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• Allows for Code generation



Disclaimer

There exist lots of approaches where discrete SFCs are explicitely or implicitely described.
Not everything we present here is entirely new.
But maybe its the first time, we do it rigorously.
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Definition (refinement space)

A refinement space consists of:

• A set S, the elements
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Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

• Every element of level l > 0 has a unique parent:⋃
E∈S l

R l (E) = S l+1. (3)

R l (E) ∩ R l (E ′) = ∅ for E 6= E ′ ∈ S l (4)

• S0 = { E0 }

l = 0

l = 1

l = 2



Refinements

Definition (refinement)

A refinement of a refinement space S is a subset S constructed via successivly
refining level 0, thus:

• S = S0 is a refinement.

• S \E ∪ R l (E) is a refinement for each E ∈ S .

l = 0

l = 1

l = 2



SFC index

Definition (SFC index)

An SFC index I is a map
I : S → N0 (5)

• I × ` : S → N0 × N0 is injective. Restricted to a level, I is unique.

• E ancestor of E ′ ⇒ I(E) ≤ I(E ′). Refining does not decrease the index.

• I(E) < I(Ê) and Ê not a descendant of E ⇒ I(E) ≤ I(E ′) < I(Ê) for all descendants E ′ of E .
Refining is ’local’.



SFCs

Definition (Space-filling curve)

A (discrete) Space-filling curve is an SFC index restricted to a refinement.

I|S : S → N0 (6)
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Cross product

Definition (Cross product of refinement spaces)

Let (S1,R1, `1) and (S2,R2, `2) be refinement spaces. The cross product S× = S1 × S2 is defined via

• S l× := S l1 × S l2
• `×(E1,E2) := `(E1) = `(E2)

• R l
×(E1,E2) := R l

1(E1)× R l
2(E2) ⊂ S l+1

1 × S l+1
2 = S l+1

×

Proposition

The cross product is a refinement space.
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The cross product index I× = I1 × I2 on S1 × S2:

I× : S1 × S2 → N0 (7)

defined recursively by

I×(E1,E2) := Ix (P1,P2) + m>l
1 m>l

2 (sibid1(E1) ∗#siblings(E2) + sibid(E2)) (8)
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Furthermore

• Can be straightforwardly extended to forest

• Can define partitions

• TODO: How to encode (face-)neighbors?

• TODO: Can we find other cross products?
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