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Abstract—Multipath assisted positioning schemes allow lo-
calizing a user with only a single physical transmitter by
treating multipath components (MPCs) as line-of-sight signals
from virtual transmitters. The user position and the locations
of the physical and virtual transmitters can be estimated jointly
with simultaneous localization and mapping (SLAM). While such
approaches often show very good positioning performance, they
come at the cost of a high computational complexity. To reduce
this complexity, multipath assisted positioning schemes based
on SLAM may be combined with fingerprinting, where the
fingerprints are features of the wireless radio channel. Within this
paper, we present such an approach, where a deep neural network
(DNN) is trained on data from a multipath assisted positioning
scheme to predict the user position and the corresponding uncer-
tainty from channel information. Based on the DNN, a Kalman
filter can accurately and efficiently track the user position. We
show by simulations that the positioning performance is improved
by a factor of 1.5 while the computational complexity is crucially
lower than that of multipath assisted positioning-based SLAM.

Index Terms—cooperative Channel-SLAM, deep learning, fin-
gerprinting, localization, simultaneous localization and mapping

I. INTRODUCTION

In multipath assisted positioning, multipath propagation
is exploited for localization by regarding multipath com-
ponents (MPCs) as line-of-sight (LoS) signals from virtual
transmitters. The locations of the physical transmitter(s) and
the virtual transmitters are typically unknown, but can be
estimated jointly with the receiver position with simultaneous
localization and mapping (SLAM) [1]–[3]. We have previously
introduced a multipath assisted positioning scheme called
cooperative Channel-SLAM in [4], [5], where users cooperate
by sharing information on the transmitter locations. A physical
transmitter could be a wireless local area network (WLAN)
router or a fifth generation (5G) base station, for example. In
the following, the term user may refer to either a user or the
radio receiver carried by the user depending on the context.
The term transmitter is a general term including both physical
and virtual transmitters.

Cooperative Channel-SLAM shows good localization per-
formance, but suffers from a high computational complexity
due to complex signal processing methods. While Channel-
SLAM is a model-based approach, fingerprinting schemes [6],
[7] are data driven. Such schemes consist of two stages.

In the offline stage, fingerprints are taken at known locations
and stored in a database together with these locations. In wire-

less radio positioning, fingerprints are often received signal
strength indicator (RSSI) values or channel state information
(CSI). In the online stage, fingerprints are taken and matched
against the database for localization. Being data driven, a big
advantage of fingerprinting methods is their simplicity due
to the lack of possibly complex models. However, it suffers
from two major disadvantages. On the one hand, a third-party
localization system is needed in the offline stage. On the other
hand, the database needs to be updated whenever there are
changes in the environment.

We have proposed a new fingerprinting-like approach named
DNN-CC-SLAM in [8], where fingerprints are time of arrival
(ToA) estimates of signal components impinging at a receiver,
and cooperative Channel-SLAM is performed in the offline
stage to create the fingerprint database. A deep neural network
(DNN) is trained with the ToA and position estimates obtained
from cooperative Channel-SLAM to predict a position based
on channel information. In the online stage, a position estimate
is obtained by evaluating the DNN with ToA estimates. Within
this paper, by ToA we mean the propagation time of a signal
from the transmitter to the receiver.

With cooperative Channel-SLAM being used in the offline
stage, no third party reference system is needed, as the
fingerprinting database is built up with SLAM. Likewise, the
fingerprint database can be updated with cooperative Channel-
SLAM to react to changes in the environment. In both cases,
no third-party reference system is needed.

Within this paper, we built upon our approach in [8] and
specifically work on the architecture of the DNN. The DNN
in [8] estimates only a position and does not include any
uncertainty measure on the estimated positions. In addition, no
temporal correlations regarding the user trajectories are taken
into account, leading to a snapshot-based estimator. In this
paper, we expand [8] by a DNN architecture that learns to
predict not only a single position, but a Gaussian distribution.
The output of the neural network is then fed as measurement
into a Kalman filter that tracks the user position over time.
Since the measurement in the Kalman filter is a position, the
filter can be implemented very efficiently. In this way, both
temporal correlations and an uncertainty measure are included
in the user position estimate. In particular, the positioning
performance improves considerably.

The remainder of this paper is organized as follows. Sec-
tion II introduces cooperative Channel-SLAM and fingerprint-
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Fig. 1. The physical transmitter Tx emits a radio signal. The idea of multipath
assisted positioning is to treat each MPC as a LoS signal from a virtual
transmitter. The three different virtual transmitters vTx1, vTx2 and vTx3 are
plotted for three different propagation paths.

ing schemes. In Section III, we present DNN-CC-SLAM and
our new network architecture. Evaluations based on simula-
tions follow in Section IV, before Section V concludes the
paper.

II. COOPERATIVE CHANNEL-SLAM AND
FINGERPRINTING

A. Cooperative Channel-SLAM

Fig. 1 illustrates the idea behind multipath assisted posi-
tioning. The transmit signal from the physical transmitter Tx
arrives at the user via different propagation paths interacting
with a planar surface represented by the wall and a point
scatterer. Each MPC arriving at the user is regarded as a LoS
signal from a virtual transmitter. From Fig. 1, we make the
following observations.

First, the location of the virtual transmitter vTx1 corre-
sponding to the reflection of the signal at the wall is at
the location of Tx mirrored at the wall. The corresponding
propagation path is drawn blue. Tx and vTx1 are perfectly time
synchronized. Second, the location of the virtual transmitter
vTx2 corresponding to scattering is at the point scatterer.
The corresponding propagation path is drawn red. There is
a delay offset τ0 between the Tx and vTx2, corresponding to
the Euclidean distance τ0c0 between the two. Such a delay
offset can and will be interpreted as a clock offset in the
following. Third, single interactions of the transmit signal
with planar surfaces and point scatterers can be extended to
multiple interactions in a straightforward manner. For example,
the propagation path corresponding to vTx3 is drawn purple
and involves both scattering at the point scatterer and a
reflection at the wall. Fourth, the virtual transmitter locations
are independent from the user position.

Channel-SLAM is a multipath assisted positioning approach
that considers a static scenario. Within this paper, we restrict
ourselves to a single physical transmitter for clarity, while the
extension to multiple physical transmitters is straightforward.
We assume a linear multipath channel which is time variant

due to the movement of the user who is equipped with an
antenna array.

The channel is modeled as a linear superposition of signal
components arriving at the user. The signal components of the
transmit signal s(t) correspond to different propagation paths.
The signal component with index j is characterized by a ToA
τj(t) and a complex amplitude aj(t). The received signal at
the user is expressed at one antenna element at time t as

r(τ, t) =
∑
j

aj(t)s (τ − τj(t)) + n(τ, t), (1)

where the random process n(τ, t) incorporates both additive
white Gaussian noise (AWGN) and dense multipath compo-
nents (DMCs) [9].

Channel-SLAM works in two steps. In the first step, a
channel estimator tracks the parameters of signal components
over time. Within the scope of this paper, we use the Kalman
Enhanced Super Resolution Tracking (KEST) estimator for
channel estimation. KEST does not only track these parameters
with parallel Kalman filters yielding a data association over
time, but also estimates the number of signal components,
i.e., the model order, at each time step. We assume that
the parameter estimates are uncorrelated among the different
signal components. If such correlations occur, they affect the
estimates only for short time spans but not in the long run.

A subset of the channel parameter estimates, typically ToA
and angle of arrival (AoA), are used in the second step
of Channel-SLAM, where a Rao-Blackwellized particle filter
jointly tracks the user position and velocity and estimates the
states of transmitters. We denote this subset at time instant k
by zk.

At time instant k, the user position is denoted by pu,k and its
velocity by vu,k, leading to the user state xu,k = [pT

u,k vT
u,k]

T .
The state of the the jth transmitter at time instant k is denoted
by x<k>

TX,j and comprises the position p<k>
TX,j and clock offset

τ<k>
0,j . The full state vector at time instant k is thus given by

xk =
[
xu,k

T xTX,k
T
]T

=
[
xu,k

T x<1>
TX,k

T
. . . x

<NTX,k>
TX,k

T
]T

,

(2)
where NTX,k is the number of transmitters at time instant k.

Assuming uncorrelated estimates for the signal components,
the single transmitter states can be estimated independently
from each other, reducing the estimation problem complex-
ity crucially. Each signal component at one time instant is
regarded as the LoS signal from one transmitter. Hence, the
model order estimated by KEST corresponds to the number
of transmitters. The Kalman filters in KEST inherently yield
a data association for the transmitters over time.

The probability density function (PDF) for the overall state
from time instants zero to k given the history of measurements



z1:k and control inputs u1:k from time instants one to k is

p (x0:k|z1:k,u1:k) = p (xTX,0:k,xu,0:k|z1:k,u1:k)

= p (xu,0:k|z1:k,u1:k)

× p (xTX,0:k|z1:k,xu,0:k)

= p (xu,0:k|z1:k,u1:k)

×
NTX,k∏
j=1

p
(
x<j>

TX,0:k|xu,0:k, z1:k

)
,

(3)

where we exploit our assumption on the uncorrelated transmit-
ters in the last step. Eq. (3) also yields the separation of the
user state from the transmitters’ states and thus the structure
of the Rao-Blackwellized particle filter.

The Channel-SLAM algorithm outlined above is targeted
for single users. In scenarios such as malls, stations or public
buildings, we expect multiple users on different trajectories
in the same area. In such settings, information regarding
the states of transmitters can be exchanged among users.
In cooperative Channel-SLAM, users exchange and improve
maps of estimated transmitter states. Such prior information
can drastically improve the positioning performance and the
computational complexity. In general, we cannot assume that
users know the transformation parameters relating the co-
ordinate system of their local map of estimated transmitter
states with the coordinate systems of maps of other users.
Estimating such transformation parameters, i.e., rotation and
translation, relating two maps as well as the correspondences
among transmitters in these maps is denoted by the term map
matching. Map matching is a crucial element of cooperative
Channel-SLAM. A comprehensive overview of cooperative
Channel-SLAM can be found in [5] and details in [4].

B. Fingerprinting Schemes for Localization

Fingerprinting schemes suffer from two major drawbacks.
First, a precise localization is typically required in the offline
stage. To achieve that, third-party positioning systems are
often deployed. In addition, fingerprints need to be taken at
all locations where a user needs to be located in the online
stage with a rather fine grid. In general, this implies a very
high effort. Second, changes in the environment reduce the
positioning performance drastically. Accordingly, the database
needs to be updated very often, making standard fingerprinting
schemes practically infeasible.

However, various methods have been proposed to alleviate
these disadvantages. For example, the authors of [10] try
to update the fingerprints in the online stage to adapt to
environmental changes. Other authors apply methods from
machine learning, such as k-nearest neighbours (kNN) [11],
support vector machine (SVM) and DNNs [12]. Using a DNN,
the idea is to train the network in a supervised manner to
predict the location of a user based on collected fingerprints
in the offline stage. In the online stage, a position estimate
is obtained by evaluating the DNN given a fingerprint at the
current location. An important strength of DNNs are their good
generalization capabilities.
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Fig. 2. The flow chart of DNN-CC-SLAM with the offline stage, the online
stage and the Kalman Filter.

III. MULTIPATH ASSISTED POSITIONING-BASED
FINGERPRINTING

While cooperative Channel-SLAM shows a good position-
ing performance even with only a single physical transmitter,
its computational complexity is very high due to the channel
estimator, the particle filter and map matching. In order to
drastically reduce the computational complexity, we have
proposed a fingerprinting-like scheme based on cooperative
Channel-SLAM named DNN-CC-SLAM. A flowchart DNN-
CC-SLAM is illustrated in Fig. 2. In the offline stage, users
localize themselves in the scenario with cooperative Channel-
SLAM. The ToA and the position estimates for all users at all
time instants are collected and stacked in the matrices Z and
P̂ , respectively. Each row of Z contains the ToA estimates
for the corresponding position estimate which is in the same
row in P̂ . In Fig. 2, zToA,m and p̂u,m denote the set of ToAs
and position estimates of the mth user. Since the number of
detected signal components may be different for different user
positions, the rows of Z are padded with zeros.

Once a sufficient amount of fingerprints has been collected,
a DNN is trained to learn the user position with Z and
P̂ as training data. In [8], the output of the DNN is a
two-dimensional position without any uncertainty information.
Within this paper, we design a new mixture density network
(MDN) following [13] which is trained to learn the parameters
of a unimodal, bivariate normal distribution instead.

In the online stage, a channel estimator provides again a
set zToA of ToA estimates at each position. Since no AoA
information and no parameter tracking is necessary in the
online stage, efficient channel estimators such as superfast
line spectral estimation (SFLSE) [14] may be used instead of
KEST, leading to a crucially lower complexity. The resulting



estimates are propagated through the DNN in the Inference
block to obtain the mean and covariance matrix estimates, µk

and Ck, respectively, for the current position of the user at
time instant k. These estimates are then passed to a Kalman, in
which the state vector consists of the user position and veloc-
ity. At time instant k, the state vector is expressed analogue to
the Channel-SLAM case as xu,k = [pT

u,k vT
u,k]

T . The mean µk

from the DNN is considered the measurement at time instant
k, and Ck the covariance matrix of the measurement noise.
With the Kalman filter, temporal correlations regarding the
user position are taken into account, leading to a significantly
improved positioning performance.

The number of nodes in the input layer of the DNN
corresponds to the number of columns of Z. The DNN has
six fully connected hidden layers which have 1000, 300, 200,
100, 50 and 50 neurons. The output layer consists of five nodes
which are related to the user position. These are the position
mean µk in two dimensions, the two entries on the diagonal of
the 2×2 covariance matrix Ck, and the off-diagonal element of
Ck. The two diagonal entries in Ck are restricted by a rectified
linear unit (ReLU) activation function to be non-negative.

The activation function of all other nodes in the DNN is
the ReLU function as well. We train the DNN with the Adam
optimizer [15]. Following [13], the loss function in the MDN is
the negative log-likelihood function of the PDF of the normal
distribution f(µ,C), where µ is the mean, corresponding to
the user position, and C the covariance matrix. The negative
log-likelihood is expressed for one sample ys as

− log (f(ys|µ,C)) =

− 1

2

(
log |C|+ 1

2
(ys − µ)′C−1(ys − µ) +N log 2π

)
,

(4)
where N is the dimension of µ. With the output of the DNN
and the loss function in Eq. (4), the network is trained to learn
the user position mean and covariance matrix of a Gaussian
distribution from the channel information, specifically from
the ToAs of signal components.

Since the DNN directly measures the user position pu,k,
i.e., a part of the state vector in the Kalman filter, a standard
Kalman filter can be applied with a simple linear observation
model. The inversion of the innovation matrix in the Kalman
filter is performed only on a 2 × 2 matrix, making the entire
filter very efficient. The system model of the user may be
implemented as a random walk model.

IV. SIMULATIONS

To evaluate our approach, we have performed simulations
in an indoor scenario. A top view of the two-dimensional
scenario, an indoor mall, is depicted in Fig. 3. There is only
one physical transmitter in the scenario, and it is represented
by the red triangle labeled Tx. The black lines are walls
reflecting the transmit signal in a specular manner, and the
black circles represent point scatterers such as pillars or
similar structures. The walls and scatterers are the basis for
calculating a channel impulse response (CIR) with ray-tracing
and accordingly the received signal for the simulations.

Fig. 3. Top view of the indoor mall serving as simulation scenario. The red
cross labeled Tx represents the only physical transmitter in the scenario. The
thick black lines represent walls and the black circles point scatterers. The
reference track is depicted in blue.

The physical transmitter constantly transmits a signal with a
bandwidth of 100MHz at a center frequency of 1.9GHz. The
power spectral density is constant over the entire bandwidth.
The transmit signal and its parameters are known to all users.

In cooperative Channel-SLAM, i.e., in the offline stage of
DNN-CC-SLAM, the user takes a snapshot of the received
signal every 100ms as input to the channel estimator KEST.
Each user is equipped with an antenna array consisting of
nine elements, which are arranged in a uniform 3 × 3 grid.
Furthermore, an inertial measurement unit (IMU) that is rigidly
mounted to the receiver is used in the particle filter in
cooperative Channel-SLAM. However, only turn rates and no
acceleration measurements are used from the IMU.

In the online stage of DNN-CC-SLAM, the update rate is
chosen to be 10Hz as for cooperative Channel-SLAM. How-
ever, the receivers are not required to have multiple antennas,
and accordingly no AoA information used. In addition, no
IMU information is used either.

We define a reference user walking along the track depicted
in Fig. 3, and refer to that track as reference track. The length
of the reference track is 311.2m. In the following, we will
analyze the positioning performance of the reference user with
different positioning methods.

For evaluating cooperative Channel-SLAM, we regard the
positioning performance of the reference user who receives a
transmitter map to which 21 different users have contributed.
The overall traveled distance of these 21 users in the same
scenario is 3.8 km. The mean absolute error (MAE) of the
reference user with cooperative Channel-SLAM is plotted blue
in Fig. 4. It stays in the order of approx. 4m for the most
part of the track. Only towards the end, it increases to some
extent due to an unfavorable geometrical dilution of precision
(GDoP) situation. The error averaged over the entire reference
track is 4.2m. This and all other results in Fig. 4 are averaged



Fig. 4. Positioning error of the reference user with cooperative Channel-
SLAM in blue, unfiltered DNN-CC-SLAM in red and DNN-CC-SLAM
followed by a Kalman filter in green.

over 100 runs due to the stochastic nature of the particle filter
and the optimization method in the DNN.

To evaluate DNN-CC-SLAM, we simulated another 5.6 km
of synthetic trajectories with cooperative Channel-SLAM cor-
responding to further 23 users. The ToAs and positions of
these overall 44 different users with a total traveled distance
of 8.9 km are used as training data as input to the DNN.

We refer to the positioning performance of DNN-CC-SLAM
with our new MDN architecture before Kalman filtering as
unfiltered DNN-CC-SLAM. In that case, we disregard the
uncertainty information in the output of the DNN and only
consider the mean. For clarity, we refer to the case where we
use a Kalman filter in addition to track the user as filtered
DNN-CC-SLAM.

The red curve shows the positioning error of unfiltered
DNN-CC-SLAM, which has an average positioning error of
4.1m. While being a snapshot-based approach, the perfor-
mance is on average very similar to the performance of co-
operative Channel-SLAM. However, approximately twice the
training data is needed compared to the cooperative Channel-
SLAM case for that similar performance. Finally, the blue
curve denotes the positioning error of filtered DNN-CC-SLAM
with an average error of 2.6m, which is an improvement by a
factor of approx. 1.6 compared to cooperative Channel-SLAM
and unfiltered DNN-CC-SLAM.

V. CONCLUSION

Within this paper, we have presented a fingerprinting ap-
proach for localization, where fingerprints and positions are es-
timated with cooperative Channel-SLAM. Hence, no external
positioning system needs to be installed in the offline phase.

The fingerprints are ToA estimates from a channel estimator.
Updating the fingerprinting database can be achieved with
low effort as well by training the DNN with additional
data collected by cooperative Channel-SLAM. Compared to
a previous paper, the MDN structure of the DNN allows for
inference of both mean and covariance of the user position.
Thus, the user position can be tracked very efficiently and
accurately with a Kalman filter.

Both in the offline and online phase of our approach,
only one single physical transmitter is required. Compared
to cooperative Channel-SLAM, the computational complexity
is crucially smaller while the positioning performance is
improved.
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