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Obtaining high quality labels is a major challenge for the application of deep neural
networks in the remote sensing domain. A common way of acquiring labels is the
usage of crowd sourcing which can provide much needed training data sets but also
often contains incorrect labels which can affect the training process of a deep neural
network significantly. In this paper, we exploit uncertainty to identify a certain type of
label noise for semantic segmentation of buildings in satellite imagery. That type of
label noise is known as “omission noise,” i.e., missing labels for whole buildings which
still appear in the satellite image. Following the literature, uncertainty during training
can help in identifying the “sweet spot” between generalizing well and overfitting to
label noise, which is further used to differentiate between noisy and clean labels. The
differentiation between clean and noisy labels is based on pixel-wise uncertainty
estimation and beta distribution fitting to the uncertainty estimates. For our study, we
create a data set for building segmentation with different levels of omission noise to
evaluate the impact of the noise level on the performance of the deep neural
network during training. In doing so, we show that established uncertainty-based
methods to identify noisy labels are in general not sufficient enough for our kind of
remote sensing data. On the other hand, for some noise levels, we observe some
promising differences between noisy and clean data which opens the possibility to
refine the state-of-the-art methods further.
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1 Introduction

Deep neural networks (DNNs) have produced state-of-the-art results on a wide variety of
classification and segmentation tasks, including semantic segmentation of remote sensing
imagery (Kemker et al., 2018). However, label noise in training data can potentially impair the
performance of DNNs by damaging a network’s generalization ability, as it was empirically
shown that DNNs are able to overfit to completely random noise (Zhang et al., 2021). In general,
the effect that label noise has on the training of DNNs is not well understood: In practice,
models often generalize reasonably well even in high-noise environments (Rolnick et al., 2018;
Wang et al., 2018), but in other cases label noise is known for affecting model training in
segmentation substantially (Rahaman et al., 2022).

Label noise can appear during any part of data collection, processing, or analysis, for a wide
variety of reasons. Researchers often rely on less accurate automated processes to label large
amounts of data cheaply, but even expert opinions can disagree on the same segmentation task
(Redekop and Chernyavskiy, 2021). In semantic segmentation, it is practically impossible for
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annotators to accurately label images pixel-by-pixel, leading to
unavoidable noise along segmentation boundaries (Collier et al.,
2020). In (Mnih and Hinton, 2012) the authors refer to this
phenomenon as “registration noise.” Registration noise can appear
in the form of shifts, rotations or inaccuracies of boundary geometries.
Remote sensing datasets may also be incomplete or out-of-date; thus
building labels do not match the architecture in the corresponding
satellite image. The case where a label is missing for a building that
appears in the satellite image is referred to as “omission noise”.

There are many approaches for dealing with label noise in Deep
Learning. The authors of (Algan and Ulusoy, 2021) organize these into
“noise model based” and “noise model free” categories. “Noise model
based” approaches seek to estimate underlying noise structures in
order to de-emphasize, relabel, or remove noisy labels so that the
model does not learn from them, while “noise model free” approaches
exploit noisy labels to improve robustness, for example, to speed up
gradient descent through hard example mining or to avoid overfitting
(Chang et al., 2017). There exist many different model architectures
and loss functions for dealing with noisy labels across these categories
(Mnih and Hinton, 2012; Fobi et al., 2020; Kang et al., 2020; Kang
et al., 2021). This paper falls into the “noise model based” category,
aiming to identify a noisy label distribution for potential relabeling.At
the same time, as interpretability becomes a major focus in the field of
Deep Learning, research on predictive uncertainty is on the rise, since
critical applications of deep learning models require uncertainty
measures such as confidence estimates to interpret and trust model
predictions (Henne et al., 2020). Ensemble learning and Monte-Carlo
dropout, two of the most popular techniques for obtaining confidence
measures, estimate predictive uncertainty by evaluating the same
predictions across multiple models or on the same model with
slightly different parameters. There also exists an expanding
amount of literature on interpreting uncertainty in Deep Learning,
as uncertainty estimates likely contain useful information about the
data and the network itself (Abdar et al., 2021). The field of remote
sensing notably lacks meaningful exploration of uncertainty; Haas and
Rabus (2021) address this open question, but they do not include label
noise in their research.

Since label noise is detrimental to the practical utility of DNNs, it is
important to gain a more thorough understanding of how networks
learn in the face of this issue. Intuitively, it makes sense that label noise
can influence the uncertainty of a model: If the labeling pattern of
some samples (noisy) deviates from the labeling pattern of the
majority (clean), this might cause the model to be more uncertain
on the deviating ones. Both, Köhler et al. (2019) and Redekop and
Chernyavskiy (2021), study the relationship between label noise and
predictive uncertainty, in the fields of image classification and medical
image segmentation, respectively. Specifically, they use observed
patterns in uncertainty throughout CNN training to choose the
ideal epoch at which to separate clean from noisy labels based on
the unique distributions of their respective uncertainties. Our goal is to
find out if similar methods can be used successfully for remote sensing
data. The method in Arazo et al. (2019) uses a similar approach by
fitting a beta mixture to clean and noisy label distributions, but they
use the loss function rather than uncertainty for the task of finding the
optimal epoch for differentiation between clean and noisy labels.

In this work, we assess the suitability of those methods on remote
sensing imagery. To this end, we introduce noise in the labels of a
dataset on building footprints and evaluate if those methods are able to
successfully identify the added noise. We use the heuristics suggested

by Köhler et al. (2019) and Redekop and Chernyavskiy (2021) to
choose the ideal epoch to find label noise. Next, we fit a mixed beta
distribution to the uncertainty values of the chosen epoch in order to
separate the clean and noisy label components. Finally, we use the
fitted distribution to classify each pixel as either clean or noisy, and
report several performance metrics.

2 Methods

The approach described by Köhler et al. (2019) and Redekop and
Chernyavskiy (2021) works as follows: It is assumed that during
training a DNN, there is a point in time when the model has
already learned to recognize the important patterns, but has not
yet learned to overfit on the noise in the training data. This is a
reasonable assumption since it was empirically shown by Arpit et al.
(2017) and Arazo et al. (2019) that DNNs usually start overfitting to
noise only in the later epochs. It is further assumed that the predictive
uncertainty at such a point is noticeably different on noisy than on
clean samples.

Each, Köhler et al. (2019) and Redekop and Chernyavskiy (2021),
recommend empirically promising heuristics for choosing an epoch at
which the predictive uncertainty can be used to correctly distinguish
between noisy and clean labels without knowledge of the underlying
noise distribution. In both cases, these heuristics are an observed local
minimum of an uncertainty measure at a specific epoch that coincides
with the global maximum of test accuracy. The authors conclude that
this observed local minimum can therefore be used as an indicator for
the epoch of highest test accuracy, which is equivalent to the
abovementioned point in time. Neither paper provides a theoretical
explanation nor robust testing of these heuristics. Still, in the absence
of alternative indicators, we also use these heuristics to choose an
appropriate epoch. At the chosen epoch, the predictive uncertainties
are calculated for each training sample, and two unimodal
distributions are then fitted to the histogram of the uncertainties.
Those two distributions should, ideally, represent the uncertainty
distribution of the clean and noisy samples, respectively. Those two
distributions can subsequently be used to classify the training samples
as clean or noisy. Our contribution consists of applying the methods
presented by Köhler et al. (2019) and Redekop and Chernyavskiy
(2021) on a remote sensing dataset with several different levels of label
noise and evaluating the performance of those methods to determine
whether the proposed methods can successfully be utilized in the
remote sensing domain.We use a DeepLabV3+ model (Chen et al.,
2018) with dropout (rate = .1), a binary crossentropy loss, the Adam
optimizer (Kingma and Ba, 2014), and an initial learning rate of 10–4

with exponential decay for the semantic segmentation of building
footprints on a satellite imagery dataset of the city of Rotterdam
(Shermeyer et al., 2020). From this dataset, only images that contained
at least 30% buildings were selected for training and validation to
reduce the effect of class imbalances. We train the model for
100 epochs with a batch size of 8, using 2,574 and 643 RGB
images for training and validation, respectively (80%/20% split).
Each image has 256 × 256 pixels. To obtain uncertainty estimates,
the model predicts on the training data at the end of each epoch, using
MC Dropout (Gal and Ghahramani, 2016) with 20 forward passes to
output a vector of softmax predictions for each pixel.

In our analysis, we focus on omission noise, which appears when
objects that are visible in the image are missing in the label mask
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(Mnih and Hinton, 2012). This is a very common noise type in remote
sensing imagery that can stem from out-of-date or incomplete
reference data. To evaluate how well the method is capable of
identifying omission noise, we created 11 different versions of the
initial dataset, each version containing the same images but a different
amount of omission noise in the labels. We subsequently train a model
on each of the 11 versions, using the original (0% noise) validation
labels for all trials. Our 11 datasets cover the noise levels between 0%
and 100% in intervals of 10 percentage points. The percentage of noise
refers here to the fraction of true building pixels that are converted to
background pixels, meaning that in a dataset with 10% omission noise,
roughly 10% of the true building pixels in each image have been
converted to background pixels. Since we only convert whole building
geometries, the exact noise level in an image can vary to some degree.

For calculating the predictive uncertainties for each training pixel
x, we perform T ≔ 20 forward passes with dropout (Gal and
Ghahramani, 2016) at the end of each epoch to obtain a sequence
of one-hot encoded softmax vectors (gt(x))t�1,2,...T with
gt(x) � (gt

c(x))c�1,...,C ∈ RC, where C = 2 is the number of classes.
The class index c = 0 stands for the building class and c = 1 for the
background class. We track three uncertainty measures during
training:

1. The average softmax value of the predicted class:

μ ≔
1
T
∑T
t�1

max
c∈ 0,1{ }

gt
c x( ) (1)

2. The standard deviation of the softmax scores for the building class,
as proposed by (Köhler et al., 2019):

σ0 ≔

��������������
∑T
t�1

gt
0 x( ) − μ0( )2

√√
with μ0 ≔

1
T
∑T
t�1

gt
0 x( ). (2)

3. A measure used by (Redekop and Chernyavskiy, 2021) and defined
by (Kwon et al., 2020) which is designed to capture the aleatoric
part of a model output’s variance1. We will refer to it as Varal in the
remainder of this paper:

Varal ≔
1
T
∑T
t�1

gt
0 x( ) · 1 − gt

0 x( )( ) (3)

In our experiments, the standard deviation of the model
predictions as proposed by Köhler et al. (2019) turned out to be
most successful uncertainty measure for identifying an optimal epoch,
to the effect that the observed local minimum in this uncertainty
measure was most clearly visible qualitatively. Following the
recommendation by Köhler et al. (2019), we fit a mixed beta
distribution to the histogram of predictive uncertainty values at the
chosen epoch to extract “noisy” and “clean” components. We use the
betamix algorithm and code implementation2 from Schröder and
Rahmann (2017), since the predictive uncertainties include 0 and
1 values, which hinder performance of the traditional MLE-based EM
algorithm (Schröder and Rahmann, 2017; Arazo et al., 2019). The

algorithm assigns each uncertainty value in the histogram to one of the
two components based on a posterior likelihood distribution. We
compare how accurately the pixels assigned to the “noisy” component
match the actual known omission noise, or building pixels removed
from the training labels. The percentage of total pixels assigned to the
“noisy” component by the betamix algorithm should ideally match the
known omission noise level, or percentage of building pixels removed.
The labels in the “noisy” distribution are then used to calculate pixel-
wise accuracy metrics against the actual (known) omission noise.

3 Results

We will first touch on the process of selecting a suitable epoch for
extracting uncertainty values: Figure 1 shows the development of the
standard deviation of the softmax scores for the building class σ0
during training, computed over the full training set and all forward
passes, for each of the noisy datasets. Predictive uncertainty measures
seem to adhere to specific patterns throughout model training,
especially at low-to-medium omission noise levels. When training
with omission noise levels above 0%, the average standard deviation of
the softmax values first decreases before reaching a minimum
sometime within the first half of training and increasing again.
This result mirrors the observation by (Köhler et al., 2019) of an
early minimum in the network’s standard deviation during training,
allowing us to use the epoch of this minimum for separating between
clean and noisy labels by fitting a mixed beta distribution.
Interestingly, this pattern does not appear at the 0% omission noise
level; in that case, the standard deviation steadily decreases throughout
the entire training process. However, at noise levels equal and above
50%, the heuristic seems to be less helpful, as the magnitude of
uncertainty is smaller overall and there seems to be more
randomness in the uncertainty values throughout training. For
reasons of brevity, we do not show the other uncertainty measures
explained in Section 2, though they also show similar behaviours in
that for datasets with existing but not extremely high noise levels, the
uncertainty first decreases before starting to increase again. For each
noise level we choose the epoch at the first local minimum in
predictive uncertainty for further analysis, if such a minimum
exists. The extracted epochs are shown in Table 1.

Next, we fit a mixed beta distribution onto the uncertainty values
from the chosen epochs. Figures 2A, B show the uncertainty
histograms of the training sets with 20% and 30% noise
respectively at the epochs chosen by the heuristic described above,
as well as the two components of the mixed beta distribution that were
fitted by the betamix algorithm onto the data. The uncertainty
measure used here is the average softmax value of the predicted
class μ, which is more interpretable as a confidence score. Note
that this is a different measure than the one used for identifying
the epoch in the first place. We chose a different measure here since it
became apparent qualitatively that histograms generated by this
measure had more distinct modes than the ones generated with the
standard deviation of the building class. The histograms show that the
majority of samples is assigned a very high confidence near 1.0 for
both of the noise levels. However there is also a local maximum
between .6 and .7. Based on the works of Köhler et al. (2019) and
Redekop and Chernyavskiy (2021), we assume the component
comprised of lower uncertainty values is “clean,” and the
component of higher uncertainty “noisy.” For reasons of brevity,

1 https://github.com/ykwon0407/UQ_BNN/blob/master/retina/utils.py

2 https://bitbucket.org/genomeinformatics/betamix/src/master/

Frontiers in Remote Sensing frontiersin.org03

Ulman et al. 10.3389/frsen.2022.1100012

https://github.com/ykwon0407/UQ_BNN/blob/master/retina/utils.py
https://bitbucket.org/genomeinformatics/betamix/src/master/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1100012


we only show the distributions for the those two noise levels, where the
distinction into two modes is most visible. At the higher noise levels
and especially above 50%, the smaller local maximum vanishes again,
and the betamix algorithm is only able to fit a single component, in
other words failing to identify any label noise. The likely reason for this
is that for too high noise levels, the network is not able to distinguish
between clean and noisy labels anymore.

Since in our experimental setup we have complete information on
the noise in the data, we can check if the distributions found by the
betamix algorithm actually correspond with the distributions of the
noisy and clean samples. Figures 2C, D show the histograms of the
actual clean and noisy samples in the training sets with 20% and 30%
label noise, respectively. What can be seen is that the clean labels are
indeed concentrated on the very high confidence scores, however the

distinction at the lower confidence scores is not so clear, since similar
amounts of clean and noisy samples can be found there. Furthermore,
there is a noticeable difference between noise levels: The histograms of
the training sets with 20% and 30% label noise allow a much better
distinction between clean and noisy samples than the ones for the
other training sets. For reasons of brevity, we only show the
histograms of the two noise levels where the distinction between
clean and noisy samples works best.

Another interesting observation is how the different uncertainties
are distributed spatially. As can be seen in Figure 3, predictive
uncertainty seems to be largely concentrated along the borders of
buildings, based on heatmaps of all four uncertainty measures.

Accuracy metrics for the task of identifying noisy samples are
shown in Table 1 for the different noise levels, for both the approach

FIGURE 1
Standard deviation of the softmax values of the building class σ0 across 100 training epochs for different noise levels in training data.

TABLE 1 Table of pixel-wise accuracy metrics for pixels classified as “noisy” by the betamix algorithm versus known omission noise. The method proposed by Köhler
et al. (2019) uses the standard deviation of softmax values of the building class σ0 to select an epoch, and the mean softmax values of the predicted class μ, within the
chosen epoch to identify noisy samples. The method proposed by Redekop and Chernyavskiy, 2021 uses the difference in Varal for epoch selection and Varal for
identification. Bold values show the best result for each noise level between the two heuristics.

Noise level Epoch Köhler et al.
(2019)

Redekop and Chernyavskiy,
2021

Predicted Noise
Level

IoU Precision Recall F1-
score

0.1 1 x .45 .07 .08 .49 .14

0.1 14 x .26 .12 .13 .48 .21

0.2 1 x .45 .16 .17 .65 .27

0.2 15 x .34 .19 .21 .63 .32

0.3 1 x .46 .22 .24 .7 .36

0.3 12 x .31 .25 .31 .59 .4

0.4 1 x .34 .25 .31 .54 .4

0.4 27 x .15 .17 .32 .25 .28

0.5 1 x .41 .27 .34 .57 .43

0.5 2 x .15 .22 .47 .3 .36
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described by Köhler et al. (2019) and the approach described by
Redekop and Chernyavskiy (2021). The main difference between the
two approaches are the uncertainty measures used: The former use the
standard deviation of the softmax values of the building class σ0 for
epoch selection and the mean softmax value of the predicted class μ for
noisy sample identification. The latter use the change in Varal between
subsequent epochs for epoch selection and Varal for noisy sample
identification. The accuracy metrics indicate that both methods do a
poor job at accurately detecting the noisy pixels. The maximum IoU
score achieved for any noise level or heuristic is .27 (50% noise; epoch
1; Redekop’s approach), much lower than the usual threshold of
.5 needed to be considered successful. In general, using the
approach from (Redekop and Chernyavskiy, 2021) results in a
greater predicted noise level, likely because it usually selects an
earlier epoch at which to fit the distribution, so that there is more
uncertainty in the model’s predictions and therefore more pixels are
classified as noisy. For the same reason, this heuristic leads to lower
Precision and higher Recall scores, as there are more predicted noisy
(positive) pixels overall, and therefore more false positives and fewer
false negatives. Above the noise level of .5 it was mostly not possible

anymore to fit two beta distributions onto the histograms, therefore
there are no results reported for the higher noise levels.

4 Discussion

The results in Figure 1 clearly indicate that the existence of label noise
does affect the uncertainty of the model during training. In accordance
with the observations of Köhler et al. (2019) and Redekop and
Chernyavskiy (2021), label noise causes the training uncertainty first
to decrease before increasing again. The fact that this behaviour is not
visible in the upper noise levels is also to be expected: In the extreme case
of 100% label noise, the training labels consists solely of background and
therefore the model cannot learn any patterns, but will instead predict the
background class every single time, resulting in maximum confidence.
This implies that if a model’s uncertainty during training can be used for
identifying noisy labels, it would only possible for noise levels below a
certain threshold.Furthermore, we see from the comparison in Figures 2A,
B with Figures 2C, D that the uncertainty distributions of clean and noisy
samples overlap strongly and therefore are not accurately captured by the

FIGURE 2
Mixed beta distributions fit and uncertainty histograms of clean and noisy samples. (A) Mixed beta distributions fit by the betamix algorithm for training
data with 20% noise (B) Mixed beta distributions fit by the betamix algorithm for training data with 30% noise (C) Uncertainty histograms of clean and noisy
samples for training data with 20% noise (D)Uncertainty histograms of clean and noisy samples for training data with 30% noise. Uncertainties were computed
by taking the mean softmax value of the predicted class μ.

Frontiers in Remote Sensing frontiersin.org05

Ulman et al. 10.3389/frsen.2022.1100012

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1100012


betamix algorithm. Finetuning or replacing the algorithm so that the two
distributions are found more reliably could be a next step in future
attempts to utilize uncertainty for noisy label detection, even though
reliable noisy label identification based on uncertainty alone would still
not be possible because of the large overlap between the two distributions.

The results that we have shown here are not as good as the ones
reported by Köhler et al. (2019) and Redekop and Chernyavskiy (2021)
on their respective datasets, which brings up the question why the
methods seem to work better on natural and medical images than on
remote sensing imagery. One possibility could be the higher fraction of
boundaries between background and target class. We observed that
boundary pixels have much larger uncertainties than the average. A
similar observation based on Varal is made in Kwon et al. (2020).
(Collier et al. (2020) gives a potential reason for this phenomenon:

“Image segmentation datasets have naturally occurring
heteroscedastic uncertainty. A single 512 × 512 image has
262,144 pixels, so, in practice human annotators cannot label pixels
individually but label collections of pixels at a time. As a result
annotations tend to be noisy at the boundaries of objects.”

Since ground-truth building annotations do not perfectly align
with building pixels in the satellite imagery data, there is naturally
occurring boundary noise in the semantic segmentation task.
Therefore, the model may correctly pick up on boundary noise and
be more uncertain on those pixels during training; however, this could
make it difficult to track uncertainty on other kinds of noise, even
when it is manually added and known to the researcher. We attempted
to account for this property by masking out the boundary pixels
during the fitting of the beta distributions. Alternatively, we also used a
loss function specifically designed to reduce the uncertainty on
boundaries (Bokhovkin and Burnaev, 2019). Both times however,
the results looked still similar to the ones shown above, indicating that
boundaries are not the only source of the discrepancy.

As Table 1 shows, the above mentioned overlap between
uncertainty distributions of clean and noisy samples leads to
overall poor results of the methods for identifying noisy samples.

The performance metrics indicate that predictive uncertainty is a poor
indicator of omission noise alone, especially when more than 50% of
building labels have been removed before network training.

In summary, the initial goal of identifying noisy labels based on
uncertainty could not be achieved to a satisfying degree. Still, a
promising difference in uncertainty distributions between clean and
noisy labels can be noticed at least for some of the noise levels. Refining
the methods used in this work to more accurately capture the true
distributions of clean and noisy labels could still be of use for label
cleaning purposes, e.g., for obtaining a prior probability on potentially
noisy samples or for establishing a subset of most trustworthy samples.
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