
A Sparse Linear System Solver for Transparent Integration of Emerging HPC

Technologies into CFD Solvers

SPLISS

January 24th, 2023, CaDS Seminar, IAS, Jülich Supercomputing Centre

Arne Rempke, Olaf Krzikalla, Jasmin Mohnke, Johannes Wendler, Michael Wagner,

Thomas Gerhold

Institute of Software Methods for Product Virtualization, High Performance Computing,

German Aerospace Center (DLR)

WHAT‘S THE CONTEXT

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

What we (DLR aerospace) do

▪ Wind tunnel experiments

▪ Flight tests

▪ …

▪ Computational Fluid Dynamics
▪ Numerically solving nonlinear partial differential equations

▪ For implicit schemes the most expensive part is solving
linear equation systems

▪ Industrial relevant cases require efficient use of HPC
(turbulence is difficult)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Our challenges/chances:

▪ Try to make use of current (and be ready for future) hardware technology, but codes are

often complex, large, calibrated to physical measurements and quality assured, so it is not

so easy to adopt fast

▪ Due to recent changes in hardware technology (Many-core, SIMD, GPU, …), we have

worked on new implementations

Software Approach to tackle these challenges

▪ Different CFD solvers for specific flow characteristics

▪ TRACE for turbomachinery

▪ CODA for aerodynamics

▪ …

▪ Contain physical modeling, handling of boundary conditions, nonlinear relations,

wind-tunnel calibration, transsonic/hypersonic/… flow regime, …

▪ Common library for (approximatively) solving a linear

equation system with characteristics from aeronautical CFD

▪ More focus on low-level performance and hardware technologies

▪ May adapt to specific technologies more easily due to its comparably limited

functional range

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Spliss

SPLISS OVERVIEW

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Key features of a linear solver for aeronautical CFD

Sparse matrices

▪ Dense blocks with a fixed block size or variable block sizes

▪ Mixed data types: e.g. some entries are complex, others real, some
multiscalars

Solver

▪ Different components should be combinable (as preconditioner)

▪ Robust methods for stiff CFD problems:

▪ Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Efficient parallelization for HPC

▪ Distributed memory (GASPI, MPI)

▪ Shared memory (Threading)

▪ GPU support

▪ Vector instructions (SIMD)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Matrix Structure

Sparse matrices with dense blocks

▪ Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS

method)

▪ Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix)

(mixed-order Discontinuous-Galerkin method)

▪ Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

complexreal

Solver Structure

Robust methods for stiff CFD problems:

▪ Block- and line-implicit methods relying on a direct solution of

diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas-

Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Line B-LU
(Th.-Alg.)

LMG
GMRES

(Jcb 2nd)

iterative

direct line-block solution

LMG
GMRES
(Jcb 1st)

precond.preconditioned

Line B-GS
(Jcb 1st)

iterative iterative direct

Line B-LU
(Th.-Alg.)

LMG
GMRES
(full Jcb)

iterative

direct line-block solutionpreconditioned

Line B-GS
(full Jcb)

iterative direct

B-LULMG
GMRES

(Jcb 2nd)

iterative

direct block solutionpreconditioned

B-GS
(Jcb 1st)

iterative direct

B-LU

direct block solution

B-Jacobi
(Jcb 1st)

iterative direct

Example 1

Example 2

Example 3

Example 4

ALGORITHMICAL FEATURES

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Flexible solver components

▪ Standard linear algebra packages provide solver/preconditioner combination:

▪ Spliss supports to chain multiple solver components, even with different

linear operators:

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

ILU(n)GMRES

preconditioned

Block LU
decomposition

LMG
GMRES

(matrix-free)

iterative

direct block solutionpreconditioned

Multi-color
Gauss-Seidel

iterative direct

Line Inversion
(Block-Th.-Alg.)

LMG
FGMRES

(matrix-free)

iterative

direct line-block
solution

LMGGMRES

precond.preconditioned

Jacobi

iterative iterative direct

x = GMRes(A).Apply(b):
𝑣0 = 𝑏 − 𝐴 𝑥
for 𝑖 = 0,… ,maxIts:
𝑤 = 𝐴(Successor(𝑣𝑖))
𝑣𝑖+1 = Orthonormalize 𝑤
Update(𝐻, 𝛾)

Solve 𝐻 𝑦 = 𝛾
𝑤 = σ𝑖 𝑦𝑖𝑣𝑖
𝑥 += Successor(𝑤)

x = Jacobi(A).Apply(b):
if (𝐴 − 𝐴OffDiagonal = SuccessorMatrix):

for 𝑖 = 0,… ,maxIts:
𝑟 = 𝑏 − 𝐴OffDiagonal 𝑥

𝑥 = 1 − 𝜆 𝑥 + λ Successor(𝑟)
else:
for 𝑖 = 0,… ,maxIts:

𝑟 = 𝑏 − 𝐴 𝑥
𝑥 += λ Successor(𝑟)

x = LU(D).Apply(b):
𝑥 = 𝐷−1𝑏

GMRes(𝐴) Jacobi(𝐴) LU(𝐴Diagonal)

right preconditioned direct diagonal

solution

Note that in case the

matrices for different

solver components

match really well, an

optimized version is

applied

Solver chaining

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Featured Solver Components

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

?
Matrix-free

operator

?
Linear Operator

(F)GMRes

BiCGStab

CG

= +

Matrix 𝐴 𝐴Diagonal𝐴OffDiagonal

LU

Invertible diagonalApplicable off-diagonal

= +

Jacobi

Gauss-
Seidel

ILU

Block-
Inversion

Lines-
Inversion

Linear Multigrid

Linear Multigrid Level

Multigrid Solver Component

▪ Each level can use its own smoother

▪ Transfer operators can be user-

provided

Flexible integration

▪ Reduction of time to solution by 1/3

already for very small test case

RAE2822 65k elements, CODA

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

LUJacobi

Linear Multigrid

Linear Multigrid Level

Linear Multigrid Level

LUJacobi

LUJacobi

GMRes

LUJacobiGMRes

Lines Inversion / Thomas Algorithm

▪ Jacobi-method uses a diagonal inversion:

𝑥(𝑖+1) ≔ 𝑥 𝑖 + 𝐷−1 𝑏 − 𝐴𝑥(𝑖)

where

▪ 𝐷 ∶= diag(𝐴) (point-implicit) or

▪ Especially favourable/needed when mesh has very

anisotropic cells, aspect ratios ≥5000:1

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

▪ 𝐷 ∶= tridiag(𝐴) (lines-implicit)

Efficiency of the tailored solver components

▪ Red solid curve is a „standard

linear solver“

▪ Multigrid gives speedup of 2-3

(dashed)

▪ LinesInversion gives additional

speedup of 3-4 (black/blue)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

MG: 3xLines: 4x

PARALLELIZATION ASPECTS

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Main Operation during Solving: d = A ∙ s

With:

s: Source Vector

d: Destination Vector

A: Matrix

Formula: 𝒅𝒊 = σ𝑗=0
𝑁 𝑨𝒊𝒋 ∙ 𝒔𝒋

→ All rows can be computed independently.

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

s

dA

Distributed Memory Parallelization

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Pure local

Halo-dependent

Entries on other processes

Local entries

Entries on other processes

Halo entries (originate
from other processes)

Destination vector

Source vector

Start sending
halo data

Computation of
pure local parts

Computation of
halo parts

Program run:

Shared Memory Parallelization

Straightforward derived from cluster level parallelization

▪ Every thread computes some rows

▪ Same strategy on CPU and GPU

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

s

d

Thread 1

Thread 2

No synchronization

needed for write

Threading model

▪ Typical design of a library

▪ Single threaded

entry/exit points

▪ Unnecessary burden

if the user code also uses

threads

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

▪ Spliss design

▪ Allows to enter/exit with all threads

GPU Parallelization

▪ Similar as for Multithreading

▪ Using alpaka* allows us to write a single Kernel to be executed

on CPU or GPU

▪ Spliss hides the CUDA backend/compiler/… from user code:

▪ Explicit template instantiations of CUDA-dependent classes on Spliss compilation

▪ No necessity to use nvcc for user code

▪ Since Spliss is a C++ template library, user calls to small functions, e.g.

A[row][col] += myContribution;

can still be inlined, allowing a seamless integration while capsulating

the actual memory layout

* https://github.com/alpaka-group/alpaka

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

SIMD Parallelization / Memory Layout

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Compact Block Layout BELL Layout for fixed block sizes

• All entries of one

matrix block are

consecutively stored

• All matrix blocks are

row-wise

consecutively stored

• Matrix block entries

are interlaced stored

• A number (usually the

SIMD vector size) of

consecutively stored

entries belong to the

same coordinate of

matrix blocks

• A matrix block row

may end with padding

blocks.

SIMD Parallelization: Performance

BELL has nearly no effect on CPU, but huge effects on GPU

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

0

10

20

30

40

50

60

70

Fixed 5x5 Fixed 240x240

G
B

/s

Block-Jacobi Solver (GB/s)

CPU (LU+Compact)

CPU (LU+BELL)

GPU (LU+Compact)

GPU (LU+BELL)

Bandwith | Intel Xeon CPU E5-1650 v4 @ 3.60GHz vs. GPU NVIDIA Quadro M4000

Jacobi + LU Decomposition solver, fixed block size.

Mixed precision

▪ Idea: Reduce memory footprint of inner hot

loops since performance is memory bound

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

25

50

100

200

400

1 2 3 4 5 6 7 8

Ti
m

e
to

so
lu

ti
o

n
[s

]

#nodes

CRM testcase on CARO: time to solution

inner mixed precision full double precision

LU
Decomposition

LMG
GMRES

(matrix free)

iterative

direct line-block
solution

LMG
double -> float

Conversion

precond.preconditioned

Jacobi

converter iterative direct

double precision single precision

▪ User still provides matrix / input vectors

and receives solution vector in double

precision

▪ Inner Spliss solver components operate

in float precision

Time to solution

reduced by factor 2.1

MORE RESULTS

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Comparison to PETSc

▪ Problem size: 3.6M x3 degrees of freedom

▪ Solve single linear equation system for residual reduction of 1e-14

▪ Runtime per DoF and iteration

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

880 blocks/core

3500 blocks/core

CARA cluster, Spliss 1.3.0, PETSc 3.13.1

Linear Elasticity CRM 3.6M vertices

▪ Each node runs 64 processes

▪ Performance and scaling similar
or even better

Scalability Evaluation on CARA
CODA release 2022.04, Spliss release 2.0.1

Observation

▪ 93% efficiency at 1k cores, 53% efficiency at 16k cores

▪ No additional gain for 32k cores

▪ Good scaling for small mesh (735 elements/core at 32k)

▪ Setup 16 processes / 4 threads per node scales best

▪ Up to 1.8x slow-down with network interference*

▪ ParMetis about 2-5% slower than Zoltan

* Reproducible with e.g. other CODA runs on close-by nodes

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

8k 16k 32k

Speedup | CARA (AMD Epyc 7601)

CRM, 24.1M elements, implicit Euler, Jacobi + LU

GPU Development
From initial GPU support to Spliss 2.0

Improvements of GPU (optimized) vs. GPU (initial)

▪ Using CUDA-aware MPI communication to eliminate

unnecessary device-to-host transfers

▪ GPUDirect accelerations at runtime allow

communication without involvement of host memory

▪ Nvidia MPS (multi-process service) allows multiple

processes to efficiently offload to the same GPU

▪ Optimized host-to-device transfers

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Runtime (normalized to CPU) | Intel Xeon vs. Nvidia V100

M6 wing, 1.1M elements, implicit Euler, Jacobi + LU

GPU (initial): all data transfers via host & device

GPU Development
Next gen GPUs

Juwels Booster (Jülich)

▪ 4x Nvidia Tesla A100 per node

▪ Time to solution: speedup of 8-9 for same

number of nodes on Juwels

▪ Rather unfair, since on Juwels every process

uses a GPU in addition to the CPU

▪ Energy comparison (seconds per used Watt):

speedup of 1.6-1.9 on Juwels

▪ Hypothetical Juwels Booster node with CARO

CPU: 1.8-2.3 speedup (energy-wise)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.

12k

128 GPUs

64 GPUs

32 GPUs

8k

6k

4k

GPU Development
Impact of GPU support of Spliss on application wallclock time

▪ For implicit methods in CODA, linear equation systems are solved via Spliss

▪ Thus, only the linear part of CODA benefits from GPUs

▪ For future system with more or more powerful GPUs the non-linear part may become bottleneck

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

40% 60%

4% 96% …

30% 70%

55% 45%

CARO

Juwels Booster

Juwels Booster with

CARO CPU

Future system with 8

A100 per node

1.4 Speedup for

1.8x Energy

non-linear linear CPU / linear GPU

QUESTIONS?

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, January 24th, 2023

