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Abstract 

 

Unmanned Aerial System (UAS) activities have increased steeply in the last years, market 

research forecasts a continuous increase in the near future. The rapid growth of this 

industry, however, has outpaced the development of rules and systems to govern their 

use, as well as those to ensure a safe operation before, during and after flight. 

Maintenance, Repair and Overhaul (MRO) aspects will gain relevance as more and more 

UAS take to the sky. 

 

Rotary-wing UAS have 2 or more propellers, which are easily damaged during normal 

operation of the vehicle. The reduced thrust and increased vibration imply losing 

performance and setting the UAS structure under stress. With the propellers being the 

main source of sound of the propulsion system, we propose the use of acoustics to identify 

damaged propellers. Microphones placed off-board do neither disrupt UAS operation nor 

reduce the payload capacity. Furthermore, this method does not depend on a particular 

manufacturer or software. 

 

In this paper, we present a concept for the non-destructive testing of multi-copter 

propellers. The fault diagnosis aims at recognizing the difference in sound between 

damaged and undamaged propellers. This evaluation takes place before the UAS takes 

off the ground and after it lands, thus allowing to interrupt a possible dangerous mission 

or identifying damage occurred during operation. The vehicle is on the ground in an “idle 

state” where the propellers already spin, but not fast enough to lift it. This state is used 

for a first analysis of the sound of a single propeller and several propellers, as well as for 

the generation of data. Next, two approaches for the detection of damage are developed 

and their performance is evaluated: an analytical approach and a machine learning 

algorithm based on an autoencoder neural network. 

 

1.  Introduction 
 

Beyond Visual Line of Sight (BVLOS) flights refer to UAS operations where the vehicle 

flies outside of the normal visible range of the pilot. They provide numerous advantages 

compared to normal UAS operations, but they are still strongly limited due to the current 

European Union Aviation Safety Agency (EASA) regulations. Yet, the total BVLOS 

global market is expected to increase by over 70% between 2021 and 2026. (1) 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rti

cl
e:

ht
tp

s:
//w

w
w

.n
dt

.n
et

/?
id

=2
80

93

© 2023 The Authors. Published by NDT.net under License CC-BY-4.0 https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.58286/28093



 2 

In order to facilitate autonomous BVLOS operations and in particular remote overhaul 

services, new vertiport concepts with integrated fault diagnose activities are presented in 

(2). Acoustic monitoring is proposed as a universal inspection technology while the 

vehicle is still on the vertiport. It allows near real-time monitoring, does not penalize 

payload due to additional sensors and is easily integrated into a vertiport.  

 

2.  Background 
 

In the previous work (3), the authors explored the possibility of detecting a damaged 

propeller on an experimental setup consisting of a single propeller. The impact of the 

rotational speed of the propeller and the relative position between propeller and 

microphone were also evaluated. In this paper, the object of interest is a full UAS with its 

4 propellers attached to it. A similar approach can also be found in Bondyra (4), Iannace 

(5), and Liu (6). Bondyra et al. use propellers with fractured tips and edge distortions, 

MFCC-based features and two approaches: a convolutional and a LSTM-based neural 

network (NN), both achieving F1 metrics above 98%. This is a good performance; 

however, their recording method is not applicable for the described use-case due to the 

additional weight, as they place the microphone array directly on the UAS. Iannace et al. 

aim to detect unbalanced propellers, which are taped to create the imbalance. They use 

the linear sound pressure instead of the MFCC, and he evaluation of the model, a 

convolutional NN, provides an accuracy of 97%. This is also not the focus of the current 

work, as the damage of interest are not slightly unbalance propellers but damaged tips, as 

they have a bigger impact on the vehicle performance. Liu et al., who also use a CNN, 

provide the spectrogram as input data to detect damaged propellers where the tip has been 

cut off. There is no information about the microphone used and the amount of training 

data is quite small (160 images), the accuracy obtained is 97%. 

 

3.  Methodology 
 

This chapter describes the experimental setup for the acquisition of data, an analysis of 

the obtained data and the approach taken to detect damage. 

 

3.1 Experimental set-up 

 

The experimental set-up consisted of a quadcopter, a Holybro X500, placed between two 

microphones (Oktava MK-012) in a semi-anechoic chamber, see Figure 1. The propellers 

mounted on the Holybro were two-bladed propellers (1045 V2) and the considered 

damages were broken tips, namely 5 mm, 10 mm, 20 mm and 30 mm being cut of one of 

the tips of one of the propellers (this corresponds to approx. 2 %, 4 %, 8 % and 12 % of the 

length of the propeller being cut off). For clarity reason, propellers are referred to from 

this point on as 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 (undamaged), 𝒑𝒓𝒐𝒑𝟎𝟓 (5 mm cut), 𝒑𝒓𝒐𝒑𝟏𝟎 (10 mm cut), 

𝒑𝒓𝒐𝒑𝟐𝟎 (20 mm cut), 𝒑𝒓𝒐𝒑𝟑𝟎 (30 mm cut). Two microphones, on opposite sides of the 

quadcopter, are used to guarantee that the propellers on both sides are recorded equally, 

as the orientation and the position of the microphone has a big impact on the recordings. 

A single microphone above the Holybro was not an option, as it is problematic in a real 

take-off phase, and a microphone below it is too much affected by the downwash of the 

propellers. 
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The considered rotational speed of the propellers, 𝒇𝒓𝒐𝒕, is within the standard range in an 

arming phase, namely 8% of the maximum rotational speed of the motors. In this case, it 

corresponds approximately to 1080 rpm or 18 Hz. 

First, recordings are taken of a single propeller in both undamaged and damaged states 

varying through the mounting position of all four propulsion motors. These recordings 

are done with the microphone which is nearest to the moving propeller in each case. Next, 

recordings of all 4 propellers in an undamaged state are taken. Finally, recordings of 4 

propellers, where one propeller is damaged and the other 3 are not, are performed.  

These two recording options (each propeller separately or all propellers simultaneously) 

correspond to two possible test routines before and/or after a flight: TR I and TR II. 

 

  
Figure 1. Set-up for data acquisition inside a semi-anechoic chamber (left) and image of propellers used for the 

recordings (right). From top to bottom: undamaged, 30mm, 20mm, 10mm, and 5mm cut. 

3.2 Data description 

 

The result of the recordings is a dataset with the following characteristics: 

- Audio sampling frequency: 44100 Hz 

- Bit-depth: 32-bit floating point format 

- Number of recording sessions: 2 

- Rotational speed of the propellers, 𝒇𝒓𝒐𝒕: 8% of maximum speed, approx. 18 Hz 

- Total number of samples (see Table 1) 

 
Table 1. Total length of recordings (seconds) of a single propeller (test routine I) and 4 simultaneously turning 

propellers (test routine II). 

Single propeller (TR I)  4 simultaneous propellers (TR II) 

 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 2215  4 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 998 

 𝒑𝒓𝒐𝒑𝟑𝟎 465  3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 1 𝒑𝒓𝒐𝒑𝟑𝟎 464 

 𝒑𝒓𝒐𝒑𝟐𝟎 465  3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 1 𝒑𝒓𝒐𝒑𝟐𝟎 464 

 𝒑𝒓𝒐𝒑𝟏𝟎 464  3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 1 𝒑𝒓𝒐𝒑𝟏𝟎 464 

 𝒑𝒓𝒐𝒑𝟎𝟓 465  3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 1 𝒑𝒓𝒐𝒑𝟎𝟓 464 

 

3.3 Damage detection 

 

Based on the recorded data, two approaches for the damage detection are implemented 

and compared: an analytical approach and a machine learning approach. 
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3.3.1 Analytical approach 

An analysis of the data shows that the frequency content of the sound of an undamaged 

propeller has a clear peak at the blade passing frequency (BPF), which in this case 

corresponds to 𝒇𝑩𝑷𝑭 = 𝟐 ∗ 𝒇𝒓𝒐𝒕 due to the two blades of each propeller. For damaged 

propellers, a peak can also be seen clearly at 𝒇𝒓𝒐𝒕. The analytical approach is based on a 

comparison between the rate of these two frequency components, namely at 𝒇𝒓𝒐𝒕 = 𝟏𝟖𝑯𝒛 

and at 𝒇𝑩𝑷𝑭 = 𝟑𝟔𝑯𝒛. The greater the damage, the bigger the ratio 𝒇𝟏𝟖𝑯𝒛/𝒇𝟑𝟔𝑯𝒛. 

80% of the recordings from the undamaged propellers are chosen randomly and the 

threshold to divide recordings from damaged or undamaged propellers is calculated by 

the interquartile range rule, where Q1 is the first quartile and Q3 the third quartile (7): 

𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 𝟏. 𝟓 ∗ (𝑸𝟑 − 𝑸𝟏) + 𝑸𝟑 (1) 

In the case of two microphones being considered, if either of the channels is classified as 

damaged, the recording is classified as damaged. 

 

3.3.2 Machine learning approach: the autoencoder 

An autoencoder is a neural network which is trained to copy its input to its output. 

Internally, it consists of an encoder and a decoder, which are designed so that they are 

unable to create perfect reconstructions. In this way, the model learns to prioritize the 

defining properties of the data. If everything works as it should, the reconstructions from 

the “correct” data will have a low reconstruction error, while the reconstructions from the 

“incorrect” data will have a higher one (8). The threshold is also chosen via the 

interquartile rule shown in the previous section, and if either of the channels is classified 

as damaged, the recording is classified as damaged. 

 

4.  Experiments and results 
 

4.1 Analytical and autoencoder implementation 

 

The analytical approach is implemented in a python script where the audio recordings are 

divided into 1-second audio snippets, the frequency content (periodogram) is calculated 

to obtain the 𝒇𝟏𝟖𝑯𝒛/𝒇𝟑𝟔𝑯𝒛 ratio for each audio sample and the threshold to divide between 

normal values and outliers is calculated using a random 80% of the samples. The other 

20% is used for evaluation. 

 

For the autoencoder, the power spectral density (PSD) is calculated out of the 1-second 

audio snippets. Exploratory data analysis shows that the addition or exclusion of the 

highest frequencies does not have an impact on the performance of the autoencoder. 

Therefore, just the frequencies up to 4.4 kHz are considered for further evaluation; this 

reduces the input size and evaluation time of the network. The autoencoder itself is 

implemented and trained using TensorFlow (9). It consists of a 2-layer encoder (32 and 

16 neurons) and 2-layer decoder (32 neurons and output layer). For each training process, 

the data available is divided into a training set (70% of normal recordings), a validation 

set (20% of 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 50% from 𝒑𝒓𝒐𝒑𝟑𝟎), and a test set (10% of 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 and 50% 

from 𝒑𝒓𝒐𝒑𝟑𝟎). The model is then also evaluated for the 20 mm, 10 mm and 5 mm cut 

recordings. The network is training with a learning rate of 0.001 and an Adam optimizer. 

An early stopping is used to monitor the validation loss and stop the training if it has not 

improved at least 10-5 in 8 epochs. 
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4.2 Evaluation of performance 

 

The following table shows the results of the single propeller evaluation for both the 

analytical approach and the autoencoder approach. 

 
Table 2. Accuracy results of analytical approach and autoencoder for single propeller evaluation (TR I) 

Single propeller Analytical approach Autoencoder 

 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 86 % 95 % 

 𝒑𝒓𝒐𝒑𝟑𝟎 100 % 100 % 

 𝒑𝒓𝒐𝒑𝟐𝟎 100 % 100 % 

 𝒑𝒓𝒐𝒑𝟏𝟎 100 % 100 % 

 𝒑𝒓𝒐𝒑𝟎𝟓 100 % 88 % 

F1-score 0.98 0.98 

 

Next, the results of the evaluation of the recordings of all propellers turning at the same 

time are described. For the purpose of completeness, the performance when considering 

the nearest and the furthest microphone to the damage is specified (or right and left 

microphone for the 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 case), as well as the overall performance when considering 

both microphones. 

 
Table 3. Accuracy results of analytical approach and autoencoder for 4-turning-propellers evaluation (TR II) 

 Analytical approach Autoencoder 

 Nearest 

mic. 

Furthest 

mic. 

Combined Nearest 

mic. 

Furthest 

mic. 

Combined 

4 𝒑𝒓𝒐𝒑𝒖𝒏𝒅  93% * 89% * 84 % 94 % * 100 % * 94 % 

3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 

and 1 𝒑𝒓𝒐𝒑𝟑𝟎 

100 % 25 % 100 % 100 % 100 % 

 

100 % 

3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 

and 1 𝒑𝒓𝒐𝒑𝟐𝟎 

100 % 16 % 100 % 84 % 77 % 

 

89 % 

3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 

and 1 𝒑𝒓𝒐𝒑𝟏𝟎 

79 % 13 % 82 % 52 % 45 % 62 % 

3 𝒑𝒓𝒐𝒑𝒖𝒏𝒅 

and 1 𝒑𝒓𝒐𝒑𝟎𝟓 

28 % 

 

11 % 36 % 61 % 54 % 

 

69 % 

F1-score 0.88 0.89 

* Nearest and furthest correspond to the right and left microphones in case of all 𝒑𝒓𝒐𝒑𝒖𝒏𝒅. 

 

The analytical approach for single propellers has a very good performance detecting 

damaged propellers, 100 %, but also 14 % of false positives. The autoencoder for this same 

case has just 5% of false positives and the same results for the damaged cases except for 

𝐩𝐫𝐨𝐩𝟎𝟓, which is a 12 % worse. 

Both approaches for the simultaneously turning propellers present in general a worse 

performance. The analytical approach has an accuracy of 84 % for 𝐩𝐫𝐨𝐩𝐮𝐧𝐝, which means 

16 % false positives. It detects all damages above 2 0 mm, over 80 % of 𝐩𝐫𝐨𝐩𝟏𝟎, but just 

36 % of 𝐩𝐫𝐨𝐩𝟎𝟓. The autoencoder has a 94 % accuracy for 𝐩𝐫𝐨𝐩𝐮𝐧𝐝 and 100 % for 

𝐩𝐫𝐨𝐩𝟑𝟎. The performance for 𝐩𝐫𝐨𝐩𝟐𝟎 and 𝐩𝐫𝐨𝐩𝟏𝟎 are 89 % and 62 %, which is worse 

than the analytical approach (100 % and 82 %), but for 𝐩𝐫𝐨𝐩𝟎𝟓 is better (69 % vs. 36 %). 
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5.  Conclusion 
 

This work presents two algorithms for the evaluation of UAS propellers’ health condition 

using acoustic emissions during two test routines. Considered are damaged two-bladed 

propellers with one broken tip. First, an analytical approach focuses on the ratio between 

the rotational speed of the motor and the blade passing frequency, and a threshold value 

is obtained using the interquartile rule. Second, an autoencoder neural network is 

implemented with TensorFlow and its threshold is also calculated with the interquartile 

rule. Both approaches are evaluated for recordings of single propellers and of 

simultaneously turning propellers. Based on the obtained results, the best accuracy is 

obtained for propellers recorded separately. Both the autoencoder and the analytical 

approach obtained a F1-score equal to 0.98. The autoencoder is able to detect all damages 

greater than 10 mm with a percentage of false alarms of 5 %, but misses some of the 

smaller damages. The analytical approach detects all damages greater than 5 mm but has 

a false alarm rate of 14 %. This means a sequential test routine before or after a flight 

where all propellers are recorded separately (called test routine I in this work), has the 

best chances of detecting damages, but the choice of algorithm will be based on the trade-

off between false alarm rate and the detection of smaller damages. However, if time is a 

limiting factor, choosing test routine II is also an option, as satisfying results can be 

achieved using less than a quarter of the time for the check (F1-score 0.89). During the 

outdoor operation, the acoustic monitoring system is exposed to ambient noise and gusts 

of wind, which impact the quality of the recorded data. Future work should concentrate 

on solutions like filtering algorithms and include the integration of the test routines in a 

vertiport so that the evaluation is performed automatically. 
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