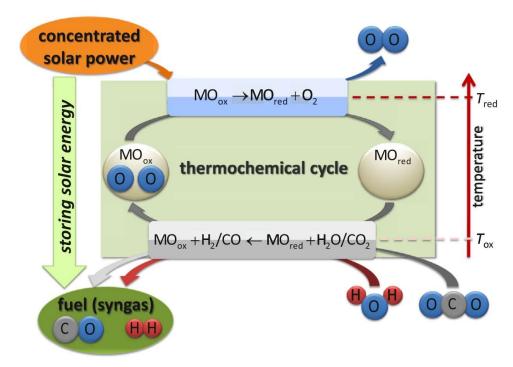
La and Yb Incorporated Zr-Doped Ceria for Solar Thermochemical CO₂ Splitting:

Thermodynamics and Oxidation Kinetics Study

Kangjae Lee, Nicole Knoblauch, Christos Agrafiotis, Mathias Pein, Martin Roeb, Christian Sattler

2022 AIChE Annual Meeting Phoenix, AZ November 15, 2022

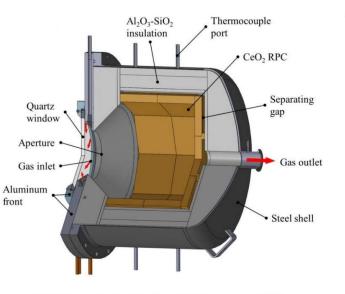
DLR


INTRODUCTION AND RESEARCH OBJECTIVES

Introduction

Two-step Thermochemical Redox Cycles

- Step1: Reduction (Q_{solar} input)
 - Operated at 1300 1500 °C, lower pO₂
 - Endothermic
 - MO_{ox} becomes MO_{red} (e.g. $CeO_2 \rightarrow CeO_{1.9}$)
 - O₂ released
- Step2: Oxidation (H₂O/CO₂ input)
 - Operated at 800 1000 °C
 - Exothermic
 - MO_{red} becomes MO_{ox} (e.g. $CeO_{1.9} \rightarrow CeO_2$)
 - H₂/CO produced (H₂O/CO₂ splitting)



Agrafiotis, C., Roeb, M., and Sattler, C. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles." Renewable and Sustainable Energy Reviews 42 (2015): 254-285.

Introduction

Current Status and Potential Outlook

- Current Status
 - CeO₂ as a state-of-the-art redox material
 - Scalability: 50 kW_{th} single-reactor system, 100 kW_{th} dual-reactor system demonstrated
 - Efficiency: Solar-to-fuel efficiency of 5.25 % at a 4 kW_{th} system, 5.6 % at a 50 kW_{th} system (Figure)
- Potential outlook
 - Potential redox materials performing better than CeO₂ suggested
 - 100 MW_{th} scale-up system concepts available
 - 20 % solar-to-fuel efficiency as a potential objective

Zoller, S. *A 50 kW Solar Thermochemical Reactor for Syngas Production Utilizing Porous Ceria Structures*. Dissertation ETH No. 26451, ETH Zurich (2020) Agrafiotis, C., Roeb, M., and Sattler, C. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles." Renewable and Sustainable Energy Reviews 42 (2015): 254-285. Schäppi et al. "Drop-in fuels from sunlight and air." Nature 601.7891 (2022): 63-68.

Research Objectives

Background and Objectives

- Ceria doped with tetravalent dopants (e.g. Zr⁴⁺, Hf⁴⁺)
 - Enhanced reducibility due to a lower reduction enthalpy compared to pure CeO₂
 - Poor oxidation kinetics being disadvantageous for the CO₂ and H₂O splitting reactions
- The influences of ionic radii or valence on possible structural changes and/or thermodynamic, kinetic properties to establish an associated doping strategy
- Thus, CeO₂-based and Ce(Zr)O_{2-δ}-based materials with additional dopants are suggested.

Research Objectives

La³⁺: 116.0 pm

Yb³⁺: 98.5 pm Zr⁴⁺: 84.0 pm

Dopant Concentration Selection

Concentration Zr	Concentration <i>M (La/Yb)</i>	Calculated ionic radii [pm] Zr+La	Calculated ionic radii [pm] Zr+Yb	Ce ³⁺ : 114.3 pm Ce ⁴⁺ : 97.0 pm
0.0	<u>1.0</u>	116.0	98.5	Ce ² . 97.0 pm
0.1	0.9	112.8	97.1	
0.2	0.8	109.6	95.6	
0.3	0.7	106.4	94.2	Selected samples (Abbreviation)
0.4	0.6	103.2	92.7	CeO ₂
0.5	0.5	100.0	91.3	2
<mark>0.547</mark>	<mark>0.453</mark>	98.5	90.6	Ce _{0.9} Yb _{0.1} O _{1.95} (CYO10)
0.6	0.4	96.8	89.8	
0.7	0.3	93.6	88.4	Ce _{0.9} La _{0.1} O _{1.95} (CLO10)
0.8	0.2	90.4	86.9	
0.9	0.1	87.2	85.5	Ce _{0.9} Zr _{0.1} O ₂ (CZO10)
1.0	0.0	84.0	84.9	Ce _{0.9} Zr _{0.0547} Yb _{0.0453} O _{1.97735} (CZYO55)
				Ce _{0.9} Zr _{0.0547} La _{0.0453} O _{1.97735} (CZLO55)

the second of th

ter

A

DLR

CC B

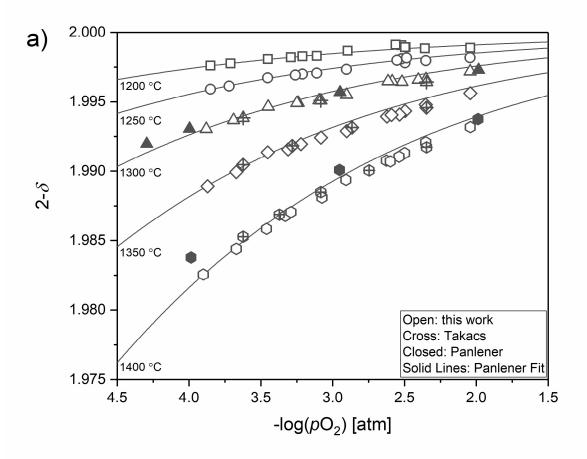
ND 3

THERMODYNAMICS

TGA Results: Thermodynamics

TGA Experimental Conditions

- Reduced at *T_{red}* = 1200, 1250, 1300, 1350 and 1400 °C
 - Under pure Ar for the lowest pO₂
 - Under pure Ar + Ar with O₂ pump at various flow rate ratio at pO₂ = 10⁻³ – 10^{-3.75} atm
 - Under Ar with O₂ pump at various voltage at pO2 higher than 10⁻³ atm


TGA raw data of a CZLO55 pellet during reduction at various temperatures with O_2 pump at maximum voltage (1165 mV)

TGA Results: Thermodynamics

Oxygen Nonstoichiometry

- Oxygen nonstoichiometry (δ) of ceria
 - Close to that from literature
- Oxygen nonstoichiometry (δ) of all samples
 - Tetravalent dopants: Higher δ than ceria
 - Trivalent dopants: Lower δ than ceria
 - co-doped: δ between ceria and Zr-doped ceria
 - No significant differences between CZYO55 and CZLO55

Oxygen nonstoichiometry of a) ceria at T_{red} = 1200 – 1400 °C and b) all materials at 1400 °C

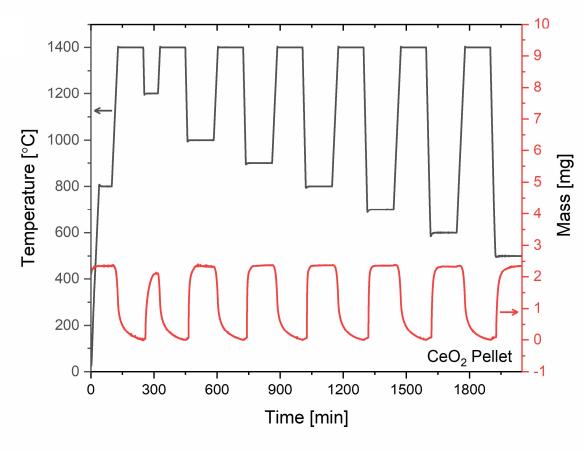
ter

4

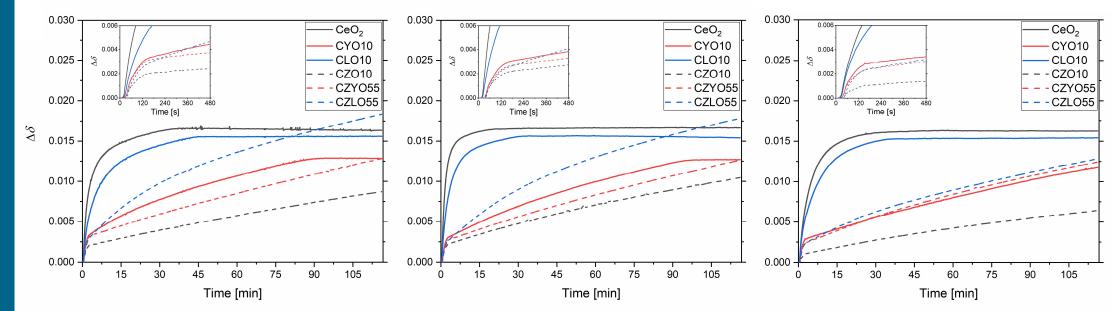
DLR

B

D 3


OXIDATION KINETICS

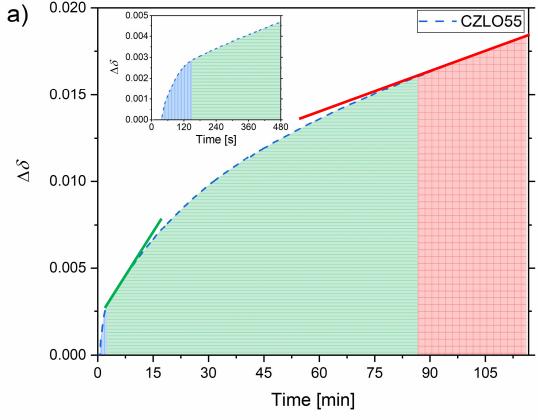
TGA Methods: Oxidation Kinetics


CO₂ Splitting of ceria/doped ceria

- Reduced at T_{red} = 1400 °C under Ar atmosphere for 2 hours
- Oxidized
 - at T_{ox} = 1200 500 °C under 0.4 atm CO₂ balanced with Ar for
 - an hour (1200 °C)
 - 2 hours (1000 500 °C)

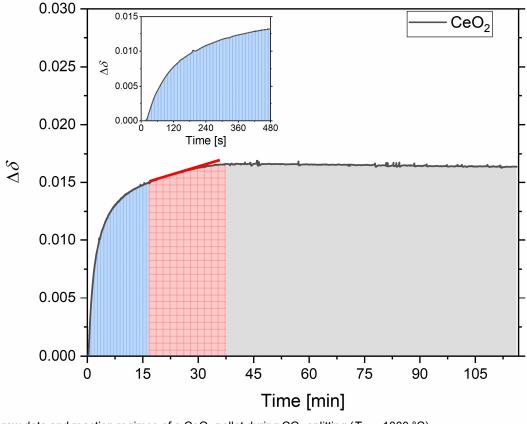
TGA raw data of a CeO₂ pellet during CO₂ splitting at pCO₂ = 0.4 atm

TGA Results ($\Delta \delta$): Oxidation Kinetics

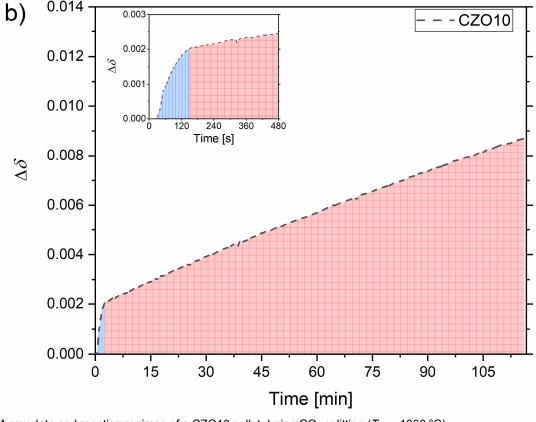

DIR

Change in nonstoichiometry during CO₂ splitting (Left) at 1000 °C, (Mid) at 800 °C, and (Right) at 600 °C. Inset: at early reactions (t = 0 - 480 s)

- Reduced at 1400 °C for 2 hours under Ar.
- Oxidized for 2 hours under $pCO_2 = 0.4$ atm, balanced with Ar.

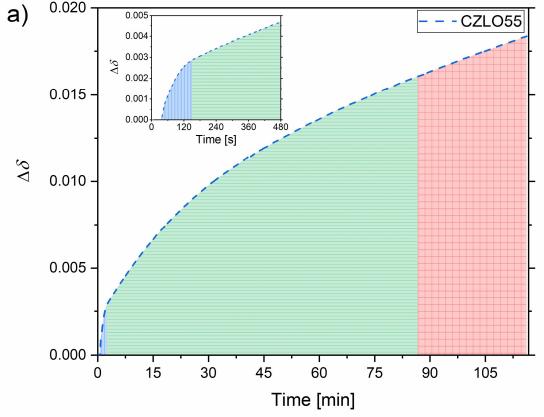

- CO₂ splitting consists of multiple reaction regimes with different reaction mechanism.
 - First regime (0 s about 150 s)
 - Second regime (about 150 s until rate becomes almost linear)
 - Third regime (depending on the material, as soon as rate becomes almost linear)

TGA raw data and reaction regimes of a CZLO55 pellet during CO_2 splitting (T_{ox} = 1000 °C)


- CO₂ splitting consists of multiple reaction regimes with different reaction mechanism.
 - First regime (0 s about 150 s)
 - Second regime (about 150 s until rate becomes almost linear)
 - Third regime (depending on the material, as soon as rate becomes almost linear)

TGA raw data and reaction regimes of a CeO₂ pellet during CO₂ splitting (T_{ox} = 1000 °C)

- CO₂ splitting consists of multiple reaction regimes with different reaction mechanism.
 - First regime (0 s about 150 s)
 - Second regime (about 150 s until rate becomes almost linear)
 - Third regime (depending on the material, as soon as rate becomes almost linear)



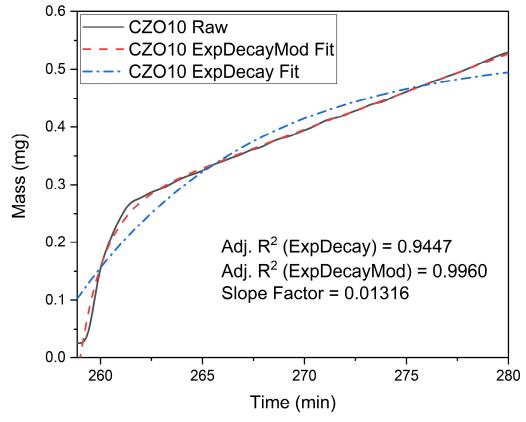
TGA raw data and reaction regimes of a CZO10 pellet during CO₂ splitting (T_{ox} = 1000 °C)

CO₂ Splitting Reaction Regimes

- CO₂ splitting consists of multiple reaction regimes with different reaction mechanism.
 - Unrestricted regime
 - Solid surface is not occupied
 - Surface exchange limited regime
 - Solid surface is being occupied by adsorbed CO₂
 - Slow surface exchange is primarily limiting the reaction
 - Surface exchange limited at equilibrium regime
 - Solid surface is fully occupied by adsorbed CO₂
 - Reaction rate is almost linear

TGA raw data and reaction regimes of a CZLO55 pellet during CO_2 splitting (T_{ox} = 1000 °C)

TGA Results: Modified Exponential Decay Fit/Slope Factor

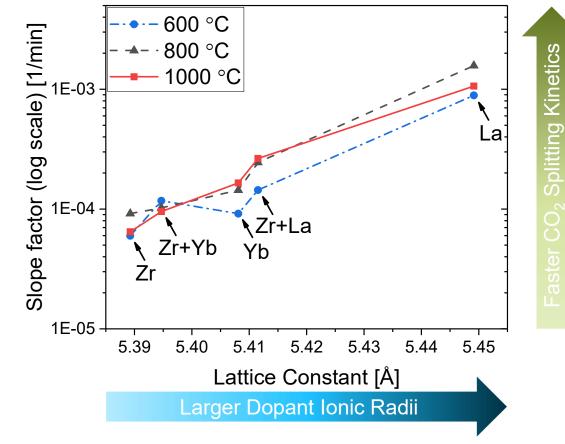


New ExpDecayMod Fit

- Conventional exponential decay function cannot be used for the activation energy calculation.
 - Near-linear increase in mass at the surface exchange limited regime requires new fitting function.
 - Exponential decay function was modified to compensate for the linearity.

$$y = y_0 + A_1 \left(-exp((x - x_0)/t_1) \right) + A_2(x - x_0)$$

 Slope factor A₂ represents the slope at the beginning of the second regime.


TGA raw data and fits of CZO10/CeO₂ pellets during CO₂ splitting

TGA Results: Slope Factor Comparison

Oxidation Kinetics and Lattice Constants

- Slope factors vs lattice constants
 - Overall, slope factors are positively proportional to the lattice constant.
 - This trend is possibly due to enhanced surface exchange induced by the stress caused by the larger dopant cations.
 - Exceptions for the CZYO55 at low temperatures (*T*_{ox} = 600, 700 °C), possibly due to less diffusion limited, or less backward reaction at low temperatures than other materials

Rate of $\Delta \delta$ vs. Lattice constant of doped ceria at various oxidation temperatures

CONCLUSIONS AND OUTLOOK

te,

DLR

Doping Strategy Based on Thermodynamics/Kinetics

- Some tetravalent dopants such as Zr⁴⁺ provide excellent reduction capability, but oxidation kinetics is extremely slow due to limited surface exchange capability induced by smaller effective averaged ionic radius.
- Doping larger trivalent cations on the Zr-doped ceria lattice results in larger effective averaged ionic radius and significantly enhances surface exchange during CO₂ splitting. However, thermodynamic properties become less favorable compared to the case when only tetravalent dopant cations are incorporated. The difference in ionic radius of the trivalent dopant does not influence thermodynamics significantly.
- Optimization in dopant concentrations, balancing between more tetravalent dopants for higher reducibility and more trivalent dopants with larger ionic radius for faster oxidation kinetics, is crucial to maximize the fuel productivity.
- Since CO₂ splitting kinetics is rather surface exchange limited, techniques to promote the surface exchange (e.g. introducing micro porosity for larger specific surface area, surface coating with catalysts, etc.) will be even more beneficial.

Acknowledgement

- DLR Institute of Future Fuels
 - Discussion
- DLR Institute of Materials Research
 - Material Synthesis/Characterization
- Funding: DFG
 - Grant No. SCHM 1367/5-1

Introduction

Economic Analysis and Risk Assessment

- Estimation of fuel production costs for solar thermochemical plant
 - Main assumptions
 - Plant capacity: 1000 bpd of jet fuel and 850 bpd of naphtha
 - Solar plant: Concentration 100 €/m², O&M 2 €/m², Tower: 20 €/kW_{th} DNI: 2500 kWh/m²
 - Electricity: 0.04 €/kWh_{el} on site
 - CO_2 : 108 \in /t from air capture (H₂O captured concurrently)
 - Thermochemical energy conversion efficiency: 19 % (without vacuum pumping and gas separation)
 - Fischer-Tropsch: 60 % efficiency, 23000 €/bpd (investment), 4 €/bbl (O&M)
 - Interest rates: 5.7 % (debt nominal, 60 %), 11.8% (equity nominal, 40 %)
 - Value of by-product: Price (naphtha) = 80 % × price (jet fuel)

Kangjae Lee, 2022 AIChE Annual Meeting, November 15, 2022

Falter, Christoph, et al. "An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway." Sustainable Energy & Fuels 4.8 (2020): 3992-4002.

Introduction

Economic Analysis and Risk Assessment

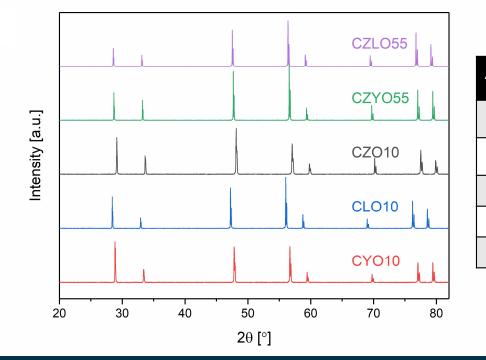
Estimation of fuel production costs for solar thermochemical plant

Regional variability of production cost

Production costs of jet fuel for six count	ries with favourable solar resource.
--	--------------------------------------

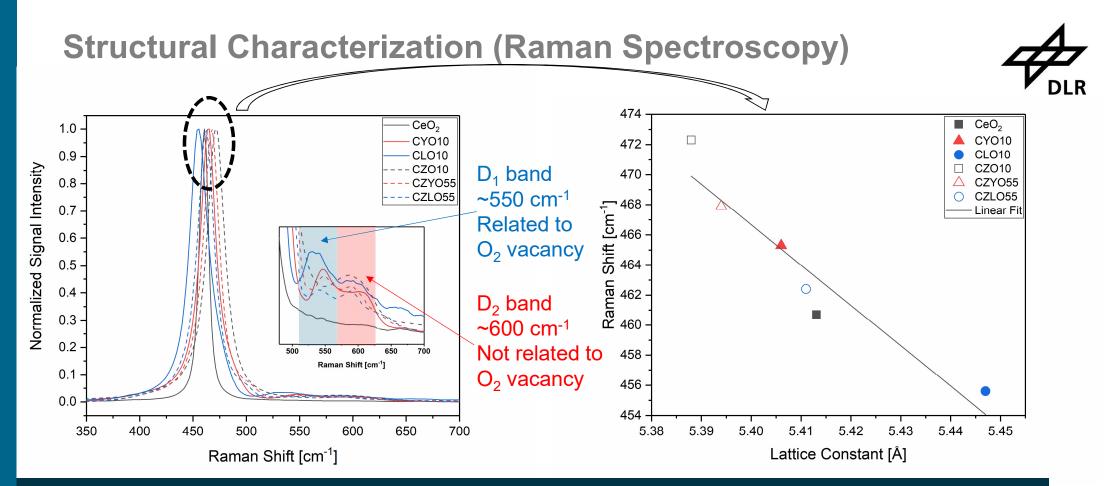
	USA	Australia	Spain	Morocco	Chile	South Africa
DNI [kWh/(m² y)]	2800	2800	2000	2500	3500	3100
Mirror area [10 ⁶ m ²]	8.15	8.15	11.4	9.12	6.52	7.36
Labour costs [10 ⁶ €]	19.1	19.6	8.71	2.14	3.42	3.46
Investment costs [10 ⁹ €]	1.53	1.53	1.89	1.64	1.35	1.45
O&M costs [10 ⁶ €]	82.9	83.4	79.0	67.9	64.4	65.7
WACC [%]	5.7	6.2	4.9	8.1	7.1	13.1
Production costs [€/L jet fuel]	2.17	2.30	2.21	2.37	2.12	3.10

Levers to achieve low production costs


Core assumptions for baseline case and for low-cost scenario.

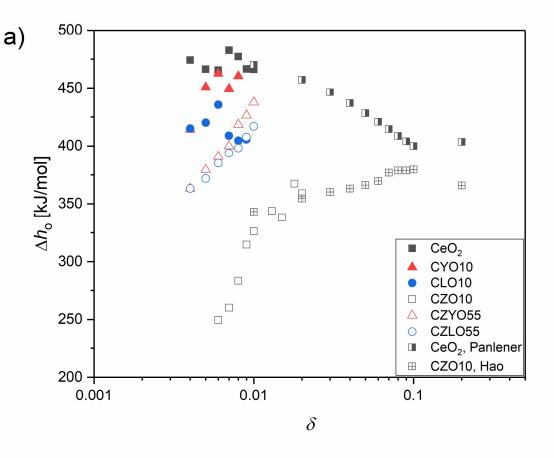
Subsystem	Baseline case	Low-cost scenario
Heliostat costs [€/m²]	100	75
DNI [kWh/(m² y)]	2500	3500
Thermochemical efficiency	15.1%	20%
Cost of CO₂ capture [€/t]	108	45
Production costs [€/L jet fuel]	2.37	1.60

Falter, Christoph, et al. "An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway." Sustainable Energy & Fuels 4.8 (2020): 3992-4002.


Structural Characterization (XRD)

Abbreviation	Nominal Composition	Actual Composition
CZLO55	Ce _{0.9} Zr _{0.0547} La _{0.0453} O _{1.97735}	Ce _{0.9} Zr _{0.06} La _{0.04} O _{1.98}
CZYO55	$Ce_{0.9}Zr_{0.0547}Yb_{0.0453}O_{1.97735}$	$Ce_{0.9}Zr_{0.05}Yb_{0.05}O_{1.975}$
CZO10	$Ce_{0.9}Zr_{0.1}O_{2}$	Ce _{0.9} Zr _{0.1} O ₂
CLO10	Ce _{0.9} La _{0.1} O _{1.95}	Ce _{0.91} La _{0.09} O _{1.96}
CYO10	Ce _{0.9} Yb _{0.1} O _{1.95}	Ce _{0.9} Yb _{0.1} O _{1.95}

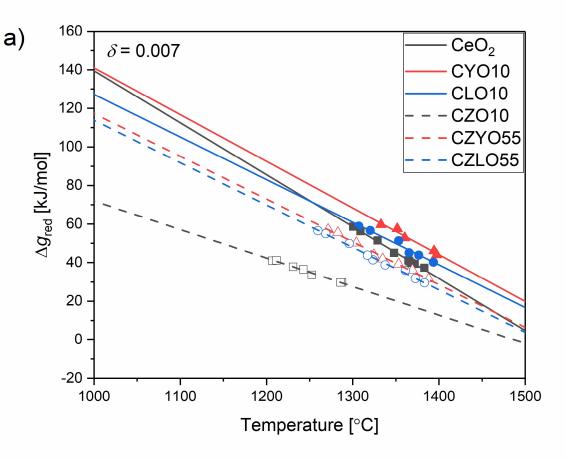
- Fig) XRD patterns after heat treatment at 1650 °C
 Table) Nominal and actual composition via EDS


- Fig. Left) Normalized F_{2g} Raman peak of all materials Inset) Disorder bands (D_1 and D_2 band)
- Fig. Right) F_{2g} Raman peak position vs. lattice constant of all materials

TGA Results: Thermodynamics

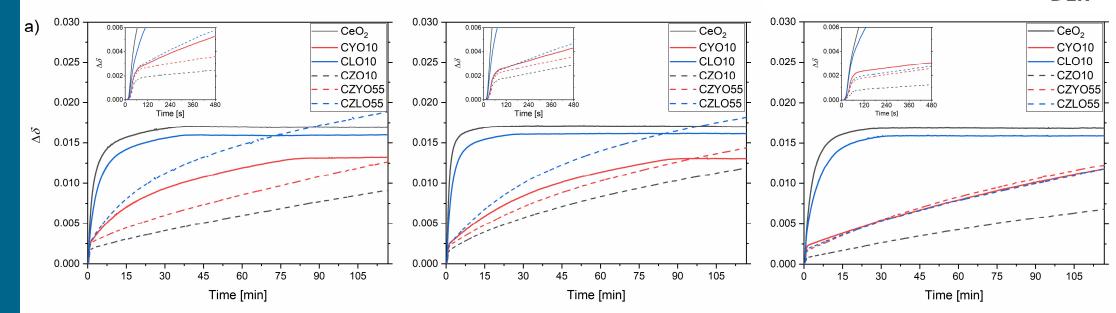
Partial Molar Enthalpy/Entropy

- Reduced at *T_{red}* = 1200, 1250, 1300, 1350 and 1400 °C
 - For 2 h at 1200 1300 °C and for 4 h at 1350 1400 °C
 - Under pure Ar for the lowest pO₂
 - Under pure Ar + Ar with O₂ pump at various flow rate ratio at $pO_2 = 10^{-3} 10^{-3.75}$ atm
 - Under Ar with O2 pump at various voltage at pO2 higher than 10⁻³ atm



a) Partial molar enthalpy and b) partial molar entropy vs. δ

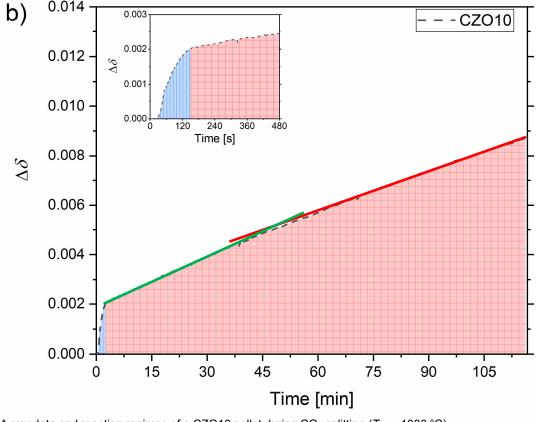
TGA Results: Thermodynamics


Gibbs Free Energy

- Reduced at *T_{red}* = 1200, 1250, 1300, 1350 and 1400 °C
 - For 2 h at 1200 1300 °C and for 4 h at 1350 1400 °C
 - Under pure Ar for the lowest pO₂
 - Under pure Ar + Ar with O₂ pump at various flow rate ratio at $pO_2 = 10^{-3} 10^{-3.75}$ atm
 - Under Ar with O2 pump at various voltage at pO2 higher than 10⁻³ atm

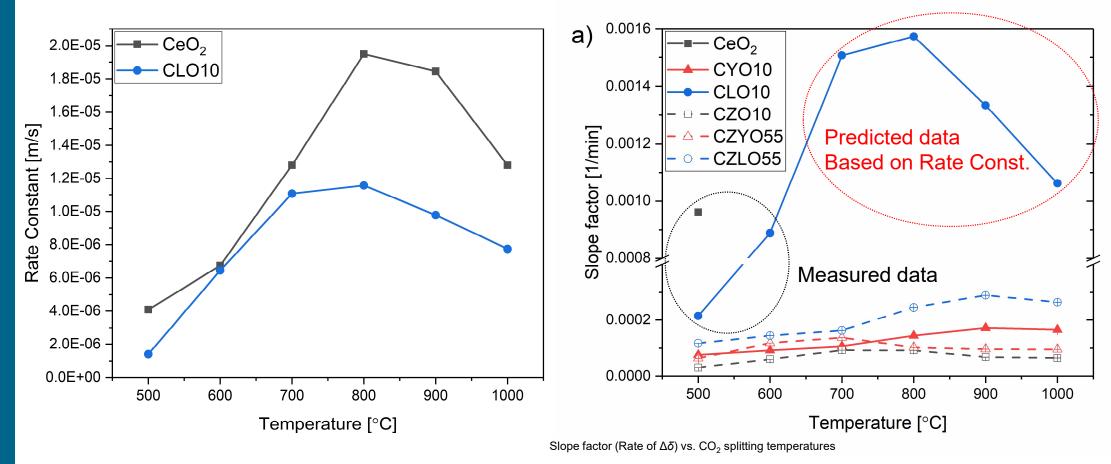
Gibbs free energy for a) reduction and b) oxidation calculated at δ = 0.007.

TGA Results ($\Delta \delta$): Oxidation Kinetics


DIR

Change in nonstoichiometry during CO_2 splitting (Left) at 1000 °C, (Mid) at 800 °C, and (Right) at 600 °C. Inset: at early reactions (t = 0 - 480 s)

- Reduced at 1400 °C for 2 hours under Ar.
- Oxidized for 2 hours under $pCO_2 = 0.8$ atm, balanced with Ar.


- CO₂ splitting consists of multiple reaction regimes with different reaction mechanism.
 - Unrestricted regime (0 s about 150 s)
 - Surface exchange limited regime (about 150 s until equilibrated)
 - Surface exchange limited at equilibrium regime (depending on the material, as soon as it is equilibrated)

TGA raw data and reaction regimes of a CZO10 pellet during CO₂ splitting (T_{ox} = 1000 °C)

TGA Results: Slope Factor Comparison

Kangjae Lee, 2022 AIChE Annual Meeting, November 15, 2022

- Surface exchange and diffusion coefficients will be determined via Secondary-Ion Mass Spectrometry (SIMS) oxygen isotope experiments, and compared to the TGA results.
- Surface exchange promoting techniques will be tested (developing composites, making foams or other porous samples, etc.).
- Optimized materials with respect to thermodynamics and oxidation kinetics will be proposed and syngas productivity using them will be experimentally demonstrated.