
On the Theory of Discrete, Adaptive Space Filling Curves

Johannes Holke (German Aerospace Center DLR, Cologne)
Carsten Burstedde (University of Bonn)
David Knapp (Uni Bonn and DLR)

SIAM Conference on Parallel Processing 2020

Intro

0

0

0 4

8 9 10 11

12

16

16 20 24

Intro

In this talk, we want to define a proper mathematical framework for SFCs in AMR.

But wait: Don’t we already have definitions?

Yes, but...

Intro

In this talk, we want to define a proper mathematical framework for SFCs in AMR.

But wait: Don’t we already have definitions?

Yes, but...

Intro

In this talk, we want to define a proper mathematical framework for SFCs in AMR.

But wait: Don’t we already have definitions?

Yes, but...

Intro

Most definitions of SFCs have at least one of these issues:

• Come from an analytical point of view

• Are not explicit

• Only on uniform subdivisions

• Actually allow stuff that should be illegal

• Restrict us to 1 : 2d refinement

Intro

Most definitions of SFCs have at least one of these issues:

• Come from an analytical point of view

• Are not explicit

• Only on uniform subdivisions

• Actually allow stuff that should be illegal

• Restrict us to 1 : 2d refinement

Intro

Most definitions of SFCs have at least one of these issues:

• Come from an analytical point of view

• Are not explicit

• Only on uniform subdivisions

• Actually allow stuff that should be illegal

• Restrict us to 1 : 2d refinement

Intro

Theorem

Let X be an SFC, then Y holds.

We need a rigorous definition of X to correctly proof the theorem.

Intro

Theorem

Let X be an SFC, then Y holds.

We need a rigorous definition of X to correctly proof the theorem.

Intro

We want a standalone definition suited for AMR, that is:

•

•

•

•

•

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

•

•

•

•

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

•

•

•

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

• Allows for ’crazy’ constructions

•

•

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

• Allows for ’crazy’ constructions

• Utilizes trees/forests

•

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

• Allows for ’crazy’ constructions

• Utilizes trees/forests

• Takes refinement hierarchy into account

•

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

• Allows for ’crazy’ constructions

• Utilizes trees/forests

• Takes refinement hierarchy into account

• Allows us to construct new SFCs. See cross product

•

Intro

We want a standalone definition suited for AMR, that is:

• Independent of analytical SFC

• Independent of geometry

• Allows for ’crazy’ constructions

• Utilizes trees/forests

• Takes refinement hierarchy into account

• Allows us to construct new SFCs. See cross product

• Allows for Code generation

Disclaimer

There exist lots of approaches where discrete SFCs are explicitely or implicitely described.
Not everything we present here is entirely new.
But maybe its the first time, we do it rigorously.

Idea

What is an SFC?

Some ordering of our elements.

AMR mesh
SFC
// { 0, 1, 2, 3, . . . } (1)

Adaptive meshes are not alone, they come with a refinement hierarchy!

Idea

What is an SFC?

Some ordering of our elements.

AMR mesh
SFC
// { 0, 1, 2, 3, . . . } (1)

Adaptive meshes are not alone, they come with a refinement hierarchy!

Idea

What is an SFC?

Some ordering of our elements.

AMR mesh
SFC
// { 0, 1, 2, 3, . . . } (1)

Adaptive meshes are not alone, they come with a refinement hierarchy!

AMR hierarchy

AMR mesh

⊆

OO

SFC
// { 0, 1, 2, 3, . . . }

(2)

AMR hierarchy

SFC index

((

AMR mesh

⊆

OO

SFC
// { 0, 1, 2, 3, . . . }

(2)

Refinement space

SFC index

((

Refinement

⊆

OO

SFC
// { 0, 1, 2, 3, . . . }

(2)

Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

l = 0

l = 1

l = 2

Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

l = 0

l = 1

l = 2

Refinement spaces

Definition (refinement space)

A refinement space consists of:

• A set S, the elements

• A map ` : S → N0, the level

• Maps R l : `−1(l) =: S l → P(S l+1), the refinement maps

such that

• Every element of level l > 0 has a unique parent:⋃
E∈S l

R l (E) = S l+1. (3)

R l (E) ∩ R l (E ′) = ∅ for E 6= E ′ ∈ S l (4)

• S0 = { E0 }

l = 0

l = 1

l = 2

Refinements

Definition (refinement)

A refinement of a refinement space S is a subset S constructed via successivly
refining level 0, thus:

• S = S0 is a refinement.

• S \E ∪ R l (E) is a refinement for each E ∈ S .

l = 0

l = 1

l = 2

SFC index

Definition (SFC index)

An SFC index I is a map
I : S → N0 (5)

• I × ` : S → N0 × N0 is injective. Restricted to a level, I is unique.

• E ancestor of E ′ ⇒ I(E) ≤ I(E ′). Refining does not decrease the index.

• I(E) < I(Ê) and Ê not a descendant of E ⇒ I(E) ≤ I(E ′) < I(Ê) for all descendants E ′ of E .
Refining is ’local’.

SFCs

Definition (Space-filling curve)

A (discrete) Space-filling curve is an SFC index restricted to a refinement.

I|S : S → N0 (6)

Example

0

0

0 4

8 9 10 11

12

16

16 20 24 28

28 29 30 31

32 48

48 52 56 60

Cross product

=

×

Cross product

=

×

Cross product

Definition (Cross product of refinement spaces)

Let (S1,R1, `1) and (S2,R2, `2) be refinement spaces. The cross product S× = S1 × S2 is defined via

• S l× := S l1 × S l2
• `×(E1,E2) := `(E1) = `(E2)

• R l
×(E1,E2) := R l

1(E1)× R l
2(E2) ⊂ S l+1

1 × S l+1
2 = S l+1

×

Proposition

The cross product is a refinement space.

Cross product

Definition (Cross product of SFC indices)

The cross product index I× = I1 × I2 on S1 × S2:

I× : S1 × S2 → N0 (7)

defined recursively by

I×(E1,E2) := Ix (P1,P2) + m>l
1 m>l

2 (sibid1(E1) ∗#siblings(E2) + sibid(E2)) (8)

Cross product

Definition (Cross product of SFC indices)

The cross product index I× = I1 × I2 on S1 × S2:

I× : S1 × S2 → N0 (7)

defined recursively by

I×(E1,E2) := Ix (P1,P2) + m>l
1 m>l

2 (sibid1(E1) ∗#siblings(E2) + sibid(E2)) (8)

where
m>l :=

∏
i>l

max
E
|R i (E)| (9)

Cross product

Definition (Cross product of SFC indices)

The cross product index I× = I1 × I2 on S1 × S2:

I× : S1 × S2 → N0 (7)

defined recursively by

I×(E1,E2) := Ix (P1,P2) + m>l
1 m>l

2 (sibid1(E1) ∗#siblings(E2) + sibid(E2)) (8)

Proposition

The cross product index is an SFC index.

An interesting example

× =

An interesting example

0

0

0

0 1 2 3

2

2

0

×

0

0

0

0

0

1 2 3

1 2 3

2

2

=

0

0

0

0 2 4 6

2

4

1 3 5 7

4 6

An interesting example

× =

` = 0

An interesting example

× =

` = 1

An interesting example

× =

` = 2

An interesting example

× =

` = 3

An interesting example

× =

` = 4

An interesting example

` = 0

An interesting example

` = 1

An interesting example

` = 2

An interesting example

` = 3

An interesting example

⇒ An SFC for dyadic refinement.

An interesting example

⇒ An SFC for dyadic refinement.

An interesting example

⇒ An SFC for dyadic refinement.

Furthermore

• Can be straightforwardly extended to forest

• Can define partitions

• TODO: How to encode (face-)neighbors?

• TODO: Can we find other cross products?

Thank you.

Questions?

Johannes Holke.
Scalable algorithms for parallel tree-based adaptive mesh refinement with general element types.
PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2018.

Johannes Holke, David Knapp, and Carsten Burstedde.
On the theory of discrete, adaptive space filling curves.
In preparation, 2020.

Furthermore

• Can be straightforwardly extended to forest

• Can define partitions

• TODO: How to encode (face-)neighbors?

• TODO: Can we find other cross products?

Thank you.

Questions?

Johannes Holke.
Scalable algorithms for parallel tree-based adaptive mesh refinement with general element types.
PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2018.

Johannes Holke, David Knapp, and Carsten Burstedde.
On the theory of discrete, adaptive space filling curves.
In preparation, 2020.

Johannes Holke.
Scalable algorithms for parallel tree-based adaptive mesh refinement with general element types.
PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2018.

Johannes Holke, David Knapp, and Carsten Burstedde.
On the theory of discrete, adaptive space filling curves.
In preparation, 2020.

	Intro
	A self-contained definition of SFCs
	The cross product
	Furthermore

