident that, insofar as constraints as satisfied,
Ĵ optimality implies J optimality. Ĵ is indeed defined as

Ĵ = Φf + ν
T
0 ψ0 +

tf∫
t0

{
L
(
x,u, t

)
+ λT{f

(
x,u, t

)
− ẋ}+ µTg

(
x,u, t

)}
dt (2.13)

where Φf = ϕ
(
xf , tf

)
+ νT

f ψf ; using for λ a similar notation as the employed in
(2.11), the former expression can be rearranged as follows

Ĵ = Φf+ν
T
0 ψ0+λ

T
0 x0−λT

f xf+

tf∫
t0

{
L
(
x,u, t

)
+λTf

(
x,u, t

)
+µTg

(
x,u, t

)
+λ̇Tx

}
dt

(2.14)
The Hamiltonian of the system can be further introduced by transforming the La-
grangian term in a similar fashion as what done to obtain Ĵ from J ; the Hamiltonian
H : R2n+m+p+1 → R reads indeed

H
(
x,u,λ,µ, t

)
= L

(
x,u, t

)
+ λTf

(
x,u, t

)
+ µTg

(
x,u, t

)
(2.15)

Thanks to the application of the Legendre transform on the cost function terms the
Lagrangian path cost L is naturally substituted by its dual [61] Hamiltonian H. The
switch from a Lagrangian approach to a Hamiltonian is completed by the optimality
necessary conditions, which mirror the problem dualization.
Setting to zero the differential of Ĵ with respect to the state, the control and
eventually the final time in the admissible directions allows to retrieve conditions
on the adjoint variables, while accounting for the adjoint variables allows to retrieve
back the constraints imposed on the non-dualized form of the OCP.
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Euler-Lagrange Equations

Following a suggestion from Bryson’s vast work [66] and exploiting the Hamiltonian
leads to

dĴ =

[
∇T

xf
Φf−λT

f

]
dxf+

[
νT
0 ∇x0ψ0+λ

T
0

]
dx0+

[
∂Φf

∂tf
−λ̇T

f xf +H(tf ) +λ̇T
f xf

]
dtf+

[
νT
0

∂ψ0

∂t0
+λ̇T

0 x0 −H(t0) −λ̇T
0 x0

]
dt0 +

tf∫
t0

{(
∇T

xH + λ̇T

)
δx+∇T

uHδu

}
dt

(2.16)

where the boxed terms cancel each other out.
Imposing dĴ = 0 allows to retrieve the Hamiltonian form of the Euler-Lagrange
equations for the OCP :


State dynamics: ẋ = ∇λH

Costate dynamics: λ̇ = −∇xH

Control equation: 0 = ∇uH

with boundary conditions



x0 = x
∗
0

t0 = t∗0

λf = ∇xf
Φf

Hf = −∂Φf

∂tf
(2.17)

Additional constraints on the path multipliers components shall be added [68], re-
ferring to (2.13) or (2.14), which read

µi = 0 if gi
(
x,u, t

)
< 0

µi > 0 if gi
(
x,u, t

)
= 0

(2.18)

Such additional constraints complement the augmentation of the Lagrangian with
the mixed path constraints g(2.15) to provide the Hamiltonian formulation of the
Erdmann corner conditions [63]. The concept is further analyzed in Appendix A.

Remark 2.6: Coherently with statement in Remark 2.5, boundary conditions
have been defined in (2.17) for practical application purposes: in OCP application
fields it is usual to have both the initial state and the initial time imposed; on the
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other hand, free-final state and free-final time features determine the constraints on
costate and Hamiltonian final values.

Remark 2.7: States at boundaries may be defined either fully or partially; con-
ditions on missing state components are respectively substituted by conditions on
dual costate components.

Remark 2.8: As hinted in the problem statement, two hypotheses underlie the
optimality necessary conditions expressed in (2.17): 1) pure state constraints shall
not be present among path constraints, 2) the Jacobian of the active constraints
shall be full rank. For the purposes of complete reentry scenarios optimization,
such hypotheses shall possibly be relaxed; for the former, jump conditions, namely
discontinuities over costates and Hamiltonian, shall be satisfied; for the latter, an
index reduction in the set of Differential Algebraic system of Equations (DAE) shall
be instead taken into account [65]. The two techniques are reported in Appendix A.
For the purposes of terminal landing optimization, however, such hypothesis hold,
thus allowing the aforementioned simplification.
Formulation in (2.17) corresponds, as previously mentioned, to a Two-Point Boudary
Value Problem (TPBVP); in addition, system dynamics is hardly ever linear with
respect to the state, thus the ill-conditioning problems mentioned in Sec. 2.2.2 arise.
At last, the control equation introduces a further algebraic constraint. The resulting
set of equations is a DAEs: the control equation is then often reelaborated to obtain
an explicit expression of the control; a Pure Two-Point Boundary Value Problem
(PTPBVP) is thus obtained, as the control can be expressed as function of system
states and costates. Another approach consists of substituting the control equation
with its equivalent, the Pontryagin’s Minimum Principle (PMP).

Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle states the necessary condition for control law u∗(t)
optimality: simply speaking, u∗(t) shall minimize the Hamiltonian, provided u∗

belongs to the set of admissible controls U [69]. The corresponding mathematical
expression results

u∗ = argmin
u∈U

{
H̃
(
x,u,λ, t

)}
with H̃ = L(x,u, t) + λTf(x,u, t) (2.19)
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The condition expressed by the control equation applies to the OCP provided that
path constraints are embedded in the definition of the Hamiltonian, and is veri-
fied when control constraints are inactive; it instead fails if the stationary point
of the Hamiltonian with respect to controls does not belong to U . Pontryagin’s
Minimum Principle is, indeed, a generalization of the Hamiltonian control equation;
it still holds if Hamiltonian is formulated for simplicity ignoring pure control path
constraints, as in (2.19).

2.3.3 OCP as NLP - Optimality Necessary conditions

The dynamics and boundary conditions of the OCP can be transformed in a finite set
of constraints by time-discretization; in such way one can treat the OCP as nonlinear
programming problem: the transcription allows for switching to the discrete-time
formulation, and parametric optimization algorithms can be employed for solving
the problem.

OCP transcription

Let us discretize the free-bounded time interval [t0, tf ] into a finite sequence of N
successive time instants ti with i = 1, ..., N , and let xi and ui be the state and the
control at ti; such discretization points are referred as nodes5. Let us assemble the
NLP vector y ∈ Rs, with s = N(n+m) + 2, as followingly expressed

y =
[
xT
1 , . . . , x

T
N︸ ︷︷ ︸

X

, uT
1 , . . . , u

T
N︸ ︷︷ ︸

U

, t0, tf

]T .
=

[
XT, UT, t0, tf

]T
(2.20)

Continuous-time dynamics can be transcribed, i.e. it can be imposed at a fixed
number of instants tj, with j = 1, ...,M over the domain. In addition, the objective
function can be discretized, and the eventual path cost integrated numerically; the
functional J can be approximated by the parametric function J̄ (y), written as
follows

J̄ (y) = ϕ(xN , tN) +
N∑
i=1

wiL(xi,ui, ti) (2.21)

being wi, with i = 1, ..., N the i-th component of the integration weights vector w;
it has further been supposed for simplicity the last nodes tN to coincide with tf .
Discrete path constraints can be divided into equality constraints and inequality
5Not necessarily t1 = t0 or tN = tf
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constraints, and dynamic constraints can be embedded in the former; both are then
respectively represented by h : Rs → Rp and g : Rs → Rq, such that

h(y) = 0 (2.22)

g(y) ⪯ 0 (2.23)

The discrete-time version of the OCP can be at last mathematically formulated as
follows

min
y∈Rs
J̄ (y) s.t.

 h
(
y
)
= 0

g
(
y
)
⪯ 0

(2.24)

Karush–Kuhn–Tucker conditions

Solving the OCP consists then of solving a constrained optimization problem.
The cost function is augmented by means of the vector of Lagrange multipliers
λ ∈ Rp and ν ∈ Rq, leading to the Lagrangian L: Rs+p+q → R defined as

L(y,λ) = J̄ (y) + λTh(y) + νTg(y) (2.25)

Lagrangian definition is useful to introduce the first order necessary conditions of
optimality, known as Karush–Kuhn–Tucker (KKT) conditions: if y∗ is a local min-
imum point satisying the LICQ, there exist unique vectors λ∗, ν∗ such that

∇yL = n(y∗) +G(y∗)Tλ∗ +H(y∗)Tν∗ = 0

∇λL = h(y∗) = 0

∇νL = g(y∗) ⪯ 0

ν∗ ⪰ 0

ν∗Tg(y∗) = 0

(2.26)
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where G, H and n are respectively the equality and inequality constraints Jacobian
matrices and the cost function gradient, mathematically defined as

G(y) =


∂g1
∂y1

· · · ∂h1

∂ys
...

∂gp
∂y1

. . .
∂hp

∂ys

 , H(y) =


∂h1

∂y1
· · · ∂g1

∂ys
...

∂hq

∂y1
. . .

∂gq
∂ys

 ,

n(y) ≡ ∇yJ̄ =


∂J̄
∂y1
...

∂J̄
∂ys

 (2.27)
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- What a filthy job!
- Could be worse.
- How?
- Could be raining.

Dr. Frankenstein and Igor
Young Frankenstein

Two different mathematical formulations of the OCP have been discussed, yet no
explicit insight about employed methods has been provided. A first techniques
classification, however, naturally stems from the different OCP mathematical for-
mulations; direct methods and indirect methods can then be distinguished.

In a nutshell

A direct method optimizes the objective function by solving a zero-finding
problem involving both controls and states, while an indirect method finds
the states and costates satisfying the optimality necessary conditions, thus
dictating the optimal control law.

The former indeed directly looks for the control law, while the latter indirectly finds
it by using the control equation and the solution of the MPBVP. Direct methods,
then, operate on an approximated NLP formulation of the OCP; they discretize,
then optimize; direct methods offer wide basins of attraction and have thus been
traditionally used for their robustness. On the other hand, indirect ones operate on
the equivalent BVP formulation, thus optimizing, then discretizing during the inte-
gration process [65]; for the reasons mentioned in Sec. 2.2.2, it is difficult to achieve
convergence with an indirect method; on the other hand its solution satisfies OCP
optimality conditions by definition, thus it usually features high accuracy.
A second distinction arises from the nature of the integration schemes employed for
solving the problem, allowing to distinguish between shooting methods and colloca-
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tion methods.

In a nutshell

A shooting or time-marching method simulates the system dynamics sequen-
tially while a collocation method integrates the dynamics simultaneously as
dynamic constraints are imposed on the overall integration domain [70];
integration is therefore performed either explicitly or implicitly. Points in
which dynamics is reinforced are defined collocation points.

Collocation and shooting techniques both allow for imposing dynamics: they can be
thus employed either to reinforce dynamic constraints as in direct methods, either
to solve BVPs as in indirect methods.
Traditional collocation techniques work with integral constraints, and nodes differ
from collocation points; in the latest years, pseudospectral collocation techniques
have gained the attention of research community.

In a nutshell

A pseudospectral (PS) method, also known as orthogonal collocation method
[70], is a collocation technique. It is based on a) approximating solution as
summation of Lagrange polynomials and b) reinforcing dynamics at points
that coincide with roots of orthogonal polynomials.

From PS methods definition, collocation points coincide with nodes: the punctual
nature of dynamic constraints allows for their straightforward reinforcement. In
addition, the orthogonal polynomials employment provides pseudospectral methods
with quasi-exponential convergence rate [71].
pseudospectral methods play a central role in one of the major recent advancements
in the context of optimal trajectories design, the Covector Mapping Principle.

In a nutshell

Given a sequence of approximations of the OCP converging to the orig-
inal problem, the Covector Mapping Principle (CMP) states that, under
certain circumstances, there exist of a sequence of solutions for the approx-
imated problem converging to the solution of the original one [72]. Such
circumstances are provided by a Covector Mapping Theorem (CMT).

It turns that simple Covector Mapping Theorems can be demonstrated when the
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original problem is transcribed with a pseudospectral method [73], offering an im-
plementable solution for trajectory optimization purposes [74, 75]. The CMP offers
a unique possibility to solve the starting OCP by cherry-picking attraction-basin
width from direct methods and solution accuracy from indirect.
The present chapter deepens the topics afore described, starting firstly with a pre-
sentation of the traditionally employed techniques for solution of OCPs. PS methods
features are then outlined and analyzed; a survey of nodes on which PS methods
are based follows, while the last subsection specializes the employed PS scheme to
a direct method, the relative CMT and an indirect method.

3.1 Traditional methods

As mentioned in the introduction, methods to solve optimal control problems can
be either direct or indirect, either time-marching or collocation-based ones. A first
distinction between the integration techniques couple is presented, then a rapid
survey of direct and indirect methods is carried out.

3.1.1 Time-marching and Collocation techniques

A time-marching method propagates the initial conditions of a provided Initial Value
Problem (IVP) by means of sequential integration techniques, divided in Multi-Stage
and Multi-Step methods.
Let an initial state x0 ∈ Rns evolve according to ẋ = f(x, t) through the interval
[t0, tf ], and let us want to evaluate state xk+1 at time tk+1. A multi-stage method ex-
ploits the state evaluation xk at time tk and additional evaluations of f in the interval
[tk, tk+1]; a multi-step method exploits propagated states [xk−n, ...,xk] at previous
time instants [tk−n, ..., tk]. Runge-Kutta (RK) and Adam-Bashfort-Moulton (ABM)
schemes are valuable examples of respectively multi-stage and multi-step methods.
A traditional collocation method approximates the state evolution with an analytic
function with unknown coefficients1, and retrieves coefficients by reinforcing dynam-
ics at collocation points. Such procedure is referred to as implicit integration, and
the choice of the approximating function, namely the integration scheme, dictates
method accuracy.
1First Order Hold (FOH) discretization is an exception, as a method of this kind parameterizes
only the controls and integrates the dynamics



28 | 3| Numerical methods

Remark 3.1: Location of collocation points is theoretically arbitrary; however, the
optimal choice of collocation points changes with the integration scheme: desired
accuracy is obtained if collocation points coincide with the optimal ones for the
employed scheme [76]. Optimal location of collocation points never coincides with
discretization nodes.

Considering the same example cited before, let tj be the generic collocation point
over the integration interval, while ti denotes the generic node; furthermore, let
a = [a1, ..., am] ∈ Rm be the vector of function coefficients such that x = x(a);
since at nodes xi = xi(a) and at collocation points xj = xj(a), one can invert the
first equation and obtain xj = xj(xi). Dynamics is integrated by nulling the defect
ζj at each collocation point, according to the following equation

Ẋj(Xi) = f(Xj, tj) = f(Xi, tj) =⇒ ζj = Ẋj(Xi)− f(Xi, tj) = 0 (3.1)

where Ẋj is an approximation of states derivatives at tj which expression depends
on the employed scheme, and Xi ∈ Rnsnn is the vector of states at the nn nodes.
Eq. (3.1) constitutes a nonlinear system of equations: solution is refined over whole
domain at each iteration, thus integration is performed with a parallel approach.
State is usually approximated as sum of polynomials; collocation is referred to as
global or local if such polynomials are respectively defined on the overall domain or
on subintervals of it.

3.1.2 Indirect and direct methods

Indirect methods solve the BVP associated to the dual system, with boundary con-
ditions dictated by optimality necessary conditions. Following approaches are then
often adopted.

Indirect single shooting Employment of a time-marching integration to impose
boundary conditions on a problem is often referred to as shooting. States x and
costates λ are ’shot’ from one of time domain bounds, according to the flow φ of the
Hamiltonian dynamical system; they are then corrected proportionally to boundary
conditions violation at the opposite bound: such correction step is often based on
linearization of dynamics flux and therefore referred to as differential correction.
As such function is nonlinear, however, the differential correction shall be iterated;
when the required accuracy is at last reached, the control can be retrieved from
states and costates histories.
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Indirect multiple shooting The previous approach may be improved with a
multiple-shooting approach: propagation time is subdivided into subintervals [tk, tk+1],
states xk and costates λk are ’shot’ over their respective subinterval and the equal-
ity constraint φ([xk;λk], tk; tk+1) = [xk+1;λk+1] is imposed for each subinterval.
Such approach improves rejection of Hamiltonian systems ill-conditioning and their
hyper-sensitivity to initial conditions.

Indirect collocation An alternative approach to the above mentioned consists in
transcribing the dynamics of the Hamiltonian system and solve the associated BVP
through a collocation technique; collocation was indeed traditionally thought of as
a way to solve Boundary Value Problems [52].

Direct methods are based on state and control discretization and approximation,
and attempt to minimize the OCP objective function; they are distinguished be-
tween control parameterization methods, which approximate the controls only, and
state and control parametrization methods which approximate both controls and
states. The following approaches are commonly adopted [77].

Direct shooting Such methods belong to control parameterization methods, as
the control is parameterized using a specific functional form with coefficients that
are determined by the optimization process. Such coefficients constitute then the
components of the NLP vector.
In the same fashion as for indirect methods, either a single shooting or a multiple
shooting can be adopted; in the second case the continuity is reinforced at subinter-
vals boundaries only for states.

Direct collocation Direct collocation methods versatility has allowed them to
gain popularity in the field of Optimal Control, and they usually parameterize both
states and controls. For sparsity reasons, local collocation is usually adopted, with
high number of nodes preferred over high-order polynomials to approximate states
and controls.

3.2 Pseudospectral methods

3.2.1 Method overview

pseudospectral methods build the solution of an optimal control problem as a series
expansion, and the most commonly employed is Lagrange decomposition.
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Global collocation

Let us firstly normalize physical time t to pseudotime τ , according to the affine
mapping

τ =
2

tf − t0
t− tf + t0

tf − t0
t ∈ [t0, tf] (3.2)

which maps [t0, tf] to [−1, 1]. Notice τ is scaled from t according to the factor
2

tf − t0
.

Let the time domain be discretized in n+1 nodes ti, with i = 0, . . . , n. The generic
state x(t) is then approximated by a summation of n+1 Lagrange polynomials L̃(t)
of degree n according to

x(t) ≈
n∑

i=0

XiL̃i(t) where L̃i(t) =
n∏

k=0
k ̸=i

t− tk
ti − tk (3.3)

and Xi = x(ti) as Lagrange polynomials satisfy the isolation property.
With respect to traditional collocation schemes, the Lagrange expansion allows to
identify the nc collocation points as a subset of the n + 1 nodes, simplifying the
relationship between the unknowns and the differential approximation. The pseu-
dospectral differentiation matrix D ∈ Rnsnc×ns(n+1) can be defined over the normal-
ized pseudotime domain, independently on the value of final time tf. Considering a
zero-based notation, Its jth block row and ith block column component Dj,i ∈ Rns×ns

results

Dj,i = JXi
X ′

j =
dL̃i

dτ
(τj) Ins =

tf − t0
2

˙̃Li(tj) Ins (3.4)

where (•)′ denotes derivative of quantity • with respect to τ . It is being referred
to block rows and columns rather than rows and columns since normalized state
pseudotime derivatives depend only on the considered collocation point, thus they
are equal with each other at each collocation point. For fixed discretization of
pseudotime domain, D does neither depend on t0, nor on tf : transformation in
Sec. 3.2.1 is indeed affine. If control Uj = u(tj) ∈ Ru is added and RHS is supposed
time-independant, Eq. (3.1) can be indeed re-elaborated as

2

tf − t0
DjX − f(Xj,Uj) = 0 (3.5)

where Dj = [Dj,0, . . . ,Dj,n] is the differentiation matrix for the (j+1)th collocation
point and X ∈ Rns(n+1) gathers states at nodes.
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At last, similarly to Eq. (2.21), the generic running cost L(x,u, t) can be reformu-
lated according to

tf∫
t0

L (x,u) dt ≈ tf − t0
2

n∑
i=0

wiL
(
Xi,Ui, ti

)
(3.6)

using the integration weights vector w, which depends on the choice of nodes, ana-
lyzed in Sec. 3.2.2.

Local collocation

When a local collocation approach is pursued, time domain is divided in h segments
and solution is approximated as summation of piecewise Lagrange polynomials, since
an independent collocation is performed over each segment. Time-dependant func-
tions are then patched at the knots, i.e. the inner time bounds.
Let the superscript s, with s = 1, . . . , h, denote the sth segment; then time do-
main [t0, tf] can be divided in h subdomains

[
t
(s)
0 , t

(s)
n

]
, such that t

(s−1)
n = t

(s)
0 . h

pseudotime subdomains can be then defined according to

τ (s) =
2

t
(s)
n − t

(s)
0

[
t− t

(s)
0

]
− t

(s)
n + t

(s)
0

t
(s)
n − t

(s)
0

t ∈
[
t
(s)
0 , t(s)n

]
(3.7)

thus normalizing each segment over its own duration. In such manner, if each seg-
ment is characterized by the same number of nodes n+1, the segmental differential
matrix D(s) can be evaluated once for all. Let

X
(s)
i U

(s)
i

s = 1, . . . , h

i = 0, . . . , n
(3.8)

denote the generic state and control at (i+1)th node, over the sth segment. At knots
states shall be patched, thus X(s−1)

n =X
(s)
0 . Moreover, Eq. (3.5) is rewritten as

2

t
(s)
n − t

(s)
0

DjX
(s) − f

[
X

(s)
j ,U

(s)
j

]
= 0 with s = 1, . . . , h (3.9)
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as well as Eq. (3.6), which becomes

tf∫
t0

L [x(t),u(t), t] dt ≈
h∑

s=1

t
(s)
n − t

(s)
0

2

n∑
i=0

wiL
[
X

(s)
i ,U

(s)
i , t

(s)
i

]
(3.10)

At this stage it is useful to introduce the different types of nodes, as their specific
features guide the choice of the scheme for the present thesis.

3.2.2 Survey of Legendre-type nodes

pseudospectral methods are characterized by specific positions of collocation points
along a domain: such points coincide with the roots of a polynomial belonging to
a family of orthogonal polynomials, defined over the prescribed domain. Each set
of collocation points is further associated to a different quadrature rule, thus to
quadrature weights. Moreover, since every collocation point is a node, unknowns
too are located at roots of such orthogonal polynomials; this implies that for spe-
cific orthogonal polynomials, the KKT conditions of a direct pseudospectral method
match the discretized optimality conditions of the original OCP. Such result repre-
sents a major breakthrough in optimal control theory: it establishes a connection
between two methods, direct and indirect ones, that have traditionally been opposed
against each other.
Among the orthogonal polynomials, Legendre-type ones allow to match, at least
partially, the KKT and the discrete optimality conditions: a Legendre polynomial
Ln of nth degree satisfies the following Sturm-Liouville equation[(

1− τ 2
)
L′
n(τ)

]′
+ n(n+ 1)Ln(τ) = 0 (3.11)

and Legendre-type collocation points are obtained as roots of Legendre polynomials,
linear combinations of Legendre polynomials of different orders, or their derivatives.

Lobatto nodes: Historically speaking, Legendre-Gauss-Lobatto (LGL) nodes have
been firstly employed [29]; among the n+ 1 collocation points over the pseudotime
domain, first and last collocation points are τ0 = −1, τn = 1, while the remaining
ones, namely τk, with k = 1, ..., n−1, are the n−1 roots of L′

n(τ). Nodes completely
coincide with collocation points. Such choice allows to collocate dynamics at both
time domain bounds, providing the most intuitive approach when looking for the
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optimal control profile over an assigned time domain. On the other hand, the KKT
conditions relative to multipliers at domain bounds couple dynamics and boundary
conditions, thus determining noisy costates and a suboptimal solution.

Gauss nodes: For this last reason, research focus has moved towards Legendre-
Gauss (LG) nodes [78]; the n collocation points for such approach are the n roots
of Ln+1(τ) and do not include neither τ = −1, nor τ = 1, while τ0 = −1 is included
among nodes. They avoid the aforementioned problem affecting LGL nodes, and
feature perfect matching between the KKT and discrete optimality conditions. On
the other hand, dynamics is not collocated at the initial time bound, thus control
can not be optimized on the overall time domain; moreover states and control at
final time are not available as optimization variables, thus boundary conditions can
not be reinforced completely during the optimization.

Radau nodes: Most recent advances have tried and merge the positive aspects of
the previous approaches, leading to the Legendre-Gauss-Radau (LGR) nodes [79]:
n + 1 nodes include τn = 1 and the n roots of Ln+1(τ) + Ln(τ), while collocation
points miss τ = 1. Such architecture allows for precise mapping of the KKT con-
ditions and discrete optimality conditions, while ensuring boundary conditions can
be imposed and satisfied. Since LGR do not allow collocation at final time, the
flipped Legendre-Gauss-Radau (fLGR) nodes have been proposed; collocation points
and nodes are symmetric with respect to the LGR ones: they are respectively the
n roots of Ln+1(τ)−Ln(τ) and the collocation points with the addition of τ0 = −1.

Nodes and collocation points are represented in Fig. 3.1: it can be noticed that LGR
type nodes are not symmetric with respect to the pseudotime domain center, as well
as that LG nodes are missing the final time bound. In addition, LGL is the only
nodes group for which the number of collocation points equals number of nodes.
At this stage, it is evident LGR and fLGR nodes offer an excellent trade-off to
develop a hybrid and efficient optimal control algorithm: the following subsections
therefore build onto the choice of Radau nodes.

3.2.3 Radau direct collocation and CMT

The mathematical structure developed in Sec. 3.2.1 can now be specialized to a
global Radau-type collocation scheme. Analysis is led for a global collocation scheme
for simplicity, but can be generalized with tools provided in Sec. 3.2.1.
Lagrange polynomials can be evaluated for the LGR and fLGR nodes, as well as the
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Figure 3.1: Visual representation of Legendre-type nodes - 9 collocation points

differentiation matrix D. Both approaches include τ0 = −1 and τn = 1 among the
n+ 1 discretization nodes, thus subscripts 0 and n refer to such time bounds.

Remark 3.2: Both LGR and fLGR have, given n collocation points, n+1 nodes.
Due to its own definition, matrix D is rectangular, with 1 block column more with
respect to the block rows.

The quadrature weights in Eq. (3.6) are instead defined by

wLGR
i =


2

n2
i = 0

(1− τi)

n2Ln−1(τi)2
i = 1, . . . , n− 1

0 i = n

wfLGR
i = wLGR

n−i i = 0, . . . , n

(3.12)

Remark 3.3: Both LGR and fLGR feature a null weight at the node where dy-
namics is not collocated. Let us consider a running cost dependant on the control: it
features null derivative with respect to the final control or to the initial one, respec-
tively for the LGR nodes and the fLGR nodes. If no equality constraint on control
at such instant is applied, the problem becomes singular, and this control value can
not be uniquely determined by the optimizer; this problem is said to be unregulated.



3| Numerical methods | 35

Remark 3.4: Similarly to nodes, weights for LGR and fLGR are symmetric; the
respective KKT conditions are then symmetric as well, thus the two schemes are
completely equivalent. This allows to treat only the LGR scheme, simplifying the
following analysis.

Let us reconsider the general NLP problem in Eq. (2.24). For our purposes, the
equality constraints gathered in vector h can be specified as dynamics constraints
and as final boundary conditions, while the inequality, gathered in g, can be specified
as pure control constraints gu. Moreover, it is hypothesized for simplicity that
t0 = t∗0 = 0, X0 = X∗

0 and that final condition constraints are independent on
controls.
Running cost in Eq. (3.6), exploiting weights outlined in Eq. (3.12), can be plugged
into the general definition of NLP cost in Eq. (2.21), providing

J̄ (X,U , t) = ϕ(Xf , tf ) +
tf
2

n∑
i=0

wLGR
i L(Xi,Ui, ti) (3.13)

The, the NLP for a LGR pseudospectral method results

min
U∈Ru(n+1)

J̄ (X,U , t) s.t.


2

tf
DiX − f(Xi,Ui) = 0

gu(Ui, ti) ⪯ 0

 i = 0, . . . , n− 1

ψf

(
Xf , tf

)
= 0

(3.14)
Let us now introduce Nf , the multipliers associated with final conditions, Mi, the
multipliers related to pure control constraints and and Λi, the multipliers related
dynamical constraints. Mi and Λi are referred to instant ti. Similarly, function
explicit dependancies are dropped and substituted with the subscript i.
The Lagrangian L of Eq. (3.14) reads then

L = ϕf +N
T
f ψf +

tf
2

n−1∑
i=0

(
wiLi +M

T
i gu,i

)
−

n−1∑
i=0

ΛT
i

(
DiX −

tf
2
fi

)
(3.15)

where dynamical constraints have been rescaled to mirror the quadrature applied
exactly in the context of the continuous-time OCP and the superscript LGR has
been dropped from weights for notation simplification.
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Karush-Kuhn-Tucker conditions can be then retrieved. They read

for i = 1, . . . , n− 1

for i = 0, . . . , n− 1



2

tf
DT

i Λ = wi∇Xi
Li + JT

Xi
fi Λi

0 = wi∇Ui
Li + JT

Ui
fi Λi + JT

Ui
gu,i Mi

2

tf
DiX = f(Xi,Ui)

0 = Mi if gu,i ≺ 0

0 ≻ Mi if gu,i = 0

DT
nΛ = ∇Xf

ϕf + JT
Xf
ψf Nf

0 = ψf

∂

∂tf

[
tf
2

n−1∑
i=0

(
wiLi +ΛT

i fi +M
T
i gu,i

)]
= −∂ϕf

∂tf
−NT

f

∂ψf

∂tf

(3.16)

where DT
i is (i+1)th row of matrix DT, thus explaining the presence of DT

n . Lagrange
multipliers in Eq. (3.16) stem from the same primal problem as continuous costates
and multipliers, outlined in the OCP formulation as BVP, in Eq. (2.17). However,
in the first case domain is discretized and optimality conditions are then introduced
for the discrete problem; in the second, optimality conditions are introduced for
the original problem, and transcription can be developed on the primal-dual for-
mulation afterwards. Such difference proves fundamental, since, discretization and
optimization do not commute [73]: an additional mapping is necessary to link dual
variables of the discrete-time problem with discrete dual variables of the continuous-
time problem.
A Covector Mapping Theorem for the LGR collocation scheme is derivable by tran-
scribing dynamics of the Hamiltonian system in Eq. (2.17) with the same LGR
collocation scheme outlined for the primal system. Let λ̃i and µ̃i as costates and
path multipliers at (i+1)th collocation point and D† as the differentiation operator
for the costates. Since dynamics constraints are only reinforced at the n collocation
points, costates are approximated by a polynomial of (n− 1)th degree; this requires
differentiation matrix to fit such degree, namely D†. Moreover, the final costate λ̃f

can only be extrapolated. The approximated continuous-time optimality conditions,
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then, read

for i = 1, . . . , n− 1

for i = 0, . . . , n− 1



− 2

tf
D†

i λ̃ = ∇xLi + JT
xfi λ̃i

0 = ∇uLi + JT
ufi λ̃i + JT

ugu,i µ̃i

2

tf
DiX = fi

0 = µ̃i if gu,i ≺ 0

0 ≻ µ̃i if gu,i = 0

λ̃f = ∇xf
ϕf + JT

xf
ψf νf

0 = ψf

∂

∂tf

[
tf
2

n−1∑
i=0

wi

(
Li + λ̃

T
i fi + µ̃

T
i gu,i

)]
= −∂ϕf

∂tf
− νT

f

∂ψf

∂tf

(3.17)

where Hf is obtained deriving with respect to tf the quadrature of H over the
collocation points.
It can be proven that D† is a differential operator for the space of polynomials of
degree n− 1 if its components are built according to the following equations [79]

D†
0,0 = −D0,0 −

1

w0

Ins

D†
i,j = −wj

wi

Dj,i otherwise
(3.18)

LetW be the block diagonal matrix of quadrature weights wi such thatWi,i = wiIns ,
then Eq. (3.18) implies that

DT
i = −wiD

†
iW

−1 =⇒ 2

tf
DT

i Λ = −wi
2

tf
D†

i λ̃ (3.19)

Simply speaking, second equation in Eq. (3.19) implies the approximate costate
dynamics is equivalent to the dual KKT conditions, provided multipliers are scaled
with the quadrature weights. The mapping in Eq. (3.20), thus, constitutes the
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Covector Mapping Theorem for the LGR collocation scheme2.

λ̃f = DT
nΛ

λ̃i =
Λi

wi

i = 0, . . . , n− 1

µ̃i =
Mi

wi

i = 0, . . . , n− 1

νf = Nf

(3.20)

Application of Eq. (3.20) allows to exactly match Eq. (3.16) and Eq. (3.17). It
therefore proves the existence of a link between the indirect and direct formulations
of the OCP [29]: an accurate estimation of multipliers for a direct method can be
then used to guess the costates of the equivalent indirect formulation.

Remark 3.5: Hypothesis of fixed initial states suit the problem analyzed in such
work for a global collocation type: in case of local collocation, initial conditions are
known for the first segment only. Nonetheless, CMT in Eq. (3.20) is still valid if
initial time and states are free, as well as if mixed constraints are present [79].

While embedding optimality necessary conditions, Radau direct collocation still lies
among the high-order direct methods, and this determines two important setbacks
that shall be accounted for. At first, the control policy is an optimization variable,
thus its optimal value is determined by the optimization process, without explicit
dependancy on states and costates; such dependancy can be embedded in an indi-
rect method, with benefits over final accuracy and computational cost. In second
instance, the discrete nature of the direct method implies a suboptimal solution
when dealing with bang-bang type profiles, if the specific structure of the solution
is not accounted for. In such case an indirect method allows for precise detection of
switching positions, thus representing the most intuitive choice to accurately solve
a bang-bang problem.

3.2.4 Radau indirect collocation

A fast yet accurate method to solve OCPs is represented by the concept of indirect
collocation; the approach presented previously for direct methods can be easily
2A similar expression can be retrieved for the fLGR collocation scheme, still affine in costates and
continuous time multipliers
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extended to the dual states.
Let us consider a global collocation with n+1 nodes. Costates are treated with the
same approach as states, thus

λ(t) ≈
n∑

i=0

λ̃iL̃i(t) (3.21)

and the differentiation matrices of primal and dual variables coincide. For such
formulation the block differentiation matrix Dj,i results Dj,i ∈ R2ns×2ns .
The nodal states and costates estimations can be grouped in the nodal augmented
state Yi ∈ R2ns , as well as the augmented right hand side F : R2ns → R2ns can be
assembled. They respectively read

Yi =

Xi

λ̃i

 F =

 ∇λH̃

−∇xH̃

 (3.22)

Applying the PMP, the optimal nodal control U ∗
i results U ∗

i = U ∗
i (Yi) and the

nodal Hamiltonian H̃i = H̃i(Yi).
The continuous time EL conditions in Eq. (2.7) is then rearranged, providing the
following discrete time BVP, where Y ∈ R2ns(n+1).

Find
[
Y T, t0, tf

]
s.t.

2

tf − t0
DjY − F (Yj) = 0

for j = 0, . . . , n− 1

and



X0 = x
∗
0

t0 = t∗0

λ̃n = ∇xf
Φf

H̃n = −∂Φf

∂tf
(3.23)

Remark 3.6: Problem in Eq. (3.23) is well posed provided the Jacobian of the
dynamical and of boundary defects is not singular, if a simple Newton-Raphson
method is employed; boundary conditions, indeed, constitute 2ns + 2 constraints,
while dynamical constraints make up for 2nsn constraints. Vector

[
Y T, t0, tf

]
is

therefore determined univocally.
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3.3 OCP formulations wrap-up

The whole developed mathematical plant is graphically summarized in Fig. 3.2 [73].
More specifically, B refers to the common problem formulation, and the superscripts
indicate variants of the problem itself:

• Problem B is the original Optimal Control Problem, as stated in Eq. (2.12):
no numerical method is introduced, and the formulation is in the continuous
time.

• Problem Bλ is the BVP dual formulation of problem B, as formulated in
Eq. (2.17). The problem is still in its continuous time formulation, and the
optimal control profile is coupled to states and costates thanks to the control
equation/PMP; it is the formulation solved by indirect methods.

• Problem BN is the NLP form of problem B, thus the formulation where
states and controls are restricted to their nodal values. It corresponds to the
formulation in Eq. (2.24), therefore it is the one approached by direct methods.
Its solution is closer to the one of B the more accurate the discretization
scheme.

• Problem BNλ is the zero-finding version of BN , as multipliers are introduced
and associated KKT conditions are outlined, as in Eq. (3.16). It represents
the set of equations most commercial softwares [58, 80] effectively solve, and
directly provides the unknown control profile.

• Problem BλN is the discrete time version of Bλ, as nodes are introduced
and optimality conditions are imposed at such points, as in Eq. (3.17) or in
Eq. (3.23). Its solution is closer to one of Bλ the more accurate the dis-
cretization scheme. The control profile is retrieved from optimality necessary
conditions after problem has been solved.

The exact solution of the original problem B coincides with the one from Bλ. More-
over, optimality conditions for B actually define Bλ, which then configures as the
problem to be solved. The most direct way to do this, namely B → Bλ, is often
followed and it is highlighted in red in Fig. 3.2; yet initialization of costates and
dynamical system ill-conditioning constitute relevant problems, since such approach
coincides with a pure indirect method.
An alternative is represented by the longest path, B → BN → BNλ → BλN → Bλ,



3| Numerical methods | 41

which exploits the CMT (e.g. Eq. (3.20)) of the employed discretization scheme,
therefore using a direct method as guess generation mechanism for the indirect one;
the process is represented by the blue path in Fig. 3.2. Such approach allows to by-
pass the problems of a purely indirect method employing a direct one, constituting
a hybrid method embedding accuracy and robustness [72].

B BN

Bλ BλN

BNλ

Convergence

Discretize

D
ua

liz
e

Discretize

Convergence

D
ua

liz
e

C
M

T

Figure 3.2: Summary of Optimal Control Problem formulations
In red: Pure indirect strategy

In blue: Hybrid strategy
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4| Optimal Aerodynamic Powered

Landing Problem

La curiosità dove porta
È pericolosa

Mattia Ricci, via WhatsappTM

Landing a probe on a body surface is a complex task that requires performing precise
maneuvers over a short time horizon. In addition, maneuvers authority represents
a relevant requirement for the control system.
The present work focuses on planetary powered pinpoint landing :

In a nutshell

Pinpoint landing consists of targeting a precise surface location, with final
prescribed velocity with respect to the landing site. Full state knowledge is
therefore required, as well as full system controllability. A powered landing
employs thrust to reach final state; aim of thrust program is typically the
minimization of the overall fuel consumption.

Pinpoint landing is the only reliable strategy if null landing position error is targeted.
More generic landing approaches, indeed, do not allow to directly control the final
position, e.g. the soft landing technique imposes null velocity at touchdown, but
does not account for touchdown location [81].
Landing phase requires targeting the final landing site as well as damping the kinetic
energy possessed by the vehicle. These operations shall deal with an upper bound
over thrust, and a lower limit on thrust itself, due to limited engine throttleability.
In such framework the optimal thrust program is represented by a bang-off-bang
profile in the most general case.
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In a nutshell

A bang-bang profile is a command program characterized by alternating
maximum and minimum control magnitude arcs. The switching times are
bounds of such arcs, thus marking discontinuities in control program.

In the specific case of a 3-D rocket landing scenario, at maximum 2 full thrust arcs
are required, the former to redirect the platform towards landing site, the latter to
brake before touchdown; the intermediate is an idle thrust arc [81]. An off-bang
profile is instead sufficient if initial velocity is approximately headed towards the
landing site.
In such scenario, aerodynamic forces are often included as disturbance. However,
if aerodynamic forces were exploited correctly, one could further optimize fuel con-
sumption: drag damps kinetic energy, and could thus minimize the duration of the
last full-thrust arc; lift acts as centripetal force deflecting trajectory, and could min-
imize or even substitute the first full thrust arc.
An indirect single shooting is preliminarily employed to assess such claim; a contin-
uation scheme based on a double homotopy augments such indirect formulation to
increase its robustness.

In a nutshell

Two functions are homotopic if one can be continuously deformed into the
other; such deformation is called homotopy [82].

In our case, a first homotopy deforms the objective function, turning the C1 opti-
mal thrust program to discontinuous; a second introduces the aerodynamic forces,
therefore modifying the switches location.
The present chapter is articulated as follows: Sec. 4.1 outlines the aerodynamic pow-
ered pinpoint landing problem, and in Sec. 4.2 the PMP is applied to the problem
itself. The double homotopic approach is discussed in Sec. 4.3, while Sec. 4.4 draws
the physical results due to addition of aerodynamic forces and the performances of
the presented indirect method.

4.1 Problem formulation

Landing phase is usually started at a distance negligible with respect to planet
curvature radius; flat Earth model is therefore employed. In addition, a 3-D model



4| Optimal Aerodynamic Powered Landing Problem | 45

is seeked for in the context of this work: a landing site-topocentric cartesian reference
frame is accounted for, of type East-North-Up, with z−axis directed upwards; chosen
initial conditions force trajectory to lie on a curved surface, preventing from any
dimensional reduction to simplify the problem, as graphically represented in Fig. 4.1.

iyix

iz rz,0

ry,0

rx,0

v0

Figure 4.1: Trajectory not reducible to cartesian 2-D analysis

With such hypotheses, initial and final conditions x0, xf ∈ R7 and gravity vector
g ∈ R3 read

x0 =



r0

. . .

v0

. . .
m0


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m

m/s

kg

xf =


rf

vf

mf

 =


03×1

03×1

free

 g =


0

0

−9.81

m/s2 (4.1)

Mass depletion is modelled assuming constant specific impulse Isp from the thruster;
maximum thrust Tmax is hypothesized not to depend on height.
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For what concerns controls, thrust direction is identified by uT ∈ R3, and thrust
acceleration is therefore directed along such vector. uT makes up for the first control.
Aerodynamic controls are instead the bank angle σ and the total angle of attack αeff.
Such two angles identify body axis direction ub ∈ R3 as function of velocity direction
v/v: a first rotation about v/v of angle σ transforms the cross-wind direction icw
to îcw, then rotation about îcw of angle αeff rotates v/v to ub. σ and αeff, therefore,
are equivalent to ub.
Equation (4.2) defines the lift coefficient CL for an axisymmetric body and the polar
model linking the drag coefficient CD to CL.

CL(αeff) = CL/ααeff, CD(αeff) = CD,0 + kC2
L(αeff) (4.2)

For easiness, air density is modelled through the following exponential relationship,
although US76 model [83] could be used for better accuracy.

ρ (rz) = ρ0 exp
−
rz
H (4.3)

Complete dynamics, therefore, read

ẋ =


ṙ

v̇

ṁ

 =


v

Tmax

m
uT + g +

D(rz,v, αeff)

m
+
L(rz,v, αeff, σ)

m

−Tmax

Ispg0
uT

 = f (x,uT , αeff, σ)

(4.4)
where

D(rz,v, αeff) = −
1

2
ρ(rz)Sref CD (αeff) v v

L(rz,v, αeff, σ) ≈
1

2
ρ(rz)Sref CL/α [v ⊗ ub (αeff, σ)]⊗ v

(4.5)

Total angle of attack, defined as positive [84], is limited to αmax; Sec. 4.2 outlines
how limitation on αeff constrains control ub. Thrust authority is bounded as well due
to limits on mass depletion rates, accounting for a maximum engine throttleability
of 30%. Thus

αeff ≤ αmax = 15◦

0.3 = uT,min ≤ uT ≤ uT,max = 1
(4.6)
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Aim of thrust program is optimizing the final mass, or, equivalently, minimizing the
thrust acceleration integral: this second approach, indeed, physically corresponds
to optimizing the final logarithmic mass, equivalent to the the first approach as the
natural logarithm is a monotonic function [37]. For reasons clarified in Chap. 5, opti-
mization of thrust acceleration integral is pursued, leading to the following objective
function

J (x,uT , tf) =

∫ tf

0

1

m

Tmax

Ispg0
uT dt (4.7)

The problem can be therefore formulated as in Eq. (4.8)

min
αeff,σ,uT ,tf

J (x,uT , tf) s.t.



ẋ = f (x,uT , αeff, σ)

x(0) = x0

x(tf) = xf

αeff ≤ αmax

uT,min ≤ uT ≤ uT,max

(4.8)

Thruster and aerodynamic parameters are summarized in Tab. 4.1.

Table 4.1: Parameters sum-
mary

Parameter Value

Isp 320 [s]
Tmax 40 [kN ]
Sref 0.44 [m2]
ρ0 1.225 [kg/m3]
H 7200 [m]

CD,0 0.5 [-]
k 2.5 [-]

CL/α 2.2 [-]

Remark 4.1: In such scenarios, a commonly employed reference frame is the
topocentric Downrange-Crossrange-Altitude (DCA): Downrange direction connects
initial position to final landing site, Altitude is orthogonal to planet surface and
headed upwards and Crossrange completes the right-hand reference frame. The
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optimal initial velocity is indeed headed towards landing site, thus allowing a 2-D
formulation of the pinpoint landing problem. The interest for a 3-D model, however,
is the reason why such approach is discarded.

Remark 4.2: Thrust direction is constrained to the body axis due to limited TVC
authority; such limitation, however, imposes strict requirements over body direction,
not allowing for an optimal exploitation of the aerodynamic forces. In addition, x-
body axis required to point upwards due to attitude control limitations, thus thrust
should feature positive z component. Inclusion of such second constraint is left for
future analyses. ub and uT are left unlinked, and uT unconstrained.

4.2 Solution derivation

Application of Pontryagin’s Minimum Principle allows to retrieve the optimal control
profile for the introduced problem. Since Eq. (4.6) draws pure control constraints,
multipliers associated to such constraints can be ignored in the reduced Hamiltonian
H̃. For the analyzed problem, H̃ reads

H̃ = λT
r v + λT

v g +
Tmax

m
λT

v uT +
Tmax

Ispg0

(
1

m
− λm

)
uT︸ ︷︷ ︸

Thrust-related

+
1

m
λT

v [D (αeff) +L (αeff, σ)]︸ ︷︷ ︸
Aerodynamic-related

(4.9)
where the dependency of D and L on aerodynamic angles has been highlighted.
PMP imposes optimizing the thrust related terms and the aerodynamic related
ones. Since such two terms are independent, the optimization can be performed
separately.

4.2.1 Optimization of thrust control

Let H̃T be the thrust-dependent term of the Hamiltonian. uT denotes the normalized
thrust orientation, and can be expressed as product of its norm uT and its direction
iT . Moreover, let us define the primer vector as the normalized covelocity pv =

λv/λv. Since Tmax/m and uT are positive, one shall minimize the product λT
v iT to

minimize the Hamiltonian. Therefore, according to Lawden’s theory [85], it shall be

iT = −pv thus H̃T =
Tmax

Ispg0

(
1

m
− λm −

Ispg0
m

λv

)
︸ ︷︷ ︸

Sf

uT (4.10)
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The bracketed term Sf is called switching function: to minimize H̃T , optimal thrust
magnitude u∗

T shall stick to the following thrust program, essentially dictated by the
sign of the switching function Sf

u∗
T =


uT,min if Sf > 0

uT,max if Sf < 0

∈ (uT,min, uT,max) if Sf = 0

(4.11)

which corresponds to a bang-bang control profile is condition Sf = 0 holds almost
everywhere.

Remark 4.3: If the third condition in Eq. (B.3) is verified over a finite interval of
time [t1, t2], with t1 ̸= t2, uT can not be determined with the PMP. Such singularity
is solved employing a generalization of the second-order optimality condition, called
generalized Legendre-Clebsch condition [86]. The second-order optimality condition
has been ignored in such work since finite maxima are not present in standard tra-
jectory optimization problems. Moreover, literature shows rocket landing problems
do not usually suffer from control singularity [87]; generalized Legendre-Clebsch
condition is therefore bypassed.

4.2.2 Optimization of aerodynamic controls

Let H̃a be the aerodynamics-dependent term of the Hamiltonian. The control angles
σ and αeff are optimized in two steps, firstly σ and αeff in second instance.

Bank angle optimization

The optimal bank angle program maintains body axis direction ub in the plane
defined by pv and velocity v1 [88].
To understand this, let us firstly consider the drag only; it is possible to rearrange
pv as pv = pv// + pv⊥, the component pv// being parallel to v, pv⊥ being orthogonal
1Bank angle control gets singular if pv ⊗ v = 0, but such condition is never verified exactly in a
3-D model
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to v. The problem and the solution are outlined followingly.

min
D

pT
vD therefore

 pv// v < 0
Eq. (4.5)
=⇒ pv// D > 0 =⇒ minimize D

pv// v > 0
Eq. (4.5)
=⇒ pv// D < 0 =⇒ maximize D

(4.12)
D does not depend on σ, thus pv// D is not regulated with σ.
Let us now add the lift: the function to be minimized becomes pT

v (D +L) = pv// D+

pT
v⊥L. If lift L is orthogonal to plane defined by pv and v, then pT

v⊥L = 0: results
obtained for the drag-only analysis are unchanged. However, if σ is not bounded,
there always exists an interval [σ1, σ2] such that 1) pT

v⊥L(σ
∗) < 0 ∀σ∗ ∈ (σ1, σ2),

2) pT
v⊥L(σ1) = p

T
v⊥L(σ2) = 0, 3) σ∗ = (σ1 + σ2)/2 minimizes pT

v⊥L(σ
∗). Procedure

is graphically reported in Fig. 4.2.
Therefore there always exists an optimal σ minimizing the contribution of the aero-
dynamic forces on the Hamiltonian. Imposing the optimal σ corresponds to 1) im-
posing ub to lie in the plane defined by pv and v, 2) guaranteeing that L obtained
with positive angle of attack satisfies pT

v⊥L < 0. Optimization of αeff is thus reduced
to a 2-D analysis, on a half plane.

Total angle of attack optimization

Let us consider the plane defined by pv and v. Optimal L and D have been
demonstrated to lie on such plane. Let ς be the angle between −pv and v. Moreover,
let us consider the polar model outlined in Eq. (4.2). If 0 < ς < π/2, the optimal
αeff minimizes the projection of D +L on pv provided that

tan ς =
∂D

∂L

Eq. (4.2)
= 2kCL/αα

∗
eff therefore α∗

eff =
tan ς

2kCL/α

(4.13)

For π/2 ≤ ς < π the optimal αeff is unbounded since the relationship between CD

ad CL is parabolic.
Adding the pure control constraint in Eq. (4.6), the optimal angle of attack program
satisfies

α∗
eff =


tan ς

2kCL/α

if tan ς < 2kCL/ααmax

αmax if tan ς ≥ 2kCL/ααmax

(4.14)
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Figure 4.2: Generic L and optimal L∗ associated with the same D and obtained
for different σ. Generic aerodynamic force Fa and optimal one F ∗

a move on the
paraboloid associated with the aerodynamic polar, in blue. L∗ minimizes pT

v F
∗
a

As outlined before, optimal bank angle σ∗ is imposed by finding the corresponding
optimal u∗

b . Therefore, using Rodrigues’ formula, it results
e∗ = −v

v
⊗ pv

u∗
b =

1

v
[cosαeff v + sinαeff (e⊗ v) + (1− cosαeff) (e · v) e]

(4.15)

4.2.3 Dual problem formulation

At last, let us introduce the TPBVP that is solved, the dual version of Eq. (4.8).
Controls are expressed as function of primal and dual variables using Eq. (4.10),
Eq. (B.3), Eq. (4.13) and Eq. (4.15). Therefore f (x,uT , αeff, σ) = f (x,λ), and
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fλ(x,λ)
.
= −∇xH̃(x,λ). In addition y(t)

.
=

[
x(t)T,λ(t)T

]T, and F (x,λ)
.
=[

f (x,λ)T ,fλ (x,λ)
T
]T

. The TPBVP formulation for the presented problem re-
sults then

Find y(t), tf s.t. ẏ = F (y) and



x(t0) = x0

r(tf ) = rf

v(tf ) = vf

λm(tf ) = 0

H̃(tf) = 0

(4.16)

A single shooting approach can be employed to solve Eq. (4.16); given the flow of
the controlled primal-dual system φ(y0, t0; t) = y(t), the problem is reformulated
as

Find λ0, tf such that φ(t) satisfies


r(tf) = rf

v(tf) = vf

λm(tf) = 0

H̃(tf) = 0

(4.17)

Boundary conditions correspond to nonlinear constraints with respect to λ0 and tf;
λ0 and tf shall be therefore guessed.

4.3 Double homotopic scheme

Finding an educated guess for λ0 represents a problem, as costates lack of clear phys-
ical meaning. Moreover, it has been experimentally verified that solving Eq. (4.17)
is difficult with a multi-start technique, namely randomly guessing λ0 and tf. A dou-
ble continuation scheme is therefore adopted 2: a first continuation scheme, feasible
for a first initialization with random number generation, steps from a quadratic ob-
jective function to the linear one [90, 91]; a second scheme introduces aerodynamic
forces [92] with a linear scaling.
2In literature, the concept of double homotopy commonly refers to employment of two different
continuations schemes to tackle the same problem [89]; in our case, instead, two different problems
are solved in series, using different continuation rules
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Objective function homotopy Let ε ∈ [0, 1] denote the homotopic parameter
such that the generic objective of the homotopic scheme Jε results

Jε
.
=

tf∫
0

[
ε

(
1

m

Tmax

Ispg0
uT

)
+ (1− ε)

(
1

m

Tmax

Ispg0
uT

)2
]

dt (4.18)

Therefore JεEO , with εEO = 0, has a running cost quadratic with respect to the
control, while JεAO , with εAO = 1, corresponds to the original objective function in
Eq. (4.7). Therefore one can weight the quadratic running cost and the linear one
changing ε. Substituting J with Jε in Eq. (4.8) determines a different structure of
the optimal thrust program with respect to Eq. (B.3). Lawden’s theory is indeed
still valid, but H̃T,ε is quadratic in uT ; control becomes of bang-continuous-bang
type. Laws dictating thrust program are reported in Appendix B.

Aerodynamic forces homotopy Let S̄ref ∈ [0, 1] denote the non-dimensional
reference surface. Dynamics right-hand side f can be generalized by fS̄ref

such that
the acceleration terms fS̄ref ,v read

fS̄ref ,v =
Tmax

m
uT + g + S̄ref

D +L

m
(4.19)

Velocity terms and the mass term are left unchanged. Similarly as before, S̄ref = 1

corresponds to the initial dynamics; on the other hand S̄ref = 0 corresponds to
dynamics without aerodynamic forces: substituting f with fS̄ref

in Eq. (4.8) alters
the magnitude of aerodynamic forces, without modifying the structure of the corre-
sponding aerodynamic-related hamiltonian H̃a,S̄ref

. Optimal α∗
eff and σ∗ programs

are therefore left unmodified.

At this stage, functions with subscripts ε, S̄ref stem from the generalized Hamil-
tonian H̃ε,S̄ref

, reading

H̃ε,S̄ref
= λT

r v + λT
v g + H̃T,ε + H̃a,S̄ref

(4.20)
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Bλ
ε,S̄ref

thus denotes the generalized primal-dual TPBVP, outlined followingly

Find λ0, tf such that φε,S̄ref
(t) satisfies


r(tf) = rf

v(tf) = vf

λm(tf) = 0

H̃ε,S̄ref
(tf) = 0

(4.21)

The followed strategy is outlined in Fig. 4.3. ε(i), with i = 0, . . . , n, is the generic

Start
RNG of
λ

(g)
0 , tf

(g)

ε← εEO, i← 0

S̄ref ← 0, j ← 0

Solve Bλ
ε,0

w/ guess λ(g)
0 , tf

(g)

Solve Bλ
εAO,S̄ref

w/ guess λ(g)
0 , tf

(g)

λ0, tf

i← i+ 1

ε← ε(i)

j ← j + 1

S̄ref ← S̄
(j)
ref

λ0, tf

λ
(g)
0 ← λ0

tf
(g) ← tf

ε = εAO

Finish

S̄ref = 1

Jε homotopy

fS̄ref
homotopy

λ
(g)
0 ← λ0

tf
(g) ← tf

True

False

False

True

Figure 4.3: Double homotopy structure
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term of the monotonic series {ε(i)} with ε(0) = εEO, ε
(n) = εAO; similarly S̄

(j)
ref ,

with j = 0, . . . ,m, is the generic term of the monotonic series {S̄(j)
ref} with S̄

(0)
ref =

0, S̄
(m)
ref = 1. Convergence of each subproblem is guaranteed by the correct spacing

within series {ε(i)} and {S̄(j)
ref}: a logarithmic scale is employed for the former [93],

while a linear scaling is sufficient for the latter.

4.4 Solution structure validation

In the present section the results and iterations of both homotopic schemes are re-
ported. The zero-finding problem associated to the TPBVP is solved at each step
employing MATLAB’s Optimization Toolbox fsolve; dynamics is propagated em-
ploying the variable-order Adam–Bashfort–Moulton scheme; switching detection is
embedded in the dynamics function, therefore a multi-step integrator better handles
control discontinuity.
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Figure 4.4: Jε homotopic continuation scheme for control profile

4.4.1 Objective function homotopic scheme

As discussed, the first performed step is the homotopy of the objective function Jε.
Iterations reported in Fig. 4.4 confirm how the optimal control profile passes from
continuous to bang-idle-bang : the blue control profile corresponds to ε satisfying
εAO − ε = 1; therefore ε coincides with εEO

.
= 0. Similarly, the dark red control
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profile corresponds to ε satisfying εAO − ε = 0, i.e. ε = εAO
.
= 1.

Mass iterations for the optimal control profile are shown in Fig. 4.5a: mass m(t) is
not C1, as it presents corner points at control switches. Similar corner points are
observed in the comass λm(t) as well, in Fig. 4.5b.

Remark 4.4: Such non regularities remain in the successive homotopy; particular
attention shall be paid to them, as their presence may imply accuracy reduction for
the employed collocation scheme.

Remark 4.5: Since dynamic variables are in the same order of magnitude, dy-
namics are integrated without adimensionalization: λm is dual with respect to m,
not mnd; for representation purposes, however, the latter and other physical non-
dimensional quantities have been employed.

4.4.2 Dynamics homotopic scheme

In the representations that follow the first homotopy passages are reported in light
grey to allow for a precise comparison of how the optimal solution evolves.
It is evident how the optimal control (Fig. 4.6) moves from a bang-idle-bang structure
to an idle-bang structure: as expected, aerodynamic forces allow to alleviate thrust
utilization. This, in turn, reflects on the trajectory; as represented in Fig. 4.9, the
fuel optimal path gets distorted from an approximately straight one: the rocket tends
to maximize the downwards acceleration to maximize the influence of aerodynamic
forces3 and exploit them to deflect trajectory and damp kinetic energy. For this
reason, αeff is not maximized in the first seconds of descent: this trades-off initial
aerodynamic braking for energy damping at lower altitude, with greater speed and
thicker atmosphere. αeff along the continuation scheme is represented in Fig. 4.7.
The outcome of such fuel sparing is a non-negligible save in the required fuel mass,

as reported in Fig. 4.8; with respect to the case without aerodynamic forces, final
mass sparing amounts to over the 4% of the initial one. Comparing such strategy
with a case with null αeff and drag only, improvement of nearly 2% of the final mass
is observed. On the other hand, an important countereffect arises, as visualized in
Fig. 4.10: inclusion and optimization of aerodynamic forces directs the primer vector
pv upwards, therefore optimal thrust is oriented downwards. This is evidently not
compatible with common rocket pointing requirements: rocket shall always head
upwards to allow for the vertical landing to be completed safely. An overview of the
3Indeed D ≈ v2, L ≈ v2
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(a) Mass m(t)
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Figure 4.5: Jε homotopic continuation scheme for optimal non C1 quantities

strategies to counteract such problem is discussed in Chap. 6. In the drag-only case,
instead, thrust is always directed upwards.

4.4.3 Summary

Merit figures, along with additional information, are reported in Tab. 4.2. Optimal
direction of the body axis u∗

b has been discarded: limitation of αmax and hypothesis
of rocket body cylindrical shape guarantee upwards pointing.
Despite limitations associated with thrust direction, the aerodynamic powered land-
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Figure 4.6: fS̄ref
homotopic continuation scheme for thrust magnitude profile
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Figure 4.7: fS̄ref
homotopic continuation scheme for αeff profile

ing problem structure offers, if solved, a strong proof of concept for an innovative
algorithm: highly nonlinear dynamics and non regularity of the dynamic quanti-
ties represent challenging features for a collocation scheme. The following chapter,
therefore, builds on the knowledge acquired within the present one to develop a
hybrid collocation scheme.
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Figure 4.8: fS̄ref
homotopic continuation scheme for mass m(t)

Table 4.2: Results summary

Dynamics uT profile αeff profile mf [kg] tf [s] tsw [s]

No aerodynamics Bang-idle-bang - 839.1 22.01 14.19
Drag only Idle-Bang Reinforced null 864.3 24.05 19.14

Full aerodynamics Idle-Bang Continuous-Bang 882.5 24.14 21.31
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Figure 4.9: fS̄ref
homotopic continuation scheme for trajectory
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Figure 4.10: Comparison of thrust components between presented dynamic models
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5| Hybrid Pseudospectral

Algorithm

This is my horse Fritz.

Dr. King Schultz
Django Unchained

As previously discussed, the highly nonlinear dynamics and the bang–bang optimal
control structure have dictated requirements over the integrator capabilities: choos-
ing the best one has proven to be of utmost importance. Minimizing computational
time without sacrificing solution accuracy requires therefore a tailored algorithm
structure, to prevent the complexities mentioned above to degrade algorithm per-
formances.
It has been chosen to merge a convex form of the aerodynamic powered landing
problem with an indirect collocation scheme. The whole strategy is represented in
Fig. 5.1. Following the flowchart direction, we first approach the problem BNλ :

previous studies have demonstrated the accuracy and speed of methods based on
lossless convexifications (LCvx) and on pseudospectral transcription [40, 41]. In this
work the lossless scheme is augmented with successive convexifications (SCvx); these
allow to 1) use a free final time formulation and 2) include aerodynamic forces . Mul-
tipliers are then mapped to costates using the CMT outlined in Eq. (3.20), which is
polynomial with respect to multipliers and time bounds of the segments. Applying
it, thus bridging the direct step with the indirect one, is of minor computational
requirements. Costates are however dual to the non-physical states required by
the LCvx [37]: an additional mapping is therefore applied, following indications in
[94]. An indirect solver based on pseudospectral collocation is finally employed as
refinement strategy since 1) it does not treat discontinuous functions, the control,
but only C0 functions, the dynamics; 2) it can exploit the multipliers found at each
collocation point from the direct step. Such indirect collocation is further equipped
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with a tailored switching detection scheme and the meshing strategy allows handling
non-regularities associated with C0 states and costates. Deeper analysis of the direct
and indirect step are reported respectively in Sec. 5.1 and in Sec. 5.2. In Sec. 5.3,
performances of the complete algorithm are provided.

Start

End

Apply CMT
on Λ̃

Transform
X̃, λ̃

X̃, λ̃, tf

X̃, Λ̃, tf

Y , tf

Solve

BNλ

Solve

BλN

See Figure 5.3 See Eq.(3.20)

See [94]See Figure 5.5

Figure 5.1: Complete hybrid algorithm structure

5.1 Direct convex collocation scheme

Let us consider the original problem formulated in Eq. (4.8). Such problem con-
tains sources of non convexity that are handled with combined approaches: 1) a
lossless convexification handles the non convexity associated to thrust magnitude
constraints 2) a linearization handles the aerodynamic contributions and the final
time contribution associated with the pseudospectral transcription.

Thrust magnitude lossless convexification

With respect to the original problem, we ignore at first the aerodynamic forces,
and hypothesize fixed final time t̄f . The main issue arises from the limitation on
thrust magnitude Eq. (4.6). In Fig. 5.2a, the acceptable domain is highlighted
when projected onto the 2-D plane uT,x − uT,y, and it constitutes a non-convex set.
Moreover, let us introduce the control Γ ∈ R such that

∥T ∥2
Tmax

= uT ≤ Γ and uT,min ≤ Γ ≤ uT,max (5.1)
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Then the non-convex feasible set in Fig. 5.2a is mapped to the convex feasible set
in Fig. 5.2b, which constitutes a 3-D projection of the 4-D conic constraint in the
first relation of Eq. (5.1). Demonstration that such relaxation is lossless is provided
in [37]: if one solves the optimal control problem associated with this new relaxed
constraint, first relation in Eq. (5.1) is satisfied tightly, therefore the initial thrust
magnitude constraint is satisfied.

uT,x

uT,y

uT,max

uT,min

(a) 2-D projection of 3-D thrust magni-
tude constraint

uT,x

uT,y

Γ

(b) 3-D projection of 4-D thrust magnitude
relaxed SOC constraint

Figure 5.2: Thrust magnitude convexification

Applying the following change of variables

ua
.
=

Tmax

m
uT ξ

.
=

Tmax

m
Γ z

.
= log(m) (5.2)

dynamics is rewritten as

d
dt



r

v

z


 .

=
dx̃
dt

= f̃na(x̃,ua, ξ) =


v

ua + g

− ξ

Ispg0

 (5.3)

the objective function J reads

J (ξ) =

∫ t̄f

0

ξ

Ispg0
dt (5.4)
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and constraints in Eq. (5.1) become

∥ua∥2 ≤ ξ (5.5)

uT,mine
−z ≤ ξ ≤ uT,maxe

−z (5.6)

At last, the non convex constraint in Eq. (5.6) can be convexified into
ξ ≥ ξmin

.
= uT,mine

−z0

[
1− (z − z0) +

(z − z0)
2

2

]
ξ ≤ ξmax

.
= uT,maxe

−z0 [1− (z − z0)]

(5.7)

where z0
.
= log (m0 − uT,maxt/Ispg0).

The problem defined by the objective function in Eq. (5.4), satisfying dynamics in
Eq. (5.3), respectful of boundary conditions, and respectful of control constraints
in Eq. (5.5) and in Eq. (5.7) constitutes a convex optimization problem when tran-
scribed with a pseudospectral method.

Aerodynamic forces successive convexifications

The algorithm treats the aerodynamic forces with successive linear convexifications,
augmenting the control components presented in the previous paragraph with aero-
dynamic controls.
Adding aerodynamic contributions, the dynamics right-hand side reads

f̃(x̃,ua, ξ, αeff, σ) =


v

ua + g + aaero

− ξ

Ispg0

 where aaero =
D +L

ez
(5.8)

With respect to the indirect formulation, however, the lift expression is explicitly
formulated with respect to the bank angle; constraints on the aerodynamic controls
are reduced to bounds over the angle of attack, and, eventually, on the bank angle.
Considering the lift force, only its direction iL is dependant on the bank angle σ:
the procedure mapping the velocity vector v and σ to iL is reported in Appendix C.
iL is a sinusoidal vectorial function of σ. Therefore

L(rz,v, αeff, σ) =
1

2
ρ(rz)Sref CL/α αeff v

2 iL (v, σ) (5.9)
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which shall be coupled with box constraints over σ to guarantee correct convergence
of the algorithm

−π < σ < π (5.10)

In addition, lower bound on αeff shall be addedd to guarantee αeff ≥ 0◦.

Remark 5.1: Employing ub Sec. 4.1 as control variable is theoretically possible.
However, ub identifies a direction, therefore it shall be ∥ub∥2 = 1; this is a strongly
non convex constraint. No lossless relaxation has been elaborated, therefore the
formulation with αeff and σ is preferred.

Let us gather the controls in the vector u, defined as

u
.
=

[
uT

a , ξ, αeff, σ
]T

(5.11)

The functions x̃(t)(k) and u(t)(k) define the kth term of a series of reference solutions
of the aerodynamic powered descent problem with fixed final time t̄f . Each of these
solutions satisfies the dynamics in Eq. (5.8) linearized about the previous reference
solution of the series. Therefore x̃(k) and u(k) satisfy

˙̃x(k) = f̃
(k)
l

[
x̃(k),u(k)

]
= A(k)x̃(k) +B(k)u(k) + e(k) (5.12)

where

A(k) .
=


03x3 I3x3 03x1

Jx̃a
(k−1)
aero

01x7

 , B(k) .
=


03x6

I3x3 03x1 J[αeff,σ]a
(k−1)
aero

01x3 −
1

Ispg0
01x2

 ,

e(k)
.
= f̃

[
x̃(k),u(k)

]
−A(k)x̃(k−1) −B(k)u(k−1) (5.13)

Aerodynamics are therefore handled imposing at each kth step the linearized dy-
namics in Eq. (5.12). Reference to successive convexifications arises as the OCP is
reformulated at each step linearizing dynamics with respect to a different reference
solution.
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Final time successive convexifications

Final time is handled in a similar manner as done for the aerodynamic forces. How-
ever, its contribution is due to the transcription process. The direct collocation
scheme employs an hp pseudospectral discretization, building on [41]. Let us use
the same notation employed in Sec. 3.2.1; in addition to nodal states and controls,
X̃s gathers the states over sth segment. At kth iteration, left-hand side of Eq. (5.12)
is transcribed using an LGR pseudospectral scheme and linearized about previous
iteration; therefore

2h

tf(k−1)
DiX̃

(s,k) = A
(s,k)
i X̃

(s,k)
i +

+B
(s,k)
i U

(s,k)
i +C

(s,k)
i tf

(k) + ẽ
(s,k)
i

C
(s,k)
i

.
=

2h

[tf(k−1)]
2DiX̃

(s,k−1)

ẽ
(s,k)
i

.
= e

(s,k)
i − 2h

tf(k−1)
DiX̃

(s,k−1)

s = 1, . . . , h

i = 0, . . . , n
(5.14)

The system of equations in Eq. (5.14) is linear with respect to unknowns, therefore
it can be used as constraint within a convex formulation. The objective function
is integrated with a pseudospectral quadrature scheme and its constribution with
respect to final time linearized as well; in such form, it can be used as objective of
a convex optimization problem. Therefore

J̄
[
U (k), tf

(k)
]
=

1

2h

[
h∑

s=0

n∑
i=0

wiξ
(s,k−1)
i

]
tf

(k) +
tf

(k−1)

2h

h∑
s=0

n∑
i=0

wiξ
(s,k)
i (5.15)

Let ∆(•)(k) .
= (•)(k) − (•)(k−1). Two fixed trust region are included in problem for-

mulation: the first trust region ζtf relates to tf at each iteration via the constraint∥∥∆tf
(k)
∥∥
2
≤ ζtf; similarly, the second trust region ζαeff is imposed through the con-

straint
∥∥∆αeff

(s,k)
i

∥∥
2
≤ ζαeff , with i = 0, . . . , n and s = 1, . . . , h. Constraints are

nonlinear, therefore linearization carries approximation inaccuracies: the solution of
the linearized problem may differ sensibly from the solution of the original one; in
our case, this leads to oscillations about the optimal solution, preventing the algo-
rithm from reaching convergence. The need to limit variations of tf and nodal αeff

follows. Equation (5.14) and Eq. (5.15) can be integrated in problem formulation
along with the trust region constraints. This completes the convex pseudospectral
collocation scheme.
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5.1.1 Direct step overview

The convex optimization problem solved at each iteration of the direct step reads

min
U (k), tf(k)

J̄
[
U (k), tf

(k)
]

s.t.



Dynamics in Eq. (5.14)

X̃
(1,k)
0 = x̃0

X̃
(h,k)
n = x̃f

X̃
(s−1,k)
n = X̃

(s,k)
0∥∥ua

(s,k)
i

∥∥
2
≤ ξ

(s,k)
i

ξ
(s,k)
i ≥ ξmin

(s,k)
i

ξ
(s,k)
i ≤ ξmax

(s,k)
i

0 ≤ αeff
(s,k)
i ≤ αmax

−π ≤ σ
(s,k)
i ≤ π∥∥∆αeff

(s,k)
i

∥∥
2
≤ ζαeff∥∥∆tf

(k)
∥∥
2
≤ ζtf

(5.16)

The employed strategy is represented in Fig. 5.3: iterations are stopped if |∆tf
(k)| <

tol, and multipliers are extracted at the last step. The problem is solved with se-
quentially more complex dynamics: guess time for the LCvx formulation is retrieved
from the 1-D problem analytic formulation from [95]; then time is left varying. D
and L are only added afterwards, and separately. Trust regions over αeff are set
to αmax/10 and αmax/50 for the steps respectively with drag only with both lift
and drag. An LGR scheme is employed for transcription, thus collocating dynam-
ics at the first time instant; the open-source convex solver ECOS [58] is used as
back-end solver for the problem Eq. (5.16), setting its tolerances abstol, feastol,
reltol= 10−10. Strict tolerances allow to minimize the error associated with sub-
problem solution.

5.2 Indirect collocation scheme

Within the indirect step, problem in Eq. (4.16) is transcribed and dynamics is col-
located with a pseudospectral scheme; the resulting zero-finding problem is solved
sequentially with the Newton-Raphson method. Employment of a pseudospectral
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X̃(k̄),U (k̄), t
(k̄)
f

X̃(k̄), U (k̄), t
(k̄)
f

X̃(k̄), U (k̄), t
(k̄)
f
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(0) ← tf

(k̄)
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tf
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End
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Solve
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Eq.(5.16)

Start
{1}

End
{1}

w/ fixed tf

w/ no D,L

w/ no D,L

w/ no L

Solve
{1}

Solve
{1}

Solve
{1}

X̃, Λ̃, tf

X̃(k̄) ← X̃(k)

U (k̄) ← U (k)

tf
(k̄) ← tf

(k)

X̃(k),U (k), tf(k)

|∆tf
(k)| < tol

X̃(k−1),U (k−1), tf(k−1)

X̃(k),U (k), tf
(k)True

False

Figure 5.3: Direct step zoom-in, from Fig. 5.1
On the left: Solver structure

On the right: Solver loop block - {1}

scheme allows high solution accuracy with few nodes employment. Dynamics is
linearized at each iteration step: the transcribed problem corresponds therefore to
a determined linear system; this ensures swift sequential solution of the BVP. The
same procedure is applied to H̃f , thus constraining the degree of freedom provided
by tf.
Results outlined in Chap. 4 show m(t) and λm(t) are not C1; this is due to the
structure of the optimal thrust magnitude profile. Collocation shall therefore deal
with such non-regularities with a tailored approach. To do this, domain is meshed
exploiting the guess from the direct method, and structure of such mesh is hold dur-
ing the BVP solution procedure. Moreover, the resulting linear system is rescaled
to minimize ill-conditioning of the dual system [24].

Remark 5.2: A further higher-order non regularity arises from the saturation of
αeff; since αeff ∈ C0, this would ensure m(t), λm(t) ∈ C1. Inaccuracies associated
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with thrust switch angular points are however dominant, and therefore treated.

Meshing strategy for thrust non-regularities handling

Local non-regularities can be accurately approached if local collocation is adopted:
knots shall be placed at switches, exploiting the piecewise structure of the integrated
dynamics. With respect to standard hp collocation methods [96], solution refinement
is guaranteed by an r scheme: such method modifies location of knots rather than
the interpolating polynomials order or the number of segments [97].
As shown in Chap. 4, a single switching instant tsw shall be handled; it is therefore
added to the unknowns vector. The switching function Sf is exploited as additional
necessary constraint: from variational formulation, indeed, Sf = 0 whenever thrust
switches; therefore, the related constraint results

Sf [y (tsw)] = 0 (5.17)

The previous nonlinear constraint is linearized sequentially during the BVP solving
procedure; with the inclusion of such constraint, the final problem is still a linear
system. Imposition of final hamiltonian and of Eq. (5.17) reads

A(k)

H̃f
∆Y

(2,k)
n = E(k)

H̃f

A(k)

H̃f

.
= ∇T

y H̃
(k−1)
f

E(k)

H̃f

.
= −H̃(k−1)

f
A(k)

Sf
∆Y

(1,k)
n = E(k)

Sf

A(k)
Sf

.
= ∇T

ySf
(k−1)

E(k)
Sf

.
= −Sf

(k−1)

(5.18)

Mesh initialization is based on [45]: switching function is approximated with the
piecewise linear function Sf,pw that interpolates the values mapped from the guess;
then t

(0)
sw

.
= S−1

f,pw(0). Remeshing procedure is reported in Fig. 5.4; number of seg-
ments and collocation points have been chosen for visual clarity only. The new mesh
is constrained to number of segments equal to the number of switches augmented by
1; for our problem 2 segments are therefore sufficient. This allows each segment to
feature a constant thrust magnitude profile; to further validate effectiveness of such
technique, the PMP is still applied at each node, without externally constraining
thrust magnitude. With the r collocation, dynamics are imposed using different scal-
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Figure 5.4: Remeshing procedure representation – k̄ is last iteration of the direct
step; relative mesh on top. Remeshed domain for the first iteration of indirect step
on bottom

ing factors for the two segments, given their different lengths. Therefore, dynamics
at the generic kth reads

D(s,k)
i ∆Y (s,k) = A(s,k)

i ∆Y (s,k)+

+C(s,k)
i

[
∆t

(s,k)
f −∆t

(s,k)
0

]
+ E(s,k)

i

D(s,k)
i

.
=

2

t
(s,k−1)
f − t

(s,k−1)
0

Di

A(s,k)
i

.
= JyF

(s,k−1)
i

C(s,k)
i

.
=

2[
t
(s,k−1)
f − t

(s,k−1)
0

]2DiY
(s,k−1)

E(s,k)
i

.
= F

(s,k−1)
i − D(s,k)

i Y (s,k−1)

s = 1, 2

i = 0, . . . , n
(5.19)

where t
(1,k)
0 = 0 ∀k to satisfy boundary conditions; moreover t(2,k)0 = t

(1,k)
f

.
= t

(k)
sw and

t
(2,k)
f

.
= t

(k)
f .
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5.2.1 Indirect step overview

Let the augmented unknowns vector Ỹ .
=

[
Y T, tsw, tf

]T
include the final time and

switching time. An fLGR collocation scheme is employed, as dynamics imposition
at final node increases accuracy in the estimation of H̃. Problem is further scaled
according to the Jacobian Rows Normalization (JRN) presented in [24], thus de-
creasing ill-conditioning. The generic solved problem at kth iteration results

Ã
(k)

lin ∆Ỹ
(k) = b̃

(k)

lin where



Ã
(k)

lin
.
=KfA

(k)
lin

b̃
(k)

lin
.
=Kfb

(k)
lin

Kfi,j
.
=


1∥∥A(k)
lin,i

∥∥
2

if i = j

0 else

(5.20)

and

A(k)
lin =



A(k)
dyn,y

Aknot

ABCs

A(k)

H̃f

A(k)
Sf

A(k)
dyn,t

0(4ns+2) x 2


(5.21)

A(k)
dyn,y =

 D(1,k) − blki=1,...,n

[
A(1,k)

i

]
0[2nsn] x [2ns(n+1)]

0[2nsn] x [2ns(n+1)] D(2,k) − blki=1,...,n

[
A(2,k)

i

]
 (5.22)

A(k)

H̃f
=

[
01 x [2ns(n+1)] 01 x 2nsn A(k)

H̃f

]
(5.23)

A(k)
Sf

=
[

01 x 2nsn A(k)
Sf

01 x [2ns(n+1)]

]
(5.24)

A(k)
dyn,t =

 −C(1,k) 0[2nsn] x 1

C(2,k) −C(2,k)

 (5.25)
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b(k)
lin =


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E(k)
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E(k)
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(5.26)

Remaining constant matrices Aknot and ABCs are the constant Jacobians respec-
tively of the knotting constraints and of state boundary conditions with respect to
vector Y . Moreover, the operator blki=1,...n (•) assembles a rectangular n x (n + 1)

block matrix placing at each ith block row and (i+ 1)th block column the argument
(•) evaluated at the (i+ 1)th node.
Ỹ is updated at each iteration step using the fixed trust region ζỸ , thus providing

Ỹ (k) = Ỹ (k−1) + ζỸ ∆Ỹ
(k) (5.27)

and the linear system in Eq. (5.20) is solved using MATLAB’s built-in linear system
solver mldivide, employing an LU factorization. BVP is considered solved if

max
[
abs

(
∆Ỹ (k)

)]
< tol (5.28)

where abs(•) provides the component-wise absolute value of (•) and max(•) selects
maximum component of (•). The complete indirect step is reported in Fig. 5.5.

5.3 Final Results

Accuracy and computational times of the direct step need to be traded off. The first
refers to the estimation of the guess: to evaluate guess accuracy, comass estimated
using 10 segments and 20 collocation points is taken as reference solution; segments
and collocation points are varied, and the maximum relative error of the new λm his-
tory with respect to the reference λm is computed. Results are reported in Tab. 5.1.
Maximum iterations are fixed to 50, for each step of the problem: dashed lines rep-
resent settings that have not reached convergence. Computational times have been
evaluated averaging 10 runs for each setting.
Among the shown configurations, the one with 5 segments and 5 collocation nodes
per segment is chosen: it grants accurate costates with scarce computational times.
Converged values of the objective function and of final time are reported, as function
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Figure 5.5: Indirect step zoom-in, from Fig. 5.1
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Table 5.1: Normalized error over estimated λm and computational
times† for different combinations of segments and collocation points
per segment

Segments

1 2 5 10

C
ol

lo
ca

ti
on

po
in

ts
p.

s. 5

C
P

U
ti

m
e†

[s
]

- 0.391 1.060 3.050

10 0.406 1.347 - 11.414

20 1.264 3.947 13.951 43.491

5

λ
m

er
ro

r
[%

]

- 17.08 5.79 5.72

10 32.20 9.54 - 2.12

20 11.2 3.60 5.72 /

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7, 16 GB 2666 MHz DDR4

of the iterations, in Fig. 5.6. Trust region over final time value is not reinforced be-
fore introduction of aerodynamic forces; this allows to improve speed performances.

Remark 5.3: With respect to results reported in Tab. 4.2, the final mass reached
in Fig. 5.6 for the drag-only case is 1.5% higher. This behaviour is caused by the
fact simulations shown in Fig. 5.6 have upper bound αmax of 15°; in the homotopic
formulation, instead, in the drag-only analysis it is reinforced αeff = 0 as such value
is consistent with the hypothesis of lift neglect.

Optimal trajectories for the original problem and for the only-drag and full aero-
dynamic formulations are reported in Fig. 5.7: addition of lift, namely iterations
16, 20 and 24, corresponds to curved optimal trajectories, as shown by the ground
tracks represented with dashed lines.
Furthermore, convergence of most relevant controls is reported in Fig. 5.8 and in

Fig. 5.9, respectively the profiles of uT and of αeff. Dynamics at final nodes is not col-
located, and relative integration weights are null. The optimizer is therefore not able
to optimize such values, the control is unregulated, thus discarded in the analysis and
not represented. Moreover, uncertainty over thrust switching time is directly related



5| Hybrid Pseudospectral Algorithm | 77

0 5 10 15 20 25

Iteration

0.83

0.84

0.85

0.86

0.87

0.88

0.89

m
[-
]

21

21.5

22

22.5

23

23.5

t f
[s
]

Converged mass Converged tf

Figure 5.6: Final mass and final time iterations of direct step, with 5 segments
and 5 collocation points per segment. Iteration 1: LCvx formulation; Iterations 2-3:
Free tf added; Iterations 4-15: D added; Iterations 16-24: L added

to the mesh; with the selected mesh such uncertainty amounts approximately to 0.5
s for the final converged control profile. At last, estimation of costates is reported
in Fig. 5.10; λ∗, the optimal costates, are retrieved from the solution reported in
Sec. 4.4. It is evident the orders of magnitude are correctly grasped for covelocities
and comass; as well, order of magnitude is correctly estimated for λrz , while errors
grow sensibly for λrx and λry . This setback, however, is of minor importance in the
economy of the complete algorithm; ∂H̃/∂rx = ∂H̃/∂ry = 0, thus λrx and λry can
be corrected in a single iteration within the indirect algorithm.

Let the guess from the direct method be fixed. The computational time of the
indirect step is dominated by the magnitude of the trust regions and by the number
of adopted collocation points. Accuracy is instead dominated by the collocation
points only. However, employment of higher number of collocation points allows to
increase the size of the trust regions before incurring in numerical instability: linear
approximation accuracy is favored by high number of collocation points. Results are
therefore reported in Tab. 5.2, where etf and etsw denote the error in the estimated tf

and tsw, evaluated with respect to the benchmark described in the double homotopy.
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Figure 5.7: Optimal trajectory for progressive direct iterations
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Figure 5.9: αeff for progressive direct iterations
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ζỸ ,max denotes the maximum trust region value allowing the given setting to reach
convergence. Tolerance parameter tol is set to 10−5.
For the same sets of collocation points, moreover, an accuracy analysis over the

Table 5.2: Indirect step performances for different collocation points per segment

Collocation points per segment

10 20 40 80

CPU time†[s] 1.2008 2.2047 5.1953 15.3827

etf [s] 0.056 0.120 0.037 0.005

etsw [s] 0.077 0.109 0.038 0.003

ζỸ ,max 0.6 0.8 0.85 0.85

mf [kg] 882.49 882.60 882.55 882.52

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7, 16 GB 2666 MHz DDR4

final condition satisfaction is carried out: controls are retrieved using the PMP and
closed loop rocket dynamics is simulated. Specifically, all controls are interpolated
using cubic approximations, with the exception of the thrust magnitude; follow-
ing suggestions in [42, 34], thrust magnitude is treated employing a zero-order-hold
which mirrors the bang-bang structure of the control profile. Results are reported
in Fig. 5.11: on the left the absolute error over final touchdown position erf is re-
ported, computed at the final instant of simulation; on the right the corresponding
touchdown velocity; this is evaluated during the simulation, within the integrator
when the condition rz = 0 m is detected. Results show maximum error in accuracy
slightly higher than 1 m over final landing site position; such lack of convergence
to 0 can be explained considering the corner point in αeff profile is not grasped
by the collocation scheme and by the applied cubic interpolation. Vertical touch-
down velocity levels down at 9 m/s, corresponding to the 3% of the initial vertical
velocity; the need for online optimization, even ignoring unmodelled dynamics, is
evident. Yet, performances offered employing 40 collocation points per segment are
extremely promising: it is erf which determines non null touchdown velocity, and
its error is in the order of 0.2‰ of the initial height.
Finally, it is worth comparing the discussed strategy with the single shooting-based

homotopic scheme: computational times are reported in Tab. 5.3. Considering the
homotopic approach, 11 subproblems are solved to shift from the energy optimal
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Figure 5.11: Overview of touchdown position accuracy and relative touchdown
velocities

solution to the acceleration optimal one, and 11 iterations are required to add the
aerodynamic contributions.

Remark 5.4: To face the homotopic continuation problem smartly, states and
costates should be augmented with their State Transition Matrix (STM) to be used
in the correction step, thus increasing convergence robustness [98]; this, however,
would require propagating the additional 196 STM components. External switching
detection techniques have been moreover tested and verified [98]; they pay the price
of solving a nonlinear zero-finding problem at each switching detection, yet allow
integrator to integrate the bang-bang dynamics correctly. The presented approach
exploits MATLAB functions, which are not tailored to handling propagation and
correction of discontinuous dynamics.

Despite the homotopic approach computational times being penalized by the em-
ployed COTS functions, Tab. 5.3 highlights a great gap between the single shooting
and the hybrid strategy, thus demonstrating superiority of the presented technique.
Computational times relative to hybrid methods are reevaluated in a full hybrid
method loop, with 5 collocation points and 5 segments for the direct step and 40
collocation points per segment for the indirect step.
At last, in Fig. 5.12 the solution extracted from the direct method is presented,



82 | 5| Hybrid Pseudospectral Algorithm

Table 5.3: Comparison of computational times between fully
indirect homotopic approach and hybrid technique

CPU Time†[s]

Indirect homotopy
J̄ε homotopy 256.7

fSref
homotopy 124.9

Hybrid method

Direct step 1.1708

CMT and λ̃ mapping 6 10−4

Indirect step 4.7608

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7, 16 GB 2666 MHz
DDR4

along with the aerodynamic forces and with a visual representation of the thrust
magnitude. Aerodynamic forces are projected on plane x− y, and on plane y− z; it
is evident lift allows for trajectory deflection; thus, as stated multiple times in the
present work, lift is determinant to limit thruster use towards braking purposes.
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Figure 5.12: Optimal landing with aerodynamic forces and thrust magnitude –
Trajectory is projected on x− y and y − z planes along with aerodynamic forces
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6| Conclusions and Future

Developments

After all... it’s just a trick.
Yes, it’s just a trick.

Jep Gambardella
Great Beauty

An innovative strategy combining the workhorses of direct and indirect methods
has been presented and discussed; as well, extensive analysis has focused on the
Aerodynamic Powered Landing Problem, outlining its positive aspects and limits.
The research questions posed in Sec. 1.3 are therefore hereafter answered.

1) The Covector Mapping Theorem has proved its validity when an estimation of the
costates is seeked for. This feature is not altered neither by lossless, nor by succes-
sive convex formulations. The CMT, however, fails at providing accurate costates
for complex formulations in a straightforward manner: employment of additional
constraints to facilitate direct method convergence shall be well weighted; such con-
straints shall be ensured not to be active at convergence.

2) Optimization of lift forces allows to sensibly increase the gains in spared propel-
lant mass; it is therefore a potentially valuable tool in rocket trajectory optimization.
Nonetheless, the bare formulation of this problem carries intrinsically non-feasibility
in rocket attitude that shall be counteracted with a more constrained scenario.

3) An r-method is a powerful tool to include non-regularities of primal-dual dy-
namics in an indirect formulation; lower order non-regularities within the searched
control laws can be therefore efficiently handled, even in case of a bang-bang struc-
tures. A collocation scheme based on r-method grants high accuracy with fairly low
computational requirements.

Such answers build on the work previously performed within the optimal control
research field; specifically, coupling of convexification and CMT adds to the pillars
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laid in the Optimal Powered Landing field [73, 40]; embedding a switching detec-
tion within an indirect collocation scheme opposes the direct-based techniques to
handle bang-bang structures [27, 45]; PMP use reduces the dimension of the solved
problem, eliminating the controls. Finally, the benefits of lift optimization in a 3-D
environment ideally extend the previous analyses developed within the 2-D powered
landing scenario [39].

6.1 Future developments

In the present work some points have been left open, thus constituting matter for
future research. They are therefore outlined followingly, stemming from the research
questions and building on the provided answers.
1a) How does the CMT behave if successive convexifications are handled augment-
ing the objective function with slacks on trust regions and virtual controls? [36]
Does it still provide estimates in the same order of magnitude as the real costates?
1b) In [79] the CMT for the fLGR scheme is demonstrated excluding pure state
constraints. Does it still hold if pure state constraints are added? What effect does
their inclusion have on the estimated costates?
2a) What is the best approach to include lift, in a 3-D model, featuring thrust as
upwards directed? Is constraining thrust direction feasible, thus modifying PMP to
include conic constraints? Which performances are obtained if a first segment of
engine shut off is instead allowed?
2b) How to include in the indirect problem formulation limitations relative to maxi-
mum thrust deflection angle with respect to body axis? In the present work the two
directions have been kept separated, but explicit constraints between them allow for
precise satisfaction of technological limitations.
3a) Which are the accuracy performances of the indirect collocation scheme if non-
regularities of higher order with respect to discontinuities are accounted for? Then,
How to tune efficiently the number of nodes per segment if the segments feature
different lengths?
3b) How does the proposed collocation scheme behave if multiple bangs are present
in the solution? Switching function has multiple roots, thus particular attention
shall be paid to handling the constraints associated with null Sf .
3c) How can the collocation scheme speed be improved? And how much time can
be spared with non constant trust regions?



A| Optimality Conditions with

Path Constraints

Aim of the following appendix is to describe the necessary conditions arising from
path constraints introduction in the optimal control problem. They have already
been partially treated with the PMP introduction; nonetheless, it is worth providing
a deeper analysis to fully understand their meaning and the reasons behind the
inclusion of the path constraints in the Hamiltonian. Further clarifications and
explanations are available in literature [63, 64].

A.1 Mixed constraints - Erdmann conditions

Let us consider a generic scalar mixed constraint, hypothesized to be active, with
scalar control; it reads

gm
(
x, u, t

)
= 0 (A.1)

Given the optimal solution, neighbouring solutions shall still satisfy δgm = 0 and
the perturbation differential equations for δx. Substituting the virtual variation of
the control from δgm = 0 in the perturbation equations one obtains [63]

d
dt
(δx) =

[
∂f

∂x
− ∂f

∂u

(
∂gm
∂u

)−1
∂gm
∂x

]
δx (A.2)

which is the constraint-compliant time derivative of the variation δx. Accordingly,
costate dynamics read

λ̇ = −

[
∂L
∂x

+
∂f

∂x
− ∂f

∂u

(
∂gm
∂u

)−1
∂gm
∂x

]T

λ (A.3)
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where the inequality expressed by the following equation shall be satisfied to guar-
antee each admissible δu determines the cost function to increase

(∂L/∂u) + λT(∂f/∂u)

∂gm/∂u
< 0 (A.4)

Finally, costate boundary conditions and transversality conditions read

λf =
∂Φf

∂xT
f

Lf + λ
T
f ẋf = −∂Φf

∂tf
(A.5)

When constraint is instead inactive, (A.3) is simply substituted by

λ̇ = −
(
∂L
∂x

+
∂f

∂x

)T

λ (A.6)

Whenever the constraint switches from inactive to active, indeed, costate dynamics
switches from (A.6) to (A.3), with the additional constraint in (A.4). This set of
conditions is known as Erdmann corner conditions. It is evident that these condi-
tions imply discontinuities in the control, thus in the state and costate dynamics.
Nonetheless, state, costate remain time-continuous.
By introducing the Hamiltonian as in (2.15), the control equation provides for active
constraint [64]

µ = −(∂L/∂u) + λT(∂f/∂u)

∂gm/∂u
(A.7)

thus µ shall satisfy µ > 0 when mixed constraint is active.
On the other hand, for inactive mixed constraint, µ shall be µ = 0 for the Hamilto-
nian form of the costate dynamics to be equivalent to (A.6).
It is finally evident that including the mixed constraints in the Hamiltonian makes
the Hamiltonian formulation equivalent to the Lagrangian one, provided that con-
ditions (2.18) are added to the optimality necessary conditions. Erdmann corner
conditions have been included in problem formulation.

Remark A.1: Erdmann conditions do not alter the TPBV nature of the rear-
ranged OCP. On the other hand, the uncertainty over number and position of junc-
tion points increases the complexity of practically solving the TPBVP; the same
difficulty arises from the PMP, as it stems from inequality constraints as well. Prac-
tical ad-hoc techniques shall be then employed to overcome such difficulty [98].
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A.2 DAE index reduction

Until this point it has been hypothesized the jacobian of active constraints ∂ga/∂uT

to be full rank. Intervals over which such condition is not satisfied are called sin-
gular subarcs. Solving the singular case problem requires a differential approach to
overcome the higher complexity.
In the Lagrangian augmentation ga can be substituted with its lowest order time
derivative g(q)a such that ∂g

(q)
a /∂uT is full rank; in addition, lower order derivatives

shall be nulled at an internal point in the singular subarc. Such procedure is defined
as DAE index reduction [65]. An example of the aforementioned procedure follows,
in the application of a case of practical interest.

A.2.1 Pure state constraints - Jump conditions

Presence of pure state constraints is a sufficient condition for active constraints
jacobian singularity to be verified. In addition, they are widely diffused in advanced
OCP formulations of the powered descent and landing problem [99, 84, 36].
The process developed in section A.1 following the additional conditions provided
in section A.2 can be employed to treat pure state constraints.
Let us consider an active scalar constraint, which reads

S
(
x, t

)
= 0 (A.8)

Similarly to what done before, Hamiltonian could be augmented with S; however, S
does not explicitly depend on the control: control equations solution would not be
influenced by the presence of S in the Hamiltonian. On the other hand, including
ẋ = f (x, u, t) in (A.8) would allow to include the control, thus allowing for treating
the pure state constraint as done before for the mixed constraint. This can be done
by substituting (A.8) with an equivalent differential expression.
Let t1 and t2 be the times corresponding to constraint entering and exiting corner ;
enforcing (A.8) from t1 to t2 is equivalent to nulling the first q − 1 derivatives of S
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at t1 and nulling q-th derivative along the constrained arc:

S
(
x, t

)
= 0 with t ∈

[
t1, t2

]
⇐⇒


N

(
x1, t1

)
=


S(0)

S(1)

...

S(q−1)


t=t1

= 0

S(q)
(
x, u, t

)
= 0 with t ∈

[
t1, t2

]
(A.9)

where S(q) is the first S time derivative explicitly including the control u; in addition
x1 = x(t1); such constraint is called q-th order state constraint.
At this stage S(q) substitues gm in the analysis of section A.1, and it can be embedded
in the Hamiltonian [64]; it is left imposing N (x1, t1) = 0, which makes up an
interior-point constraint.
Interior point constraints can be treated as boundary conditions: terminal cost shall
be augmented withN (x1, t1), and associated vector of Lagrange multipliers ν1 ∈ Rq;
integral term over [t0, tf ] can be substituted by the summation of integrals over the
intervals [t0, t1− ], [t1+ , t2− ] and [t2+ , tf ]; nulling dĴ requires that

λT
1− = λT

1+ + νT
1

∂N

∂x1

λ2− = λ2+

H1− = H1+ − νT
1

∂N

∂t1

H2− = H2+

(A.10)

Such interior point conditions are defined jump conditions and shall be added to the
boundary conditions in (2.17) to complete problem formulation. A more punctual
demonstration of (A.10) is provided by [63].

Remark A.2: Jump conditions consist of interior-point constraints: these modify
the nature of the OCP equivalent BVP; the double constraint is indeed substituted
by a multiple constraint. A problem with internal active pure state constraints is
indeed a MPBVP: discontinuities in costates and Hamiltonian sum to difficulties
dictated by the non-definition of constrained subarcs boundaries.
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Quadratic Objective Function

The following derivation follows the structure of the optimal control retrieval for the
thrust program. Lawden’s primer vector theory is still valid. Letting α̂ = Tmax/Ispg0,
H̃T,ε results

H̃T,ε = α̂

(
ε

m
− λm −

Ispg0
m

λv

)
uT + (1− ε)

1

m2
α̂2u2

T (B.1)

Since ε < 1, then
∂2H̃T,ε

∂u2
T

> 0 ∀ ε. The theoretical optimal thrust magnitude u
(th)
T

can be therefore retrieved imposing
∂H̃T,ε

∂uT

= 0. Such last condition provides

0 = α̂

(
ε

m
− λm −

Ispg0
m

λv

)
+ (1− ε)

2

m2
α̂2u

(th)
T =⇒

=⇒ u
(th)
T =

ε

m
− λm −

Ispg0
m

λv

(1− ε)
2

m2
α̂

(B.2)

However, (B.2) does not include saturation of uT , which shall therefore be added on
top of such condition. The optimal thrust profile, compatible with thrust limitations,
results therefore

u∗
T =


uT,min if u

(th)
T < uT,min

u
(th)
T if uT,min < u

(th)
T < uT,max

uT,max if u
(th)
T > uT,max

(B.3)
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u∗
T = u

(th)
T u∗

T u
(th)
Tu

(th)
T

H̃T,ε

uT

u∗
T

uT,min uT,max

Figure B.1: Cases for the application of the PMP to the quadratic formulation
Dark green: u

(th)
T < uT,min

Light blue: uT,min < u
(th)
T < uT,max

Violet: u
(th)
T > uT,max

Cases in (B.3) are graphically reported in Figure B.1; the three parabolas correspond
to three different expressions of the function in (B.1): they all feature positive
concavity and have a root in the origin.



C| Parameterization of Lift

Versor in v and σ

Parameterization of lift versor iL requires accounting for velocity v components if
an aerodynamic angles-like expression of iL is pursued. Indeed, iL is orthogonal to
vector v: its expression in the inertial frame is therefore dependant on v components.
Bank angle is not constrained: any versor orthogonal and rigid with respect to v is
sufficient to introduce the bank angle influence. In our case, v/v is obtained rotating
the z-versor of the inertial frame iz according to

v/v =


cos δ 0 sin δ

0 1 0

− sin δ 0 cos δ




1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 iz =

cos δ cos γ

− sin γ

sin δ cos γ

 (C.1)

The previous equation leads

tan δ =
vz
vx

hence, for − π/2 < δ < π/2,



cos δ =
1√

1 +
v2z
v2x

sin δ =
vz/vx√
1 +

v2z
v2x

(C.2)

Bank angle identifies rotations about v/v; the matrix RI
σ (v, σ) of the eigenrotations

of bank angle σ in the inertial reference frame exploits therefore v/v as eigenaxis
and σ as Euler angle, and satisfies

v/v = RI
σ (v, σ)v/v (C.3)
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iL can be finally assembled applying rotations Eq. (C.1) first and Eq. (C.3) in second
instance on the inertial x-versor ix. They read

iL (v, σ) = RI
σ (v, σ)


cos δ 0 sin δ

0 1 0

− sin δ 0 cos δ




1 0 0

0 cos γ − sin γ

0 sin γ cos γ



1

0

0

 =

= RI
σ (v, σ)


cos δ

0

− sin δ

 = RI
σ (v, σ)



1√
1 +

v2z
v2x

0

− vz/vx√
1 +

v2z
v2x


(C.4)
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