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Abstract—Soil permittivity estimation using Polarimetric Syn-
thetic Aperture Radar (PolSAR) data has been an extensively
researched area. Nonetheless, it provides ample scope for further
improvements. The vegetation cover over the soil surface leads
to a complex interaction of the incident polarized wave with the
canopy and subsequently with the underlying soil surface. This
paper introduces a novel methodology to estimate soil permittivity
over croplands with vegetation cover using the full and compact
polarimetric modes. The proposed method utilizes the full and
compact polarimetric scattering-type parameters, θFP and θCP,
respectively. These scattering type parameters are a function
of the soil permittivity and the Barakat degree of polarization.
The method considers the X-Bragg scattering model for the soil
surface. In particular, these scattering-type parameters explicitly
account for the depolarizing structure of the scattered wave while
characterizing targets. Thus, the depolarization information in
terms of surface roughness in the X-Bragg model gets inherent
importance while using θFP and θCP, unlike existing scattering-
type parameters. Therefore, the proposed technique enhances the
expected value of the inversion accuracies. This study validated
the major phenology stages of four crops using the UAVSAR full-
pol and simulated compact pol SAR data and the ground truth
data collected during the SMAPVEX12 campaign over Manitoba,
Canada. The proposed method estimated permittivity with an
RMSE of 2.2 to 4.69 for FP and 3.28 to 5.45 for CP SAR data
along with a Pearson coefficient, r ≥ 0.62.

Index Terms—Soil permittivity, Polarimetric SAR (PolSAR),
Scattering mechanisms, Target characterization parameter, X-
Bragg

I. INTRODUCTION

H IGH resolution soil permittivity/moisture estimates are
critical for agro-climatic modeling [1], [2] and hydrologic

forecasting [3], [4]. Hence, using Polarimetric Synthetic
Aperture Radar (PolSAR) data, soil permittivity estimation
is an extensively researched topic with ample scope for
further improvements. Besides, estimating soil permittivity over
vegetated soils is challenging and often introduces estimation
bias due to the complex interaction of the polarized incident
wave with the canopy structure and underlying soil surface.

In this regard, several semi-empirical models are developed
primarily using the backscattered or coherence information of
the polarimetric SAR. Moreover, the majority of those studies
were limited to sparse vegetation conditions. Of them, Oh et
al., [5], and Dubois et al., [6] utilized the backscatter amplitude
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ratios, while Borgeaud et al., [7] and Mattia et al., [8] studied
the effect of polarimetric coherence for the estimation of soil
moisture. Notably, the polarimetric coherence-based technique
achieved better estimation accuracies than the surface scattering
models for sparsely vegetated land cover types. However, it is
well evident from the literature that the vegetation cover for
many of the crops is more than 80 %. Hence, the assumption
of sparse canopy structure during the inversion of soil moisture
does not hold its validity. Thus, a general approach could be
separating vegetation scattering contribution from the soil layer
for moderate to dense vegetative areas.

One of the approaches to separate the scattering of the
vegetation layer from the soil layer is to utilize the polarimetric
decomposition techniques [9]. In model-based scattering power
decompositions, the geometry of the vegetation structure is
considered as the incoherently integrated scattering characteris-
tics of a cloud of canonical scatterers at different orientations
within a resolution cell. These assumptions about the vegeta-
tion structure help subtract its contribution from the overall
scenario. Further, the remaining scattering characteristics can
be considered as the contribution of the surface scattering from
the soil layer and double bounce scattering from the combined
soil and crop stem structures. However, the scattering phase
centers for these two scattering mechanisms could overlap,
making it ambiguous to separate them from a resolution cell.
In this regard, Rice [10] assumed the soil surface as Bragg,
and Cloude et al., [11] considered the soil surface as X-Bragg
scatterer type to invert soil permittivity from the extracted
surface component.

Cloude and Corr [12] demonstrated the sensitivity of the
scattering-type parameter α with the soil permittivity for Bragg-
type surfaces. In particular, the concept of Bragg scattering
relies on the scattering from successive vertically separated
smooth planes with constructive interference [13]. Hence, this
model does not consider surface roughness in its formulation. In
this regard, Hajnsek et al., [14] proposed a suitable incoherent
surface scattering model known as the extended Bragg (X-
Bragg) to account for the surface roughness. Subsequently,
several studies were performed utilising improved polarimetric
decomposition models [15]–[17] multi-incidence angle [15],
[18] and multi-angular time series polarimetric SAR data [19],
[20].

Among these approaches, the multi-incidence angle ap-
proach produced an increased inversion rate and minimized
topographic effects caused by local slopes. However, one
observed a high variance in the estimates for different volume
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scattering models and surface roughness. Accordingly, the
subsequent efforts focused on modifying the vegetation models.
In this context, Jagdhuber et al., [16] proposed an iterative,
generalized hybrid polarimetric decomposition to model the
volume component, which incorporates a physically constrained
volume intensity component. This approach uses a volume
particle shape factor and an orientation distribution width
to generalize the volume model and improve soil moisture
inversion rate.

Subsequently, Wang et al., [17] compared the soil moisture
inversion results over vegetated areas using three different
model-based polarimetric decomposition techniques. Their
studies showed that the incidence angles significantly impact
the soil moisture estimates. Hence, it was proposed to normalize
the polarimetric parameters to minimize the incidence angle
effect on soil moisture retrieval. With this modification, the
accuracy of the estimated soil moisture was increased using the
decomposition proposed by An et al., [21]. Nevertheless, the
inversion rate decreases with the increase in incidence angle. In
this context, [19] proposed to use multi-incidence time series
data for soil moisture estimation over low and high-vegetated
agricultural fields. In particular, the inversion rate from the
decomposed dihedral component at higher incidence angles
is significantly improved when the surface component fails to
estimate.

In another research, Shi et al., [20] proposed deterministic
non-linear equations as a function of soil roughness and soil-
vegetation dielectric properties. In their study, a Generalized
Volume Scattering Model (GVSM) is used to capture close
to actual volume contribution. However, the assumptions in
the proposed technique may only be valid for some crops at
diverse phenological stages. From these previous studies, it
is clear that the decomposition techniques and polarimetric
descriptors govern the uncertainty in the estimates. On the
other hand, the estimation of these uncertainties becomes
more complex in the presence of surface roughness. Therefore,
using polarimetric descriptors robust towards the perturbations
induced by roughness could minimize this uncertainty in
estimates.

Many international space agencies have recently been inter-
ested in implementing compact polarimetric imaging modes
in the SAR systems, such as in-orbit ALOS-2, Radarsat
Constellation Mission (RCM), SAR Observation & Communi-
cations Satellite (SAOCOM), and upcoming NASA-ISRO SAR
(NISAR). It is because compact polarimetric (CP) SAR offers
many advantages over full polarimetric (FP) SAR, such as
wider swath coverage, a higher incident angle range, a reduced
data rate, and lower system power consumption but at the
expense of reduced information.

There are several CP SAR modes depending on transmit and
receive polarization, such as dual-circular compact polarimetry
(DCP) [22]: right circular polarization on transmit, and right
and left circular polarization on receive, hybrid-pol architec-
ture [23]: circular transmit and orthogonal linear polarizations
on receive and π/4 mode [24]: the transmitted polarization
is a superposition of the linear vertical polarization (V) and
horizontal (H) oriented at 45° to the horizontal.

Initially, the soil moisture/permittivity estimations using

CP SAR data adopted the surface scattering models of bare
soils developed for FP SAR data [25]. Subsequently, other
data-driven approaches were also utilized, such as data cube
approaches [26] machine learning techniques [27]. However,
most initial studies are limited to using simulated data due to
the limited availability of acquired CP SAR data.

Truong et al., [25] conducted a preliminary study to approx-
imate simulated compact polarimetric backscatter intensities
(σ◦RH, σ

◦
RV) using linearly polarized backscatter intensities.

Subsequently, they utilized the algorithm proposed by Dubois
et al., [6] to estimate soil moisture from the bare soil surface.
They reported a marginal improvement ( standard deviation of
0.02 m3 m−3 ) in soil moisture retrieval performance for CP
SAR data than linearly polarised backscatter (HH and VV).
Recently, Merzouki et al., [28] utilized a similar approach of
approximating CP SAR data from FP SAR data and a surface
scattering model to invert soil moisture. Unlike [25], where a
relative comparison of inverted parameters from FP and CP
SAR was carried out, [28] has validated the approach using
in-situ soil moisture data acquired over three years. They have
reported a good agreement of inverted results between FP and
CP SAR but with a high bias of 0.10 m3 m−3.

On the other hand, Ponnurangam et al., [29] utilized RISAT-
1 CP SAR data to estimate soil moisture over croplands
using polarimetric decomposition and surface scattering models.
Notably, [29] utilized an extended Bragg model for CP SAR
data under high-frequency approximation. Therefore, using
the X-Bragg model showed improved results than the Integral
Equation Model (IEM) for agricultural lands. However, this
approach is limited to high-frequency approximation. Based
on the available literature, the present research is limited to
soil permittivity/moisture estimation over croplands using CP
SAR polarimetric techniques.

Moreover, the recent advancements in target characterization
and polarimetric decomposition techniques using FP and CP
SAR data could improve soil permittivity inversions over
croplands. Dey et al., [30] proposed a scattering-type parameter
θ, which is derived equivalently for both FP and CP SAR
data. The θ parameter is a function of the Barakat degree of
polarization and the polarimetric coherency/covariance matrix
elements. It was shown in [30], [31], that θFP offers better
target characterization capability than α for the FP mode,
while θCP provides better target characterization capability than
χ for CP mode. Therefore, as pointed out by many previous
studies, using advanced decomposition techniques and better
target characterization techniques, one could minimize the
uncertainties in the soil permittivity estimation.

This work proposes a novel framework to estimate soil
permittivity over croplands using FP and CP SAR data. The
proposed inversion algorithm can likewise be applied to both
modalities. Dey et al., [30] demonstrated superior performance
of the scattering-type parameters: (θFP and θCP) for target
characterization. Therefore, it is anticipated to be effective in
soil permittivity inversion over vegetated soils. We critically
assess this approach to estimate surface soil permittivity using
the data obtained from the SMAPVEX12 test site in Canada
with the crop fields containing corn, soybean, pasture, and
wheat.
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This work unveils the proposal of a novel methodology
of soil moisture estimation over croplands for both FP and
CP SAR data in Section II. Section III provides the details
of SAR and ground truth datasets utilized for validating
the proposed methodologies. In Section IV, we present and
discuss the soil permittivity inversion results of the proposed
method for various crop types. Accordingly, Sections IV-A
and IV-B present and compare the results from the proposed
approach with the existing techniques for FP and CP SAR
data, respectively. Finally, we summarize and conclude the
proposed methodologies in Section V followed by highlighting
its advantages and limitations for different SAR data for various
crop types.

II. METHODOLOGY

Soil moisture retrieval algorithms primarily rely on the
physical interpretation of target parameters derived from
polarimetric SAR data. This study aims to develop a consistent
soil permittivity retrieval algorithm for FP and CP SAR data
over cultivated areas. In this regard, the performance of the
set of roll-invariant scattering-type parameters θFP and θCP are
explored for full and compact polarimetric data, respectively.

A. Full polarimetry

For full polarimetric SAR data, one can represent the
complete backscattering information from the target with a
2× 2 complex scattering matrix S. For linear horizontal (H)
and linear vertical (V) polarization basis S is expressed as,

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH, SVV are the co-polarized complex scattering
coefficients, and SHV, SVH are the cross-polarized complex
scattering coefficients. For a monostatic antenna configuration,
the reciprocity condition (i.e., SHV = SVH) makes the scattering
matrix symmetric.

The space and time-varying stochastic target scattering
processes can be effectively described by the second-order
information from S. One can obtain this information through
the multi-looked coherency matrix T. The 3 × 3 T is a
Hermitian positive semi-definite matrix and can be obtained
from the averaged outer product of the Pauli target vector
kP = 1

2Tr(SΨP ) with its conjugate transpose as,

T = E
(
kPk

†
P

)
=

1

N

N∑
i=1

kPik
†
Pi (2)

where E represents the expected value of the outer product, the
superscript † denotes the conjugate transpose operator, and N
is the size of the multi-look window. The Pauli target vector,
kP is expressed in terms of scattering matrix elements as,

kP =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
(3)

where ΨP is the set of Pauli basis matrices for the monostatic
case,

ΨP =

{√
2

[
1 0
0 1

]
,
√

2

[
1 0
0 −1

]
,
√

2

[
0 1
1 0

]}

Using the standard three-component scattering power de-
composition technique [32], one can expand the measured
coherency matrix T as a linear combination of three matrices
corresponding to three mechanisms: 1) a rank-1 surface
scattering (TS), 2) a rank-1 double-bounce scattering (TD),
and 3) a rank-3 volume scattering (TV ) matrices as,

T = PSTS + PDTD + PVTV (4)

where, PS , PD and PV are the expansion coefficients. TS ,
TD and TV are power-normalized matrices such that PS ,
PD and PV represent the power contributions. These quan-
tities must be non-negative, describing observable physical
measurements for target scattering. However, the expansion
coefficients often become negative for the Freeman-Durden
3-component method [32], which produces negative scattering
power components.

Cui et al., [33] proposed an interesting technique to determine
the non-negative expansion coefficients given in equation (4):
PS , PD, and PV . In order to do so, the volume scattering
matrix TV is first subtracted from T as,

T− PVTV = PSTS + PDTD (5)

where TS and TD are rank-1 matrices. This suggests that
T− PVTV is, at most, a rank-2 matrix (i.e., its determinant
must be zero).

det(T− PVTV ) = 0 (6)

where det(·) denotes the matrix determinant. One can note that
equation (6) can be represented as a generalized eigendecom-
position [34] problem as,

Tx = λTV x (7)

usually denoted as GEV(T,TV ). The generalized eigenvalues
(λ’s) are always positive, and x is the associated eigenvector.
Therefore, one can note that all the roots of equation (6) are
always positive. The remainder matrix, T

′
= T − PVTV

remains positive semidefinite, only for PV = λmin, where
λmin is the minimum generalized eigenvalue obtained from
equation (7). Hence, the volume scattering power is uniquely
determined to be equal to the minimum root of equation (6).

The remainder matrix, T
′

= T − PVTV could be of the
maximum rank of 2, and thus it might contain the contribution
of up to two single scatterings. We determine them based on
the fact that since T

′
is a positive-semidefinite matrix, we can

directly express it as the sum of two rank-1 matrices as,

T
′

= λ1k1k
†
1 + λ2k2k

†
2 (8)

where, λ1 and λ2 are the eigenvalues of T
′
, and the two

eigenvectors k1 and k2 are orthogonal. Moreover, k1 denotes
the dominant single scatterer when λ1 > λ2. Subsequently, we
compute the scattering characterization parameter θFP to assess
the dominant mechanism as either surface or double-bounce
types. Then, accordingly, we consider the dominant surface
scattering mechanism from the equation (8) for soil permittivity
inversion.
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Fig. 1. Simulation plots for full polarimetry (a) αXB and (b) θFPXB = 45° − θFPXB as a function of the soil permittivity εr and surface roughness ψ at
different local incidence angles φi.

1) Sensitivity Analysis of Scattering-type Parameters:
Cloude and Corr [12] demonstrated the sensitivity of the
scattering-type parameter α with soil permittivity for Bragg-
type scatterers. Similarly, we have extended the study for the
sensitivity of α for the X-Bragg type of scatterers [11], [35].

TXB = fs

 1 β∗ sinc (2ψ) 0
β sinc (2ψ) 1

2 |β|
2(1 + sinc(4ψ)) 0

0 0 1
2 |β|

2(1− sinc(4ψ))

 (9)

One cannot neglect the presence of the cross-polarization
term in surface scattering from rough agricultural surfaces.
Therefore, the surface roughness-induced depolarization effect
can be modeled using the X-Bragg model for such scenarios.
From [14], the polarimetric coherency matrix for the X-Bragg
model TXB for the FP mode is expressed in equation (9)
(provided at the bottom of the page).

In equation (9), fs and β are surface scattering intensity
and surface scattering mechanism ratio, respectively, and are
defined as,

β =
R‖ −R⊥
R‖ +R⊥

and fs =
m2
s

2
|R‖ +R⊥|2 (10)

where R‖ and R⊥ are the horizontal and vertical Bragg
scattering coefficients that depend on soil permittivity εr, and
the local incidence angle φi as shown in equation (11). Here,
ms denotes the soil roughness influence on the surface intensity
parameter fs.

R‖ =
cosφi −

√
εr − sin2 φi

cosφi +
√
εr − sin2 φi

R⊥ =
(εr − 1)(sin2 φi − εr(1 + sin2 φi))

(εr cosφi +
√
εr − sin2 φi)2

(11)

We can now express the scattering-type parameter α for the
X-Bragg model as,

αXB =
λ1XBα1XB + λ2XBα2XB + λ3XBα3XB

λ1XB + λ2XB + λ3XB

(12)

where λiXB is the ith eigenvalue and αiXB = cos−1(|ei|). Here,
ei is the ith eigenvector for the X-Bragg model. A detailed
expression is provided in Appendix A.

The recently proposed target scattering-type parameter
θFP [30] for FP data is expressed as,

θFP = tan−1
(
mSpan (T11 − T22 − T33)

T11 (T22 + T33) +m2 Span2

)
(13)

where m is the Barakat degree of polarization given in
equation (14), and Tii (i = 1, 2, 3) are the diagonal elements
of polarimetric coherency matrix, and Span is the total power.

m =

√
1− nn|T|

trn(T)
(14)

where |·| denotes the determinant, tr is the trace or total power
and n is the dimension T. For FP data, n = 3 in equation (14)
and we designate mFP = m.

Using equation (9) and equation (13), we now derive the
expression of θFP for the X-Bragg model as,

θFPXB = tan−1
(
mFPXB

(
1 + |β|2

) (
1− |β|2sinc(4ψ)

)
|β|2+m2

FPXB
(1 + |β|2)

2

)
(15)
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Fig. 2. Simulation plots for compact polarimetry (a) θCPXB = 45° − θCPXB , (b)–(d) χCPXB as a function of the soil permittivity εr and surface roughness ψ at
different local incidence angles φi.

where mFPXB is the 3D Barakat degree of polarization for the
X-Bragg model expressed as a function of β and ψ as,

mFPXB =

(
1− 27|β|4

4(1 + |β|2)3

[
1− sinc2(4ψ)

+ 2 sinc2(2ψ) sinc(4ψ)− 2 sinc2(2ψ)

])1/2

(16)

Using the expressions given in equation (12) and (15), we
conducted a sensitivity analysis to examine the variation of
αXB and θFPXB with soil permittivity (εr) and surface roughness
descriptor (ψ). The sensitivity for αXB and θFPXB for the
X-Bragg model is shown in Figure 1. θFPXB is scaled in
Figure 1 and represented as θFPXB = 45° − θFPXB only for
direct comparison.

One can observe that αXB is primarily influenced by ψ,
especially at its higher values. On the contrary, θFPXB is
marginally affected by changes in ψ. Therefore, for typical

croplands, the inversion of soil permittivity is less sensitive
to the roughness condition while utilizing θFPXB . Hence, we
use θFPXB in forward modeling and, subsequently, for soil
permittivity inversion as detailed in Section II-C.

B. Compact polarimetry

The hybrid compact polarimetric mode measures a projection
of the 2× 2 complex scattering matrix S as,[

ECH
ECV

]
=

1√
2

[
SHH SHV
SVH SVV

] [
1
±i

]
=

1√
2

[
SHH ± iSHV
SVH ± iSVV

]
,

(17)

where the subscript C represents either left-hand (+) or right-
hand (−) circular transmit. The 2× 2 covariance matrix C2 is
then obtained from the elements of the scattering vector as,

C2 =

[
〈|ECH|2〉 〈ECHE

∗
CV〉

〈ECVE
∗
CH〉 〈|ECV|2〉

]
. (18)
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Similar to the FP mode, one can obtain a remainder covari-
ance matrix C

′
using the generalized eigenvalue decomposition

(GEV) technique for the observed C2 matrix along with
the covariance matrix CV = diag(1, 1) corresponding to the
complete depolarization case (i.e., the degree of polarization
is zero) as,

C
′

= C2 − aCV (19)

where a = min{λ1, λ2}. Here, λ1 and λ2 are the generalized
eigenvalues. As detailed in the following sections, we consider
the dominant scattering mechanism from equation (19) for
estimating soil permittivity.

1) Sensitivity analysis of scattering-type parameters: The X-
Bragg model was proposed to accommodate surface-roughness
induced depolarization in a surface scattering model [36]. As
one cannot ignore the depolarization scattering phenomenon
in the case of rough agricultural surfaces. Following this, one
can express the Stokes vector elements as a function of the
X-Bragg coherency matrix elements for compact polarimetric
mode [29] as,

g0 = 0.5(C1 + 2C3), g1 = C2 sinc(2ψ)

g2 = 0, g3 = 0.5(C1 − 2C3) (20)

where ψ is the distribution width of the surface facet orientation
angle, and C1, C2, and C3 are the functions of the Bragg
coefficients expressed as,

C1 = |R‖ +R⊥|2, C2 = (R‖ +R⊥)(R∗‖ −R
∗
⊥)

C3 = |R‖ −R⊥|2. (21)

One can note that R‖ and R⊥ depend on the dielectric constant
εr and the incidence angle φi.

From [30], the scattering-type parameter θCP for CP data
can be expressed as,

θCP = tan−1
(
mCP g0 (OC− SC)

OC× SC +m2
CP g

2
0

)
, (22)

where OC = (g0 + g3)/2 and SC = (g0 − g3)/2 describe
the scattered power in the opposite sense transmitted and the
same sense transmitted, respectively. For CP data, n = 2 in
equation (14) and we designate mCP = m.

Therefore, the θCPXB for the hybrid polarimetric X-Bragg
model can be expressed as,

θCPXB = tan−1
(
mCPXB

(
1 + |β|2

) (
1− |β|2sinc(4ψ)

)
β2 +m2

CPXB
(1 + |β|2)

2

)
(23)

where mCPXB is the 2D Barakat degree of polarization for the
CP X-Bragg model as a function of β and ψ given as,

mCPXB =
2

(β2 + 1)

(
0.25β4 + β2 sinc2 (2ψ)

− 0.5β2 + 0.25

)1/2

(24)

On the other hand, for the hybrid X-Bragg model, the wave
ellipticity parameter, χ, can be expressed in terms of the Stokes
vector elements (gs = [g0, g1, g2, g3]) as,

χCPXB = 0.5 sin−1
(
− g3
mCPXBg0

)
(25)

= 0.5 sin−1
(

0.5β2 − 0.5
[
0.25β4

+ β2 sinc2(2ψ)− 0.5β2 + 0.25
]−1/2) (26)

Now, using the expressions in equation (23) and equa-
tion (26), we perform a sensitivity study to examine the
variation of χCPXB and θCPXB with soil permittivity (εr) and
surface roughness descriptor (ψ). The sensitivity of θCPXB and
χCPXB for the X-Bragg model is shown in Figure 2. θCPXB is
scaled in Figure 2 and represented as θCPXB = 45°−θCPXB only
for direct comparison. From Figure 2a, we can observe that the
trend of θCPXB is similar to that of θFPXB . However, the variation
of χCPXB is comparatively higher with increasing value of ψ.

Therefore, χCPXB is more affected by ψ than θCPXB , and
therefore, for typical cropland, one can expect more robust
soil permittivity estimation while utilizing θCPXB than χCPXB .
Therefore, we utilize θFPXB in the forward modeling and
subsequently for soil permittivity inversion as detailed in
Section II-C.

C. Inversion of soil permittivity

This study considers the X-Bragg surface scattering model
as the forward model for both the full- and compact-pol modes.
We selected the X-Bragg model to understand the effect of
surface roughness induced depolarization on soil moisture
inversion.

The model derived surface scattering mechanisms θFPXB and
θCPXB are further utilized in the inversion. We performed the
inversion by comparing modeled scattering-type parameter and
the dominant surface scattering-type parameter derived from
the observed data (as explained in Sections II-A and II-B).

We use a simple 1D minimum operator to retrieve
the corresponding dielectric constant of the soil, i.e.,
min
εr

(
|θFPXB − θ

dominant

FPdata
|
)

for FP data and min
εr

(
|θCPXB − θ

dominant

CPdata
|
)

for CP data. One should note that the inversion of soil
permittivity is obtained only for pixels with dominant soil
contribution, i.e., θ

dominant

FPdata
or θ

dominant

CPdata
> 30°. A schematic flow of

the proposed methodology is shown in Figure 3. We divided the
schematic flow into two major steps: 1) pre-processing: which
includes extraction of the dominant scattering mechanism for
both FP and CP SAR configurations, and 2) soil permittivity
estimation from the dominant scattering mechanism (the shaded
portion in Figure 3).

III. STUDY AREA AND EXPERIMENTAL DATA

A. Study Area

We used the SMAPVEX12 experimental area as our study
site, which covers an area of 15 km× 70 km. It is situated in
Winnipeg, Canada, near the foot of the Red River watershed.



7

UAVSAR data

T3
First dominant scattering 

mechanism 

Soil permittivity

Eigen Decomposition

Random/Vertical/Horizontal

Y

Surface dominant 
scattering

from 
X-Bragg model

A

A

CV = Complete depolarizer

(Compact C2  )

A

Stokes parameterization
of     

FP CP

Extraction of dominant scattering mechanism Soil permittivity 
inversion

Non-invertible

N

Fig. 3. Flow chart of the methodology for soil permittivity estimation from full- and compact-pol SAR data. Here A indicates the break point between the
pre-processing step and the soil permittivity estimation step.
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Fig. 4. Left: Map showing the locations of the sampling fields and crop map of the study area. UAVSAR scene coverage for flight Line ID: #31606 is overlaid
as a red polygon. Right: The sampling schema followed to acquire soil permittivity values for each field.

The region has a humid continental climate and receives
annual precipitation of approximately 505 mm. It consists
of agricultural, forests, and pasture lands. A highly flat
topography characterizes the landscape. Major crops grown in
the agricultural area are wheat, canola, soybean, and corn. We
have provided a map of the study area with locations of the

sampling fields in Figure 4.

B. UAVSAR time series

During the SMAPVEX12 campaign, 14 L-band polarimetric
UAVSAR scenes are acquired between June 17 and July 17,
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Fig. 5. Time-series plot of soil permittivity (mean ± standard deviation) for different crops. Daily precipitation values (blue bars) from the meteorological
station within the study area and the UAVSAR acquisition days are also presented [37].

TABLE I
SPECIFICATIONS OF UAVSAR DATA (FULL-POL/MLC GRD) USED IN THIS
STUDY (FLIGHT LINE ID: #31606) ALONG WITH CORRESPONDING DATES

OF IN-SITU MEASUREMENTS.

Day of Year
(DOY)

Date of
SAR data
acquisition

Flight ID
Range of
incidence angle
(Deg.)

Date of
In-situ
measurements

169 6/17/2012 12044 22.59-65.18 6/17/2012
174 6/23/2012 12046 22.73-66.32 6/23/2012
175 6/24/2012 12047 21.32-65.42 6/24/2012
177 6/25/2012 12048 21.38-66.68 6/25/2012
179 6/27/2012 12049 22.83-67.42 6/27/2012
181 6/29/2012 12050 21.31-65.52 6/29/2012
185 7/03/2012 12055 21.34-66.14 7/03/2012
187 7/05/2012 12056 22.56-65.83 7/05/2012
190 7/08/2012 12057 22.25-66.61 7/08/2012
192 7/10/2012 12058 22.54-66.16 7/10/2012
195 7/13/2012 12059 22.54-66.16 7/13/2012
196 7/14/2012 12060 22.54-66.16 7/14/2012
199 7/17/2012 12061 21.45-66.52 7/17/2012

2012. The incidence angle varies between 25° to 65° with
a nominal swath of 21 km. This study uses a multi-look
complex (MLC) product acquired for the flight line #31606.
This flight line covers all the investigated agricultural fields. A
spatial resolution of 5.0 m in range and 7.2 m in azimuth are
considered. We extracted the coherency matrix T and speckle-
filtered them with the refined Lee filter with a window size
of 5× 5 using PolSARpro software. As the terrain is flat, we
need not apply any topographic correction technique.

We simulated the compact-pol data from the UAVSAR full
polarimetric data. The compact polarimetric 2× 2 covariance
matrix C2 is obtained from the 3×3 full polarimetric covariance
matrix C3 considering the right circular transmit configuration,
i.e., ellipticity, χ = −45° and orientation angle, ϕ = 0° to
simulate the datasets [38]. Subsequently, the scattering type
parameters are extracted using the PolSAR tools plugin [39].

C. Ground measurements

Extensive field measurements were collected during the
SMAPVEX12 campaign, with near synchronous UAVSAR
acquisitions over 55 agricultural fields. The collection of field
measurements spans between 6th June and 17th July 2012. Both
the soil and vegetation characteristics are measured during
this field campaign. Soil permittivity was measured using the
hand-held Hydra probes at an average depth of 5 cm. Three
replicate measurements were made to get a representative soil
permittivity value for each point. Likewise, sixteen locations
were selected for each field to sample soil permittivity. The daily
rainfall was also noted to evaluate soil permittivity dynamics.
There is a good agreement between the temporal evolution of
the mean soil permittivity measurements and the amount of
rainfall, as shown in Figure 5. Usually, a peak in the mean
soil permittivity value follows a precipitation event. It then
follows a quasi-exponential decrease in the absence of irrigation,
precipitation and/or evaporation (Figure 5). One can find more
details about these measurements in [40].

IV. RESULTS AND DISCUSSION

First, we extract and analyze the entropy and scattering-
type parameters from UAVSAR L-band data for FP and CP
SAR configurations. We have examined the data collected over
the SMAPVEX-12MB test site for four crops (corn, pasture,
soybean, and wheat) throughout the major phenological stages.
In Section II, we have evaluated the theoretical sensitivity
of the extracted scattering-type parameters from full and
compact polarimetric data. We now focus on the inversion
of soil permittivity. We assessed the agreement between the
in-situ and estimated soil permittivity values using the Pearson
correlation coefficient r and Root Mean Square Error (RMSE).
The subsequent sections present the analysis details for full
and compact SAR data.
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Fig. 6. Temporal H/θFP plots derived for various crops. H = 1 − Entropy(H) i.e. H = 0 corresponds to high entropy and H = 1 corresponds to low
entropy. Similarly, θFP = − 90°, 0° and 90° represents pure dihedral, random (depolarized) and trihedral type of scattering respectively. Note that θFP is
scaled by a factor of 2 for representation. No scattering mechanisms exist in the shaded portion. For a detailed interpretation of the plot, see [41].
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Fig. 7. Temporal evolution of observed and dominant scattering mechanism over various crops. These violin plots represent the kernel density estimation
displaying the shape of the data distribution along with the median value. The secondary y-axis shows the mean±standard deviation of crop height for each
crop type.

A. Full polarimetry

This section details the analysis of the proposed approach
for full polarimetric UAVSAR data, followed by a comparative
study of the estimates from two scattering-type parameters for
the four crop types mentioned above.

We first analyze the temporal dynamics of entropy-scattering
type parameter using the H/θFP clustering plane over these
crops (note that, here H = 1−H , where H is the scattering
entropy). We chose four acquisitions temporally 1-2 weeks
apart to analyze changes in scattering mechanism and entropy
during the observation period (Figure 6). During the initial
vegetation growth period on DOY-169, we observe low entropy
and high θFP values (Figure 6a) for corn, pasture, and soybean
due to sparse vegetation structure and considerable contribution
from the soil. However, for wheat, we observe medium to

higher entropy and low θFP values due to higher canopy height
(>50 cm). One can note that H values are relatively higher
(0.56) for soybean than other crops. These relatively high H
values are due to the low canopy height of 10.67 cm during
DOY-169. In addition, the moderate canopy heights of corn
and pasture produced higher values of H . On the contrary, the
mean canopy height of wheat (> 50 cm) produced H = 0.12
indicating higher entropy.

We also observe a shift in the clusters from low to high
entropy zones from DOY-169 to DOY-199. This shift typically
indicates a decrease in H values due to the increase in canopy
height and foliage density. Additionally, we observe a change
in the scattering mechanism from odd to even multiple-bounce
over soybean fields in Figure 6d. This shift in the scattering
mechanisms might be due to increased crop stem diameter and
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Fig. 8. Scatter plots of measured soil permittivity and estimated soil permittivity for different crops using scattering mechanism α. The solid line represents
the 1:1 line, and the dashed lines denotes ±8 offset from the 1:1 line.
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Fig. 9. Scatter plots of measured soil permittivity and estimated soil permittivity for different crops using scattering mechanism θFP. The solid line represents
the 1:1 line, and the dashed lines denotes ±8 offset from the 1:1 line.

soil permittivity due to the preceding rainfall event on DOY-
197. On the contrary, we observe an increase H for pasture
due to a decrease in canopy height from approximately 30 cm
on DOY-181 to 10 cm on DOY-199.

Figure 7 shows the temporal changes of observed and
dominant scattering mechanisms for FP SAR (derived as
detailed in Section II-A). Thus we observe that most of the
dominant θ values are towards odd bounce (surface) scattering.
As shown in Figure 7a, for corn, till DOY-174 (canopy height
< 50 cm) we observe a strong volume scattering (dominant
θ ≈ −0.70°± 6.1°). This volume scattering dominance could
be because of wet stubbles and surface roughness. However,
from DOY-177, the dominant scattering shifted to surface and
mixed volume. Further, increase in canopy height of more
than 200 cm on DOY-199 generated more volume scattering
(dominant θ ≈ 0.43°±5.3°). In the case of pasture (Figure 7b),
due to low canopy height (< 40 cm) and density, the dominant
scattering mechanism remains surface for the entire observation
period.

Similarly, for soybean, the dominant scattering mechanism
is surface due to low canopy height of < 50 cm till DOY-196.
However, during DOY-199, we observe a bimodal distribution
(Figure 7c) of dominant θ, indicating both even and odd bounce
scattering. This bimodal nature could be because of increased
canopy density and rainfall events on DOY-197. For wheat
(Figure 7d), we observe dominant volume scattering during
the initial dates (DOY-169 to DOY-175), which is similar to
what we observe for corn. However, the dominant mechanism
shifted towards the surface from DOY-177.

We utilize the dominant surface scattering mechanism analy-
sis in the previous paragraphs to estimate soil permittivity. We
show the scatter plots of measured soil permittivity compared
with estimated soil permittivity from the developed inversion
approach using α and θFP in Figures 8 and 9, respectively.
From the in-situ measurements, the overall dynamic range of
measured soil permittivity is from 3 to 45. Further, we obtain
the lowest RMSE of 2.2 with a r value of 0.72 for corn with
θFP as presented in Figure 9a. This low RMSE in both θFP
and α estimates could be due to less overall dynamic range of
measured permittivity over corn (maximum εr = 14.97). It is
important to note that we obtain an improvement of ≈ 21.4 %
RMSE when we use θFP compared to that of α. One of the
major reasons for these differences in estimates could be the
residual depolarizing component in the dominant scattering
because of corn canopy height and structure and also due to
the sensitivity of parameters as shown in Figure 1.

For the other three crops (viz., pasture, soybean, and wheat),
we obtain RMSE in the range of 4 − 5 with θFP. Despite
their lower height than corn, there is an increase in RMSE
for these three crops. One of the major reasons for this
observation is the lower sensitivity of the X-Bragg model for
high permittivity and a higher dynamic range of soil permittivity.
Several previous researchers also observed and reported this
decrease in sensitivity of the X-Bragg model with an increase
in permittivity [15], [36]. Due to this reason, one can observe
higher uncertainty in estimates with the increase in permittivity.
Nevertheless, we obtain a 10.5 % improvement in RMSE for
pasture and soybean with θFP.
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Fig. 10. Temporal H/θCP plots derived for various crops. H = 1− Entropy(H)) i.e. H = 0 corresponds to high entropy and H = 1 corresponds to low
entropy. Similarly, θCP = − 90°, 0° and 90° represents pure dihedral, random (depolarized) and trihedral type of scattering respectively. Note that θCP is
scaled by a factor of 2 for representation. No scattering mechanisms exist in the shaded portion. A detailed description of the plot is given in [41]).
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Fig. 11. Temporal evolution of observed and dominant scattering mechanism over various crops. These violin plots represent the kernel density estimation
displaying the shape of the data distribution along with the median value. The secondary y-axis shows the mean±standard deviation of crop height for each
crop type.

Furthermore, one can observe a noticeable spread of esti-
mated permittivity values in wheat using α. This spread might
be because of a high crop canopy height of > 50 cm from
DOY-169. Wheat fields were in the heading and flowering stage
from DOY-169 to DOY-190 [37], [42]. During this phenology
stage, one can observe increased depolarization of the scattered
wave [43]. Therefore, a residual depolarizing component in the
dominant scattering could explain high uncertainty in estimates
from α. In contrary, we obtain a 7 % better accuracy with θFP.
In summary, we obtain an improvement of 7 % to 20 % RMSE
with the proposed method for FP SAR data. We have detailed
the performance metrics derived from the developed algorithm
in Table II.

TABLE II
SUMMARY OF VALIDATION ACCURACY METRICS OF THE PROPOSED

INVERSION METHODOLOGY FOR VARIOUS CROPS USING FP SAR DATA (r−
PEARSON CORRELATION COEFFICIENT AND RMSE−ROOT MEAN SQUARE

ERROR).

Crop Type α θFP

r RMSE r RMSE

Corn 0.68 2.88 0.72 2.20
Pasture 0.79 4.80 0.84 4.28
Soybean 0.72 4.88 0.80 4.37
Wheat 0.77 5.04 0.81 4.69
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Fig. 12. Scatter plots of measured soil permittivity and estimated soil permittivity for different crops using χ. The solid line represents the 1:1 line, and the
dashed lines denote ±8 offset from the 1:1 line.
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Fig. 13. Scatter plots of measured soil permittivity and estimated soil permittivity for different crops using θCP. The solid line represents the 1:1 line, and the
dashed lines denotes ±8 offset from the 1:1 line.

B. Compact polarimetry

This section details the analysis of the proposed approach
for simulated compact polarimetric UAVSAR data. We have
simulated hybrid-CP SAR data with the right circular transmit
configuration, i.e., χ = −45° and ϕ = 0° [38]. We provide a
comparative study of the estimates from two scattering-type
parameters for the four crops mentioned above types.

Similar to FP data, we first analyze the temporal dynamics of
entropy-scattering type parameter using the H/θCP clustering
plane over these crops as shown in Figure 10. During the
initial vegetation growth period on DOY-169, lower entropy
and higher θCP values are observed due to lower canopy height,
as shown in Figure 10a. The temporal trend of clusters is
similar to FP, with a few minor differences. During DOY-169,
we observe relatively lower θCP values in the case of corn
(i.e., towards a mixture of volume and multiple even bounce)
compared to that of FP. Further, we observe a relatively higher
entropy for all four crops due to similar preferences in all the
scattering eigenstates in the case of CP SAR data.

Figure 11 shows the temporal changes of observed and
dominant scattering mechanisms for CP SAR data (extracted
as detailed in Section II-B). The temporal trend and the
distribution of dominant θCP follows that of dominant θFP.
Moreover, the majority of the dominant θCP values are towards
the odd-bounce (surface) scattering. For corn, we observe
lower values of θCP along with a marginal increase in standard
deviation compared to that of θFP. For example, in the case of
corn on DOY-169: θFP = 0.01°± 5.62°, θCP = −2.71°± 7.16°

as shown in Figures 7a, 11a. In contrast, for pasture, we observe
higher θ values along with increased standard deviation in CP
compared to that of FP.

These contrasting values of θ for different crops are majorly
due to the decrease in the Barakat DOP for CP data. For
instance, at L-band, attenuation due to < 50 cm of pasture
canopy is significantly low compared to that of corn with
canopy height > 100 cm. Interestingly, we observed higher θ
values for CP data for soybean than FP. For instance, as shown
in Figures 11c and 7c, at 40 cm of canopy height during DOY-
190, θCP = 17.54° ± 13.58° whereas θFP = 14.08° ± 11.26°.
Moreover, we observe lower values for dominant θ for CP data
by order of 2° to 3°, which might be due to the decrease in
the Barakat DOP.

We utilize this dominant scattering-type parameter θCP for the
inversion of soil permittivity. We presented the obtained scatter
plots of measured soil permittivity compared with estimated
soil permittivity from the developed inversion approach using
χ and θCP in Figures 12 and 13 respectively. Comparing the
permittivity inversion results from χ and θCP, we observe better
accuracy by θCP for all the four crops.

However, the RMSE values are marginally high for CP than
in FP due to the reduced information in CP. For corn, we
obtain an RMSE of 3.28 with θCP, whereas with χ, we get a
higher RMSE of 4.38. It is interesting to note that most of the
permittivity estimates from χ are greater than that of θCP. These
higher values could be because of the effect of the roughness
descriptor on χ than θ. As shown in the simulation study, a
high dynamic range of χ values for a given permittivity value
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Fig. 14. Spatiotemporal maps of the estimated soil permittivity derived from FP (top row) and CP (bottom row) SAR data over the test site for various
temporal acquisitions, near range to far range runs from left to right within the images.

(Figure 2) might produce a high uncertainty in the estimates
from χ than θCP.

A similar overestimation phenomenon is also observed in
the case of pasture, as seen in Figure 8b. Moreover, we
observe that the estimates from a few points have reached
a maximum permittivity value. The overestimation could be
because of the increased surface roughness due to the harvesting
processes [44], as one can observe that the pasture fields were
harvested between DOY-181 and DOY-190 from Figure 11b.
Therefore, we obtain a high RMSE of 5.73 with χ. There is

also a marginal overestimation with θ, which is relatively less
with an RMSE of 4.79.

For soybean, we obtain an improvement of 11.5 % RMSE
with θCP compared to that of χ. In the case of wheat, we obtain
an RMSE of 5.45 with θCP, whereas with χ, we obtain a higher
RMSE of 6.01. In summary, we obtain an improvement of 9 %
to 25 % RMSE with the proposed method for CP SAR data.
The performance metrics derived from the developed algorithm
for CP SAR data are detailed in Table III.

Soil permittivity maps derived from FP and CP SAR data



14

TABLE III
SUMMARY OF VALIDATION ACCURACY METRICS OF THE PROPOSED

INVERSION METHODOLOGY FOR VARIOUS CROPS USING CP SAR DATA (r−
PEARSON CORRELATION COEFFICIENT AND RMSE−ROOT MEAN SQUARE

ERROR).

Crop Type χ θCP

r RMSE r RMSE

Corn 0.60 4.38 0.62 3.28
Pasture 0.80 5.73 0.81 4.79
Soybean 0.76 5.20 0.83 4.60
Wheat 0.76 6.01 0.81 5.45

over the test site are presented in Figure 14. The overall
temporal trend of estimated soil permittivity agrees with field
measurements and rainfall events. For instance, from in-situ
data in Figure 5, we can observe a quasi-exponential decreasing
trend in soil permittivity from DOY-169 to DOY-182. Therefore,
a similar dynamic range and spatial distribution of estimated
soil permittivity are observed in Figure 14. The rainfall events
after DOY-185 lead to an increase in soil permittivity, which
we can notice as an increase in permittivity estimates on DOY-
190 and DOY-196 in Figure 14. Despite the high similarity
between the permittivity maps derived from FP and CP SAR
data, we record a relatively marginal overestimation of soil
permittivity with CP SAR. This overestimation could be due
to reduced information in CP mode and the effect of increased
entropy.

We observe the effect of variability of the incidence angle
from near to far range on the soil permittivity inversion.
Specifically, this incidence angle effect is more evident in
advanced crop phenology. This is because, in forward modeling
of the surface component, the incidence angle influences the
calculus of the decomposed surface scattering-type parameters,
consequently affecting soil permittivity inversion [16]. There-
fore, we minimize this effect by using the local incidence angle
(φi), which includes the terrain slopes, in the inversion process
for the X-Bragg model. Furthermore, it is observed that low
incidence angles provide more valid pixels for the retrieval
process, with a compromise of the decreased sensitivity of θFP
or α to soil dielectric constant (Figure 1). A similar observation
was also reported in the previous studies [9], [15], [19].

We performed a field scale analysis with four sample fields
(one for each crop) to study the spatial and temporal viability
of soil permittivity, as shown in Figure 15. The quantitative
summary of estimates is shown in Table IV. Overall we observe
that the temporal variation of the estimated soil permittivity is
in good agreement with rainfall data and in-situ measurements.
Further, one can notice that the estimation rate is considerably
high (≥ 80 %) for all four crops throughout the observation
period. Furthermore, the permittivity estimates from FP data
and CP data are in accordance with each other, indicating
the robustness and generalizability of the proposed method.
In summary, the quantitative and qualitative soil permittivity
estimates from the proposed method (for both FP and CP SAR
modes) conform with the in-situ measurements.

DOY-169 DOY-174 DOY-179 DOY-181 DOY-190 DOY-196

(a) Corn (Field ID: 83)

DOY-169 DOY-174 DOY-179 DOY-181 DOY-190 DOY-196

(b) Pasture (Field ID: 22)

DOY-169 DOY-174 DOY-179 DOY-181 DOY-190 DOY-196

(c) Soybean (Field ID: 114)

DOY-169 DOY-174 DOY-179 DOY-181 DOY-190 DOY-196

(d) Wheat (Field ID: 91)

5 10 15 20 25 30 35 40 45
Soil permittivity ( r)

Fig. 15. Temporal variation of soil permittivity at field scale for various crops.
The top and bottom rows in each sub-figure correspond to soil permittivity
derived from FP (θFP) and CP (θCP) SAR data, respectively.

V. CONCLUSIONS

This study proposes a unified method to estimate soil
permittivity over croplands with vegetation cover using full
polarimetric (FP) and compact polarimetric (CP) SAR data.
The proposed method utilizes the recently proposed scattering-
type parameter derived from the X-Bragg model. For FP SAR
mode, the scattering type-parameter, θFP is obtained from the
Eigen-decomposed polarimetric 3 × 3 coherency matrix T,
whereas for CP SAR mode, the scattering type-parameter, θCP
is obtained from the Eigen-decomposed polarimetric 2 × 2
covariance matrix C. The robustness of the proposed method
resides in its generalized formulation for both the modalities:
FP and CP.

The full and simulated compact polarimetric SAR data
acquired by the airborne L-band Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) during the SMAPVEX12-
MB campaign over the Carman test site in Canada are utilized
for this study. We evaluated the performance of the proposed
technique to estimate soil permittivity over four crops: corn,
pasture, soybean, and wheat, for their major phenology stages.

A theoretical investigation suggests that the surface rough-
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TABLE IV
SUMMARY OF PERMITTIVITY VALUES FROM FIELD-SCALE TEMPORAL ANALYSIS FOR ALL FOUR CROPS. EACH PERMITTIVITY VALUE INDICATES

MEAN±STANDARD DEVIATION. IN-SITU MEASUREMENTS ARE POINT OBSERVATION (16 SAMPLING POINTS FOR EACH FIELD), WHEREAS ESTIMATES ARE
OVER AN ENTIRE FIELD.

DOY Corn (FID:83) Pasture (FID:22) Soybean (FID:114) Wheat (FID:91)

In-situ εr εr (θFP) εr (θCP) In-situ εr εr (θFP) εr (θCP) In-situ εr εr (θFP) εr (θCP) In-situ εr εr (θFP) εr (θCP)

169 15.19± 5.50 16.2± 3.24 17.12± 5.63 21.56± 11.29 22.34± 6.53 23.22± 8.23 – 23.23± 2.07 24.98± 3.28 12.82± 1.92 14.45± 3.70 15.60± 4.03
174 10.86± 4.48 12.23± 2.28 13.01± 3.83 23.39± 12.80 20.23± 3.72 22.56± 10.20 21.90± 6.09 16.54± 5.45 18.71± 7.73 12.59± 2.38 15.87± 5.20 17.02± 5.77
179 7.88± 3.20 8.21± 4.32 9.52± 4.56 20.85± 12.83 24.28± 11.69 25.67± 13.34 12.27± 3.30 6.27± 3.48 6.81± 4.32 6.78± 1.34 11.78± 3.90 13.14± 4.46
181 6.92± 2.68 9.72± 3.21 10.32± 4.35 17.16± 13.62 18.72± 10.23 19.47± 12.48 9.21± 2.41 10.76± 3.38 13.62± 5.40 – 12.88± 2.06 13.90± 4.91
190 16.39± 4.73 8.52± 2.31 9.37± 6.46 15.48± 11.88 21.46± 6.43 23.33± 8.56 13.80± 3.03 21.23± 4.38 24.66± 5.31 9.79± 1.82 11.44± 4.03 11.86± 5.38
196 – 19.21± 2.43 21.43± 5.23 – 24.55± 10.67 26.01± 13.98 – 19.80± 4.01 21.34± 5.11 – 8.82± 6.33 9.26± 7.81

ness less affects the proposed approach using θ compared to
that of α in the case of FP and χ in the case of CP. Therefore,
the proposed method performs better than the existing methods
in the presence of surface roughness.

The estimated permittivity using θ provided a good agree-
ment with the in-situ measurements with a Root Mean Square
Error ranging from 2.2 to 4.69 for FP and 3.28 to 5.45 for
CP SAR data along with an r ≥ 0.62. A comparative analysis
with the existing scattering-type parameter α proposed by
Cloude and the ellipticity parameter χ apparently indicated
better performance of the proposed approach by an average
12.4 % and 15.6 % RMSE for FP and CP SAR data respectively.
However, due to the limitations of the X-Bragg model, we
observed an increase in the error while estimating higher
permittivity and advanced phenology stages. A similar increase
in error was also reported in several previous studies. This
error is more pronounced in estimates obtained from α and χ
compared to that of θFP and θCP respectively.

Nevertheless, these results provide new insight into using
PolSAR data to retrieve soil permittivity for vegetated soils, an
essential recommendation for the current operational mission
like RADARSAT Constellation Mission (RCM) and future
missions like NASA-ISRO SAR mission (NISAR), Biomass
and Radar Observing System for Europe-L-band (ROSE-L).

APPENDIX

A. α for Full-pol X-Bragg model:

αXB =
λ1XBα1XB + λ2XBα2XB + λ3XBα3XB

λ1XB + λ2XB + λ3XB

where,
λ1XB = −0.5β2 (1− sinc (4ψ)) (27)

λ2XB = 0.25β2 (sinc (4ψ) + 1) + 0.5 +
1

2{
−β2

(
−4 sinc2 (2ψ) + 2 sinc (4ψ) + 2

)
+
(
0.5β2 (sinc (4ψ) + 1) + 1

)2}1/2

(28)

λ3XB = 0.25β2 (sinc (4ψ) + 1) + 0.5− 1

2{
−β2

(
−4 sinc2 (2ψ) + 2 sinc (4ψ) + 2

)
+
(
0.5β2 (sinc (4ψ) + 1) + 1

)2}1/2
(29)

α1XB =
π

2
(30)

α2XB = cos−1
({

(β2 sinc2 (2ψ))

[
0.25β2 sinc (4ψ)

+ 0.25β2 − (0.0625β4 sinc2 (4ψ)

+ 0.125β4 sinc (4ψ) + 0.0625β4

+ β2 sinc2 (2ψ)− 0.25β2 sinc (4ψ)

− 0.25β2 + 0.25)0.5 − 0.5

]−2}1/2)
(31)

α3XB = cos−1
({

β2 sinc2 (2ψ)

[
0.25β2 sinc (4ψ)

+ 0.25β2 + (0.0625β4 sinc2 (4ψ)

+ 0.125β4 sinc (4ψ) + 0.0625β4

+ β2 sinc2 (2ψ)− 0.25β2 sinc (4ψ)

− 0.25β2 + 0.25)0.5 − 0.5

]−2}1/2)
(32)
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academic teaching experience from bachelor, master, and PhD levels to
advanced technical tutorials presented at international conferences and space
and research institutions worldwide. He is an associate editor of the IEEE-
JSTARS journal and the MDPI Remote Sensing, acting also as invited guest
editor for several special issues. He has collaborated in the Spanish PAZ and
the ESA’s SAOCOM-CS missions, in the proposal of the Parsifal mission and
he is member of the ESA’s Sentinel ROSE-L Mission Advisory Group. He was
appointed vice-president of the IEEE-GRSS Spanish chapter, and in 2016 he
became its secretary and treasurer. From 2011 Dr. López-Martı́nez collaborates
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