
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–24

� The Author(s) 2023

DOI: 10.1177/00375497231152651

journals.sagepub.com/home/sim

Ad hoc HLA simulation model derived
from a model-based traffic scenario

David Reiher1 and Axel Hahn1,2

Abstract
Modern highly automated and autonomous traffic systems and sub-systems require new approaches to test their func-
tional safety in the context of validation and verification. One approach that has taken a leading role in current research
is scenario-based testing. For various reasons, simulation is considered to be the most practicable solution for a wide
range of test scenarios. However, this is where many existing simulation systems in research reach their limits. In order
to be able to integrate the widest possible range of systems to be tested into the simulation, the use of co-simulation
has proven to be particularly useful. In this work, the High-Level Architecture defined in the IEEE 1516-2010 standard is
specifically addressed, and a concept is developed that establishes the foundation for the feasible use of scenario-based
distributed co-simulation on its basis. The main challenge identified and addressed is the resolution of the double-sided
dependency between scenario and simulation models. The solution was to fully automate the generation and instantia-
tion of the simulation environment on the basis of a scenario instance. Finally, the developed concept was implemented
as a prototype, and the resulting process for its use is presented here using an example scenario. Based on the experi-
ence gained during the creation of the concept and the prototype, the next steps for future work are outlined in
conclusion.

Keywords
High-level architecture, traffic simulation, traffic scenario, scenario-based testing, data modeling, V&V

1. Introduction

The development of automated and autonomous vehicles

has made significant progress in recent years.

Nevertheless, we are still a long way from the widespread

introduction of autonomous vehicles.1 Some traffic

domains are more in the focus of the general public and

are therefore more technically advanced, but the effort to

achieve the goal of fully autonomous vehicles suitable for

widespread everyday use unites them all. A certain histori-

cal and cultural pioneering role can be attributed to road

transport systems,2 but water transport systems3,4 and

other domains’ transport systems are increasingly experi-

encing great interest in this regard, too.

One of the biggest challenges in developing such auton-

omous vehicles (AVs) is their validation and verification

(V&V). Especially for the successful introduction of future

vessels with a degree of autonomy of three or higher, as

categorized by the International Maritime Organization

(IMO),5 and future road vehicles with driving automation

of level 3 or higher as defined by SAE,6 the proof of their

functional safety is very important. Studies have shown

that a large part of the population is concerned about AVs

malfunctioning, and therefore lacks the necessary level of

trust to use them in the near future.7–11 From this, it can be

concluded, as a study of the German and US print media12

has also shown, that one of the most important aspects on

the way to public acceptance of highly automated and AVs

is the clear proof of their functional safety.

Due to the introduction of non-deterministic

approaches, such as the use of self-learning artificial intel-

ligence, classical deterministic functional safety verifica-

tion methods such as model checking and theorem

proving alone are often no longer sufficient to ensure the

functional safety of the whole system or its parts.13,14

Instead, the behavior of these systems must be checked at

1Department of Computing Science, Carl von Ossietzky University of

Oldenburg, Germany
2Institute of Systems Engineering for Future Mobility, German Aerospace

Center (DLR), Germany

Corresponding author:

David Reiher, Department of Computing Science, Carl von Ossietzky

University of Oldenburg, Ammerländer Heerstraße 114-118, 26129

Oldenburg, Germany.

Email: david.reiher@uol.de

https://doi.org/10.1177/00375497231152651
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497231152651&domain=pdf&date_stamp=2023-02-08


least partially at runtime. Unfortunately, it is not possible

to manually test all conceivable situations an automated or

autonomous vehicle could be exposed to in the future with

reasonable effort. Covering all permutations of environ-

mental variables by real-world test drives requires an eco-

nomically unfeasible amount of time and resources.15 The

last few years have brought along some approaches to

tackle this issue. A very popular approach to replace real-

world testing is the use of traffic simulations.16 Running

tests in a simulated virtual environment brings several

advantages, including the ability to be able to be used dur-

ing development, to be executed faster than real-time, and

not to expose people and equipment to any risk.17

Especially the use of simulation for validation of sub-

systems as early as during the development stages can lead

to early and cost-efficient detection of errors.17 In order to

obtain meaningful results from simulative tests, an addi-

tional systematic approach is required.18 For this purpose,

the so-called scenario-based approach, as proposed within

the Pegasus project19 and others, has become established.

The approach consists of identifying, modeling, simulat-

ing, and evaluating exactly those traffic scenarios that are

most relevant for obtaining meaningful information about

the functional safety of a particular (sub-)system under test

(SuT).

The need to be able to test sub-systems of a vehicle in

a simulative way results in the necessity of the possibility

to combine simulations from different providers or even to

replace components of a simulated vehicle with one or

more real systems, external simulations, external pieces of

software, or external models. For this purpose, co-

simulations have proven to be particularly useful.20–27

This is mainly because their distributed nature allows for

external systems to be connected by design. Distributed

co-simulations, however, bring their own challenges. For

example, the data that are exchanged between the partici-

pating simulations must be additionally described, and this

description must be distributed among the participants so

that they know what kind of data in what format is being

sent by the others and how to deal with it. Some co-

simulation standards also introduce a central communica-

tion interface that needs to know which participant wants

to receive which data. At first glance, this approach is not

necessarily compatible with the scenario-based approach

since different scenarios with different requirements are to

be simulated in short succession.

2. Co-simulation standards

In addition to many concrete use case, tool, or technology-

specific co-simulation frameworks that can be found in the

current scientific literature, two standards have emerged

that are by now widely used. The Functional Mock-Up

Interface (FMI) and the High-Level Architecture (HLA)

standards have a very similar goal, are both described as

tool independent, but have some significant differences in

approach on closer inspection.

The FMI is a standard for the exchange of dynamic

models and co-simulation.28 The first version of the stan-

dard was published in 2010. Since 2011, the maintenance

and further development of the standard has been carried

out by the Modelica Association, a second version of the

standard was published in 2014 and the third version is

currently under active development. FMI for co-simulation

establishes a co-simulation environment where multiple

simulation components are coupled. Those components

implementing the FMI standard are called Functional

Mock-up Units (FMU). On a basic level, an FMU can be

described as a wrapper of an XML file, a solver, and the

model to be executed deployed as C source code or a

platform-dependent binary file. To run a co-simulation

consisting of several FMUs, a master algorithm is needed.

A corresponding ready-to-use implementation is not pro-

vided by the standard, but there are some free and commer-

cial ones available. These differ in the supported functions

because the FMI standard does not prescribe a feature set,

interfaces, or processes that have to be fulfilled by the mas-

ter algorithms implementation. Thus, only some of the

master algorithms support, for example, a physically dis-

tributed operation. The standard has been developed for

efficient simulation of continuous systems, whereby the

data exchange between the FMUs, however, only takes

place at discrete points in time.

The HLA29 standard was originally defined in the

1990s by the Defense Modeling and Simulation Office

(DMSO) of the US Department of Defense (DoD) to facil-

itate the assembly of stand-alone simulations. Since 2000,

it is standardized, regulated, and published by IEEE. The

original goal was the reuse and the interoperability of

applications that were not necessarily interoperable by

design. Therefore, HLA is meant to resolve interoperabil-

ity and reusability issues between those software compo-

nents. Another important aspect of the HLA specification

is the synchronization capability. HLA can be used for

implementing discrete-time simulations as well as for

discrete-event simulations, or a mixture of both. Much

emphasis is therefore placed on time management and

synchronizing the participating simulations, called feder-

ates, to avoid inconsistent states of the overall simulation,

called federation. To achieve this goal, there is a central

component called run-time infrastructure (RTI). It handles

tasks such as federation management, sharing of objects

and their values between federates, and time management.

In addition, federates do not communicate directly with

each other, but only indirectly through the RTI, as can be

seen in Figure 1. To do this, the RTI needs to know what

kind of data each federate will provide and what it wants

to consume. These data and relationships are described in

the so-called Federation Object Model (FOM). This, in

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



turn, can be extended by each federate in the sense of so-

called modular FOMs since the introduction of HLA

Evolved (IEEE 1516-2010) in 2010.30 HLA only describes

interfaces, processes, and contracts to be complied with,

but does not provide a ready to use implementation of the

RTI. However, thanks to the active community, there are

some free and commercial implementations available.

One of the main differences is that one could arguably

say that a single FMU in an FMI co-simulation can be

considered as a replacement of a real sub-system ready to

take inputs and compute resulting outputs. This is closely

related to the definition of a digital twin of a single traffic

participating vehicle.31 FMI is, therefore, more suitable for

representing a vehicle in detail as a system of systems.

HLA, however, places emphasis on a single federate rep-

resenting larger entities or even groups of entities. This fits

very well with the structure of an agent-based simulation,

which is very close to real traffic if one considers individ-

ual vehicles or their drivers as agents. In addition, the

HLA standard places more emphasis on supporting physi-

cally distributed simulation environments, which has great

added value when the SuT is located elsewhere and can

only be connected via communication infrastructures.

These two mentioned advantages, together with the very

detailed prescribed interfaces, workflows, and constraints,

as well as the focus on time and data management, make

HLA the more suitable choice for the further proceeding

of this work.

3. HLA for flexible scenario–based test
workflows

As mentioned in the previous section, the federates of an

HLA federation do not communicate directly with each

other but indirectly using the central RTI. A federate

informs the RTI when it instantiates new simulation-

relevant objects and sends the corresponding values to the

RTI each time the attributes of these objects are updated.

Analogous to this publishing mechanism, a federate

informs the RTI which object instances and attributes of

other federates it is interested in and subsequently receives

the new values from the RTI after each corresponding

attribute update. For this to work generically—to ensure

interoperability—the data are sent to and received by the

RTI. For this to work, the structure of the objects and the

data types of their attributes have to be defined manually

in the FOM.

The development of HLA federates is typically very

complex and resource-intensive because developers must

invest a significant amount of time not only to create and

maintain the just mentioned FOM but also to handle com-

mon HLA functions such as controlling simulation time,

the synchronization process between federates, publishing,

subscribing, and updating elements of the objects along

with their associated coders and decoders. As a result, they

cannot fully focus on the actual functionalities of the simu-

lation content.32 While the functional aspects, such as time

synchronization and communication with the RTI, can be

fairly easily moved to a library since these processes are

similar enough for most federates, the FOM must always

be adapted to the respective communicational functionality

of an entity to be simulated. The methods for processing

the received object instance and attribute updates must also

be adapted accordingly to the behaviors mapped by the

federate implementation.

This approach is well suited for purposes where one

has a lot of different stand-alone simulators that rarely if

ever get customized and get combined in a plug-and-play

manner depending on the planned simulation content. This

is, for example, the case for vehicular and military training

and education simulation environments, which are a com-

mon application for HLA. However, this poses a challenge

for the efficient use of HLA for simulative scenario-based

test workflows. In this case, the simulation contents, their

level of abstraction, and their behavior are often adjusted,

since a wide variety of scenarios must be simulated, with

sometimes more and sometimes less complex participants,

behaviors, and environments. This is due to the fact that

the simulation content and flow must be tailored to the

SuT and its current development status.17 In addition,

scenario-based test runs often consider extreme and rarely

occurring situations, which may require unusual and arbi-

trary behaviors or parameter combinations. These can also

vary from scenario to scenario.

However, predefined FOMs and communication imple-

mentations are advantageous for the reuse of implemented

federates and for long-running simulations to which new

sub-simulations are added during runtime. Reusability is

also of utmost importance for the scenario-based approach,

as it is essential for its efficient use so that not every sce-

nario has to be completely implemented from scratch.

However, adding sub-simulations at runtime is not relevant

in this case and can be discarded as a requirement, since

the ideal scenario-based approach envisions that many dif-

ferent scenarios are simulated in sequence and that they

are self-contained. Instead, distributed co-simulation is

Figure 1. The basic structure of an HLA-compliant co-
simulation.

Reiher and Hahn 3



mainly used here, as already touched upon, because it

allows an intuitive way of integrating the SuT, in the sense

of vehicle, hardware, software, or model-in-the-loop.17 In

addition, this provides good load distribution capabilities

for the simulation of more complex scenarios.

4. Interdependence between scenario and
simulation models

Since scenarios and their representation are, as the name

suggests, the core of scenario-based testing, they have a

key role to fulfill. This is especially true when scenario-

based testing is integrated into the development process to

validate the results of each development step, as described

in a previous work on a new approach to describing traffic

scenarios with a model-based multi-layered approach.17

This development integrated process is illustrated in

Figure 2.

The classical approach to initiating simulation runs

would be that a simulation system does contain a simula-

tion model (the implementations of the simulated entities

and their dependencies), which represent the simulation

run’s contents, and these are set into a certain starting state

via direct parameterization, from where the simulation run

is started. Scenario description languages (SDLs), in par-

ticular, have established themselves for this task. There

are many of them, some open, others closed, some text-

based, and others graphical. Two examples are

OpenSCENARIO,33 which is very well established in the

automotive field and represents the contents of a simula-

tion run in a text-based way, and Traffic Sequence Charts

(TSCs),34 which allow the graphical representation of tra-

jectory families based on formal semantics. Most of the

established SDLs are strongly bound to a specific simula-

tion model or have to be adapted to it if the scenario is to

be executed by a simulation system. A good overview of

established SDLs in the automotive sector can be found in

the publication of Ma et al.35

Due to the need for reusability and persistent catalo-

ging, when a simulation is used during scenario-based test-

ing, this initial state—simply put—is now separated from

the state of the simulation and is referred to as a scenario

model. The separation leads to two independent models,

which are interrelated. This, in turn, leads to some chal-

lenges in modeling and simulating such scenarios, which

are largely similar to the difficulties described in the previ-

ous section. The resulting potentially problematic areas are

shown in Figure 3. Since the set of possible scenario con-

tent has to represent the possible contents of a simulation

run one-to-one in order to maintain compatibility and uti-

lize the full potential of the simulation system,17 there is a

certain interdependence between the simulation and sce-

nario models. This interdependence means that when one

model is modified, the other model must also be adapted.

Looking more closely at the two models, it becomes appar-

ent that, in the worst case, the simulation developer has to

modify four artifacts in total for every simulation run that

is to have new or altered simulating capabilities. The

implementations of the simulation objects, the FOM,

which describes which data are exchanged within the

simulation, the objects used for the scenario description,

and the scenario description in terms of configurations and

parameterizations. As a result, this kind of scenario-based

use of simulations is not practically feasible.

A possible solution to this problem was presented in a

previously published work.17 The core idea is that the

simulation models are generated based on the scenario

models without the need for manual adjustments. Thus,

the interdependence would be resolved or, strictly speak-

ing, obscured for the simulation developers and users. In

short, a multi-level model-based approach has been pro-

posed that makes it possible to create scenarios based on a

library of scenario building blocks and to use these as

direct input for an otherwise rudimentary simulation sys-

tem. These modeling libraries themselves consist of a

model based on a UML extension developed for this pur-

pose and its implementation in the form of Java code.

Since this work was more conceptual in character, this

paper will deal with the fundamental technical setup nec-

essary for its utilization in the context of an HLA-based

distributed co-simulation. The result is a framework that

allows the development of scenarios to be simulated for

different traffic domains without the need for HLA-spe-

cific knowledge. In addition, the interdependence of the

simulation and scenario models has been resolved, result-

ing in a more streamlined scenario development process.

This in conjunction leads to the effect that not only simu-

lation engineers can use simulation systems but also the

developers of the systems to be tested can ideally directly

Figure 2. Activity diagram describing the scenario- and
simulation-based validation and verification process of
automated and autonomous traffic systems as part of the
development phase.23

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



create and simulate the necessary scenarios, which allows

the process shown in Figure 2 to be implemented more

efficiently during the development of (highly-) automated

systems.

5. Related work

After the publication of the first HLA standard and the first

projects using it, it was quickly realized that the develop-

ment of an HLA-compliant federation is very complex.

Therefore, as early as the late 90s,36 efforts were made to

simplify the development and increase the reusability of

simulation components. Initially, the main focus was on

the reusability of FOMs to avoid having to rewrite them

over and over again. Modular concepts were additionally

developed in order to be able to reuse separate simulation

components more easily. In the later years, then some

approaches were developed, with which the HLA-specific

functionality can be hidden partially or completely from

the developer, to avoid the repeated creation of infrastruc-

tural boilerplate code. This should make it easier for devel-

opers to start using HLA and reduce the time required to

implement a running federation.

For the objectives of this work as described in the previ-

ous section, the reusability of model components, the auto-

matic generation of HLA-specific components, and other

development easing techniques are also possible relevant

concepts and assessed for their suitability.

5.1. Base object models

The idea behind Base Object Models (BOMs) is to provide

a component framework for facilitating interoperability,

reuse, and composability, to tackle the problems caused by

the increased complexity of simulation environments. The

concept is based on the assumption that piece parts of

models, federates, and federations can be extracted and

reused as modeling building blocks or components.37 The

concept of BOMs was first introduced in 1998,36 and later

in 2006 became a standard maintained and published by

the Simulation Interoperability Standards Organization

(SISO).38

Essentially, a BOM serves to represent a component.

The focus is placed on describing the interface for a com-

ponent, not the implementation details. It is therefore the

responsibility of the simulation system to provide the

implementation of behaviors described by the interface.39

This description is persisted in the form of static data

structures such as tables, UML, and XML and can thus be

stored and indexed in a kind of library for reusable co-

simulation participants. A developer then searches this

library for a BOM that meets previously identified require-

ments for model capabilities. If such a BOM exists, it can

be used instead of developing a new one. This procedure

is thus located in steps 2–4 of the Federation Development

and Execution Process (FEDEP).40 The behavior described

by the selected BOMs can then be implemented manually

into the federate or an already available BOM Component

Implementation (BCI) can be selected and integrated into

the federate. The idea behind BCIs is to provide compo-

nent model implementations matching the required beha-

vior described by a component interface, to increase the

reusability even further.

Although this approach originally brought some distinct

advantages, such as significantly increasing the reusability

of simulation components, increasing comprehensibility,

and reducing complexity for developers, BOMs alone are

not a suitable approach for implementing the short-lived

scenario-based co-simulation runs envisioned here. Since

BOMs represent structures and processes separated from

the implementation and scenario description, the problem

of interdependencies identified earlier and the associated

maintenance effort remain. A catalog-like approach like

the use of BOMs and BCIs provides is very well suited for

simulation applications where components are rarely

tweaked and instead often recombined. For the use case

envisioned here of using scenarios as a direct input for

initializing the simulation environment, the use of BOMs

would actually create yet another third dependency: struc-

ture and communication model, implementation of feder-

ates and/or BCIs, and the scenario.

5.2. BOM modeling framework

In 2011, a BOM-based framework prototype that supports

model editing, code auto-generating, testing, and

component-based modeling, called BOM Modeling

Framework (BMF), was presented. The goal of this frame-

work is to further promote the reusability and interoper-

ability of models, in addition, to further decrease the

Figure 3. Illustration of the tension between simulation and
scenario models in the context of HLA-based simulations.

Reiher and Hahn 5



development complexity of HLA-based co-simulations.41

This is done by further partitioning the executable part of a

federate (see Figure 4); Atomic Models are the central

building blocks in this approach. They are executable

small units that provide certain functionalities and can be

combined with other Atomic Blocks to form a Coupled

Block. Each Atomic Block has precisely defined inputs

and outputs. The Atomic Block itself is also sub-divided

into the so-called Kernel Model and the Connected Model.

The kernel model contains the models and implementa-

tions required for the intended domain-oriented functional-

ity. The kernel model contains all the necessary models

and infrastructural implementations that are required for

communication and interaction with other blocks. This

results in a clear separation between the business function-

ality and the structural models and implementations: ‘‘Any

model must provide an abstract interface in which various

operations are defined. Concrete implement it. User-

defined models never one must inherit directly invoke

methods of other user-defined models. Models must never

depend on specific implementations of other models.’’41

Another important part of the BMF is the Extensible

Simulation Running Framework (XSRFrame), which ulti-

mately ensures that the models are able to be executed and

interact with each other. Actually, XSRFrame is an HLA-

compatible general-purpose federate that can accommo-

date BOM models and provides the most important inter-

faces and services to communicate with the RTI.

The general procedure for development with the BMF

is that a model description document is created first. Based

on this, skeleton code is generated automatically, which

must be manually completed by the developer. The code

and the model are then exported as an atomic model in the

form of a Dynamic Link Library (DLL). Tool support is

required for these steps and the subsequent generation of

the Connected Model functionalities. The creation of

Coupled Models from multiple Atomic Models can then

be done manually. Although the use of the BMF greatly

increases the reusability of models and implementations

and additionally reduces the complexity for the developer,

the dependency between models is at most obscured by

some degree. In the case of more heavyweight modifica-

tions, the model description must first be modified again

in order to generate the corresponding code, which then, in

turn, has to be modified too. In addition, the publications

on the BMF do not deal with the question, in which extent

the parameters of the models can be influenced from out-

side of the DLLs themselves. The latter, however, is of

great importance for a scenario-based approach. On the

other hand, the strict separation between interfaces and

implementation as well as between model and engine is a

step in the desired direction of scenario-based simulation

environment instantiations and should therefore be given

continued attention in the further course.

5.3. HLA development kit software framework

The HLA Development Kit software Framework (DKF) is

a general-purpose, domain-independent, open-source

framework, which facilitates the development of HLA fed-

erates. The DKF allows developers to focus on the specific

aspects of their own federates rather than dealing with the

implementation of the common HLA-specific functional-

ities like managing the simulation time, connecting to the

RTI, publishing and subscribing, and managing the HLA-

specific Object and Attribute elements.42 The DKF is built

around three key principles: (1) interoperability, which is

achieved through full conformity to the IEEE 1516-2010

standard specifications; (2) portability and uniformity,

DKF provides a homogeneous set of application program-

ming interfaces (APIs) that are independent of the under-

lying HLA RTI and Java version; (3) usability, the

complexity of the features provided by the DKF frame-

work are hidden behind a set of APIs.43 The basic struc-

ture of a DKF-based federation can be seen in Figure 5.

The DKF layer is also able to accept extensions and use

them for application-specific processing tasks. Thus, the

framework can also be extended to a certain extent for

specific applications.

The DKF’s approach successfully separates HLA func-

tionalities and the function calls required for them from

the implementation of the actual federation. As a result,

the need for expert knowledge of HLA functionalities is

reduced, and the development of small test/dummy federa-

tions as well as large real federates is accelerated. Its

clearly defined structures, interfaces, and processes also

make it easy to understand the internals of the processes

within an HLA federation and inside the DKF layer.

Figure 4. Exemplary basic structure of a BMF-based federate.41

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Unfortunately, the main drawback of the two-way depen-

dency between the models cannot be completely solved

here either; FOMs still have to be written by hand and the

corresponding Java classes subsequently have to be anno-

tated with the DKF’s built-in annotations. A scenario-

based approach is also not possible in a straightforward

way when utilizing the DKF, since a scenario—as under-

stood here as a combination of simulation participants and

their starting states—cannot be used as a direct input for

the simulation environment’s initialization. Nevertheless,

the DKF approach comes close to reaching the goal set for

this work, and some concepts can be used as guidance,

such as the unified API for implementing a federates’

internal behavior.

5.4. Model-driven approaches to the development
of distributed simulations

Another approach that has received increasing attention

over the last decade is the model-based generation of dis-

tributed simulations. Since this paper focuses on the use of

HLA (cf. section 2), only the most prominent approach in

this area that uses HLA will be highlighted in the

following.

In 2012, Bocciarelli et al.44 proposed a model-driven

method for building distributed simulations. At this point,

the work focused on the transformation of business pro-

cess models into executable distributed simulations for the

purpose of analysis and testing. Since transport systems

differ from business processes in many ways, the work

would not be relevant at this point. In the same year, the

basic idea was extended to simulate general system mod-

els by building upon the Systems Modeling Language

(SysML).45,46 The basic idea is to create a SysML model

of the planned federation, consisting of several individual

model instances, which are then enriched with HLA-spe-

cific details using HLA-specific UML profiles, and later

transferred into an implementation by a multi-stage model

transformation process. The semi-automatically generated

implementations are merely skeletons that have to be filled

with logic subsequently to get an executable federation.

This largely avoids manual implementation of HLA-spe-

cific processes, which makes the development process of

distributed federations less complex.

This approach was further expanded and improved in

the following years by cloud-based deployment capabil-

ities,47 tailoring the approach to the Object Management

Group’s Standard for Model-Driven Engineering, the

Model-Driven Architecture (MDA),48,49 and adding auto-

mated FOM generation to further ease the process of creat-

ing a full-fledged executable federation.50 The last point,

in particular, solves a major weakness of the previously

mentioned related works: the manual creation of the FOM.

The above-mentioned DKF was in fact used in one

publication as the basis for the creation of the implementa-

tion.49 It could therefore possibly be used for closing one

of the biggest gaps of the DKF by placing the model-based

process upstream.

The latest iteration is the tailoring to the standardized

Distributed Simulation Engineering and Execution Process

(DSEEP),51 which emerged from the HLA standardization

activities and provides a standardized and rigorous process

for developing and executing distributed simulations. The

result goes under the name of Model-Driven Distributed

Simulation Development Process (MoDSEEP).52 The

applicability of this model-driven approach was later

demonstrated on the basis of use cases from practice and

concrete tool chains.53,54

Although this approach has very similar overarching

goals to the work presented here, is obviously very well

elaborated, and seems to be practically applicable, the con-

crete objectives are slightly different, which renders the

results highlighted above not directly applicable for fulfill-

ing the goals pursued here. The problems identified are

the following. (1) To perform the proposed model-based

process, HLA-specific knowledge is still needed for the

manual enrichment of the SysML models using the two

proposed HLA-specific UML profiles. The approach pre-

sented here completely hides all HLA mechanisms from

the user. (2) The implementation of the actual logic of the

federates is downstream of the multi-level model transfor-

mations, as is common in MDA. Thus, when using scenar-

ios as understood in this work, the integration of the logic

would have to be done again for each scenario. The

approach proposed here moves the implementation further

upstream in the process, so that the scenario-creating user

of the simulation system only has to assemble and parame-

terize ready-made ‘‘building blocks.’’ (3) The proposed

tool chains contain a not insignificant number of different

applications and tools to perform the individual steps of

Figure 5. The basic architecture of a DKF-based federation.42

Reiher and Hahn 7



the process. Proprietary software like Pitch Developer

Studio55 is also used in some cases. The goal of the pres-

ent work is to have significantly fewer dependencies. (4)

The resulting implementation does not seem to give the

developer an easy way to use the data (objects and attri-

butes) published by other federations. Or at least this ques-

tion remains open, as the published papers do not address

this in detail. The approach presented here offers the

developer a uniform way to easily access objects and attri-

butes from other federations and use them for own calcula-

tions within the federate logic as is demonstrated in the

later course. Nevertheless, knowledge from the existing

Model-Driven Approaches can and should be included,

especially since the basic idea overlaps with the one build-

ing the foundation here.17,23

6. Ad hoc simulation model

As already touched upon in section 4, this work aims to

explore how to implement the technical foundation for a

realization of a previously published conceptual work.17

The presented approach is that the simulation model are

generated directly based on the scenario model. This

would resolve or, strictly speaking, obscure the interde-

pendency for the simulation system developers and users.

In addition, parts of the approaches are adopted from the

related works mentioned in section 5. The developer

should only have to interact with uniform and relatively

simple interfaces in order to completely hide HLA’s own

quite complex functionalities and the need to implement

the handling of HLA-specific management tasks every

time. Also, as mentioned in section 5.2, a strict separation

between model and engine is aimed for, to allow simple

modeling of the scenarios independent of any infrastruc-

tural functionality and independent of the HLA implemen-

tation used. In the following, the model-based approach

with the mentioned additions obtained from the related

works will be looked at on quite a high level to prepare

for the following section on the actual implementation.

To resolve the double dependency between the models

from the developer’s point of view, the simulation model

should be generated entirely from the scenario model.

This is shown in Figure 6. Here, it can be seen how the

scenario model on the left side defines the basic struc-

tures, rules, and possible simulation components in a

hierarchical way. The initial simulation model is then

generated from the scenario instance created in this way.

This can be thought of as a description of object-oriented

program classes which, together with a set of parameters,

are transformed into concrete object instances. As the

simulation time progresses, these objects are updated in

each time step, resulting in a new simulation state. This

allows fast execution of different scenarios one after the

other since no time-consuming adjustments have to be

made to the actual simulation system before simulating a

new scenario.

To enable this design, the HLA-specific object models

must also be generated from the scenario model. In more

specific terms, this means that a valid FOM or valid FOM

modules must be generated during the transformation.

Together with the instantiated simulation objects, these

form the simulation model. In order for simulation objects

to be able to react to each other, the information about

publishing and subscribing must also be included in the

scenario and be utilized in the transformation. In order to

provide the simulation system user with possible elements

that can be used to compile and parameterize a scenario as

simple as possible, a modular building-blocks-like

approach is adopted. This can be seen in Figure 6 on the

left side.

An intuitive implementation of this is a multi-layer

object-oriented inheritance structure. Here, the functions,

interfaces, and structures that are essential for the federa-

tion’s functionalities are first defined by abstract classes.

Figure 6. Structure and dependencies of the scenario and simulation models (cf. previous work in Reiher and Hahn17).

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



These are then inherited by classes that add additional

domain-specific functions—here the maritime domain is

used as an example from now on. These building blocks

can then be assembled in the form of a scenario. This can

be done in the form of a simple data structure such as

XML, in which the selected objects are defined and para-

meterized. The resulting scenario instance can then be used

together with the referenced library of building blocks to

derive the content of the FOM. The introduction of the

layer with the abstract classes also has the advantage that

consistent interfaces are made available, for example, the

implementation of the simulation objects’ behavior over

time. By hiding the simulation-specific implementations in

those abstract classes, a separation between model and

engine is achieved—which is a posed requirement. To ful-

fill the third basic requirement of also hiding the HLA

functionalities, so that the developer does not need to be

proficient in the use of the HLA standard itself, an addi-

tional library is introduced. This library contains all needed

implementations for object management, encoding and

decoding HLA messages, time management, federation

management, and so on in a way that is generic enough to

be used for every federate in the context of a traffic simu-

lating federation. For this purpose, the HLA Ambassador

Library (HLAAL) is introduced, which combines the tradi-

tional federate and RTI ambassadors, and enriches them

with further generic (de)coding and communication-related

functionalities.

The components described above can be seen on the

left side of Figure 7. These must now be converted into a

runnable simulation environment at the beginning of a

simulation run by a kind of model transformation. To

accomplish this, a central component is introduced that

can read and use the components described above and

generate the components needed for the simulation envi-

ronment based on them. How this conversion is done in

detail will be considered in more detail in the next section.

This central component should additionally be the only

Figure 7. High-level overview of the scenario to simulation transformation process.

Reiher and Hahn 9



point that provides possibilities for direct user interaction.

Thus, the operation of the simulation system can be kept

as simple as possible by providing a library and a scenario

instance referencing this library as input and the central

component handles all following tasks ranging from read-

ing the inputs, transforming the scenario into a set of run-

nable federates, and starting the federation. Because of

this central role, this component is called Simulation

Manager in the following.

7. Implementation

This chapter deals with the implementation of the previ-

ously described concept in the form of a first prototype.

Challenges to the implementation will be presented, deci-

sions made will be disclosed and justified, and the core

elements of the prototype will be examined in more detail.

By far not all implementation details are presented and the

illustrations are often additionally somewhat abstracted,

but the level of detail is sufficient to give a good overview

of the way the prototype works. The following chapter

then uses a minimal example to show how a scenario can

be created and simulated.

Since there are a variety of HLA RTI implementations,

recalling that HLA only describes the interfaces and pro-

cesses but does not provide an implementation, a decision

had to be made first on which to use. Since no commercial

software was to be purchased for this research work, one

selection criterion was that it should be a free open-source

implementation. The implementation should also support

the latest HLA standard IEEE 1516-2010, also known as

HLA evolved, at least in most parts. Out of the four lead-

ing HLA RTI implementations according to a recent com-

parison by Gütlein et al.,56 there are two non-commercial

ones: Portico57 and CERTI.58 Portico offers a little more

freedom in that it can be used with C++ and Java. In

addition, Portico is one of the few implementations that is

completely decentralized.56,59 This decentralization was

considered helpful for the fast implementation of a proto-

type since no central component would have to be set up,

and the communication among the federates takes place

without much configuration effort via multi-casts. The

RTI component, which has always been illustrated as a

central stand-alone component up to now, is merged into

the federates, so to speak, by integrating the Portico RTI

implementation into each federate, where it performs the

tasks of an RTI, such as filtering incoming messages. If

the prototype is later further extended, Portico also pro-

vides the possibility to use point-to-point connections via a

central component called a ‘‘WAN router,’’ which is usu-

ally the more realistic scenario for productive use.60 The

choice, therefore, fell on Portico. As a result, Java was

chosen as the programming language for the implementa-

tion of the prototype, since Portico was written in Java and

C++ compatibility is only established via wrappers,

which require a running JVM container. To avoid this

overhead, Java is used directly.

The main challenges for the development were as fol-

lows. (1) The conceptualization and prototypical imple-

mentation of a data structure for a scenario model library

as described in the previous sections. (2) The automated

generation of executable sub-simulators from the combina-

tion of the scenario instance and the used library. The static

content from the scenario instance (XML) and the dynamic

content from the library (program code) were to be used.

(3) The automated generation of FOM modules for the

respective sub-simulators from the given information of

the scenario and the library. (4) The automated integration

of some kind of Ambassador Library to ensure the uniform

interfacing with the local RTI component (LRC). (5) The

automated initialization and launch of the federation and

all participating federates. (6) In addition, it was decided to

integrate a specialized observer federate, that subscribes

automatically to values previously defined in the scenario

instance and makes them available for further use. For the

prototype described here, it was decided to send the values

to a WebSocket server. However, the observer federate is

kept very generic so that the values could also be stored

persistently in the future, e.g., in a log file or a database.

A master federate will also be introduced, which will

provide the FOM module for all basic simulation func-

tionalities and can be extended in the future to fulfill

central management tasks of the simulation system—

e.g., stopping the simulation when predefined conditions

regarding the simulated objects occur. The usage of

Portico, the introduction of an observer federate, and a

master federate thus result in the structure of a federation

shown in Figure 8.

In order to adopt the overall conceptual structure shown

in Figure 7 in the implementation of the prototype, the

Java packages were structured accordingly. The resulting

package structure can be seen in Figure 9. It can be seen

on the left side that the inheritance depth of the library,

which serves as a construction kit for the scenario

instances, has been extended to three levels. The package

simulation contains classes, which only represent the basic

Figure 8. The resulting structure of an HLA federation based
on the prototype implemented here using Portico.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



functionality of a simulation, like the abstract class

SimulationSuperClass from which all other classes inherit

or the abstract class SimulationObject which contains

basic fields, for example, the position in the virtual space.

Also, the AbstractBehavior is located here, which specifies

the implementation of the method nextStep(double

timePassed). This is called once per HLA invoked time

step during the simulation execution and later contains the

user-defined behavioral implementation. A very important

class here is also SimulationAttribute\T. , which serves

as a wrapper for attributes that can be shared with other

federates (publish). In addition to a field for the actual

attribute value, the class also contains information that is

required to do this, such as the data type of the attribute

(Boolean, String, Integer, etc.) and the information on

whether this attribute should be shared in the current sce-

nario or not. The package traffic imports the package

simulation and extends the given, mainly abstract,

classes by fields and methods, which are necessary for

the implementation of traffic. However, this concept of

traffic is still unspecific and domain-independent at this

point. For example, based on the SimulationObject,

the class TrafficParticipant is introduced, which

contains, among other things, the additional

fields SimulationAttribute\Double. speed and

SimulationAttribute\Double. acceleration. Together

with the services package, those two packages form the

base_library package, which thus represents the concrete

implementation of the Simulation Object Library from

Figure 7. The services package offers some functionalities

to be used uniformly later, such as converting a scenario

instance from a Java object structure to an XML file and

vice versa. This functionality is strongly bound to the class

structure and is therefore delivered with the library and

can be used by a separate application, as the actual simula-

tion system will be.

Building on this generic basis, a traffic domain-specific

package can then be defined, as also already indicated in

Figure 7. This is also done by inheritance. For example,

the Vessel class extends the TrafficParticipant class with

fields representing the Maritime Mobile Service Identity

(MMSI) and the current course and draught. The purpose

of this structure, as already described in the concept sec-

tion, is that various domain or use case-specific libraries

can be implemented, exported, and made available for use

on a consistent and uniform model basis.

The package simulation, however, contains three sub-

packages: manager, interpreter, and simulation. The con-

tent of the manager package represents the central inter-

face between scenario and simulation (see Figure 7).

Located here are mainly functionalities for the import of a

scenario instance in the form of an XML file and the con-

trol of the program flow during the simulation environ-

ment initialization. Functionalities from the interpreter

package are used, which take care of initializing the sce-

nario contents as an object structure from the combination

of the XML file and the given library. In addition, the

FOM modules are generated here from this object structure

Figure 9. Package diagram of the implemented Model-driven Traffic Simulation Environment (MDTSEnv).

Reiher and Hahn 11



and the XML. The contents of a FOM are first initialized

in the form of a Java object structure representing the

FOM’s content, and afterwards, this is then converted into

XML files according to the standardized format given by

HLA’s Object Model Template (OMT) Specification and

stored temporarily. The reference to this temporary file is

then stored in the Java object structure, so that later access

(while the federates join the federation) is easily possible.

During all these transfer and generation processes, all asso-

ciations between those different kinds of representations of

the same objects and attributes, like an FOM path and the

corresponding instance of an object, or an HLA-compliant

FOM and the Java FOM representation, are always stored

for easy access in the later course. This is done in a data

structuring object called ReferenceStore per top-level

simulation object (each of those gets its own federate when

initializing the simulation environment). The storage of

these references has been implemented using the BiMap

and Multi-map data structures provided by Google’s

Guava library which extend the Map data structure offered

by Java with additional functionality.61 A ReferenceStore

uses the fields shown in Listing 1, that can be accessed

through public methods for getting, adding, or searching

the stored entries like getFomPathForSimulationObject

and getSimulationAttributeByUUID.

Finally, the sub-package simulation contains everything

needed for the actual execution of an HLA conforming

federation and thus is the implementation of the aforemen-

tioned HLAAL. Most of the classes and their interplay can

be seen in Figure 10. The central unit is the so-called

InterpretedFederate, which represents an executable sin-

gle federate. Each executable federate will be assigned a

top-level SimulationObject from the scenario including the

corresponding, previously generated, FOM module and

the ReferenceStore created during the generating process.

Communication with the RTI is handled by an

Ambassador object and a DataHandler object for both the

incoming and outgoing directions. The Ambassadors com-

municate directly with the RTI via standardized interfaces

and callbacks. If data are sent (publish) or received (sub-

scribe) about objects or attributes, these again call corre-

sponding methods of the DataHandlers. The

DataHandlers are implemented in such a generic way that

only the information from the ReferenceStore is needed to

encode outgoing data accordingly HLA-compliant or

decode received HLA-compliant data to corresponding

Java instances of the classes from the library. The receiv-

ing process involves storing the object instances that repre-

sent the objects published by other federates in an object

instance cache. This set of object instances is then made

available to all Behavior implementing classes by injec-

tion where it can be accessed in the user implementation

of the nextStep method. Here, it becomes clear why the

library was modeled with a multi-layer structure and

Figure 10. Overview of the architecture of an initialized InterpretedFederate.

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



uniform simple interfaces in mind. This makes it possible

to implement behaviors that react to other simulation parti-

cipants without the developer having to worry about where

and how these data come from.

Every concrete behavior that extends the abstract

Behavior and thus implements the interface IBehavior

must implement the nextStep method as already men-

tioned. The interface specifies the return type Map

\String, Object. . A key-value pair of this map contains

the internal ID of a SimulationAttribute and the newly

determined value for this attribute, e.g., a new position, a

new heading, or a new speed. All attribute value updates

returned in this way by all nextStep methods executed in

the federate are thus first collected and then reflected to

the actual attributes identified by the respective ID. The

central ReferenceStore is again used to help with this. This

two-part process for updating own attribute values is

intended to prevent concurrency problems so that the sce-

nario developer, again, faces less possible complexity.

The entire life cycle of an InterpretedFederate is

depicted through an UML state machine in Figure 11. It

contains all the processes just described above as well as

additional simulation management activities and HLA-spe-

cific steps. The HLA Development Kit (DKF) framework

(see previous section 5.3) offers a well-defined behavioral

model for managing the life cycle of an HLA federate,32

which, at first glance, appears similar. On closer inspec-

tion, however, it becomes apparent that the similarity is

mainly due to the fact that the HLA standard already sets

the basic life cycle phases, such as connecting to an RTI

or mechanisms for progression in the simulation time by

means of Time Advance Requests (TAR) and Time

Advance Grants (TAG). The concrete federate life cycle

conceptualized here differs in that details are included on

the management of HLA Handles and the processing of

incoming attribute value updates for all kind of objects

published by other federates. This is explicitly conceptua-

lized and presented, as this is one of the core features of

the approach presented in this paper (cf. Reference Store

and Object Instance Cache in Figure 10).

The ObserverFederate relies on a very similar program

structure and state flow, but of course, does not have its

own SimulationObject and thus also works without the

execution of behavior. Therefore, no outgoing

DataHandler is needed. Concerning the state flow, the

upper sub-state of the running state is therefore also

omitted in this case.

8. Example of application

In order to verify the functionality and to demonstrate the

process of using the implemented prototype, a minimal

maritime scenario was realized. Using this example, the

process for creating and simulating a scenario is illustrated

below. It is assumed that a usage-ready library is given, in

the sense of a domain-specific modular set of building

blocks, as described in detail in the previous course of this

work. The implementation work to create this is therefore

not shown in its entirety. However, the procedure for this

should have become clear from the description of the pack-

age structure earlier.

To demonstrate functionality with minimal scenario

complexity, two vessels were placed in open water without

any obstacles in the surrounding area. The exemplary

made-up scenario is located in the area of the German

Bight roughly between Bremerhaven and Wilhelmshaven.

The two vessels are roughly based on the characteristics of

the container ship Hamburg Express62 and the general

cargo ship Anne-Sofie.63 Both should follow a section of a

route where Bremerhaven would be the start and the desti-

nation the port of Hamburg. In the area north of

Wangeroge, however, the specific routes differ to some

extent, as do the driven speeds.

In order to represent concrete traffic participating vehi-

cles, the scenario model must be extended as described in

the previous chapters. This means that classes have to be

defined which inherit from TrafficParticipant and describe

the specific characteristics of the road users to be simu-

lated. For this concrete scenario, this meant that the class

Vessel defines among others the attribute vesselName and

Listing 1. Field declaration of the ReferenceStore class.

private ActiveSimulationObject simulationObject;
private String simulationObjectType;
private FOM fom;

private BiMap<String, FOMObjectClass>fomPathToFomObjectClassBiMap;
private BiMap<String, FOMAttribute>fomPathToFomAttributeBiMap;

private Multimap<String, SimulationObject>fomPathToSimulationObjectMap;
private Multimap<String, SimulationAttribute<?>>fomPathToSimulationAttributeMap;

private BiMap<String, SimulationObject>uuidToSimulationObjectBiMap;
private BiMap<String, SimulationAttribute<?>>uuidToSimulationAttributeBiMap;

Reiher and Hahn 13



is based on the class TrafficParticipant of the base_li-

brary. Inheriting from Vessel, the classes ContainerShip

and GeneralCargo provide further properties specific to

these types of vessels. The inheritance structure can be

seen in Figure 12. Important for the further course is the

fact that the attributes highlighted in bold print are distrib-

uted over different levels of this inheritance hierarchy and

will be important later.

To define a concrete scenario instance, the possible

objects provided by the maritime library are referenced in

an XML file and their attributes are provided with con-

crete values. The desired class, which is to be referenced

and later instantiated, is specified via the type tag of the

xsi namespace. The conversion into a Java object structure

can then be done later automatically by the interpreter

with the help of the Java Architecture for XML Binding

(JAXB). As part of the scenario, the desired observers are

also declared and parameterized. In this case, the

ObserverFederate should subscribe to the four attributes

position, vesselName, speed, and rotation of all objects of

the type Vessel. Similarly, it can be defined within a

SimulationObject to which the corresponding

InterpretedFederate should subscribe to make the corre-

sponding values available for the contained Behavior

implementations. Part of the resulting XML file can be

seen in Listing 2. These XML files have currently to be

written manually, but some kind of graphical user inter-

face (GUI)-based editor, able to import domain-specific

libraries and provide the user with an easy way to put

together a scenario using the libraries’ elements, could be

potentially a good tool to ease this heavily manual step in

the future.

The schema referenced in Listing 2 specifies the possi-

ble elements of such a scenario XML instance and their

structure. Due to the integration of JAXB, the schema can

be generated automatically, which means that changes to

the basic data model would not require a great amount of

manual effort on this end. An excerpt from the schema

used here can be seen in Listing 3. It should be noted that

simulationObject, behavior, and simulationUnit are

declared as abstract. This means that the specific type

must still be specified in the scenario XML using the type

attribute of the xsi namespace. The concrete implementa-

tions of these abstract classes are part of the individually

composed domain or use case-related libraries. The

respective developer is therefore responsible for providing

the corresponding schema that builds on this basic schema

and describes the concrete characteristics of the contained

building block like implementations. An example of

this can be seen in Figure 12 and Listing 2: An object of

Figure 11. Overview of the life cycle of an InterpretedFederate.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



type vessel has a field of type simulationAttribute with

the name vesselName. This fact should be represented in

a schema belonging to the respective library. In the

example from Listing 2, the simulationObject is of

type containerShip and the behavior of type simpleFollow

RouteBehavior. The first is indirectly inherited from

activeSimulationObject (cf. Figure 12) and the second

directly from behavior.

After starting the implemented prototype simulation

system, the scenario instance XML file created as

described above can be chosen as direct input file. The

appropriate library (currently has to be part of the local

java classpath; ideally it will be loaded automatically

using the information in the scenario file at some point in

the future) is then used to convert the scenario into corre-

sponding Java objects. FOM modules are then generated

from the given information for each top-level simulation

object. An excerpt from the XML file generated in this

way for the simulationObject of type Vessel shown in

Listing 2 can be seen in Listing 4. The inheritance struc-

ture from Figure 12 can be recognized here again, which

has been converted into an HLA-compliant objectClass

hierarchy. After all federates have been created and pro-

vided with the necessary data and references, they are

initialized in an automated way. This means that the mas-

ter federate gets started and in doing so also creates the

federation automatically, afterwards all other generated

federates connect to it. As soon as a synchronization point

has been reached, the federation is started and time begins

to progress, controlled by the RTI. At each time step, each

Behavior from the simulation object of an interpreted fed-

erate is executed, attributes get updated and the RTI gets

informed about those updated values if and only if they

were marked as publish in the scenario file.

To test the availability of published objects and their

published attributes of foreign federates, a simple logging

output was integrated into the behavior implementation

used. This can be seen in Listing 4. The name of the own

simulated ship as well as the class and the current position

of the foreign simulation object is written to the console.

The console output generated by this code at time step 385

of the simulation is shown in Listing 5.

To test and visualize the ObserverFederate, a simple

NodeJS application providing a WebSocket server and a

simple web application were also implemented. The web

application connects to the WebSocket server and displays

the available data on top of an OpenStreetMap64 layer. A

screenshot of this can be seen in Figure 13, which was

taken at time step 565 of the federation execution. As

already mentioned in section 7, the prototypical imple-

mentation of the ObserverFederate implemented here also

sends the received information about the observed objects

and attributes to this WebSocket server. This is done in

the form of JSON data, which is structured analogously to

the Java classes of the used library.

Listing 2. Excerpt from the XML scenario instance describing
the example scenario.

<?xml version ="1.0" encoding ="UTF-8"

xmlns ="http://uol.de/mdts/schema/base"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"?>

<scenario>

<library>

<name>maritime_library</name>

<version>1.0-SNAPSHOT</version>

</library>

<observers>

<observer>

<observedClasses>

<observedClass>

<type>vessel</type>

<attributes>

<attribute>position</attribute>

<attribute>vesselName</attribute>

<attribute>speed</attribute>

<attribute>rotation</attribute>

</attributes>

</observedClass>

</observedClasses>

. . .

</observer>

</observers>

<simulationObjects>

<simulationObject xsi:type ="containerShip">

<behaviour xsi:type ="simpleFollowRouteBehavior" />

<vesselName>

<value>Hamburg Express</value>

<name>vesselName</name>

<dataType>java.lang.String</dataType>

<publish>true</publish>

</vesselName>

. . .

<observedClasses>

<observedClass>

<type>containerShip</type>

<attributes>

<attribute>vesselName</attribute>

<attribute>position</attribute>

</attributes>

</observedClass>

</observedClasses>

</simulationObject>

<simulationObject xsi:type ="generalCargo">

. . .

</simulationObject>

</simulationObjects>

<simulationIterations>10000</simulationIterations>

</scenario>

Reiher and Hahn 15



Listing 3. Excerpt from the XML scenario schema referenced in Listing 2.

<?xml version ="1.0" encoding ="UTF-8" ?>

<xs:schema xmlns:xs ="http://www.w3.org/2001/XMLSchema"

version ="1.0.0"

targetNamespace ="http://uol.de/mdts/schema/base">

<xs:complexType name ="scenario">

<xs:sequence>

<xs:element minOccurs ="0" name ="library" type ="library"/>

<xs:element name ="simulationIterations" type ="xs:int"/>

<xs:element maxOccurs ="unbounded" minOccurs ="1" name ="simulationObjects" nillable ="true" type ="simulationObject"/>

<xs:element maxOccurs ="unbounded" minOccurs="0"name ="observers" nillable ="true" type ="observer"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name ="library">

<xs:sequence>

<xs:element name ="name" type ="xs:string"/>

<xs:element name ="version" type ="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name ="observer">

<xs:sequence>

<xs:element maxOccurs ="unbounded" minOccurs ="0" name ="observedClasses" nillable ="true"

type ="observedClass"/>

<xs:element minOccurs ="0" name ="observerWebSocketConfig" type ="observerWebSocketConfig"/>

<xs:element name ="timeStepSize" type ="xs:double"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name ="observedClass">

<xs:sequence>

<xs:element maxOccurs ="unbounded" minOccurs ="0" name ="attributes" nillable ="true" type ="xs:string"/>

<xs:element name ="type" type ="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType abstract ="true" name ="simulationObject">

<xs:sequence>

<xs:element name ="formString" type ="simulationAttribute"/>

<xs:element name ="physical" type ="simulationAttribute"/>

<xs:element minOccurs ="0" name ="position" type ="simulationAttribute"/>

<xs:element minOccurs ="0" name ="rotation" type ="simulationAttribute"/>

<xs:element maxOccurs ="unbounded" minOccurs ="0" name ="observedClasses" nillable ="true" type ="observedClass"/>

</xs:sequence>

</xs:complexType>

<xs:complexType abstract ="true" name ="activeSimulationObject">

<xs:complexContent>

<xs:extension base ="dynamicSimulationObject">

<xs:sequence>

<xs:element name ="behavior" type ="behavior"/>

<xs:element name ="timeStepSize" type ="xs:double"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType abstract ="true" name ="behavior">

</xs:complexType>

<xs:complexType name ="simulationAttribute">

<xs:sequence>

<xs:element name ="dataType" type ="xs:string"/>

<xs:element name ="name" type ="xs:string"/>

<xs:element name ="publish" type ="xs:boolean"/>

<xs:element name ="value" type ="xs:anyType"/>

</xs:sequence>

</xs:complexType>

. . .

</xs:complexType>

</xs:schema>

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



9. Discussion

The exemplary use case shown above is, of course, far

from being a real productive one, but nevertheless, illus-

trates very well the potential of the approach implemented

in this work and how it can be used. It has been shown that

it is possible to automate most of the manual steps that

were previously necessary for the implementation and exe-

cution of HLA-compliant federations. More precisely,

using the shown and prototypically implemented approach,

no knowledge about HLA itself is necessary anymore: nei-

ther by the developer who implements and maintains the

domain-specific library nor by the simulation system user

who assembles scenarios with the help of the resulting

building blocks and then has them simulated. The auto-

matic generation of the OMT compliant FOM modules is

a particularly important step here.

IEEE Standard 1730-2022 ‘Recommended Practice for

Distributed Simulation Engineering and Execution Process

(DSEEP)’51, that is the successor of the now inactive

IEEE Standard ‘‘Recommended Practice for High-Level

Architecture (HLA) Federation Development and

Execution Process (FEDEP)’’40, describes a seven-step

process for developing and executing distributed simula-

tion environments. This process reaches from defining the

high-level objectives that the simulation environment

should fulfill to analyzing the data generated during the

simulation runs. The new approach shown and implemen-

ted here encompasses a larger number of the sub-steps of

this process. Where most related approaches and frame-

works only simplify or completely hide two to three steps

between steps 2 and 4 for the user, the use of the presented

approach and prototype can be seen in steps 2–6. This

makes the overall process more consistent and less com-

plex. Figure 14 directly compares the original DSEEP pro-

cess and the DSEEP process enriched by the use of the

approach presented here. It can be seen immediately that

the original steps 3–6 are replaced. From the user’s point

of view, step 5 is completely omitted, and steps 3, 4, and 6

are greatly simplified. As mentioned above, the vision is

that the developer of the domain-specific library is a dif-

ferent person or group of persons than the one responsible

for creating scenarios. Splitting the knowledge and work-

load like that also transfers the responsibility for testing to

the former. This applies at least to the functionality of the

possible simulation elements that are part of the library.

Whether a particular scenario run unfolds as planned is

still the concern of the scenario creator, but this cannot be

equated with a test of whether the federation itself is tech-

nically error-free. The start process, originally step 6, is

automated to such an extent that the simulation system

can be started directly with a scenario instance as only

input, which was one of the main requirements to properly

support a scenario-based approach in the context of simu-

lative testing. By completely hiding the HLA interface

details from the developer and user, the benefits of HLA-

based distributed co-simulation can be utilized without the

need for familiarization with the complex HLA processes

and structures.

Many mechanics of the shown concept and implemen-

tation were designed specifically for traffic simulations,

respectively, for individual traffic participants in coopera-

tion. Within the meta-domain ‘‘traffic’’ the flexible multi-

layer model structure makes it applicable for different con-

crete traffic domains, but whether the basis of the shown

approach can in principle also be used in completely differ-

ent domains than traffic-related ones would have still to be

verified. The connection to a concrete SuT was also con-

sidered conceptually in this work but not yet implemented.

So, here, too, the chosen path must first prove to be truly

suitable.

10. Conclusion and future work

In the present work, a first step was taken toward the effi-

cient use of HLA-based distributed co-simulation in the

context of V&V of (highly) automated and autonomous

Figure 12. Class hierarchy across the three levels of the scenario model. The classes Vessel, GeneralCargo, and ContainerShip are
part of the maritime library used for the application example.

Reiher and Hahn 17



traffic systems and sub-systems. The necessary smooth

transition from a scenario to a running simulation environ-

ment, which has to be highly flexible and adaptable to the

respective use case, is ensured by the present approach. In

the form of a proof of concept, this novel approach was

prototypically implemented, and the process was illu-

strated utilizing an example.

In order to actually productively support the develop-

ment of corresponding systems and potentially be used in

official V&V-based acceptance tests, however, some

aspects are still missing due to the prototypical nature of

the implementation. Probably the most important point,

which was deliberately left out for the most part during

the creation of the present concept and implementation, is

the connection of the actual SuT. This can occur in differ-

ent forms within the context of V&V integrated support

for the development of a new system.17 Therefore, the

integration of an SuT in the sense of Model- (MiL),

Listing 4. Excerpt from the automatically generated FOM module XML file describing the data to be shared by the simulation
object of type vessel shown in Listing 2.

<?xml version ="1.0" encoding ="UTF-8"?>
<objectModel xmlns ="https://www.sisostds.org/schemas/IEEE1516-2010" xmlns:xsi ="https://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation ="https://www.sisostds.org/schemas/
IEEE1516-2010 https://www.sisostds.org/schemas/IEEE1516-DIF-2010.xsd">

<modelIdentification>
<name>Vessel–2016892160</name>
<type>FOM</type>
. . .

</modelIdentification>
<objects>

<objectClass>
<name>HLAobjectRoot</name>
<objectClass>

<name>SimulationObject</name>
<sharing>Publish</sharing>
<attribute>

<name>position.latitude</name>
<dataType>Double</dataType>
<updateType>Unconditional</updateType>
<ownership>NoTransfer</ownership>
<sharing>Publish</sharing>

</attribute>
. . .
<objectClass>

<name>ActiveSimulationObject</name>
<sharing>Neither</sharing>
<objectClass>

<name>TrafficParticipant</name>
<sharing>Publish</sharing>
<attribute>

<name>speed</name>
<dataType>Double</dataType>
<updateType>Unconditional</updateType>
<ownership>NoTransfer</ownership>
<sharing>Publish</sharing>

</attribute>
. . .
<objectClass>

<name>Vessel</name>
<sharing>Publish</sharing>
<attribute>

<name>vesselName</name>
<dataType>String</dataType>
<updateType>Unconditional</updateType>
<ownership>NoTransfer</ownership>
<sharing>Publish</sharing>

</attribute>
. . .

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Listing 5. Code for test output, which accesses the injected representations of published objects of other federates.

List <SimulationObject> observedObjects = this.trafficParticipant
.getObservedObjects()
.values()
.stream()
.findFirst()
.orElseGet(ArrayList::new);

SimulationObject observedObject = observedObjects.stream().findFirst().orElse(null);

if (observedObject != null) {
System.out.println("////////////////");
System.out.println("// " + vessel.getVesselName().getValue() + ":I CAN SEE!");
System.out.println("// I HAVE KNOWLEDGE ABOUT THE PARTICIPANT’ " + observedObject.get

Class() + "’");
System.out.println("// THE PARTICIPANT CURRENTLY IS AT:" + observedObject.getPosition().

getValue().toString());
System.out.println("////////////////");

}

Listing 6. Test output at simulation time step 1677.

////////////////
// Hamburg Express:I CAN SEE!
// I HAVE KNOWLEDGE ABOUT THE PARTICIPANT ’class library.model.maritime.GeneralCargo’
// THE PARTICIPANT CURRENTLY IS AT:"Position":{ "Lat":"53.84009631117777","Lon":"

8.115035313513989","Alt":"0.0"}
////////////////

Figure 13. Screenshot of the web view at simulation time step 1677.

Reiher and Hahn 19



Software- (SiL), Hardware- (HiL), and Vehicle-in-the-

Loop (ViL) tests is one of the highest prioritized topics for

future work. On the modeling side, a rough concept has

already been developed in previous work, but it still needs

to be implemented and tested. For ViL tests, where the

SuT replaces a complete simulation participant, the idea of

some sort of proxy federate is to be further elaborated in

the near future. In the implementation of the prototype

presented, little value was initially placed on computa-

tional performance also. Therefore, there is also a need to

catch up here. The current version of the HLA already

includes some features that could be beneficial perfor-

mance-wise. For example, the so-called data distribution

management, also known as filtering, can be used to spa-

tially limit which other simulation objects data updates are

received by a subscription, which would greatly reduce

the amount of network communication. This and other

possible techniques will also have to be considered in the

future. In its current state, all federates are also run on a

single host, which means that the overall simulation is not

yet truly distributed, at least not in the physical sense. As

already briefly touched on in section 7, the RTI implemen-

tation Portico used for the presented implementation

offers the possibility of operating federates in a distributed

manner even beyond network boundaries, despite its

actual decentralized nature. Work has already begun on a

way to automate a correspondingly distributed execution

of the simulation environment. One of the biggest chal-

lenges here is to introduce as few manual steps as possible

since one of the main goals of the presented concept is—

and will be—to automate the simulative execution of a

scenario as much as possible, so that a scenario itself can

serve as the only input parameter. A possible platform-

independent approach could be the use of the free software

for container virtualization Docker65 and the possible gen-

eration and distribution of an image per federate. The pos-

sibility of physically distributed operation is especially

important for the integration of systems as independent

federates, as systems to be tested are not necessarily

located in the local network. Due to the increasing impor-

tance of vehicle-to-vehicle and vehicle-to-anything com-

munication for the functionalities of modern traffic

systems, it is also essential to create the possibility that

this kind of communication can be directly modeled for

and used by the federates. At first glance, Interactions,

which are defined by the HLA standard, seem to be a good

choice for this purpose. The suitability of these with

regard to V2X in the present context of automated FOM

generation must therefore be further investigated and a

further sub-concept be developed.

To make the creation of the scenario instance XML files

less error-prone, it would be useful to have a graphical editor,

as already mentioned in section 7. In case this hypothetical

editor is not used, however, an XML schema for each individ-

ual library should be provided so that users have the possibil-

ity to check the correctness of their XML files. The creation

of such schema should be relatively easy to automate, since

the XML file represents the model structure 1:1 and could

Figure 14. The model-based approach presented and implemented in this work mapped onto the steps of the HLA federation
creation workflow according to the DSEEP framework.

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



therefore be used, for example, with JAXB as seen for the

basic scenario scheme in Listing 3, which is already also used

to convert the XML scenarios into Java structures.

Another interesting and potentially useful development

of the presented assessment would be to establish some

compatibility with FMI or individual FMUs to enable

hybrid simulations. A lot of work has already been done

on this topic, which could possibly be followed up.

However, this topic will be put on hold until the approach

presented here has been fully proven and fully exploits the

potential of HLA, as this is not a direct requirement for

the use case defined here.66,67

Despite the multitude of functionalities left to imple-

ment and challenges to tackle, the newly created possibil-

ity to directly generate simulation models and structures

from a model-based scenario instance closes a gap in the

traditional use of co-simulations and thus lays the founda-

tion for the efficient use of model- and scenario-based

simulation runs in the context of development accompany-

ing V&V processes.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

David Reiher https://orcid.org/0000-0001-7541-9349

References

1. Mallozzi P, Pelliccione P, Knauss A, et al. Autonomous vehi-

cles: state of the art, future trends, and challenges. In:

Dajsuren Y and van den Brand M (eds) Automotive systems

and software engineering. Cham: Springer, 2019, pp. 347–

367.

2. Kröger F.Automated driving in its social, historical and cul-

tural contexts. In: Maurer M, Gerdes JC, Lenz B, et al. (eds)

Autonomous driving. Berlin; Heidelberg: Springer, 2016, pp.

41–68.

3. Munim ZH. Autonomous ships: a review, innovative applica-

tions and future maritime business models. Supply Chain

Forum 2019; 20: 266–279.

4. Wasilewski W, Wolak K and Zaraś M. Autonomous shipping.

The future of the maritime industry? Malopolska School

Economic Tarnow Res Paper Collect 2021; 51: 155–163.

5. International Maritime Organization. Outcome of the regula-

tory scoping exercise for the use of maritime autonomous sur-

face ships (Mass): Maritime Safety Committee (MSC), 103rd

session, London, 5–14 May 2021, https://www.imo.

org/en/MediaCentre/PressBriefings/pages/MASSRSE2021.

aspx (accessed 12 April 2022).

6. SAE and International-2018. Taxonomy and definitions for

terms related to on-road motor vehicle automated driving sys-

tems, https://www.sae.org/standards/content/j3016_2018 06/

(accessed 9 December 2020).

7. Liljamo T, Liimatainen H and Pöllänen M. Attitudes and

concerns on automated vehicles. Transp Res Part F: Traffic

Psychol Behaviour 2018; 59: 24–44.

8. Dirsehan T and Can C. Examination of trust and sustainabil-

ity concerns in autonomous vehicle adoption. Technol Soc

2020; 63: 101361.

9. Wu J, Liao H and Wang J-W. Analysis of consumer attitudes

towards autonomous, connected, and electric vehicles: a sur-

vey in China. Res Transp Econ 2020; 80: 100828.

10. Bansal P, Kockelman KM and Singh A. Assessing public

opinions of and interest in new vehicle technologies: an

Austin perspective. Transp Res Part C: Emerg Technol

2016; 67: 1–14.

11. Othman K. Public acceptance and perception of autono-

mous vehicles: a comprehensive review. AI Ethics 2021; 1:

355–387.

12. Fraedrich E and Lenz B. Societal and individual acceptance

of autonomous driving. In: Maurer M, Gerdes JC and Lenz B,

et al. (eds) Autonomous driving. Berlin; Heidelberg: Springer,

2016, pp. 621–640.

13. Koopman P and Wagner M. Challenges in autonomous vehicle

testing and validation. SAE Int J Trans Safety 2016; 4: 15–24.

14. Tschurtz H and Gerstinger A. The safety dilemmas of auton-

omous driving. In: 2021 zooming innovation in consumer

technologies conference (ZINC), Novi Sad, Serbia, 26–27

May 2021, pp. 54–58. New York: IEEE.

15. Wachenfeld W and Winner H. The release of autonomous

vehicles. In: Maurer M, Gerdes JC, Lenz B, et al. (eds)

Autonomous driving. Berlin; Heidelberg: Springer, 2016, pp.

425–449.

16. TakácsÁ, Drexler DA, Galambos P, et al. Assessment and

standardization of autonomous vehicles. In: Szakál A (ed.)

INES 2018: IEEE 22nd international conference on intelli-

gent engineering systems. Piscataway, NJ: IEEE, 2018, pp.

185–192.

17. Reiher D and Hahn A. Towards a model-based multi-layered

approach to describe traffic scenarios on a technical level. J

Marine Sci Eng 2021; 9: 673.

18. Lamm A and Hahn A. Towards critical-scenario based test-

ing with maritime observation data. In: 2018 OCEANS—

MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–

31 May 2018, New York: IEEE.

19. Federal Ministry for Economic Affairs and Energy. Pegasus

method: an overview, 2019, https://www.pegasusprojekt.de/

files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-

Gesamtmethode.pdf (accessed 10 December 2020).

20. Skjong S, Rindarøy M, Kyllingstad LT, et al. Virtual proto-

typing of maritime systems and operations: applications of

distributed co-simulations. J Marine Sci Technol 2017; 23: 6.

21. Smogeli ØR, Ludvigsen KB, Jamt L, et al. Open simulation

platform—an open-source project for maritime system co-

simulation. In: 19th International Conference on Computer

and IT Applications in the Maritime Industries: COMPIT’20

(ed Bertram V), Pontignano, 2020, pp. 239–253. Hamburg:

Technische Universität Hamburg-Harburg, https://ntnuo

pen.ntnu.no/ntnu-xmlui/handle/11250/2723258

22. Krammer M, Fritz J and Karner M. Model-based configura-

tion of automotive co-simulation scenarios. In: Proceedings

of the 48th annual simulation symposium, Alexandria, VA,

Reiher and Hahn 21



12–15 April 2015, pp. 155–162. San Diego, CA: Society for

Computer Simulation International.

23. Reiher D and Hahn A. Review on the current state of sce-

nario- and simulation-based v&v in application for maritime

traffic systems. In: OCEANS 2021: San Diego—Porto, San

Diego, CA, 20–23 September 2021. New York: IEEE.

24. Gong W, Zhu Z, Wang K, et al. A real-time co-simulation

solution for train–track–bridge interaction. J Vib Contr 2021;

27: 1606–1616.

25. Pieper T and Obermaisser R. Distributed co-simulation for

software-in-the-loop testing of networked railway systems.

In: 2018 7th Mediterranean conference on embedded com-

puting (MECO), Budva, 10–14 June 2018, pp. 1–5. New

York: IEEE.

26. Brito A and Oliveira T. Simulation and test of communica-

tion in multi-robot systems using co-simulation. In: RochaÁ,

Correia AM, Adeli H, et al. (eds) New advances in informa-

tion systems and technologies. Cham: Springer, 2016, pp.

911–917.

27. Bücs RL, Murillo LG, Korotcenko E, et al. Virtual hardware-

in-the-loop co-simulation for multi-domain automotive sys-

tems via the functional mock-up interface. In: 2015 Forum

on Specification and Design Languages (FDL), Barcelona,

14–19 September 2015, pp. 1–8. New York: IEEE.

28. Blochwitz T, Otter M, Akesson J, et al. Functional mockup

interface 2.0: the standard for tool independent exchange of

simulation models. In: Proceedings of the 9th International

MODELICA conference, Munich, 3–5 September 2012, pp.

173–184. Linköping: Linköping University Electronic Press.

29. IEEE 1516-2010. Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA)—framework and

rules.

30. Möller B, Löfstrand B and Karlsson M. An overview of the

HLA evolved modular FOMs. In: Spring simulation intero-

perability workshop, Norfolk, VA, 2007, https://www.si

sostds.org/DesktopModules/Bring2mind/DMX/Download.

aspx?Command=Core_Download&EntryId=28098&PortalId

=0&TabId=105 (accessed 1 May 2023).

31. Perabo F, Park D, Zadeh MK, et al. Digital twin modelling

of ship power and propulsion systems: application of the

open simulation platform (OSP). In: 2020 IEEE 29th inter-

national symposium on industrial electronics (ISIE), Delft,

17–19 June 2020, pp. 1265–1270, New York: IEEE.

32. Falcone A, Garro A, Anagnostou A, et al. An introduction to

developing federations with the High Level Architecture

(HLA). In: WSC’17: 2017 Winter Simulation Conference

WSC turns 50: simulation everywhere! (eds Chan WK,

D’Ambrogio A, Zacharewicz G, et al.), Las Vegas, NV, 3–6

December 2017, pp. 617–631. Piscataway, NJ: IEEE.

33. Association for Standardization of Automation and

Measuring Systems. ASAM OpenSCENARIO V1.1.0 User

Guide, ASAM e.V, https://www.asam.net/standards/detail/

openscenario/ (2021, accessed 29 April 2021).

34. Damm W, Möhlmann E, Peikenkamp T, et al. A formal

semantics for traffic sequence charts. In: Lohstroh M, Derler

P and Sirjani M (eds) Principles of modeling. Cham:

Springer, 2018, pp. 182–205.

35. Ma J, Che X, Li Y, et al. Traffic scenarios for automated

vehicle testing: a review of description languages and sys-

tems. Machines 2021; 9: 9120342.

36. Gustavson PL, Hancock JP and McAuliffe M. Base object

models (BOMs): reusable component objects for federation

development. In: Simulation interoperability workshop,

1998, https://arxiv.org/ftp/arxiv/papers/0909/0909.1364.pdf

37. Simulation Interoperability Standards Organization (SISO).

SISO-STD-003.1-2006. Guide for Base Object Model

(BOM) use and implementation, 2006.

38. Simulation Interoperability Standards Organization (SISO).

SISO-STD-003-2006. Base Object Model (BOM) template

specification, 2006.

39. Chase T, Gustavson P and Root LM. From FOMs to BOMs

and back again: 06S-SIW-115. In: 2006 spring simulation

interoperability workshop, 2006, https://www.sisostds.org/

DigitalLibrary.aspx?Command=Core_Download&EntryId=4

1726 (accessed 25 April 2022).

40. Institute of Electrical and Electronics Engineers (IEEE)

1516.3-2003. Recommended Practice for High Level

Architecture (HLA) Federation Development and Execution

Process (FEDEP), 2003.

41. He Q, Zhang M and Gong J. An introduction of BOM

modeling framework. Int J Mach Learn Comput 2011; 1:

353–358.

42. Garro A, Falcone A, Chaudhry NR, et al. A Prototype HLA

development kit: results from the 2015 simulation explora-

tion experience. In: Proceedings of the 3rd ACM SIGSIM

conference on principles of advanced discrete simulation

(eds Taylor SJ, Mustafee N and Son Y-J), London, 10–12

June 2015, pp. 45–46. New York: ACM.

43. Falcone A, Garro A, Anagnostou A, et al. Easing the devel-

opment of HLA federates: the HLA development kit and its

exploitation in the SEE project. In: 2015 IEEE/ACM 19th

International Symposium on Distributed Simulation and Real

Time Applications (DS-RT), Chengdu, China, 14–16 October

2015, pp. 50–57. New York: IEEE.

44. Bocciarelli P, Pieroni A, Gianni D, et al. A model-driven

method for building distributed simulation systems from

business process models. In: Proceedings of the 2012 Winter

Simulation Conference (WSC), Berlin, 9–12 December 2012,

pp. 1–12. New York: IEEE.

45. Bocciarelli P, D’Ambrogio A and Fabiani G. A model-

driven approach to build HLA-based distributed simulations

from SysML models. In: Proceedings of the 2nd interna-

tional conference on simulation and modeling methodolo-

gies, technologies and applications, Rome, 2012, pp. 49–60.

SciTePress—Science and Technology Publications, https://

www.scitepress.org/papers/2012/40599/40599.pdf

46. Object Management Group 16-2019. OMG Systems

Modeling Language (OMG SysML�), https://sysml.org/

sysml-specs/ (accessed 17 November 2022).

47. Bocciarelli P, D’Ambrogio A, Giglio A, et al. A SaaS-based

automated framework to build and execute distributed simu-

lations from SysML models. In: 2013 winter simulations

conference (WSC), Washington, DC, 8–11 December 2013,

pp. 1371–1382. New York: IEEE.

22 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



48. Object Management Group ormsc/2014-06-01-2014. Model

Driven Architecture (MDA). https://www.omg.org/cgi-bin/

doc?ormsc/14-06-01 (accessed 15 February 2021).

49. Bocciarelli P, D’Ambrogio A, Falcone A, et al. A model-

driven approach to enable the distributed simulation of com-

plex systems. In: Auvray G, Bocquet J-C, Bonjour E, et al.

(eds) Complex systems design & management. Cham:

Springer, 2016, pp. 171–183.

50. Bocciarelli P, D’Ambrogio A, Giglio A, et al. Automated

generation of FOM modules for HLA-based distributed

simulations. In: 2019 spring simulation conference

(SpringSim), Tucson, AZ, 29 April–2 May 2019, pp. 1–12.

New York: IEEE.

51. IEEE 1730-2022. Recommended practice for distributed

simulation engineering and execution process (DSEEP).

52. Bocciarelli P, D’Ambrogio A, Giglio A, et al. Model-driven

distributed simulation engineering. In: 2019 Winter simula-

tion conference (WSC) (ed Mustafee N), National Harbor,

MD, 8–11 December 2020, pp. 75–89. Piscataway, NJ: IEEE.

53. D’Ambrogio A, Bocciarelli P, Delfa J, et al. Application of a

model-driven approach to the development of distributed

simulations: the Esa Hraf Case. In: Spring Simulation

Conference (SpringSim 2020), Fairfax, VA, 18–21 May

2020. New York: Society for Modeling and Simulation

International (SCS).

54. Kay S, Kisdi A, Buckley K, et al. Development of a distribu-

ted simulation environment and model driven engineering

framework to support the verification & validation of com-

plex autonomy components. In: International Astronautical

Congress—IAC 2021, Dubai, United Arab Emirates, 2021,

https://iafastro.directory/iac/paper/id/64744/summary/

55. Pitch Technologies. Pitch developer studio. Linköping: Pitch

Technologies, 2022.

56. Gütlein M, Baron W, Renner C, et al. Performance evalua-

tion of HLA RTI implementations. In: 2020 IEEE/ACM 24th

international symposium on distributed simulation and real

time applications (DS-RT), Prague, Czech Republic, 14–16

September 2020, pp. 1–8. New York: IEEE.

57. Pokorny T and Fraser M. The poRTIco project, http://

www.porticoproject.org (accessed 8 May 2022).

58. CERTI Open source project Homepage, https://savannah.

nongnu.org/projects/certi/ (2018, accessed 8 May 2022).

59. Ross P. Comparison of high level architecture run—time

infrastructure wire protocols—part one. In: SIMTECT 2012

CONFERENCE PROCEEDINGS, 2012: simulation, https://

www.simulationaustralasia.com/files/upload/pdf/research/

Comparison_of_High_Level_Architecture_Run_Time_Infra-

structure_Wire_Protocols_Part_One_-_P_Ross.pdf

60. Pokorny T. Using Portico over a WAN, http://timpokorny.

github.io/public/documentation/user/wan.html (accessed 8

May 2022).

61. Guava: Google core libraries for Java: user guide, Google,

github.com, https://github.com/google/guava/wiki (accessed

9 November 2022).

62. Hapag-Lloyd AG. Hamburg express: vessel details.

Hamburg: Port of Hamburg, https://www.hapag-lloyd.com/

en/services-information/cargo-fleet/vessels/vessel/hamburg-

express.html (accessed 9 June 2022).

63. Hafen Hamburg Marketing e.V. Anne-Sofie: vessel details.

Hamburg: Port of Hamburg, https://www.hafen-hamburg.de/

en/vessels/anne-sofie-28079/ (accessed 9 June 2022).

64. OpenStreetMap Contributors. OpenStreetMap: Website.

Cambridge: OpenStreetMap Foundation, https://www.open

streetmap.org/ (accessed 11 August 2022).

65. Docker Inc. Docker: Home, https://www.docker.com/

(accessed 19 May 2022).

66. Garro A and Falcone A. On the integration of HLA and

FMI for supporting interoperability and reusability in

distributed simulation. In: DEVS ‘15: Proceedings of

the Symposium on Theory of Modeling & Simulation:

DEVS Integrative M & S Symposium (eds Barros F, Wang

MH, Prähofer H and Hu X), Alexandria, VA, 12–15 April

2015. New York: Society for Computer Simulation

International.

67. Awais MU, Palensky P, Mueller W, et al. Distributed hybrid

simulation using the HLA and the functional mock-up inter-

face. In: IECON 2013—39th annual conference of the IEEE

industrial electronics society, Vienna, 10–13 November

2013, pp. 7564–7569. New York: IEEE.

Author biographies

David Reiher received his master’s degree in Business

Information Systems with a focus on Applied Computer

Science at the Carl von Ossietzky University Oldenburg

in 2015. Afterwards, he worked as a software engineer/

architect in the commercial sector for about 4 years,

focusing on data structures, system architectures, and the

design and implementation of distributed microservice-

based server applications. He then moved back to his

home university, where he is now part of the Systems

Analysis and Optimization group at the Department of

Computer Science and is actively working on his PhD the-

sis. His research focuses on data and model structures of

traffic simulations and traffic scenarios in the context of

validation and verification of software-based assistance

systems in the maritime domain.

Axel Hahn is the director of the DLR Institute Systems

Engineering for Future Mobility, which was founded in

June 2020 and has been in existence since 1 January 2022.

Until taking up this post, he was, among other things, head

of the ‘‘System Analysis and Optimization’’ group at Carl

von Ossietzky University of Oldenburg, where he coordi-

nated research into maritime transport systems. In addi-

tion, Professor Hahn served for many years as a member

of the board of the Oldenburg computer science institute

OFFIS. Professor Hahn is a founding member of the

Maritime Connectivity Platform Consortium and chairs

the Data Exchange and Harmonization working group of

IALA (International Association of Lighthouse

Authorities). His research activities at the DLR are focus-

ing on the design, simulation, and analysis as well as the

Reiher and Hahn 23



development of new, efficient systems engineering meth-

ods and tools for proving functionality (verification) and

practicality (validation) of reliable and sustainable IT

architectures for maritime transportation systems. In

addition, Professor Hahn and his team are researching and

developing the evolution of trustworthy systems as the

main challenges for the introduction of future generations

of transport systems.

24 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)


