

BEniVer Workshop

Generische TÖA der Methanol Synthese

Yoga Rahmat

10. Juni 2021 – Stuttgart

BEniVer

Begleitforschung Energiewende im Verkehr

Agenda

- >Herstellungsprozess
 - Überblick
 - Modelle
- **≻**Simulation
 - Methanol Synthese
 - Methanol Aufbereitung
- ➤ Techno-ökonomische Analyse
 - CAPEX
 - Rohstoffe und Betriebsmittel
 - NPC
 - Zusammenfassung

Herstellungsprozess – Überblick

Reaktionen^[1]

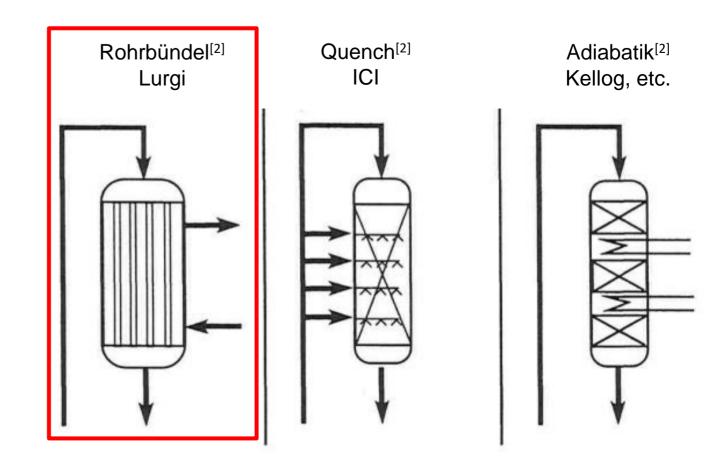
$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O \Delta H_o = -49.8 \frac{kJ}{mol}$$
 (1)

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
 $\Delta H_o = +41.2 \frac{kJ}{mol}$ (2)

$$CO + 2H_2 \rightleftharpoons CH_3OH$$

$$\Delta H_o = -91.0 \frac{\text{kJ}}{\text{mol}} \quad (3)$$


Reaktors Konfigurationen^[2]

Hoher Betriebsdruck:

BASF

Niedriger Betriebsdruck:

• ICI, Lurgi, Kellog, Haldor-Topsøe, etc.

[1] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation [2] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed., p. 395.

Herstellungsprozess - Modelle

Konfiguration : <u>Lurgi</u> → Eigene Darstellung auf Basis des <u>Patents</u>^[1]

Kinetisches Modell: LHHW^[2] auf Basis [3]

Methanol synthesis

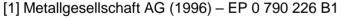
$$r_{MeOH} = \frac{k_1 p_{CO_2} p_{H_2} - k_6 p_{H_2O} p_{CH_3OH} p_{H_2}^{-2}}{\left(1 + k_2 p_{H_2O} p_{H_2}^{-1} + k_3 p_{H_2}^{0.5} + k_4 p_{H_2O}\right)^3} \left[\frac{\text{kmol}}{\text{kg}_{cat.} \text{s}}\right]$$

Reverse Water-Gas-Shift Reaction

$$r_{RWGS} = \frac{k_5 p_{CO_2} - k_7 p_{H_2O} p_{CO} p_{H_2}^{-1}}{1 + k_2 p_{H_2O} p_{H_2}^{-1} + k_3 p_{H_2}^{0.5} + k_4 p_{H_2O}} \left[\frac{\text{kmol}}{\text{kg}_{\text{cat.}} \text{s}} \right]$$

With,
$$\ln k_i = A_i + \frac{B_i}{T}$$

*angepasst mit Parametern und Gleichgewichtskonstanten von [4], [5]

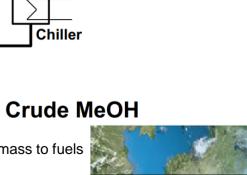


R1

R2

COMP

FD


[2] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation

[3] Vanden Bussche and Froment (1996) A Steady-State Kinetic Model for Methanol Synthesis and Water Gas Shift Reaction

[4] Mignard and Pritchard (2008) On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels

[5] Graaf et al. (1986) Chemical equilibria in methanol synthesis

-Heißdampf^{′erkehr}

Gesättigtes

Wasser

Katalysator

Cu/ZnO/Al₂O₃

Agenda

- >Herstellungsprozess
 - Überblick
 - Modelle
- **≻**Simulation
 - Methanol Synthese
 - Methanol Aufbereitung
- ➤ Techno-ökonomische Analyse
 - CAPEX
 - Rohstoffe und Betriebsmittel
 - NPC
 - Zusammenfassung

Erstellung der Simulation

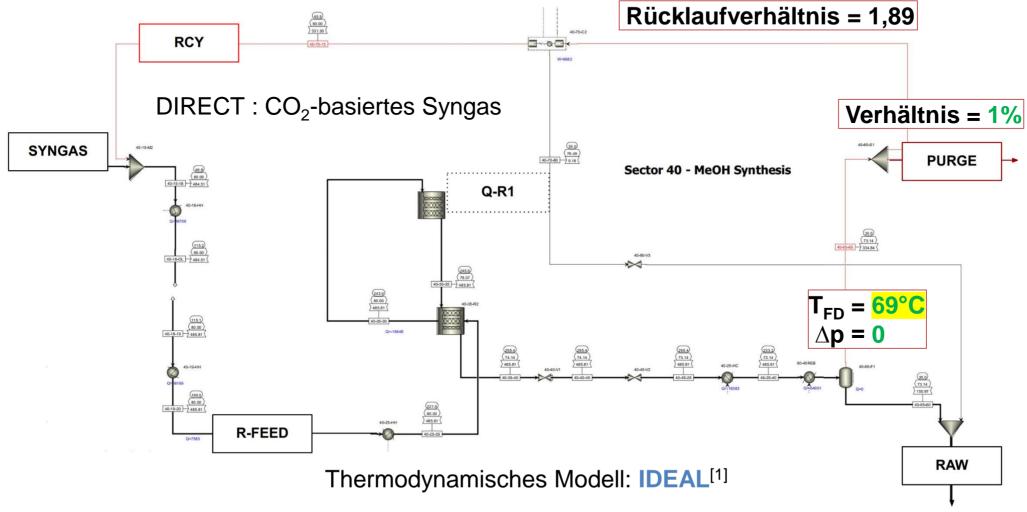
Basis: BEniVer Rahmenannahmen

- Generische CO₂ und H₂-Quelle → Rohstoffe "kommen aus der Leitung"
- Skalierung der Anlage: Großskalige Anlage → "Strombedarf" ≈ 300 MW
 - Bei H₂ aus der Leitung fehlt Leistungsbedarf der Elektrolyse

Kategorie	Einheit	Wert	Wert	Wert	Quelle/
		2018	2030	2050	
Generische Werte	pro t _{H2} /h bei 50 bar				
H ₂ -Kosten - min	€/t	4,758	3,965	2,363	Für großsk
H ₂ -Kosten - max	€/t	6,447	5,856	4,300	Für großsk
H ₂ -Kosten - min	€/t	6,349	3,802	2,040	Für großsk
H ₂ -Kosten - max	€/t	7,578	5,693	3,819	Für großsk
Strombedarf	MW	49.84	46.77	43.98	
THG-Emissionen durch Energieverbrauch	kg CO ₂ ä/kg H ₂	24.8	6.1	2.3	

Beispiel: Methanol-Synthese 2018

•
$$P_{H2} = 288.8 \text{ MW}_{el}$$


•
$$P_{CO2} = 5.2 \text{ MW}_{el}$$

- Skalierung erfolgt über den spezifischen Leistungsbedarf der Rohstoffe sowie der Anlage
- ➤ Methanol-Produktionskapazität von 656 t/d Mit VLh 8000 h/a → 218,6 kta
- Weitere technische Annahmen betreffen Wärmetauscher, Pumpen und Kompressoren

Simulation – Methanol Synthese

[1] Graaf et al. (1986) Chemical equilibria in methanol synthesis

Simulation – Methanol Synthese

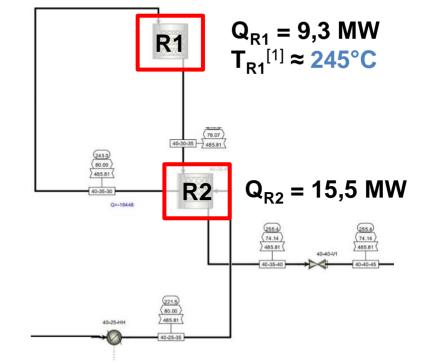
Reaktor

Lurgi Reaktor: RPlug

Betriebsbedingungen^[1]:

 $T_{in} = 230 \, ^{\circ}C$

p = 80 bar


Druckverlust^[2]: Erguns Gleichung

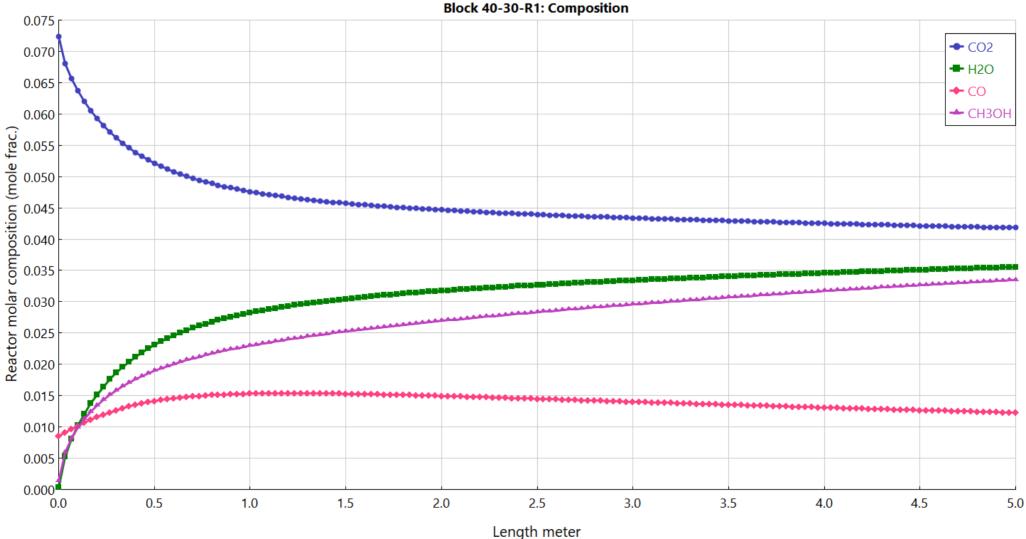
Annahmen:

- Keine Nebenreaktionen
- Keine Unreinheiten

Katalysator^[2] Cu/ZnO/Al₂O₃ Schüttdichte = 1065 kg/m³ Lebensdauer^[4] 4 Jahre

Ausmaßverhältnis^[1] R2/R1 = 2 Rohrdurchmesser^[3] = 0,046584 m (2 in. OD, BWG 14) Rohrlänge^[4] = 5 m Rohranzahl = 3952

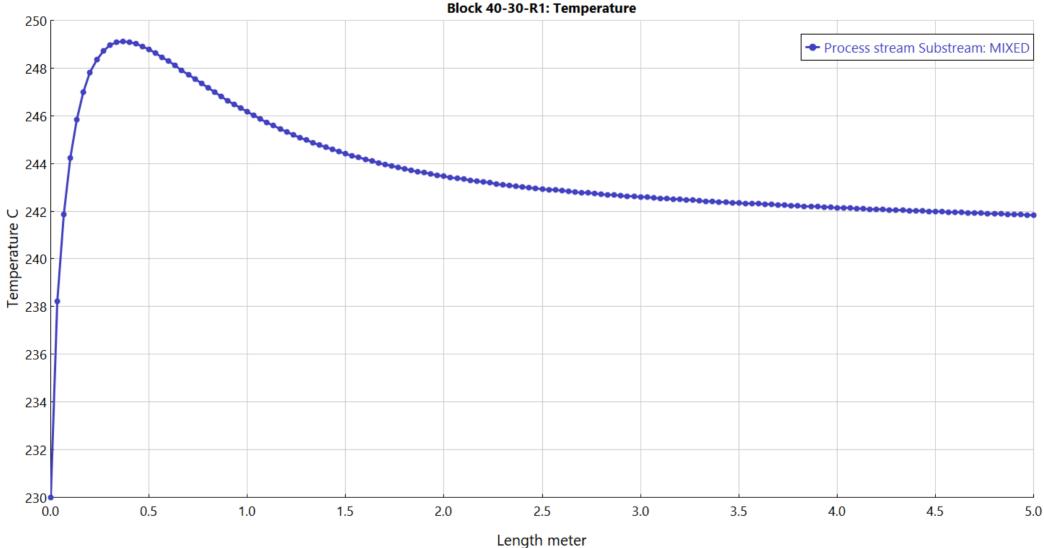
Technische Ergebnisse		
Kohlenstoffumsatz im Loop	91,0%	
Kohlenstoffumsatz per Pass	41,4%	
Dampfproduktion im R1	18 t/h	



- [1] Metallgesellschaft AG (1996) EP 0 790 226 B1
- [2] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation
- [3] Doraiswamy and Sharma (1984) Heterogenous reactions: Analysis examples and reactor design
- [4] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed.

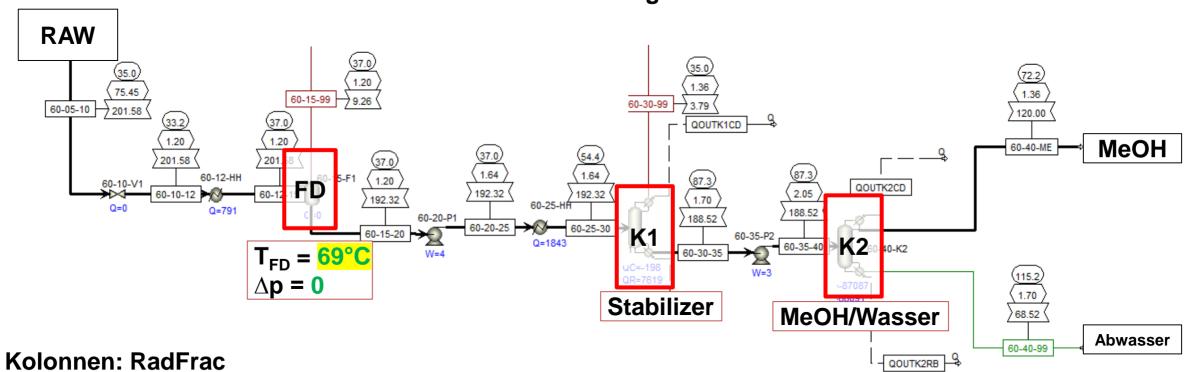
Simulation – Methanol Synthese

Zusammensetzungsverlauf im R1



Simulation – Methanol Synthese

T-Verlauf im R1

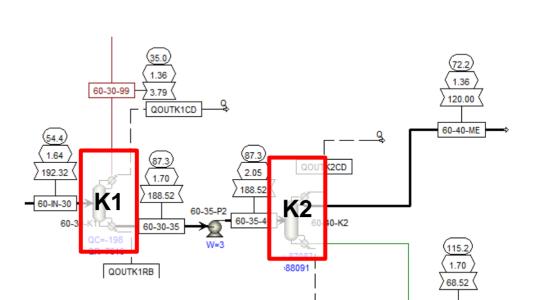


Simulation - Methanol Aufbereitung

Zwei-Kolonnen-Konfiguration^[1]

Flash Drum: Flash2

Thermodynamisches Modell: NRTL



BEniVer

Begleitforschung Energiewende im Verkehr

Simulation - Methanol Aufbereitung

Kolonne Auslegung	K1	K2
Bodenanzahl	13	28
Feed-Boden	6	14
Rücklaufverhältnis	0,3	1,1
Technische Ergebnisse		
MeOH Reinheit	99,85% 3	<mark>äquimolar</mark>
MeOH Ausbeute	97,8%	
Kühlungsbedarf [MW]	17,4	
Aufheizungsbedarf [MW]	1,	9

Annahmen:

- Kühlwasser zur Abkühlung aller Kondensatoren
- Abschätzung von Bodenanzahl bzw. Feed-Boden

QOUTK2RB

- Stabilizer-Kolonne:
 - Bodenanzahl ~2,9 Mindestanzahl
- MeOH/Wasser-Kolonne:
 - Bodenanzahl ~1,1 Mindestanzahl

BEniVer

Begleitforschung Energiewende im Verkehr

Agenda

- >Herstellungsprozess
 - Überblick
 - Modelle
- **≻**Simulation
 - Methanol Synthese
 - Methanol Aufbereitung
- ➤ Techno-ökonomische Analyse
 - CAPEX
 - Rohstoffe und Betriebsmittel
 - NPC
 - Zusammenfassung

Techno-ökonomische Analyse

Annahmen & Kostenfunktionen

BEniVer Rahmenannahmen:

- Basisjahr 2018
- Volllaststunden 8000 h
- Laufzeit 20 Jahre
- Zinsrate 5%
- Weitere Annahmen zu Lang-Faktoren, Lohnkosten und anderen Betriebsstoffkosten in BEniVer RA v3.0

Kosten der R	ohstoffe	2018	2030	2050
CO ₂	Min	67,18	80,41	87,85
[€ ₂₀₁₈ /t]	Max	71,17	86,88	95,97
H ₂	Min	4758	3965	2363
[€ ₂₀₁₈ /t]	Max	6447	5856	4300
Strom	Min	55,72	66,13	40,51
[€ ₂₀₁₈ /MWh _{el}]	Max	89,60	99,43	63,00

Kostenfunktionen:

- Standardequipment → Quelle: [1]
 - Wärmetauscher (inkl. Kondensatoren & Reboiler), Kompressoren, Pumpen, Flash Drums, Brennkammer
- Andere Equipment
 - Destillationskolonnen → Quelle: [2] mit Auslegung von [3]
 - Lurgi Reaktoren→ Quelle: [1] mit eigener Umformulierung

- [1] Peters, Timmerhaus and West (2002) Plant Design and Economics for Chemical Engineers
- [2] Woods (2007) rules of Thumb in Engineering Practice
- [3] Towler (2008) Chemical Engineering Design

Techno-ökonomische Analyse

Reaktorauslegung & Kostenfunktion

Auslegung	Größe	TEMA Standardgröße	Quelle
Reaktordurchmesser (D)	3,048 m	Max. 120 in.	[1]
Rohrlänge (L)	5 m	Max. 240 in. (6,096 m)	[2]
Rohrdurchmesser (D _{tube})	0,046584 m	Max. 2 in. OD, BWG 14	[3], [4]
Max. Rohranzahl (N _{tube,max})	1718		Eigene Vorstudie auf Basis [2], [4]

Kostenfunktion^[5]:

- Kosten vom Rohrbündelreaktor → Kosten vom Floating Head HEX = f(A_{HEX})
- Umformulierung \rightarrow Kosten vom Reaktor = f(N_{tube}); für die oben genannte D_{tube} und L $Equipmentkosten_{Lurgi}[\$_{2002}] = 156,0332 \times N_{tube} + 11910$

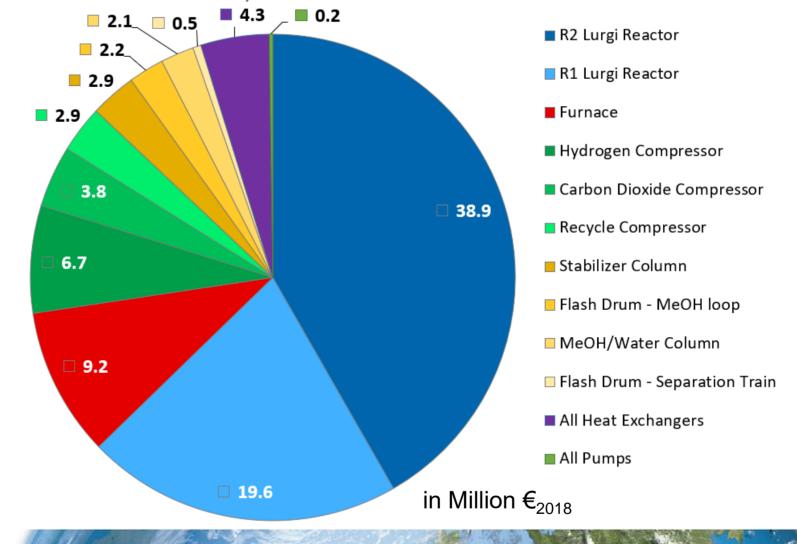
^[2] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed.

^[3] Doraiswamy and Sharma (1984) Heterogenous reactions: Analysis examples and reactor design

^[4] Rase (1990) Fixed-Bed Reactor Design and Diagnostics: Principles, Applications and Rules of Thumb

^[5] Peters, Timmerhaus and West (2002) Plant Design and Economics for Chemical Engineers

Techno-ökonomische Analyse – MeOH 99,85%

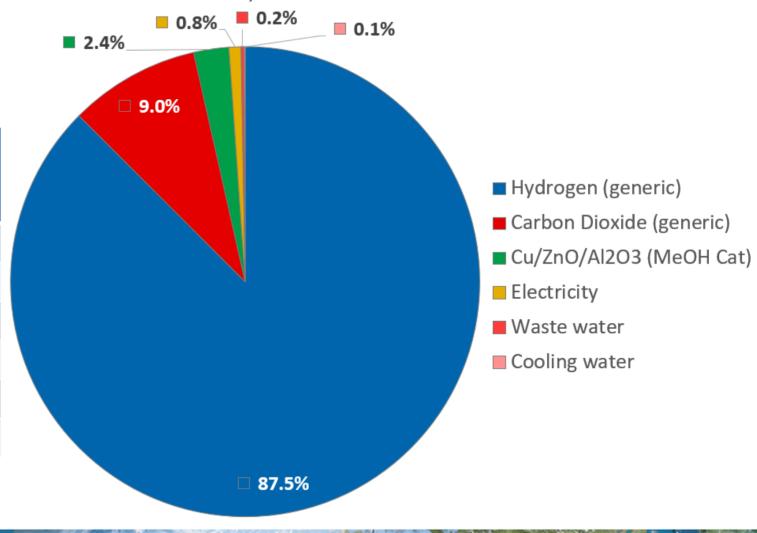

Investitionsausgaben (Fall 2018 Min. Werte)

Total CAPEX 93,4 Million €2018

Spezifisch (in Tausend €₂₀₁₈)

• pro kg_{MeOH}/h : 3,5

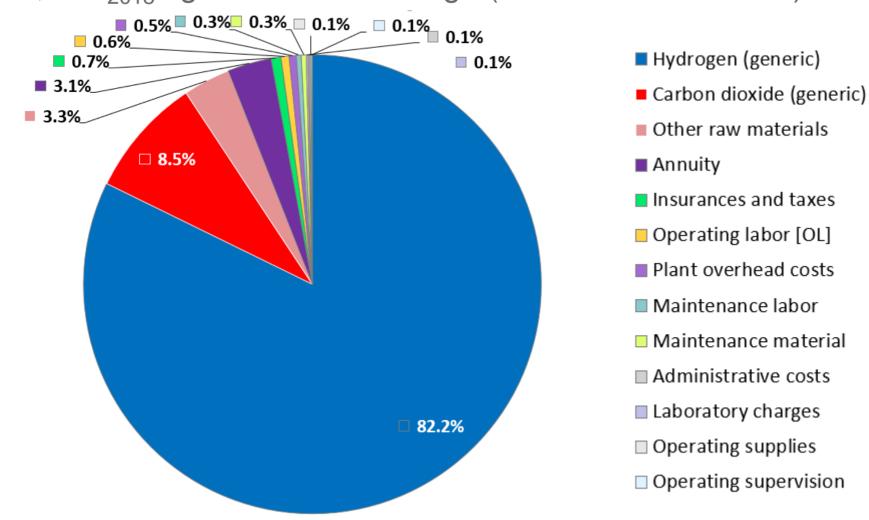
pro t_{MeOH}/d : 142,4



Techno-ökonomische Analyse – MeOH 99,85%

Rohstoffe und Betriebsmittel (Fall 2018 Min. Werte)

Anlagekapazität **218,6 kta** Dampfverkauf **4,4 Mio.** €₂₀₁₈/a


Rohstoffe/ Betriebs- mittel	Ausgaben in Mio. € ₂₀₁₈ /a	Spez. Ausgaben in € ₂₀₁₈ /t _{MeOH}
H ₂	220,6	1009,2
CO ₂	22,7	103,9
Katalysator	6,1	27,9
Strom	2,1	9,6
Abwasser	0,5	2,3
Kühlwasser	0,2	0,9

Techno-ökonomische Analyse – MeOH 99,85%

NPC: 1,28 €₂₀₁₈/kg für 300 MW Anlage (Fall 2018 Min. Werte)

Techno-ökonomische AnalyseZusammenfassung – MeOH 99,85 wt%

Parameter		€ ₂₀₁₈ /kg _{MeOH}		
		2018	2030	2050
NPC	Min. Kosten von Strom, H ₂ & CO ₂	1,28	1,13	0,77
Ž	Max. Kosten von Strom, H ₂ & CO ₂	1,68	1,49	1,23
	PtL Wirkungsgrad	50,6 %	53,8 %	57,1 %
H ₂ tL Wirkungsgrad (LHV-basiert)			77,6 %	
KPI	H ₂ Ausbeute (Molar-basiert)		44,5 %	
	Gesamter Kohlenstoffumsatz im System		89,0 %	

Techno-ökonomische Analyse Zusammenfassung – MeOH äquimolar

Parameter		;	€ ₂₀₁₈ /kg _{MeOH}	
		2018	2030	2050
NPC	Min. Kosten von Strom, H ₂ & CO ₂	0,69	0,61	0,41
Ž	Max. Kosten von Strom, H ₂ & CO ₂	0,91	0,85	0,66

Vielen Dank

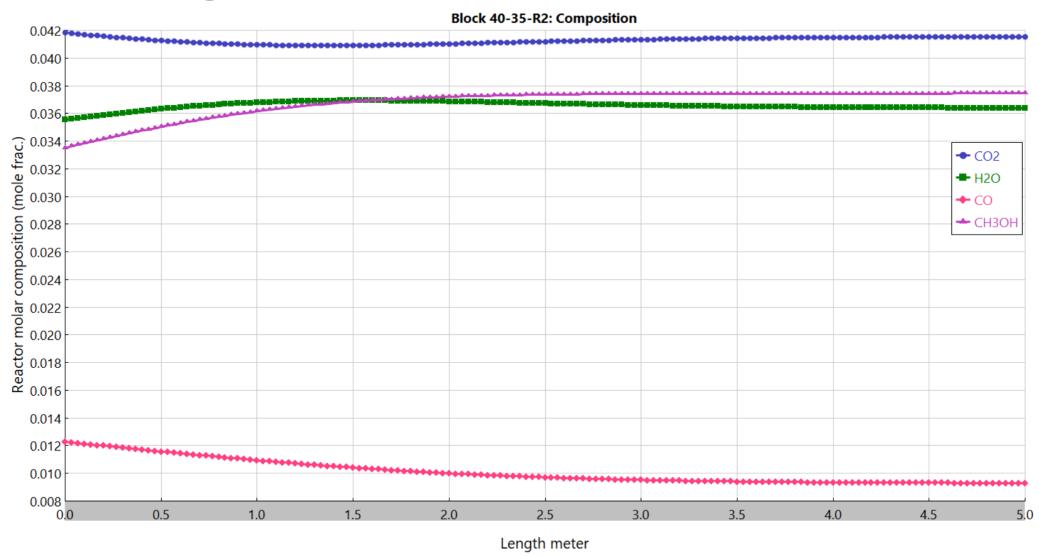
Yoga Rahmat

10. Juni 2021 – Stuttgart

BEniVer

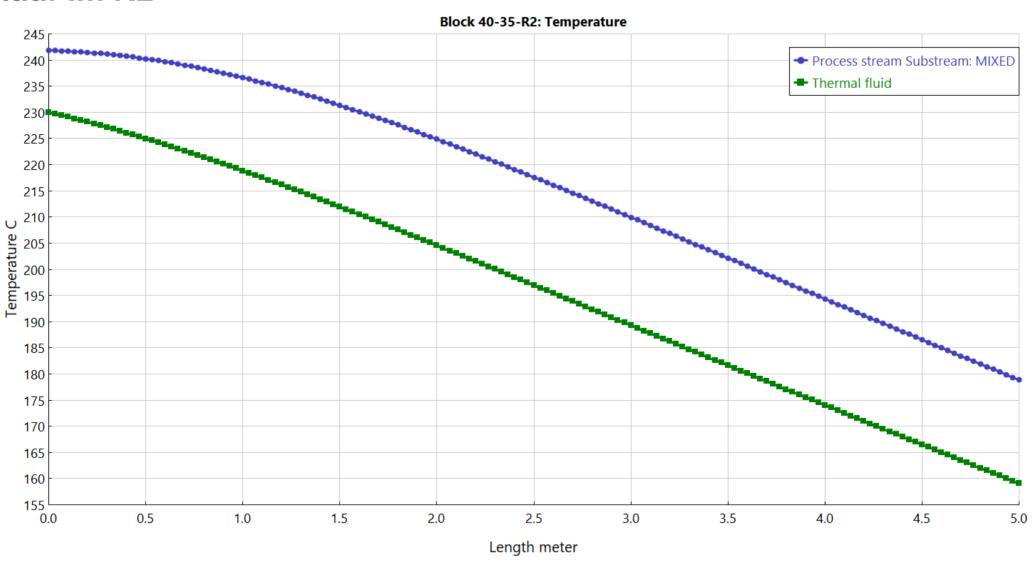
Begleitforschung Energiewende im Verkehr

Simulation

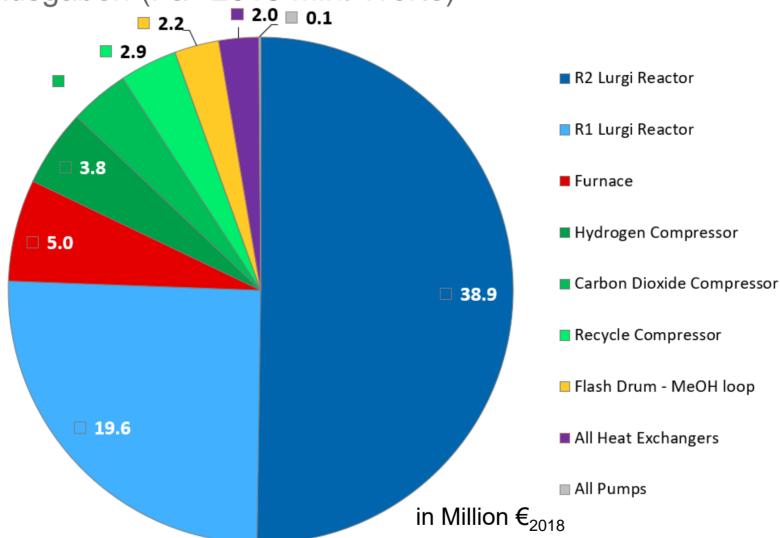

Annahmen

Allgemeine technische Annahmen:

- Druckverlust
 - Wärmetauscher 0,25 bar
 - Kolonnen 0,70 bar (gesamte Stufen)
 - Flash Drums 0 bar
- Flash Drum Temperatur 69°C
- Purge Verhältnis 1%

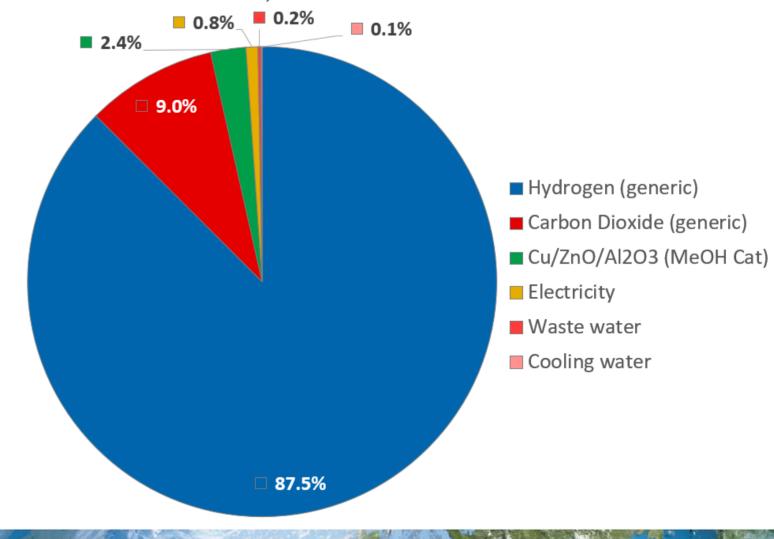


Zusammensetzungsverlauf im R2


T-Verlauf im R2

Techno-ökonomische Analyse – MeOH äquimolar

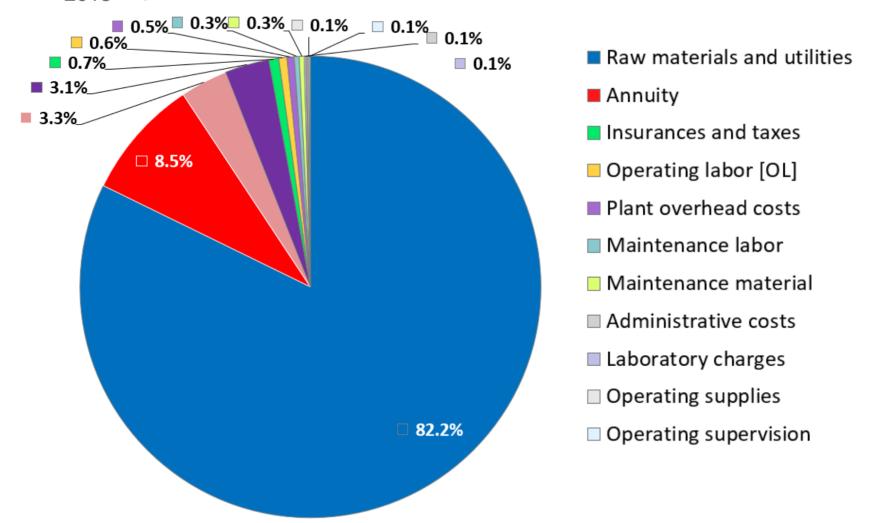
Investitionsausgaben (Fall 2018 Min. Werte)



Techno-ökonomische Analyse – MeOH äquimolar

Rohstoffe und Betriebsmittel (Fall 2018 Min. Werte)

Anlagekapazität 374,9 kta Dampfverkauf 2,5 Mio. €₂₀₁₈/a


Rohstoffe/ Betriebs- mittel	Ausgaben in Mio. € ₂₀₁₈ /a
H ₂	220,6
CO ₂	22,7
Katalysator	6,1
Strom	2,1
Abwasser	0,5
Kühlwasser	0,2

Techno-ökonomische Analyse – MeOH äquimolar

NPC: 0,69 €₂₀₁₈/kg für 300 MW Strom (Fall 2018 Min. Werte)

