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What we (DLR aerospace) do

▪ Wind tunnel experiments

▪ Flight tests

▪ …

▪ Computational Fluid Dynamics
▪ Numerically solving nonlinear partial differential equations

▪ For implicit schemes the most expensive part is solving 
linear equation systems

▪ Industrial relevant cases require efficient use of HPC 
(turbulence is difficult)
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Our challenges/chances:

▪ Try to make use of current (and be ready for future) hardware technology, but codes are 

often complex, large, calibrated to physical measurements and quality assured, so it is not 

so easy to adopt fast

▪ Due to recent changes in hardware technology (Many-core, SIMD, GPU, …), we have 

worked on new implementations



Software Approach to tackle these challenges

▪ Different CFD solvers for specific flow characteristics

▪ TRACE for turbomachinery

▪ CODA for aerodynamics

▪ …

▪ Contain physical modeling, handling of boundary conditions, nonlinear relations, 

wind-tunnel calibration, transsonic/hypersonic/… flow regime, …

▪ Common library for (approximatively) solving a linear

equation system with characteristics from aeronautical CFD

▪ More focus on low-level performance and hardware technologies

▪ May adapt to specific technologies more easily due to its comparably limited 

functional range

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, January 24th, 2023

Spliss



SPLISS OVERVIEW
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Key features of a linear solver for aeronautical CFD

Sparse matrices

▪ Dense blocks with a fixed block size or variable block sizes

▪ Mixed data types: e.g. some entries are complex, others real, some 
multiscalars

Solver

▪ Different components should be combinable (as preconditioner)

▪ Robust methods for stiff CFD problems:

▪ Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Efficient parallelization for HPC

▪ Distributed memory (GASPI, MPI)

▪ Shared memory (Threading)

▪ GPU support

▪ Vector instructions (SIMD)
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Matrix Structure

Sparse matrices with dense blocks

▪ Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS 

method)

▪ Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix) 

(mixed-order Discontinuous-Galerkin method)

▪ Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, January 24th, 2023

complexreal



Solver Structure

Robust methods for stiff CFD problems:

▪ Block- and line-implicit methods relying on a direct solution of 

diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas-

Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …
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ALGORITHMICAL FEATURES
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Flexible solver components

▪ Standard linear algebra packages provide solver/preconditioner combination:

▪ Spliss supports to chain multiple solver components, even with different 

linear operators:

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, January 24th, 2023

ILU(n)GMRES

preconditioned

Block LU 
decomposition

LMG
GMRES

(matrix-free)

iterative

direct block solutionpreconditioned

Multi-color 
Gauss-Seidel

iterative direct

Line Inversion 
(Block-Th.-Alg.)

LMG
FGMRES

(matrix-free)

iterative

direct line-block
solution

LMGGMRES

precond.preconditioned

Jacobi

iterative iterative direct



x = GMRes(A).Apply(b):
𝑣0 = 𝑏 − 𝐴 𝑥
for 𝑖 = 0,… ,maxIts:
𝑤 = 𝐴(Successor(𝑣𝑖))
𝑣𝑖+1 = Orthonormalize 𝑤
Update(𝐻, 𝛾)

Solve 𝐻 𝑦 = 𝛾
𝑤 = σ𝑖 𝑦𝑖𝑣𝑖
𝑥 += Successor(𝑤)

x = Jacobi(A).Apply(b):
if (𝐴 − 𝐴OffDiagonal = SuccessorMatrix):

for 𝑖 = 0,… ,maxIts:
𝑟 = 𝑏 − 𝐴OffDiagonal 𝑥

𝑥 = 1 − 𝜆 𝑥 + λ Successor(𝑟)
else:
for 𝑖 = 0,… ,maxIts:

𝑟 = 𝑏 − 𝐴 𝑥
𝑥 += λ Successor(𝑟)

x = LU(D).Apply(b):
𝑥 = 𝐷−1𝑏

GMRes(𝐴) Jacobi(𝐴) LU(𝐴Diagonal)

right preconditioned direct diagonal 

solution

Note that in case the

matrices for different 

solver components

match really well, an 

optimized version is

applied

Solver chaining

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, January 24th, 2023



Featured Solver Components
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Multigrid Solver Component

▪ Each level can use its own smoother

▪ Transfer operators can be user-

provided

Flexible integration

▪ Reduction of time to solution by 1/3 

already for very small test case

RAE2822 65k elements, CODA

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, January 24th, 2023

LUJacobi

Linear Multigrid

Linear Multigrid Level

Linear Multigrid Level

LUJacobi

LUJacobi

GMRes

LUJacobiGMRes



Lines Inversion / Thomas Algorithm

▪ Jacobi-method uses a diagonal inversion:

𝑥(𝑖+1) ≔ 𝑥 𝑖 + 𝐷−1 𝑏 − 𝐴𝑥(𝑖)

where

▪ 𝐷 ∶= diag(𝐴) (point-implicit) or

▪ Especially favourable/needed when mesh has very

anisotropic cells, aspect ratios ≥5000:1
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▪ 𝐷 ∶= tridiag(𝐴) (lines-implicit)



Efficiency of the tailored solver components

▪ Red solid curve is a „standard

linear solver“

▪ Multigrid gives speedup of 2-3 

(dashed)

▪ LinesInversion gives additional 

speedup of 3-4 (black/blue)
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PARALLELIZATION ASPECTS
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Main Operation during Solving:  d = A ∙ s

With:

s: Source Vector

d: Destination Vector

A: Matrix

Formula: 𝒅𝒊 = σ𝑗=0
𝑁 𝑨𝒊𝒋 ∙ 𝒔𝒋

→ All rows can be computed independently.
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Distributed Memory Parallelization
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Shared Memory Parallelization

Straightforward derived from cluster level parallelization

▪ Every thread computes some rows

▪ Same strategy on CPU and GPU 
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s
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Thread 1

Thread 2

No synchronization

needed for write



Threading model

▪ Typical design of a library

▪ Single threaded

entry/exit points

▪ Unnecessary burden

if the user code also uses

threads
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▪ Spliss design

▪ Allows to enter/exit with all threads



GPU Parallelization

▪ Similar as for Multithreading

▪ Using alpaka* allows us to write a single Kernel to be executed

on CPU or GPU

▪ Spliss hides the CUDA backend/compiler/… from user code:

▪ Explicit template instantiations of CUDA-dependent classes on Spliss compilation

▪ No necessity to use nvcc for user code

▪ Since Spliss is a C++ template library, user calls to small functions, e.g.

A[row][col] += myContribution;

can still be inlined, allowing a seamless integration while capsulating

the actual memory layout

* https://github.com/alpaka-group/alpaka
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SIMD Parallelization / Memory Layout
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Compact Block Layout BELL Layout for fixed block sizes

• All entries of one

matrix block are

consecutively stored

• All matrix blocks are

row-wise

consecutively stored

• Matrix block entries

are interlaced stored

• A number (usually the

SIMD vector size) of

consecutively stored

entries belong to the

same coordinate of

matrix blocks

• A matrix block row

may end with padding

blocks.



SIMD Parallelization: Performance

BELL has nearly no effect on CPU, but huge effects on GPU  
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Mixed precision

▪ Idea: Reduce memory footprint of inner hot

loops since performance is memory bound
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MORE RESULTS
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Comparison to PETSc

▪ Problem size: 3.6M x3 degrees of freedom

▪ Solve single linear equation system for residual reduction of 1e-14

▪ Runtime per DoF and iteration
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880 blocks/core

3500 blocks/core

CARA cluster, Spliss 1.3.0, PETSc 3.13.1

Linear Elasticity CRM 3.6M vertices 

▪ Each node runs 64 processes

▪ Performance and scaling similar
or even better



Scalability Evaluation on CARA
CODA release 2022.04, Spliss release 2.0.1

Observation

▪ 93% efficiency at 1k cores, 53% efficiency at 16k cores

▪ No additional gain for 32k cores

▪ Good scaling for small mesh (735 elements/core at 32k)

▪ Setup 16 processes / 4 threads per node scales best

▪ Up to 1.8x slow-down with network interference*

▪ ParMetis about 2-5% slower than Zoltan

* Reproducible with e.g. other CODA runs on close-by nodes
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8k                      16k                                               32k

Speedup | CARA (AMD Epyc 7601)

CRM, 24.1M elements, implicit Euler, Jacobi + LU



GPU Development
From initial GPU support to Spliss 2.0

Improvements of GPU (optimized) vs. GPU (initial)

▪ Using CUDA-aware MPI communication to eliminate 

unnecessary device-to-host transfers

▪ GPUDirect accelerations at runtime allow 

communication without involvement of host memory

▪ Nvidia MPS (multi-process service) allows multiple 

processes to efficiently offload to the same GPU

▪ Optimized host-to-device transfers
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Runtime (normalized to CPU) | Intel Xeon vs. Nvidia V100

M6 wing, 1.1M elements, implicit Euler, Jacobi + LU

GPU (initial): all data transfers via host & device



GPU Development
Next gen GPUs

Juwels Booster (Jülich)

▪ 4x Nvidia Tesla A100 per node

▪ Time to solution: speedup of 8-9 for same 

number of nodes on Juwels

▪ Rather unfair, since on Juwels every process 

uses a GPU in addition to the CPU

▪ Energy comparison (seconds per used Watt): 

speedup of 1.6-1.9 on Juwels

▪ Hypothetical Juwels Booster node with CARO 

CPU: 1.8-2.3 speedup (energy-wise)
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Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.
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GPU Development
Impact of GPU support of Spliss on application wallclock time

▪ For implicit methods in CODA, linear equation systems are solved via Spliss

▪ Thus, only the linear part of CODA benefits from GPUs

▪ For future system with more or more powerful GPUs the non-linear part may become bottleneck
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QUESTIONS?
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