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Abstract 

Objective. Bimanual humanoid platforms for home assistance are nowadays available, both as 

academic prototypes and commercially. Although they are usually thought of as daily helpers 

for non-disabled users, their ability to move around, together with their dexterity, makes them 

ideal assistive devices for upper-limb disabled persons, too. Indeed, teleoperating a bimanual 

robotic platform via muscle activation could revolutionize the way stroke survivors, amputees 

and patients with spinal injuries solve their daily home chores. Moreover, with respect to direct 

prosthetic control, teleoperation has the advantage of freeing the user from the burden of the 

prosthesis itself, overpassing several limitations regarding size, weight, or integration, and thus 

enables a much higher level of functionality. Approach. In this study, nine participants, two of 

whom suffer from severe upper-limb disabilities, teleoperated a humanoid assistive platform, 

performing complex bimanual tasks requiring high precision and bilateral arm/hand 

coordination, simulating home/office chores. A wearable body posture tracker was used for 

position control of the robotic torso and arms, while interactive machine learning applied to 

electromyography of the forearms helped the robot to build an increasingly accurate model of 

the participant’s intent over time. Main results. All participants, irrespective of their disability, 

were uniformly able to perform the demanded tasks. Completion times, subjective evaluation 

scores, as well as energy- and time- efficiency show improvement over time on short and long 

term. Significance. This is the first time a hybrid setup, involving myoeletric and inertial 

measurements, is used by disabled people to teleoperate a bimanual humanoid robot. The 

proposed setup, taking advantage of interactive machine learning, is simple, non-invasive, and 

offers a new assistive solution for disabled people in their home environment. Additionnally, it 

has the potential of being used in several other applications in which fine humanoid robot 

control is required. 

Keywords: assistive robotics, bimanual tasks, daily-living activities, teleoperation, humanoid robotics, myocontrol, human-

machine interaction 

 

1. Introduction 

The world around us is shaped to be operated by arms and 

hands [1]. The loss or impairment of the upper limb leads 

therefore to a dramatic degradation in the quality of living [2, 

3]. A person with an upper-limb disability is prevented from 

swiftly acting in the world since state-of-the-art prosthetic or 

assistive solutions cannot usually operate more than one 

degree of freedom (DoF), or if they can, this happens, in most 

cases, sequentially, one motion at a time [3]. After an 
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amputation, however, surprisingly rich residual muscle 

activity can still be detected from the surface of the residual 

limb using, e.g., surface electromyography (sEMG) [4]. In 

controlled conditions, amputees can produce several 

discernible signal patterns corresponding to the actions 

intended to be performed with the absent limb [5]. But so far, 

such techniques have shown little generalization power across 

participants and when used in practical environments. This is 

largely due to signal variability, for example when lifting 

weights or changing body posture [6], as the registered hand 

gesture patterns are no longer recognized by the machine 

learning algorithm in these cases. The problem becomes even 

more complex whenever the device is supposed to help the 

participant to operate in unstructured home environments 

while performing complex tasks such as daily-living chores. 

So, whereas most research on using and decoding sEMG 

signals (myocontrol) for assisting impaired patients is 

naturally focused on controlling prosthetic devices [7, 8], in 

this work we tackle a new application, using myocontrol to 

teleoperate a humanoid robot performing bimanual 

manipulation tasks in a household environment. There are 

several reasons behind this idea: 

i) Service humanoid robots are thought of as flexible and 

dexterous assistants for elderly or disabled people. Several 

dual-arm collaborative robots exist in this context [9]. Freed 

of the manufacturing constraints of prostheses (weight, size, 

space, etc.), they can be equipped with much more complex 

electronics, allowing better reaching and manipulation 

capabilities than current prosthetic arms. 

ii) At the same time, the separation of the manipulation 

device from the participant avoids the hurdles posed by the 

typical prosthetic system: excessive weight [10] and heat, bad 

adherence to the skin, low biocompatibility, etc. 

iii) To a large extent, teleoperation is irrespective of 

distances, meaning that the proposed approach could be used 

for remote maintenance or search-and-rescue tasks as well. 

Additionally it could provide disabled users with a possibility 

of teleworking [11]. 

iv) Lastly, such a setup allows direct comparison of non-

disabled and disabled participants using exactly the same 

hardware, which has not been the case so far as non-disabled 

participants used bypass sockets [12], while impaired 

participants used their prosthesis shaft. Hence, the current 

setup allows to see how close the performance of impaired 

patients is to that of the non-impaired participants. 

The reliability of myocontrol in unstructured environments 

can be greatly improved using incremental machine learning 

(iML) [13, 14], i.e., an algorithm that can accommodate for 

new knowledge on the fly. Degris et. al. [15] have explored 

the usage of reinforcement learning in the context of 

participant/prosthesis interaction. In such approaches, a “lazy” 

data-gathering strategy is enforced, actively recruiting the 

participant to update the intent-detection model whenever it 

becomes unstable and/or new patterns (i.e. actions) are 

required. In [16], the interaction between the participant and a 

simulated prosthetic system is studied from a psychological 

point of view in order to maximize the quality of the data 

produced by the participant. This methodology heavily relies 

on a carefully designed protocol to involve the participant in 

an action / model building / action loop. Whether this idea 

works in practice, however, is still controversial [1]. 

In order to verify the effectiveness of the proposed 

framework, we have designed an experiment in which 

participants teleoperated a dexterous assistive humanoid 

platform using two commercially available sEMG bracelets 

and a body posture detection device based upon inertial 

measurement units [17]. iML was employed to account for and 

correct instabilities of the intent detection system. The trained 

model was updated whenever the participant deemed the task 

to be unattainable. Simple verbal feedback with the 

experimenter was used to ascertain that an update was 

required. The tasks to be performed consisted of complex 

daily-living activities resembling kitchen and office chores 

involving bimanual coordination, such as unscrewing a bottle, 

dialing numbers on a phone and manipulating a pot and its lid. 

As it is well known that, due to the plasticity of the human 

brain [18], the more a person repeats a task the more she/he 

learns and improves in performing it. This has already been 

shown in [19, 20], in which sEMG was used for teleoperating 

unimanual tasks. In [20], 8 subjects performed one task, with 

4 repetitions and 2 sessions over 2 days. The learning, 

evaluated with TCTs and path efficiency, was visible over the 

repetitions and continued over the sessions. [19] shows that, 

even after a week of non-practicing, the learning regresses 

only slightly. In our case, we have wondered if disabled 

participants would achieve similar performance levels when 

compared to non-disabled participants after several repetitions 

of teleoperated tasks. We hypothesized that such a 

teleoperation setup and the associated protocol would enable 

participants to complete all tasks, and that a learning effect 

would be recognizable, leading, in the end, to uniform results 

across disabled and non-disabled participants. We also 

speculated that the performance of disabled participants would 

not differ statistically from that of non-disabled ones. The 

experimental results confirm that all participants were able to 

quickly and efficiently learn to teleoperate the platform and 

successfully complete all tasks, and that a learning effect was 

clearly visible, speeding up the execution of the tasks, 

increasing the efficiency and decreasing energy consumption 

over time. Learning was uniform across seven non-disabled 

participants and two upper-limb disabled persons. One 

disabled participant was born with right-hand trans-radial 

congenital deficiency and the second participant had bilateral 

trans-radial traumatic amputation. The learning effect was 

even stronger in the case of a single non-disabled participant 

who repeated the same full set of tasks for five consecutive 

days. 



Biomed. Phys. Eng. Express 8 (2022) 015022  Connan et al  

 3  
 

2. Materials and Methods 

2.1. Participants 

Seven able-bodied (all males, aged 28.4±7.1 years) and two 

disabled participants were involved in this experiment (cf. 

Table S1): one congenitally missing his right hand (D1) and 

the other one having been double-amputated (D2) following a 

trauma (more details about them are described in Table S2). 

All participants were evaluated over a single session and one 

of the non-disabled participants repeated the experiment over 

5 days. 

The experimental protocol was thoroughly explained to the 

participants before the experiment, and each of them signed a 

written informed consent form. The experiment was 

performed according to the WMA Declaration of Helsinki and 

was approved by the Work Ethical Committee of DLR. 

2.2. Protocol of the experiment 

The participants were asked to teleoperate the humanoid 

robot TORO [21] with the goal of performing complex 

bimanual tasks. In order to do so, the participants were 

equipped with an IMU-based body tracking device for 

controlling the arms and torso of the robot [17], and with two 

Myo-armbands from Thalmic Labs1, recording the EMG data 

of the forearm muscles to control the robot’s hands, and 

additionally the wrist(s) in the case of the disabled 

participants. 

                                                           
1 previously available at www.thalmic.com 

Seven participants performed the experiment, each one in a 

single session. Additionally, to further investigate the learning 

effect, one participant was randomly selected from the pool of 

single-session participants to perform the experiment on 4 

additional days for a total of 5 sessions. 

The experiment consisted of three tasks, the first two tasks 

being divided each in two subtasks. These tasks are inspired 

by those found in assessment protocol for prosthetics users 

such as the Assessment of Capacity for Myoelectric Control 

TABLE 1 

DESCRIPTION OF THE TASKS 

Task 

ID 
Summary of 

the task 
Detailed description of the task 

1a 

Take the lid off 

the pot and 

place it on the 

table. 

Take the pot handle with the right hand. With 

the left hand, take the lid off the pot and 

place it on the table at place 2. 

1b 

Take an 

orange ball 

and put it in 

the pot. 

With the left hand, take the foam ball from 

place 3 and place it in the pan. Take the pot’s 

lid from place 2 and put it back on the pot in 

place 1. 

2a 

Unscrew the 

cap of the 

bottle 

With the right hand, take the bottle from 

place 1, lift it, rotate it about 45° and with the 

left hand, unscrew the cap. 

2b 

Pour the 

bottle’s 

contents into 

the open pot. 

With the left hand, take the pot handle. With 

the right hand, simulate pouring the contents 

of the bottle into the pot by rotating the 

wrist. (The bottle is filled with pebbles 

blocked at the opening with a foam to avoid 

dangerous spreading in case of task failure) 

Place back the bottle at place 1. 

3 

Type numbers 

on a fixed 

phone. 

With the left hand, with a pointing index, 

type on the buttons 9, 1, 1. With the right 

hand, with a pointing index, press on loud 

speaker. 

 
 

 

Figure 1. Illustration of the tasks to execute with the assistive robot.  
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(ACMC) [22] and from the Chedoke Arm and Hand Activity 

Inventory (CAHAI) [23, 24], a validated upper-arm functional 

assessment for stroke recovery, already used in teleoperation 

experiments [25, 26]. The tasks are explained in detail in 

Table 1 and illustrated in Figure 1. For the single-session 

participants, each task had to be repeated four times: the 

subtasks had to be completed separately before starting a new 

repetition. As we considered the very first repetition as a 

familiarization phase, the long-term participant had to perform 

only three repetitions of the tasks on the remaining days of the 

experiment after his first session. The familiarization phase 

was however still kept in the analysis, as it is considered an 

important phase for the learning effect. 

 

During the experiment, the participants were placed on the 

right side of the robot at a proper distance from it for safety 

reasons but so that the table setup was clearly visible to them 

in order to accomplish the tasks. A bird-eye view of the 

experiment is shown in Figures 2A and 2B. 

Before the first execution of each subtask, the participant 

was instructed by the experimenter on how to perform that 

specific subtask. A task was considered as failed by the 

experimenters if one of the objects fell from the table, if the 

participant could not retrieve an object, or if it was estimated 

by the experimenter that the participant could not regain a 

correct setting of the objects to complete the task. If such a 

case happened, the teleoperation mode was suspended and the 

objects would be set back to the initial task setting by the 

experimenters before the participant could start a new attempt. 

The participants were not restricted in the number of attempts 

per repetition. A repetition was considered as completed once 

the participant achieved the task. Subtasks were achievable 

separately, meaning, for example, that the participant did not 

need to restart from task 1a if task 1b failed. A participant 

could decide to pause or stop the experiment at any moment. 

If there was a failure from a device, this was also considered 

as a failed attempt, as the longer the participant took to 

complete a task, the higher the risk was that a system failure 

happened. Additionally, if the prediction of the hand action 

was judged too unstable to perform a task, this was also 

considered as a failed attempt and the experimenter could 

decide to collect more samples to train the hand action 

predictor.  
The tasks were performed in the order presented in Table 

1, except for D2, where, due to a time limitation, and to make 

sure as many tasks as possible would be completed in this 

limited time, the experimenters had the participant perform 

Task 3 before Task 2 as it was considered a shorter task. At 

the end of the session, the participants were asked to complete 

a subjective assessment form. Participant D2 was 

unfortunately not able to complete this form due to a time 

limitation. The questionnaire was based on the NASA TLX 

test [27] and different factors were evaluated by the 

participants on a scale from 0 to 20: mental demand, physical 

demand, temporal demand, performance, effort and frustration 

(cf. Supplementary Materials for definitions). When 

averaging over all criteria, it was decided to transform the only 

positive criteria ‘performance’ into a negative one by 

subtracting the evaluated score to the maximum value of 20 in 

order to get a global negative index. 

As a side note, since the tasks were very different and not 

designed to be achieved in the same amount of time, we did 

not compare the TCTs task-wise.  

For this experiment, we evaluate the Task Completion 

Times (TCTs) for each task, the subjective evaluation 

concordance, the travelled path and the speed of motion for all 

participants. 

2.3. Setup of the teleoperation equipment 

The IMU-based upper body tracker system, also called 

BodyRig [17], was used for transmitting the position and 

orientation of the participant’s hands. It uses the absolute 

orientation in space of the participant’s body segments, 

gathered via IMUs, to compute the forward kinematics of the 

participant’s body up to the level of the hand using a set of 

pre-defined link lengths. The difference between these lengths 

and the link lengths of the participant’s actual skeletal frame 

Figure 2. Bird-eye view of the experiment. (A) The double-sided amputee opening a bottle’s cap (Task 2A). (B) One of the non-disabled participants pouring 

a bottle’s content into a pot (Task 2B). 

 

(A) (B) 
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causes a divergence between the actual absolute position of 

the participant’s hands and the ones measured by the BodyRig. 

This factor does not influence the measured orientation of the 

body segments. A problem, which occurred because of this, is, 

e.g., the user trying to join the robot's hands, but not being able 

to, due to their own limbs colliding with each other, while the 

robot's hands are still separated. This was fixed by introducing 

translational offsets, which could be adjusted on the fly, that 

were applied to the commanded pose as transmitted from the 

BodyRig. 

The desired hand pose was computed by a hand movement 

intention predictor. The predictor utilizes EMG as input, as 

measured by the two Thalmic Lab’s Myo sensors. The setup 

is depicted in Figure S1A of the Supplementary Materials 

(SM) and uses computers to process the data between the 

BodyRig and the humanoid robot. The sEMG sensors were 

sampled at a frequency of 200Hz and filtered through a low-

pass 1st order Butterworth filter with 2Hz cut-off frequency, 

while the BodyRig was sampled at 500Hz and filtered through 

a low-pass 2nd order Butterworth filter with 5Hz cut-off 

frequency. The main reason for the relatively low cut-off 

frequencies is that the participants were directed to perform 

slow and steady movements, which should allow considering 

any signal with components of higher frequencies as noise, 

both on the sEMG and on the BodyRig measurements. In the 

case of non-disabled participants, IMUs were fitted on chest, 

humeri, forearms and hands (cf. Figure S1B in SM), which 

allows for direct transmission of the participant’s hands’ pose 

and orientation. In the case of amputated participants, it was 

not possible to fit an IMU directly on the hand, and therefore 

no direct measurement of the wrist angles was possible. In 

these cases, the hand movement predictor, trained 

accordingly, transmitted the desired wrist flexion. For the 

wrist pronation/supination, the desired angle was measured 

based on the orientation of the corresponding humerus and 

forearm IMUs. The relevant vectors are shown in Figure S1C 

in SM. The measured pronation/supination angle θradial was 

then multiplied by a magnifying factor and an offset was 

added so as to guarantee reachability of all operationally 

necessary hand poses by the participant. These factors were 

set during a calibration procedure at the beginning of the 

session and at later points, if the need arose. 

2.4. Hand movement intention predictor training 

protocol 

The hand movement intention was predicted by a ridge 

regressor with a Random Fourier Feature-based Kernel [28, 

29]. This characteristic typically guarantees better accuracy, 

but makes the prediction non-linear with respect to the sEMG 

samples. Due to this, any hand pose given by the combination 

of two or more actions had to be separately sampled. For 

example, if a power grasp with flexed wrist was required to 

complete a task, it was necessary to create a new target vector 

(for example power flexed in addition to a normal power 

grasp) and train the predictor with samples corresponding to 

this specific position. Using a simple ridge regressor, on the 

other hand, it is sometimes possible to combine target vectors 

such as wrist movement and a hand grasp to obtain the 

combination of the two, provided that a high enough number 

of sensors is available [30], which was not the case here. It has 

to be noted that commercially available systems (COAPT and 

Ottobock) also use machine learning allowing multi-DoF 

control of upper-limb prostheses. 

In the case of non-disabled participants, the hand movement 

intention predictor was trained on samples for all required 

hand poses (namely rest, power grasp and pointing), while the 

desired pose wrist was measured directly based on an IMU 

coupled to the user’s hand. 

In the case of amputees, the hand movement intention 

predictor was required to estimate the desired wrist pose as 

well, as it was not possible to monitor the desired wrist angles 

by coupling an IMU to the participant’s hand. Therefore, the 

total number of required hand poses was larger, and 

accordingly the protocol for the disabled participants was to 

train the predictor on samples corresponding to only the hand 

poses specifically needed for the current task. These were 

defined as shown in Table S3. 

For the case of the unilateral amputee (D1), the predictor 

was trained only for the missing right hand, while the wrist 

pose for the healthy limb was transmitted based on the data of 

the IMU coupled to the hand, like in the case of non-disabled 

participants. For D1, as a congenital amputee, a non-intuitive 

control mapping was applied, which consists in using the 

signals generated by a group of muscles initially not targeted 

to produce a specific hand action, to actually control the 

robotic hand’s equivalent pose. For D2, the same mapping was 

used for the pointing gesture in different wrist positions, as the 

intuitive signal patterns that D2 was able to produce were too 

similar to each other. 

In all cases, the experimenter could add new samples if the 

prediction was too unstable, with particular focus on samples 

acquired with the participant in the specific body poses in 

which the prediction seemed most unstable. These new 

samples were acquired in 1 to 2 minutes and this time was not 

considered in the overall completion times, which were based 

on the cumulative TCTs for successful and unsuccessful trials. 

The participants were actively requested to indicate if they 

thought an update was required. At the beginning of each 

session, EMG was sampled in two body poses, in order to 

generalize the prediction over the limb position effect. 

Typically, each hand pose was sampled twice at session start, 

with the user holding their arms bent at about 90 degrees, 

respectively with the elbows in contact with the trunk, and 

with the elbows held outwards from the body. 

2.5. Setup of the humanoid robot  

In order to perform the teleoperated bimanual tasks, the test 
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participant controlled the humanoid robot TORO. This robot 

was developed by the German Aerospace Center (DLR) for 

conducting research on walking and multi-contact balancing. 

A detailed description of the system architecture can be found 

in [31, 32, 21]. TORO has a height of 1.74 m, and a weight of 

76.4 kg. It features 39 DoFs in total. The legs, arms, and hip 

contain 25 joints that are based on the technology of the DLR-

KUKA LBR (Lightweight robot arm), and can be operated 

both in position and torque-controlled mode [33]. The neck 

comprises two DoFs, which are locked at all times during the 

session, as they are not used for conducting the presented 

experiments. The robot is also equipped with two prosthetic 

hands from Touch Bionics (i-Limb Ultra Revolution), each 

hand providing six DoFs, five for individually flexing each 

finger and one for rotating the thumb. In terms of sensing, the 

robot features a position and torque sensor in each of the 25 

joints based on the LBR. Besides, the ankles are equipped with 

force-torque sensors to measure the contact forces and torques 

at the feet. The chest carries an IMU for obtaining the 

orientation and angular velocity of the torso. 

The participant’s intention and motion were captured using 

the equipment above described. The commands of the 

participant were summarized as desired poses for each hand’s 

frame of reference. Those poses were transmitted via Wi-Fi to 

the control system of the robot. The architecture of the control 

framework [34] for the robot (Figure S1D in SM) can be 

summarized as follows: i) In order to maintain balance, the 

location of the Center of Mass (CoM) and the orientation of 

the hip are stabilized via a Cartesian compliance in a 

predefined configuration. ii) The hands are also governed by 

Cartesian compliance, and their set points (desired poses) are 

commanded by the operator. iii) The resulting forces required 

at the CoM (to keep the balance) and at the hands (to perform 

the desired task) are used as input to compute the required 

forces at the feet to fulfill both goals (keeping the balance and 

performing the task). This is achieved via a constrained 

quadratic optimization problem [34]. iv) As a last step, the 

computed forces are mapped to the joint torques, which are 

then commanded to the robot.  

To perform the experiments, the humanoid robot TORO 

was autonomously keeping the balance using suitable forces 

at the feet, while the hands were free to perform the 

commanded manipulation tasks. The balance of the robot was 

ensured via a passivity-based, whole-body control framework 

[34]. One of the advantages of this control framework is that 

it enables a compliant and robust behavior, which is crucial 

for operating the humanoid robot in environments with 

uncertainties, such as the presented teleoperation scenario. 

Furthermore, it allows the operator to safely stand close to the 

robot to get a better view on the manipulation task at hand.  

2.6. Statistical methods  

We performed a linear mixed effect regression (LMER) 

analysis over all tasks, using the R package lme4 [35], with 

log(var), to normalize the data, with var being respectively the 

TCT, speed or travelled distance (sumdist), as the dependent 

variable, the repetition and the amputation condition as 

independent variables, and participants and tasks as random 

effects to adapt to the different initial skill level of each 

participant and the different difficulties of the tasks. The 

distributions of the residuals were not statistically different 

from the normal distribution according to Shapiro-Wilk and 

Jarque-Bera tests. One-way analysis of variance and Tukey's 

multiple-comparison test were used to analyze the data 

(P<.05). Notice that a slightly different protocol is used for the 

disabled participants to consider their amputation. For the 

long-term subject, we only analyzed the data on a descriptive 

level as the data were not independent due to the learning 

effect.  

3. Results 

The participants had five daily-living tasks to accomplish 

by teleoperating a humanoid platform while their movements 

and TCTs were registered. The five tasks, which are described 

more in detail in Figure 1 and Table 1, can be summarized as 

follows: opening a pot, placing a ball inside the pot and closing 

(A) (B) (C) 

Figure 3. Results of the study on all attempts averaged over the four repetitions. Points indicate the values for each participant. The box limits represent 

the interquartile range. Error bars indicate 25th and 75th percentile. The bold line represents the median. (A) The total task completion time (TCT) on all 

attempts of all tasks with an average over the 4 repetitions is shown. (B) The averaged TCT over the 4 repetitions is shown for each task. (C) Number of 

updates of the iML model during the session, in addition to the initial training.  
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it, opening a bottle, pouring the content of the bottle, pressing 

a sequence of buttons on a phone. All details about the design 

and protocol including the tasks, metrics, setup, and statistical 

analysis of this experiment can be found in the Materials and 

Methods section. In the following subsections, we evaluate the 

TCTs for each task, the subjective evaluation concordance, 

and the path efficiency for the single-session participants, 

including disabled participants, and for the long-term 

participant.  In order to better describe the experimental 

protocol, a video clip in the Supplementary Materials shows 

exemplary runs of the study with non-disabled participants, as 

well as with D1 and D2. 

3.1. Quantitative evaluation: uniform Task Completion 

Times 

All participants successfully completed all tasks (Figure 

3B), albeit in some cases the successful attempt (defined in the 

protocol part of the Materials and Methods section) was 

preceded by a few failed ones. On average, 1.6 attempts were 

required to successfully complete each task for the non-

disabled participants, 1.95 for D1 and 1.32 for D2 (Figure 

3C). Total TCTs for all tasks averaged over the 4 repetitions 

ranged from 392s to 1035s (Figure 3A) and the total TCTs of 

the disabled participants, namely 916s and 655s for D1 and 

D2 respectively, are comparable to the ones of the non-

disabled participants, which averages at 704s. Although in 

some cases a disabled participant needed more time than the 

others, e.g., D1 in Task 3, the opposite case also appears, e.g., 

Task 1a, which D1 accomplished with the shortest TCT of all. 

D2 also achieved results comparable to the others, with an 

average TCT for all tasks (131s) slightly better than the mean 

TCT of non-disabled participants (141s). D1, who has an 

overall average TCT of 183s, is still comparable to the non-

disabled participants. Notice that D1 and D2 obviously used a 

slightly different setup and protocol to control the robotic 

wrist (see Materials and Methods for more details). All 

participants were actively requested to update the intent-

detection model whenever it became instable or new patterns 

were required. The number of updates required per session is 

visible in Figure 3C. On average, during the session, 3 

updates were required, ranging from 1 to 5 across the 

Figure 4. Subjective assessments (based on the NASA TLX evaluation test) for the single-session participants. Subjective scores are between 0 and 

20 (the lower the better, except for evaluation of Performance and Control). All criteria are based on self-assessment, including ‘performance’ and 
‘control’. D2 did not fill the TLX evaluation due to a time limitation. (A) Spider plot of the average TLX evaluation on all non-disabled participants for 

each criterion. (B) Spider plot of the TLX evaluation for the disabled participant D1 for each criterion. (C) Task-wise average evaluation criteria. For 

this average, the positive criteria ‘performance’ was transformed into a negative one by subtracting the evaluated score to the maximum possible (20) in 
order to get a global negative index. (the lower the better) (D) Evaluation of the quality of the body pose control and the hand pose control. (the higher 

the better) 

(A) (B) 

(D) (C) 
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participants. D1 and D2 respectively needed 4 and 3 updates, 

including the necessary update for Task 3 as described in 

Table S3 in the Supplementary Materials.  

3.2. Subjective evaluation 

Figure 4A shows the outcome of the subjective evaluation 

based on the NASA TLX questionnaire [27]. Task 2a 

(unscrewing a bottle) was judged the most complicated one, 

having the highest scores in terms of mental, physical and 

temporal demand as well as frustration, the second-highest in 

terms of effort and the lowest in terms of estimated 

performance with a total average score of 11.1 out of 20. Task 

1a was graded with the highest effort score. The temporal 

demand of each task of this subjective evaluation qualitatively 

matches the TCTs found in Figure 3B with the exception of 

Task 2a, which was considered as more time consuming than 

Task 1b, whereas the mean TCT of the latter is actually 

slightly higher than the one of the former. As can be seen in 

Figure 4C, both Tasks 1a and 2a were considered more 

complicated than the tasks which followed them with the same 

table setup, respectively Tasks 1b and 2b. Quality of control 

perceived by the participants is shown in Figure 4C: out of 

20, the body pose control was graded on average at 13.9 while 

the hand pose control was estimated at 8.4. 

Figure 4B shows D1’s subjective evaluation. His ratings 

are comparable to those of all other participants, with the 

remarkable exception of Task 2a which he rated very difficult 

on all criteria. Considering the other tasks, overall the mental 

demand was higher; the temporal demand was judged slightly 

lower for all tasks compared to the pool of intact participants 

in Figure 4A; the frustration was overall superior, whereas the 

performance was overall rated similarly higher. When 

analyzing the mean TLX score of Figure 4C, a lower 

averaged score compared to the pool of intact participants 

emerges for Tasks 1a and 1b, while the opposite appears for 

Tasks 2a, 2b and 3. On the other hand, D1 rated control 

 

 

(C) 

(A) 

(B) 

Figure 5. Results of the study on successful attempts for the single-session participants. All criteria are based on self-assessment, including 

‘performance’ and ‘control’. D2 did not fill the TLX evaluation due to a time limitation. (A) Task-wise TCTs on the successful attempts across 
repetitions performed by the single-session users (including the disabled ones). (B) Task-wise number of attempts per repetition performed by the 

single-session users. (C) Task-wise improvement ratios on the TCTs of the successful attempts between the first and the last repetition for the single-

session users (including the disabled ones). (the higher the better) (D) Evaluated difficulty on the first and last repetitions for the single-session users 
and D1 (the lower the better). D2 did not fill the subjective assessment.  
 

(D) 
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(Figure 4D) quite in the opposite way with respect to other 

participants, with a higher rating on the hand pose and a 

slightly lower one for the body pose. Remarkably, D1 rated 

similarly control of the left and the right hand. All in all, 

control scores by D1 are higher (therefore better) than those 

by non-disabled participants.  

3.3. TCTs and number of attempts during single-session 

experiments  

Figure 5 shows the TCTs obtained during single-session 

experiments, split across single tasks and task repetitions, 

considering the successful attempts only, and the number of 

attempts per task and repetition. A decrease in the TCTs while 

considering each task and the related repetitions is apparent. 

In all cases, the first repetition has the longest TCTs. While 

participant D1 had a higher average regarding cumulative 

TCT on all attempts (293s) for Task 1b, as shown in Figure 

3B, the averaged TCT for this specific task when considering 

only the successful attempt (120s) is lower than the average 

TCT of the pool of participants (133s) as it can be seen in 

Figure 5A. Additionally, D1’s TCTs are in line with the non-

disabled participants’ TCTs, despite being graded with the 

lowest scores in the TLX evaluation. Considering the data of 

all single-session participants (with both intact and disabled 

participants), we performed an LMER analysis, with 

log(TCT), to normalize the data, as the dependent variable, the 

repetition and the amputation condition as independent 

variables, and participants and tasks as random effects to adapt 

to the different initial skill level of each participant and the 

different difficulties of the tasks. The analysis showed a 

significant difference between repetitions 1 and 2 (p=0.040), 

between repetitions 1 and 3 (p=0.007), and between 

repetitions 1 and 4 (p<0.001), and no significant difference 

deriving from the amputation condition.  

The number of attempts shown in Figure 5B, while also 

showing a decreasing trend for Task 1a and Task 3, does not 

follow the same trend for the other tasks. Figure 5C, showing 

the improvement ratio between repetitions 1 and 4 of each 

task, confirms this statement. The improvement ranged from 

3.6 times (Task 1a) to 1.7 times (Task 3), with an average of 

2.2 times. A clear improvement is also visible in Figure 5D 

showing that the subjective assessment of difficulty dropped 

from the first repetition to the last one from 16.0 to 9.6 out of 

20.  

D1 achieved a very low TCT in Task 1a, therefore his 

improvement is relatively low in this task. D2 had a higher 

improvement rate for Task 2a than most of the participants. In 

the other tasks, both D1 and D2 are in line with the pool of 

intact participants with the exception of Task 3, in which their 

improvement rate is higher. The perceived difficulty evaluated 

in Figure 5D by D1 shows an opposite trend compared to the 

pool, with a higher difficulty during the last repetition than 

during the first one.  

Figure 6. Results of the study for the long-term participant. (A) Task-wise TCTs on the successful attempts performed by the long-term participant 
across the days. All tasks except Task 2a present a decreasing trend. The points represented in each box plot are placed in the order of the repetition 

number. (B) Task-wise cumulative TCTs over all attempts performed by the long-term participant across the days. All tasks except Task 2a present a 

decreasing trend. The points represented in each box plot are placed in the order of the repetition number and the number above it indicates the number 

of attempts. 

(B) 

(A) 
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3.4. TCTs and attempts number during the multi-

session experiment  

A day-by-day learning effect (decrease in the TCTs on 

successful attempts), similar to the one previously observed in   
the single-session users, is apparent in Figure 6A, especially 

for Tasks 1a, 1b and 3. For Task 2b, this decrease is visible 

over the first 4 days; and on the fifth day, a slight increase can 

be noted. The tendency over the days for Task 2a is not 

completely clear. A similar effect is apparent from Figure 6B, 

showing the cumulative TCTs over all attempts. Task 1a 

shows the highest variance; additionally, the number of 

attempts between Day 1 and Day 5 is also decreasing with an 

average of 1.5 attempts on the first day, already decreased to 

1.1 on Day 2 maintained until Day 5 with the exception of 1.2 

attempts on Day 3. When considering the difference between 

the TCTs of Day 1 and the other days for all tasks, we notice 

a strong decrease between Days 1 and 2, Days 1 and 3 and 

Days 1 and 4 but when considering Day 5, the decrease is not 

visible for Tasks 2a (being considered as the most difficult 

task) and 2b.  

Figure 7. Results of the NASA TLX test and improvement ratios of the long-term participant. (A) Evaluation of the different TLX 
criteria over the days for each task and overall. (B) Evaluation of the difficulty for the first and last repetitions over the session with a box 

plot gathering the results over all days. (the lower the easier) (C) Evaluation of the quality of the body pose control and the hand pose 

control over the session with a box plot gathering the results over all days. (the lower the better) (D) Task-wise improvement ratios on the 
TCTs of the successful attempts between the first and the last repetition. One data-point represents the improvement ratio for one day. (the 

higher the better) (E) Improvement ratios averaged over the tasks on the TCTs of the successful attempts between, respectively, Day 1 and 

Day 2 (RatioD12), Day 1 and Day 5 (RatioD15), and Day 2 and Day 5 (RatioD25). (the higher the better) 

 

(A) 

(B) 

(D) 

(C) 

(E) 
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Figure 7A, showing the results of the NASA TLX test of 

the long-term participant, furthermore confirms the effect. 

While the participant estimated his overall performance at 

8/20 on the first session, it rises to 19/20 on the last one. 

Individual tasks also show a relatively regular growth on this 

criterion with the exception of Task 2a, which, after a 

significant increase from 8 to 13 on the second session, seems 

to decline during the following sessions until finally reaching 

12 on the last one. The subjective effort evaluation follows a 

similar trend with an important increase between the first and 

second session followed by stabilization. Task 2a’s mental 

demand is relatively high compared to the other tasks and the 

temporal demand increases over the sessions. Nonetheless, a 

clear learning curve is visible for all the other tasks as well as 

for the overall evaluation.  

The long-term participant also presents an overall 

decreasing trend in terms of evaluated difficulty as shown in 

Figure 7B. While the participant evaluated the tasks as being 

less difficult on the last repetition than on the first one on the 

first day, it arrives at an equal level for both repetitions on Day 

5, indicating a learning effect by the stabilization of the 

difficulty. Regarding the evaluation of the control (Figure 

7C), as previously shown in the single-session pool, the body 

pose control obtains better grades than the hand pose control. 

Additionally, while the body pose control grading stays 

relatively stable over the 5 sessions, the hand pose control is 

increasing over the sessions with a considerably higher 

increase between Day 1 and Day 2. The improvement ratio of 

the long-term participant over the sessions shows a similar 

learning to most tasks as shown in Figure 7D. Additionally, 

as indicated by the improvement ratios over the days (Figure 

7E), the main part of the learning happened between Day 1 

and Day 2 with an improvement ratio of 2.2, while the 

improvement ratio between Day 2 and 5 was of 1.1. The 

overall improvement ratio between the first and the last 

session reached 2.5. 

On the first day, 5 updates of the interactive machine 

learning model were necessary for the long-term participant. 

This number decreased to 1 for all following days.  

3.5. Average speed and travelled path  

Both the single-session participants and the long-term 

participant show an increased hand speed over the repetitions 

of the different tasks (Figure 8). For the single-session 

participants, all tasks display an increasing trend, except Task 

3 (Figure 8A). The disabled participants have an average 

speed (0.071m/s) higher than the non-disabled ones 

(0.044m/s). Considering the data of all single-session 

participants (disabled and non-disabled), we performed an 

LMER analysis, with log(speed), to normalize the data, as the 

dependent variable, the repetition and the amputation 

condition as independent variables, and participants and tasks 

(A) 

(B) 

Figure 8. Averaged speed for all participants. The average speed over the trajectories is calculated for the hands of the participants and summed for both 

hands. (A) Task-wise average speed over the trajectories for each repetition for the single-session participants (including the disabled ones) with a generally 

increasing trend. Outliers of S2, S5 and D2 on respectively, rep. 2 of Task 2b, rep. 2 of Task 2a, and rep.1 of Task 3 were removed due to logging errors. 
(B) Task-wise average speed over the trajectories for each day for the long-term participant with a generally increasing trend. Outliers of the long-term 

participant on the third repetition of Tasks 1a and 1b of Day 5 were removed due to logging errors.   
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as random effects. The analysis showed a significant 

difference between repetitions 1 and 3 (p=0.017) and between 

repetitions 1 and 4 (p=0.015).  

The speed over days (Figure 8B) also display a generally 

increasing trend for all tasks. The trend for Task 2a (evaluated 

as more difficult) over days is flatter than for the other tasks. 

On the last day, the long-term participant reached an average 

speed of 0.053m/s for Tasks 1a, 1b and 2b (compared to the 

mean of 0.043m/s for intact single-session participants, 

0.066m/s for D1, 0.068m/s for D2), and 0.031m/s for the 

Tasks 2a and 3 (0.042m/s for intact single-session 

participants, 0.072m/s for D1, 0.079m/s for D2), which 

require less arm movements.  

Additionally, not only the participants gained in speed, but 

their total travelled path was also reduced over the repetitions 

and days as shown in Figure S2 in SM. The cumulated 

distances over the trajectory of each successful repetition was 

calculated for each hand and summed together. The total 

travelled distance of both hands follows a generally decreasing 

trend over the repetitions for each task.  

Considering the data of all single-session participants, we 

performed an LMER analysis, with log(sumdist), as the 

dependent variable, the repetition and the amputation 

condition as independent variables, and participants and tasks 

as random effects. The analysis showed a significant 

difference between repetitions 1 and 3 (p=0.035) and between 

repetitions 1 and 4 (p=0.002).  

The hands of the disabled participants travelled distances 

comparable (albeit higher) to the ones of the non-disabled 

participants with an average of 6.56m travelled for all tasks 

over all repetitions for D1 and 7.54m for D2. In comparison, 

non-disabled participants travelled on average 3.62m. The 

total distances travelled by the hands of the long-term 

participant also followed a decreasing trend over the days, 

except for Tasks 2a and 2b in which the hands travelled longer 

distances on the last day.  

4. Discussion 

4.1. Feasibility, TCTs and improvement ratios  

The first general remark is that all participants (disabled or 

not) were able to complete the 5 tasks, requesting on average 

3 updates of the iML per session; moreover, the disabled 

participants had overall TCTs comparable to those of non-

disabled ones. The tasks were complex bimanual ones 

requiring fine arm / hand coordination, and involved daily-

living non-instrumented objects. 

Secondly, a uniform decreasing trend in the TCTs was 

found, with substantially shorter times during the last 

repetition of each task, in spite of a slight increase in the very 

last repetition when compared to the previous one, which 

could be explained by fatigue. From the statistical analysis. A 

significant difference appeared between repetition 1 and all 

the other repetitions with no significant effect from the 

amputation condition. The decreasing trend is consistent 

across disabled and non-disabled participants and in both the 

single- and multi-session experiments, and is confirmed by the 

improvement ratios (2.3 for non-disabled, 1.49 for D1, 2.2 for 

D2, and 1.54 for multi-session participants). Regarding the 

multi-session participant, there is a strong decrease of the 

TCTs between the first and second day but less important 

between the second and the last days, implying possibly that a 

large part of the learning happened between Day 1 and Day 2. 

This is confirmed by the improvement ratios between Day 1 

and Day 2 being at 2.2 and the improvement ratios between 

Day 1 and 5 and Day 2 and 5 being 2.5 and 1.1, respectively. 

4.2. Subjective evaluation 

4.2.1. TLX Score 

This learning effect is further confirmed by the subjective 

evaluation, with a substantial decrease in the perceived 

difficulty of 32% between the first and the last repetition for 

the non-disabled participants. D1 however perceived a higher 

difficulty for the last repetition, which might be due to the 

fatigue that could have been increased by two factors in the 

case of disabled participants, namely the non-intuitive 

mapping of control patterns inducing a high mental demand 

(confirmed by the higher scores given overall to the mental 

demand criterion when compared to non-disabled 

participants) and the stimulation of usually unused muscle 

groups causing physical fatigue. This would additionally 

explain the increasing TCTs of the disabled participants for 

the last two tasks. This tiredness of the participant could have 

been further increased by Task 2a, which was considered as 

the most demanding task, and was the one requiring the 

highest number of hand-wrist poses to be predicted in the case 

of disabled subjects. The fatigue induced by such tasks 

involving precise manipulations would also explain the 

performance deterioration in the following tasks [36]. The 

task-wise averaged TLX score would also confirm this 

hypothesis with a lower (and therefore better) score compared 

to the non-disabled participants on the first two tasks and a 

higher one on the last three tasks.  Unfortunately, as D2 did 

not fill the post-experiment subjective form, we could not 

corroborate this hypothesis with his results. 

 

4.2.2. Hand and body-pose control score 

The overall lower grades of the hand pose control when 

compared to the body pose control are reflecting the fact that 

the hands were controlled by the prediction of a machine 

learning algorithm trained on previously registered EMG data 

while the body pose had a more direct control via the IMUs. 

Additionally, when looking at the multiple-days experiment, 

the body-pose control rating remains almost stable over the 

days while the hand-pose control increases. This could 

indicate that most of the learning had to be done on the hand-

pattern control. De facto, this reflects what the experimenters 

noticed, namely that the participants, being confronted with a 
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humanoid robot, tended to imitate the hand gesture that they 

wanted the robotic hand to mimic rather than the ones trained 

in the initial phase of the experiment. For instance, they 

actively opened their hand to grasp the ball rather than 

relaxing their muscles, or made a half-open grasp rather than 

a closed fist to grasp objects. 

On the other hand, D1 rated the control in the opposite way 

with respect to the non-disabled participants, with a higher 

rating on the hand pose control and a slightly lower one for the 

body pose control, which could be determined by the daily use 

of a 1-DoF prosthesis by the disabled participant as opposed 

to a 6-DOF one in this experiment. The equally-rated control 

of the left and right hands by D1 highlights the successful 

control scheme established for the amputated side with respect 

to the intact side; this control scheme is further detailed in the 

Material and Methods section. Finally, the overall higher 

control scores by D1 compared to non-disabled participants 

indicates successful usage of the device. 

The long-term participant presents the highest improvement 

ratio in Task 3. The fact that this specific task involved more 

hand gesture control skills (the pointing gesture being more 

difficult to reproduce with relation to the trained one) would 

furthermore confirm that an important part of the learning had 

to be realized on the hand gesture control. 

 

4.2.3. Particularly challenging task: Task 2a 

Task 2a was considered very demanding according to the 

subjective evaluation of the single-session participants. Its 

difficulty is confirmed by the evaluation of the long-term 

participant, the mental demand being considerably higher than 

the other tasks and the temporal demand even increasing over 

the sessions. The difficulty of this task can be explained by the 

high precision required to remove the cap and the vision angle 

of the subject, which limited the depth perception. The 

extension of the wrist while maintaining the power grasp did 

not seem to be a problem for the non-disabled participants but 

was more complicated for the disabled ones due to the fact that 

the combined movements depended solely on the prediction 

of the machine learning algorithm.  

4.3. Travelled path and speed of motion 

Lastly, given a few exceptions, we found a uniform 

decreasing trend in the path travelled by the hands of the 

participants, together with a similar increasing trend in the 

speed of motion. This denotes increased time- and energy-

efficiency as the experiments progressed, learning to follow 

shorter paths with higher speed, thus better controlling the 

robot. In particular, it indicates that arm movements became 

more precise over time, and that the subjects became 

progressively able to avoid most mistakes. Some exceptions 

can be noticed: the travelled path of Task 3 for the single 

session participants and Task 2a for the long-term one follows 

a relatively flat trend compared to the other tasks, which could 

                                                           
2 https://www.youtube.com/watch?v=M6mQWcLAiko 

partially be explained by the fewer hand movements needed 

in these specific tasks where good hand gesture control and 

more precise body pose control were required. This could also 

justify the slower speed that the long-term participant showed 

for the same two tasks. Additionally, we suppose that the 

constraints for the pouring of the bottle in Task 2b were not 

defined strictly enough. This action was performed by shaking 

the bottle by only some subjects, and this could explain the 

larger interquartile range shown by the single-session subjects 

on Task 2b. Additionally, while the specific prediction control 

of the hands in the case of the disabled participants may have 

had an influence on their longer travelled path and higher 

speed, the latter might also be due to the daily experience of 

using a prosthesis. 

4.4. Comparison with the state of the art 

The experiment presented in this study is, to the best of our 

knowledge, unique so far; therefore, the study presents a 

number of limitations. Firstly, despite the use of standardized 

performance metrics [37], a proper comparison with any 

baseline whatsoever is difficult, due to the very peculiar 

experimental conditions and setup we used. Nonetheless, 

Herlant et al. [25] have performed similar tasks, also inspired 

from the CAHAI in a teleoperation setup, involving one 

robotic arm controlled via a joystick and mode switching. The 

six participants performed the tasks of unscrewing a jar, 

pouring water and dialing 911 in an average time of 400s, 460s 

and 180s respectively, while the average cumulative TCTs for 

the similar tasks in our study were of 171s, 97s and 115s. 

Although different objects and instructions were obviously 

used, the bimanual capability and the intuitive control of our 

setup would, in all likelihood, be the reason behind the shorter 

times obtained in our experiment. Although bimanual 

teleoperation has been widely studied [38, 39, 40, 41, 42, 43], 

our work was mainly evaluating home tasks, while other 

bimanual teleoperation experiments focused on field tasks 

where TCTs, difficulty were also evaluated as well as success 

rates [44]. The tracking method used is often wired or 

dependent on external tracking [45, 46], including also the 

previously published video2 [47], which has initiated this 

study (of which initial results were presented in [48]). In this 

work, we use a wearable, wireless and independent device 

both for hand movement recognition and upper-body tracking.  

4.5. Limitations and future work 

Our work is the first one evaluating teleoperation of a 

bimanual assistive platform by disabled persons. In this case, 

amputees with two different kinds of amputations were 

participating in the study. However, we believe that this setup, 

or a similar one, could eventually be adapted for other kinds 

of disabilities, such as Parkinson’s disease. For people 

suffering from muscular atrophy, the IMUs in this setup would 
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likely have to be replaced by additional thoughtfully placed 

sEMG sensors. For instance, in [49], two persons suffering 

from spinal muscular atrophy (SMA) and equipped with an 

sEMG-based interface could perform autonomously 

functional reach and grasp tasks in activities of daily living. 

A further limitation of this teleoperation experiment was the 

viewpoint of the participants with relation to the objects to 

manipulate: their vision was sometimes occluded by the arm 

of the robot, thus forcing the participants to take a step forward 

or backward (as long as the torso stayed aligned, this step was 

possible without causing an unintended robot motion). This 

visibility problem is all the more pertinent in a real-world 

scenario, where it would be common to have the robot placed 

at a remote location from the user. Valiton et al. [50] have 

studied this problem in more detail by evaluating camera 

selection and placement strategies with relation to the time to 

complete the tasks and the cognitive load. The results are 

however highly user-dependent, and further studies on the 

topic are necessary with possible decision support from 

learned models of camera preference to help the operators. An 

additional option is to integrate depth perception, which has 

shown to improve the execution of certain tasks [51], within 

the visual feedback, which would be feasible in our case by 

using the 3D cloud of points generated by the robot’s cameras 

and having the user wear a virtual reality headset. 

Although embodiment is generally solicited for enhanced 

teleoperation [52], the higher level of embodiment induced by 

the headset could also have a counter effect by increasing the 

problem of mimicking untrained hand gestures that the 

participants had while performing the tasks. This could be 

solved in the case of non-disabled users by replacing the 

prediction-based hand gesture control by a direct mapping of 

subject-to-robot finger motions using for instance a data-

glove2 [53, 54, 55]. Such data-gloves could be a better 

alternative to sEMG for non-disabled people to teleoperate 

such a platform. The complementarity with IMUs if the glove 

only covers the hand would however remain useful [53] and a 

comparison study would be interesting with a full data-suit.  

At the expense of embodiment, shared control would be 

another option to evaluate in such a context and it has already 

been successfully implemented in bimanual humanoid robot 

manipulation in [56] for non-disabled participants as well as 

adapted for SMA patients in [57], in which non-disabled 

participants are involved in a teleoperation experiment of a 

robotic arm attached to a wheelchair. Additionally, 

participants could benefit not only from a visual feedback but 

also from a haptic one, leading towards telepresence rather 

than teleoperation [58, 59]. For example, a bimanual haptic 

feedback device has been implemented for teleoperation with 

non-wireless setups in [60, 44], as well as by the Shadow 

Robot Company3. For application to amputees however, a 

special feedback device should be thought of, e.g. a 

vibrotactile one [61, 62] or intraneural stimulation [63, 64]. As 

                                                           
3 https://www.youtube.com/watch?v=3rZYn62OId8 

it is well known in the prosthetic community, feedback is one 

of the numerous problems still unsolved [2, 5], partly due the 

lack of space for sensor electronics in the dexterous prostheses 

currently on the market. These hands have numerous 

regulations to follow and the size, weight, robustness and 

electronics integration are problems invariably faced by the 

manufacturers. There are some notable exceptions involving 

sometimes targeted muscle reinnervation [65], allowing for 

instance feedback, multi-DoF wrist (such as in the RIC arm 

[66] or the Modular Prosthetic Limb [59], only available for 

trans-humeral amputees so far) or finger abduction/adduction. 

Yet another problem is the current lack of a 2-DoF active wrist 

integrated in the multi-dexterous trans-radial prostheses [5]. 

The presented setup allows the control of these 2 DoFs: 

flexion/extension by machine learning prediction, and 

pronation/supination, that no prosthetic companies provides 

simultaneously to the best of our knowledge. This 

pronation/supination is added very intuitively as it is simply 

controlled by the worn IMUs and the user has only to move 

the arms for the robot to reproduce it. The same is valid for all 

the additional DoFs of the humanoid platform: as they are 

controlled from the end-effector position, there is no 

additional burden to the user and they can possibly allow 

positions that available prostheses would not. While it needs 

to be noted that, in most cases, amputees would be able to 

tackle the task with their own prosthesis as most of our 

everyday tasks are egocentric, such a setup could come as a 

complementary help for them when a prosthesis does not bring 

the required amount of dexterity and complexity, such as with 

the number of DoFs mentioned above. Of course, the cost of 

such a platform would need to be taken into consideration as 

it can vary widely and a dual-arm system could be a viable 

alternative to a humanoid robot. Moreover, as discussed 

beforehand, this setup could be adapted to other kind of 

disabilities in which a prosthesis would not be of help. 

Notwithstanding the fact that the wearable multimodal sensors 

presented in this paper could be used when such advanced 

prostheses, i.e. including a 2-DoF active wrists, will be 

available (also for trans-radial amputees), the access to 

teleoperation platforms by disabled persons could open new 

possibilities of autonomy not available to them as of now, 

including telework [11]. 

5. Conclusion 

In this study we validated the feasibility of using interactive 

myocontrol to teleoperate a humanoid robot performing 

highly complex bimanual tasks, inspired by daily-living 

activities. Clear learning curves were apparent from the 

results, demonstrating a decrease in the completion times, an 

increase in speed, but also a reduction of travelled distance 

underlining the gain in energy-efficiency for all participants, 

irrespective of their disability. This setup could potentially be 

used to teleoperate any other bimanual system in a home 
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environment as an assistive platform, and also theoretically in 

extreme environments in which an operator could teleoperate 

the robot at very distant locations in order to perform critical 

tasks. 

Appendix 

All appendices are attached as supplementary material 

(stacks.iop.org/BPEX/8/015022/mmedia): 

Text. Definition of Task Demand Factors 

Figure S1. Setup of the experiment. 

Figure S2. Distance travelled by both hands for all 

participants 

Table S1. Participant characteristics. 

Table S2. Disability characteristics of the disabled 

participants. 

Table S3. List of task-specific hand poses on which the 

predictor has to be trained in the case of amputation. 

Movie S1. Telemanipulation experiment on a humanoid 

platform by disabled and non-disabled participants. 
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