
Guiding Reinforcement Learning with Shared Control Templates

Abhishek Padalkar1, Gabriel Quere1, Franz Steinmetz1, Antonin Raffin1, Matthias Nieuwenhuisen2,
João Silvério1, Freek Stulp1

Abstract— Purposeful interaction with objects usually re-
quires certain constraints to be respected, e.g. keeping a
bottle upright to avoid spilling. In reinforcement learning, such
constraints are typically encoded in the reward function. As a
consequence, constraints can only be learned by violating them.
This often precludes learning on the physical robot, as it may
take many trials to learn the constraints, and the necessity to
violate them during the trial-and-error learning may be unsafe.
We have serendipitously discovered that constraint representa-
tions for shared control – in particular Shared Control Templates
(SCTs) – are ideally suited for guiding RL. Representing
constraints explicitly (rather than implicitly in the reward
function) also simplifies the design of the reward function. We
evaluate the advantages of the approach (faster learning without
constraint violations, even with sparse reward functions) in
a simulated pouring task. Furthermore, we demonstrate that
these advantages enable the real robot to learn this task in only
65 episodes taking 16 minutes.

I. INTRODUCTION

Its super-human performance on Atari games [1] and
Go [2] has led to a new wave of interest for Reinforcement
Learning (RL). In robotics, RL has made headlines by learn-
ing intricate and impressive motor skills such as juggling [3],
ball-in-cup [4], in-hand manipulation [5], pick-and-place [6],
or locomotion over highly variable terrain [7].

What sets human activities of daily living (e.g. pouring
a drink as in Fig. 1, opening a door, heating food in
a microwave) apart from the intricate motor skills above
is that these activities commonly involve interactions with
objects that have a dedicated purpose (e.g. bottles, doors,
and microwaves). This purpose entails certain constraints,
i.e. full bottles should be held upright, doors rotate around
their hinge, etc.

In reinforcement learning, such constraints are typically
encoded implicitly in the reward function, e.g. penalties for
tilting a bottle. This approach implies that constraints need
to be violated in order to learn them. In this paper, we
take the stance that known, purposeful constraints should be
modeled explicitly and enforced during learning and execu-
tion. This has the following advantages 1) Safer learning, as
constraints are enforced during learning; 2) Faster learning,
as constraints need not be learned; 3) Together, 1 and 2
enable direct learning on the real robot; 4) Simplified reward
function design, as constraints need no longer be implicitly
represented in the reward.

1 German Aerospace Center (DLR), Robotics and Mechatronics Center
(RMC), Münchner Str. 20, 82234 Weßling, Germany

2 Fraunhofer Institute for Communication, Information Processing and
Ergonomics FKIE, Fraunhoferstr. 20, 53343 Wachtberg

Fig. 1. In this paper, we show that Shared Control Templates [8], developed
in our previous work for supporting users in executing tasks of daily living,
are also effective in guiding RL, and lead to faster learning with fewer
mistakes. This is demonstrated on the pouring task with the SARA [9],
[10] robot.

Of course, this stance raises the question of how such
constraints should be represented and incorporated in the
RL process. In our research on shared control – in particular
Shared Control Templates [8] – we have serendipitously dis-
covered that representations for shared control are also ide-
ally suited for guiding RL, for several reasons. First, shared
control aims at enabling users to control high-dimensional
robotic systems with low-dimensional input commands. For
RL, this approach substantially reduces the action space.
Second, users’ preferences are different, and shared control
must foster agency and empowerment by providing freedom
of movement within the reduced action space. For RL,
this means that there is room for exploration within such
representations. Third, shared control often limits the range
of motion for safety reasons. For RL, this also entails that
exploration becomes safe.

The main contributions of this paper are: 1) Demonstrating
that SCTs implement action- and transition-space shaping, in
Section IV-A; 2) Using SCTs to automatically generate func-
tions for reward shaping, in Section IV-B; 3) Demonstrate
that applying SCTs to RL leads to more efficient learning in
simulation and on a real robot, even with sparse rewards, in
the evaluation in Section VI; 4) Demonstrating that it is safer
to adhere to explicit constraints, rather than to learn these
constraints from their implicit encoding in shaped reward
functions, also in Section VI. The key message of this paper,
elaborated on in Section V, is that representing constraints
implicitly in shaped reward function, can take as much
human design effort as explicitly modeling these constraints,
but that the latter leads to safer and faster learning.

Before following the structure interleaved above, we first
discuss related work, and lay the foundations for our ap-
proach by describing different shaping approaches in RL, as
well as Shared Control Templates (SCTs) in Section III.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

II. RELATED WORK

Considerable effort has been dedicated recently to con-
straining the search space in RL for robotics tasks. In [11],
Cheng et al. proposed to use Control Barrier Functions
(CBFs) [12] to avoid unsafe states for the robot while an RL
agent explored the state-action space. Kanervisto et al. [13]
conducted a thorough study on the effects of action masking
which reduces action space by avoiding invalid actions in
a particular state. Huang et al. [14] present an analysis on
action masking concluding that it produces a valid policy
gradient and scales better than punishing the invalid actions
by a negative reward. Liu et al. [15] demonstrate that a
constrained RL problem can be converted into an uncon-
strained one by performing RL on the tangent space of the
constrained manifold. Results in simulation are promising,
but the approach is limited to problems where the constraints
are differentiable, which restricts its application domain.
RL-SCT is free of differentiability assumptions, making it
flexible by design. Another way to reduce the dimensionality
of the RL problem is by leveraging frameworks that allow for
partial task specifications. Padalkar et al. [16], [17] proposed
a partial task specification in the robot task space using the
Task Frame Formalism [18], [19], learning the remaining
specification of the task with RL. This method successfully
demonstrated a significant reduction in robot-environment
interactions when cutting vegetables with a light-weight
robot. Although this work ensures safety in the directions
in which motion is fully specified, it does not guarantee the
safety in the directions explored by the RL policy, a problem
addressed in RL-SCT. It should be noted that SCTs have
previously been used to automate tasks in [20] where optimal
policies are found locally in the action space, a limitation that
we improve here by finding globally optimal policies.

In summary, RL-SCT leverages pre-specified task knowl-
edge to improve sample efficiency and simplify reward
function design, facilitating direct learning on real robots
and hence alleviating the need for simulation, a well-known
problem in RL [21], [22].

III. BACKGROUND

A. (Shaped) Markov Decision Processes (MDP)

A Markov Decision Process (MDP) is formalized with
(S,A, T,R), with state space S, action space A, transition
function T , and reward function R. To speed up learning,
several approaches to reduce and modify these spaces and
functions have been proposed.

Reward Shaping (RS) [23] changes the reward function,
for instance by changing the sparse terminal reward R into
a dense, immediate reward R′. It does not change S, A, or
T . Shaped rewards are more informative, and thus speed up
learning.

Action Space Shaping (AS) [13] replaces the original
action space with a reduced (state-dependent) action space.
In action masking for instance [14], actions that are known to
be invalid or suboptimal in certain states are excluded from
the action space in those states, i.e. A′

si ⊂ A. Action space

shaping does not modify S, T and R. As fewer actions need
to be explored, such reduced action spaces speed up learning.

Consider a discrete MDP with A = a1, a2, and one wants
to exclude the execution of a2 in s7. With Action Space
Shaping this would be implemented as A′

s7 = a2. Another
approach to implementing this constraint would be to specify
a reduced transition function T ′ so that fT ′(s7, a2) =
fT (s7, a1), and have the agent learn with T ′ rather than
T . That is, a2 is not excluded from the action space, but
executing a2 in T ′ leads to the exact same effect as executing
a1 in T (and T ′). This changes the transition function T ,
which maps actions to change in state, but leaves S, A and
R unaffected. This approach, which we denote “Transition
Function Shaping”, is more general than Action Space Shap-
ing. To the best of our knowledge, this has not been used
in RL so far, also because explicitly excluding actions is
more effective than remapping them. For this paper however
the conceptual distinction is important, because it helps us
make a clearer connection to two different components in
the Shared Control Templates (Active Constraints and Input
Mappings).

In summary, different approaches are available to modify
an MDP to speed up and facilitate learning, i.e. Reward
Shaping (modifies only R), Action Space Shaping (only A)
or Transition Function Shaping (only T). One main hypothe-
sis of this paper is that Action Space and Transition Function
Shaping lead to faster learning than Reward Shaping, but,
contrary to common belief, are often not more difficult to
design.

B. Shared Control Templates

In most applications of shared control, the aim is to map
low-dimensional input commands to task-relevant motion on
a high-dimensional (robotic) system. An example is EDAN
(“EMG-controlled Daily AssistaNt”) [24], which consists of
a wheelchair with an articulated arm. EDAN typically takes
a 3D input signal extracted from surface electromyography.
It maps these inputs into 6D end-effector movements, which
are then mapped to the movement of the overall 11 degree-
of-freedom system (excluding the degrees of freedom in the
hand) through whole-body motion control [8].

Performing tasks such as opening doors and pouring
liquids with EDAN raises the following challenges: 1) The
6D end-effector action space is too complex for a user to
command collectively. A typical user command is only 3D.
2) There are many constraints that should not be violated, e.g.
not tilting a full bottle too much before starting to pour. 3)
All tasks consist of multiple phases, e.g. grasp bottle, move
towards mug, tilt bottle, pour, etc. 4) The state and action
spaces are continuous.

To address these challenges, we have proposed Shared
Control Templates (SCTs) [8], which consist of several
components. First, Input Mappings (IM), map the 3D input
commands from EMG sensors to phase-dependent 6D end-
effector motions. In the Translational and Tilt states in Fig. 2
for example, all 3 inputs a1, a2, a3 are mapped to the 3
translational Cartesian DoFs. In the Pour state, a3 is mapped

State: Pour (q3)

a3

Constraint

g([a1 a2 0]) =

 State: Translational (q1)

a2

a1

a3
State: Tilt (q2)

a2

a1

a3

d

> 1 rad< 1 rad

d < 0.3m

d > 0.3m

< 0.24 rad

roll = pitch = 0

 State transitions

 dt = d

 dt =

d

Fig. 2. The Shared Control Template (SCT) for pouring water. Different
phases of a task are modeled as different SCT states (qi) in a Finite State
Machine (‘Translational’, ‘Tilt’, ‘Pour’). In each state, an Input Mapping
maps the 3D user input commands a1, a2, a3 to 6D end-effector motions.
Active Constraints (shown in orange text) limit the range of motion.

to translation in Z-direction and the vector [a1 a2 0] is
mapped to the tilt angle of the thermos via a scalar projection.

Second, Active Constraints (AC) [25] constrain the end-
effector pose that results by applying IM. As illustrated in
Fig. 2 during the phase Pour, the tilt angle α of the bottle
is constrained, to avoid excessive pouring. Another example
of AC in Tilt state is the value of the tilting angle being a
function of the distance from the target.

Formally, a SCT [8] is composed of a pre-defined number
of states K. In each state qi, i = 1, ...,K, an IM is a function
which computes a desired displacement ∆H ∈ SE(3) in task
space from an n-dimensional input at with n <= 6 at time
step t (dropping the subscript i in qi from now on):

mapq : R
n → SE(3)

at 7→ ∆H.
(1)

The displacement computed from Eq. (1) is then applied on
the end-effector pose Ht:

displaceq : SE(3), SE(3) → SE(3)

Ht,∆H 7→ Him
t+1.

(2)

After applying IM to obtain Him
t+1, geometric constraints can

be enforced using AC. An AC [8] applies a projection of the
form,

projectq : SE(3) → SE(3)

Him
t+1 7→ Hac

t+1,
(3)

where Hac
t+1 is the constrained end-effector pose. This con-

straint could for example be the arc-circle path traced by
the door handle when opening a door, or orientation and
volumetric constraints depending on the end-effector position
when approaching an object.

Different states of a task require different IM and AC, as
illustrated in Fig. 2. For this reason, they are organized in
a finite-state machine, which monitors progress of the state
in the form of scalars defined as transition distances dt, and
transitions to next states upon reaching a certain threshold of

transition distances. In a SCT state q, the transition distance
is a function of the current robot state st:

dt = fq(st). (4)

Examples of transition distances are the distance to the
target and the tilting angle as shown in blue rectangles in
Fig. 2 along with the respective transition thresholds. For
the former, Eq. (4) is written as dt = ||xth − xmug|| where
xth and xmug are the current thermos and mug tip positions
respectively. For the latter, Eq. (4) takes the form dt = α,
where α is the tilting angle towards the target.

A key aspect of SCTs is that they facilitate the completion
of tasks through shared control by defining task-relevant
Input Mappings and Action Constraints, but the user always
remains in control, i.e. determining the speed of movement,
the amount of water that is poured, etc.

IV. SHARED CONTROL TEMPLATES FOR
REINFORCEMENT LEARNING

The key insight in this paper is that components that
facilitate human control of the robot through shared control
are conceptually very similar to those used to facilitate
reinforcement learning. Our aim in this paper is to demon-
strate this conceptually and empirically. In this section, we
therefore link the different components of SCTs to the MDP
shaping concepts described earlier.

A. Shared Control Templates for Action and Transition
Function Shaping

In general a MDP (S,A, T,R) in the context of SCTs
has the following components: S is a continuous state space
consisting of the poses of relevant objects and the pose of
the end-effector. A consists of continuous commands to the
robot. T is the physics of the real world. The task to be
completed is specified in the task-specific reward function
R. The simplification of this MDP is done in three steps:

1) Using IM to map 3D user commands to 6D Cartesian
commands, the action space A of the MDP is reduced to
3D. IM can accept inputs up to 6D, but in the tasks that
we consider, see [8], more than 3 inputs are not needed. As
IMs lead to different state transitions during different phases
of the movement, we consider them an implementation of
Transition Function Shaping.

2) The application of AC is conceptually equivalent with
action space shaping, in that not all actions defined by the
IM have an effect1.

3) Finally, R always has two components: 1) Primary
costs, which may be shaped or sparse, terminal and task-
dependent, and related to the task (Was water poured?
Was the door traversed?) 2) Secondary costs, which are
immediate, i.e. given at each time step, and task-independent,
e.g. task execution duration or smoothness of motion. The
next subsection explains reward shaping by SCT in detail.

The generic interface between SCT and RL components
is illustrated in Fig. 3.

1The underlying implementation is slightly different, in that the action
is projected into the future in state space, and the resulting end-effector
position is projected back onto a constraint if the constraint is violated.

Fig. 3. Interface between a SCT and RL components. The input at to
IM of SCT is computed by RL policy, st is the robot state (different from
SCT states), {T} is dictionary of transition distances to the neighboring
SCT states.

B. Shared Control Templates for Reward Shaping

In the presence of a SCT, a reward function takes the form

rt = k(dt−1 − dt)− aT
t Rat (5)

where k is a constant, d is a transition distance to the
next phase of task and aT

t Rat is an action cost with at

an action, R a diagonal matrix with positive entries and
rT a termination reward given upon successful termination,
otherwise null. The transition distance function in Eq. (4) is
designed in such a way that it monotonically decreases as the
robot moves towards the next progressive phase of the task.
Hence, with appropriate values of k and R, Eq. (5) generates
positive reward for moving towards task completion.

V. EXPLICIT VS. IMPLICIT CONSTRAINT
REPRESENTATION IN RL

The reward function captures the essence of the workspace
constraints along with the progress of the task. Typically, in
RL, a learning agent needs to violate constraints in order
to learn them with a negative reward. However, in many
tasks, violating constraints can be disastrous. Moreover,
reward functions also need to take into the account the
constraints arising from the objects’ geometry and the robots’
own manipulation ability. For a multiphase task, the reward
function changes with each phase of the task, and hence its
implementation is required to identify these phases.

SCTs take care of the problems mentioned above by:
• Not allowing the robot to violate constraints (thanks to
the Active Constraints). This allows us to treat the learning
problem as an unconstrained RL problem, similar to [21].
• By identifying the phases and providing transition distances
to the neighboring states as mentioned in Section III-B and
shown in Fig. 2. These transition distances are the indicators
of the progress of the current SCT state and hence can be
used for constructing shaped reward functions.

This can be better understood with the help of the compar-
ison provided in Table I. With the help of the pouring liquid
task in Fig. 2, Table I compares how the same components
are modeled in either the reward function or in the IM, AC,
and transition distances of a SCT and reward function of RL-
SCT, during different states of the task. Reward components
mentioned in Table I are used to construct the shaped reward
function later presented in Eq. (6). Table I and Eq. (6)
together highlight the importance of the intuition needed
in choosing the robot state variables while constructing
the reward function which affect the desired behavior is a
task state (e.g. rotational motion in translation state results
in spillage and hence should be penalized). SCTs can be
constructed with the same intuition and can be even more
systematic as the constraints are object agnostic. Later, it
becomes very clear that modeling knowledge in RL-SCT
has a multitude of advantage over encoding it in reward
functions.

VI. EVALUATION

We evaluated our proposed approach RL-SCT against
RL without SCT on the pouring task with experiments in
simulation using a KUKA IIWA (shown in Fig. 4), and
further evaluated the performance of RL-SCT by learning the
same task directly on the real 7-DoF SARA robot (shown in
Fig. 1). The pouring task consists of transferring the liquid
from a container (thermos) attached to the end-effector of the
robot to a target container (mug) placed in the environment.
In the experiments, the liquid is replaced by two ping-pong
balls with 40mm diameter. The task is considered successful
only if both balls are successfully poured into the mug. The
task is considered failed if the robot collides with the mug
or table, one or both balls are spilled out of the thermos or
a pre-defined time limit in terms of time steps per episode
is reached. In the event of collision with the table or target
mug, the episode is terminated.

A. Policy Representation and RL Algorithm

RL-SCT performs action and transition space shaping,
independent of the underlying policy representation or RL
algorithm used. Therefore, a variety of representations and
algorithms can be used.

In our evaluation, we use a feed-forward neural network
with 2 hidden layers for the RL policy representation at =
π(st) whose input st in both cases, RL-SCT and RL without
SCT, is the 6D pose of the thermos tip expressed in the mug
tip frame. In RL-SCT, as shown in Fig. 3, a policy generates a
3D action at which is the input to the step evaluation of SCT,
which then computes end-effector pose from at as explained
in Section III-B. In the case of RL without SCT, the policy
generates the 6D end-effector velocity as action at which is
used to compute the target end-effector pose. In both cases,
computed end-effector pose is fed to the Cartesian position
controller running at 8KHz for the SARA robot and 100Hz
for the simulated KUKA IIWA robot.

The weights of the neural network are initialized randomly.
For learning with RL-SCT, the number of neurons in the

TABLE I
COMPARISON OF KNOWLEDGE MODELED USING RL REWARD FUNCTION AND RL-SCT.

Task state RL reward function RL-SCT

Translational
Reward for moving towards target, penalty
for spilling (by directly penalizing rotational
motion) and penalty for collision

IM: 3 inputs mapped to translational motion (No rotational motion needed)
AC: Stay above table to avoid collisions
Transition distance: Distance of mug tip from thermos tip

Tilt

Reward for moving and tilting towards the
target simultaneously, penalty for spilling liquid
(by penalizing translational and rotational motion
in undesired directions), penalty for collision

IM: 3 inputs mapped to translational motion (Rotational motion is controlled
by AC)

AC: Stay above table to avoid collisions, tilt towards the mug
depending on distance

Transition distance: Distance of mug tip from thermos tip

Pour

Reward for tilting towards the mug, penalty
for spilling liquid (by penalizing translation to
avoid spillage outside the target), and
penalty for collision

IM: 1 input mapped to Z-axis translational motion, the others to the tilting motion
(No motion in horizontal plane needed),

AC: Stay above table and mug to avoid collision,
Transition distance: Tilting angle

hidden layers is 64 and for the RL without SCT it is 150.
The underlying argument for using a bigger NN for RL
without SCT is that the NN also needs to learn the task
constraints and the policy for action space of higher DoF
(6D in case of RL without SCT compared to 3D in case of
RL-SCT). The above conclusion was reached empirically by
running multiple experiments, starting with 100 neurons and
gradually increasing the size.

The policy learning algorithm used in our experiments
is a state-of-the-art off-policy algorithm called Soft Actor-
Critic [26] with parameters: buffer size=1000000, dis-
count factor=0.95, soft update coefficient=0.02, training fre-
quency=8, gradient steps=8, learning starts at=1000, batch
size=256. We use the Stable-Baseline3 [27] open-source
implementation of SAC2.

B. Reward functions

The baseline is a designed reward function, which is either
shaped (RL-Shaped) or sparse (RL-Sparse). ‘Shaped’ means
that the immediate reward contains information about the
primary task to be solved, i.e. both balls ending up in the
mug. ‘Sparse’ implies that only the terminal reward contains
information about this task. Our proposed method based on
SCTs is also evaluated with a shaped (RL-SCT-Shaped) and
sparse (RL-SCT-Sparse) reward function.

Reward function for RL-Shaped. Reward shaping means
that information about the ultimate task is encoded in the
immediate reward at each time step. This requires careful
design, and leads to a more complex design process and
resulting reward function. First, the pouring task is divided
in two phases, 1) transport thermos near the mug without
spilling the liquid, and 2) pour the balls by tilting the thermos
around the appropriate axis. The translation phase takes
the thermos to a fixed distance near the target mug, and
the pouring phase rotates the mug avoiding any translation.
These phases need to be identified correctly, and give the
reward for not tilting the thermos in first phase and reward
for tilting around the correct axis and not around the other
axes.

The implementation of this reward function for RL-Shaped
is given by Eq. (6), where jt is the distance of the thermos

2https://stable-baselines3.readthedocs.io/en/master/modules/sac.html

tip from mug tip, and axt , a
y
t and azt are the angular positions,

expressed as Euler angles (roll, pitch and yaw) of thermos
tip in the mug tip frame (orientations of the tip frames are
depicted in Fig. 4).

rt = rdist
t + rtilt

t /4 + rT , (6)

rdist
t =

{
15(jt−1 − jt), if jt > 0.04

15(jt−1 − jt) + 0.2, otherwise
(7)

rtilt
t =

{
−|δaxt | − |δayt | − |δazt |, if jt > 0.04

20δaxt − |δayt | − |δazt |, otherwise
(8)

rT =

{
200, on successful termination
0, otherwise.

(9)

Reward functions for RL-SCT-Shaped, RL-SCT-Sparse and
RL-Sparse. The shaped reward function is automatically de-
rived from the SCTs with Eq. (5). For the pouring liquid
problem under consideration, this corresponds to :

rt = 20(dt−1 − dt)− aT
t at + rT , (10)

rT =

{
20 on successful termination
−20 on termination due to collision

(11)

where dt is the transition distance given by the SCT, see
Fig. 2. The reward function for RL-Sparse and RL-SCT-Sparse
is the same, except that the reward shaping term 20(dt−1 −
dt) is removed from Eq. (10).

C. Experiments in Simulation

Results. Fig. 5 shows the rate of success, spillage and
collision with the environment during the learning process.
The curves show the mean and standard deviation obtained
from 10 different trials. The results from the different combi-
nations of reward types and presence/absence of SCTs give
important insights about the influence of SCT on the learning
process, and failures during learning. RL-Sparse is not able
to learn the task in 1250 (maximum) episodes A . RL-Shaped
converges within 600 episodes B , but also shows very high
spill rate and collision rate due to unconstrained exploration
C . RL-SCT-Sparse converges within 600 episodes D , shows
very low spill rate and no collisions E due to the constraints,
but the learning is unstable with some trials not converging.
RL-SCT-Shaped converges within 250 episodes G showing the

Fig. 4. Experimental setup for the pouring task with simulated KUKA
IIWA holding the thermos and the target mug placed on the table with
thermos tip and mug tip coordinate frames (X-axis in red, Y -Axis in green
and Z-axis in blue).

A

B
C

E

D

F

G

Fig. 5. Success, spill and collision rates vs number of episodes, in different
experimental settings in simulation. Each point shows the average of 10
trials, together with one standard deviation.

best performance overall, with small initial spill rate F and
no collisions.

D. Real Robot Experiments

To validate the approach on a real robot, the pouring task
was learned with the DLR SARA robot as shown in Fig. 1.
The aim of the experiment is to learn the task using RL in
the presence of SCT on the real robot. The description of the
task, reward function and policy representation is the same
as in the simulation.

Results. Fig. 6 shows the mean and standard deviation of
learning progress of 5 independent trials on the real robot.
Learning agent achieves success rate of 1 within 65 episodes,
on average.

E. Discussion

Compared to the common approach of learning the task
from scratch with sparse reward function, our method is not
only safer but also learns the task faster. Learning with RL-
SCT-Sparse is possible but, compared to RL-SCT-Shaped, it

Fig. 6. Success rate, spill rate and reward for RL-SCT-Shaped on the
real robot. Each point shows the mean and one standard deviation over 5
trials.

takes 600 episodes to learn the task in simulation against
250 episodes of RL-SCT-Shaped.

RL-SCT-Sparse also results in larger deviation in success
rate over multiple trials with some trials not converging.
Nevertheless, these results show that, with SCTs, the reward
function can be further simplified to a sparse reward function
without sacrificing the safe exploration ability. As the RL-
SCT utilizes action space with reduced DoF and does not
need to learn many environmental constraints, it can learn
the policy with a neural network with drastically smaller
size (<0.5 times) than RL without explicit constraints.

VII. CONCLUSION

In this paper, we propose to guide reinforcement learning
with constraints that are represented as Shared Control
Templates. Indeed, the properties that users expect from
shared control – empowerment through freedom of move-
ment, safety by enforcing constraints, low-dimensional input
commands to facilitate control – are properties that are
advantageous for robot reinforcement learning also. Our ex-
periments show that the explicit representation of constraints
leads to faster learning, and without the need for shaping an
intricate reward function.

Our approach is tailored to the learning of tasks involving
the use of objects with known constraints, which includes
all the activities of daily living considered in our work on
shared control [24]. It is less suited for learning intricate
motor skills required for instance in juggling, ball-in-cup, or
locomotion.

Our work aims at providing users with SCTs that allow
for effective and intuitive control of the robot, and where
the resulting motion is efficient and looks natural. Our ex-
pectation is that the RL-optimized SCTs will perform better
in this respect than those that have not been optimized. Our
future work aims at validating this expectation. Considering
the importance of safety during in-contact tasks, our future
work will also focus on tasks involving contact dynamics.
Finally, this paper demonstrated that learning can be done
from scratch on real robots. We will use demonstrations to
initialize the policy which should speed up learning further.

ACKNOWLEDGMENT
This work was partially funded by the European Union’s Horizon 2020 Research

and Innovation Programme under Grant Number 951992 (project VeriDream).
The research reported in this paper has been (partially) supported by the Ger-

man Research Foundation DFG, as part of Collaborative Research Center (Sonder-
forschungsbereich) 1320 Project-ID 329551904 “EASE - Everyday Activity Science
and Engineering”, University of Bremen (http://www.ease-crc.org/). The research was
conducted in subproject R04: Cognition-enabled execution of everyday actions.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[3] K. Ploeger, M. Lutter, and J. Peters, “High acceleration reinforcement
learning for real-world juggling with binary rewards,” arXiv preprint
arXiv:2010.13483, 2020.

[4] D. Schwab, T. Springenberg, M. F. Martins, T. Lampe, M. Neunert,
A. Abdolmaleki, T. Hertweck, R. Hafner, F. Nori, and M. Riedmiller,
“Simultaneously learning vision and feature-based control policies for
real-world ball-in-a-cup,” arXiv preprint arXiv:1902.04706, 2019.

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[6] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International journal of robotics
research, vol. 37, no. 4-5, pp. 421–436, 2018.

[7] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[8] G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared control templates for assistive robotics,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1956–1962.

[9] M. Iskandar, C. Ott, O. Eiberger, M. Keppler, A. Albu-Schäffer, and
A. Dietrich, “Joint-level control of the dlr lightweight robot sara,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 8903–8910.

[10] M. Iskandar, O. Eiberger, A. Albu-Schäffer, A. D. Luca, and
A. Dietrich, “Collision detection, identification, and localization
on the dlr sara robot with sensing redundancy,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021.
[Online]. Available: https://elib.dlr.de/144160/

[11] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[12] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-
critical control with control barrier functions,” in Learning for Dy-
namics and Control. PMLR, 2020, pp. 708–717.

[13] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping
in deep reinforcement learning,” CoRR, vol. abs/2004.00980, 2020.
[Online]. Available: https://arxiv.org/abs/2004.00980

[14] S. Huang and S. Ontañón, “A closer look at invalid action masking
in policy gradient algorithms,” CoRR, vol. abs/2006.14171, 2020.
[Online]. Available: https://arxiv.org/abs/2006.14171

[15] P. Liu, D. Tateo, H. B. Ammar, and J. Peters, “Robot reinforcement
learning on the constraint manifold,” in Conference on Robot Learning.
PMLR, 2022, pp. 1357–1366.

[16] A. Padalkar, M. Nieuwenhuisen, S. Schneider, and D. Schulz, “Learn-
ing to close the gap: Combining task frame formalism and reinforce-
ment learning for compliant vegetable cutting,” 2020.

[17] A. Padalkar, M. Nieuwenhuisen, D. Schulz, and F. Stulp, “Closing
the gap: Combining task specification and reinforcement learning
for compliant vegetable cutting,” in International Conference on
Informatics in Control, Automation and Robotics. Springer, 2020,
pp. 187–206.

[18] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[19] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the” task frame formalism”-a synthesis,” IEEE transactions
on robotics and automation, vol. 12, no. 4, pp. 581–589, 1996.

[20] S. Bustamante, G. Quere, K. Hagmann, X. Wu, P. Schmaus, J. Vogel,
F. Stulp, and D. Leidner, “Toward seamless transitions between shared
control and supervised autonomy in robotic assistance,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 3833–3840, 2021.

[21] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of
real-world reinforcement learning,” arXiv preprint arXiv:1904.12901,
2019.

[22] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the
reality gap: a survey on sim-to-real transferability of robot controllers
in reinforcement learning,” IEEE Access, 2021.

[23] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in In
Proceedings of the Sixteenth International Conference on Machine
Learning. Morgan Kaufmann, 1999, pp. 278–287.

[24] J. Vogel, A. Hagengruber, M. Iskandar, G. Quere, U. Leipscher,
S. Bustamante Gomez, A. Dietrich, H. Höppner, D. Leidner, and A. O.
Albu-Schäffer, “Edan-an emg-controlled daily assistant to help people
with physical disabilities,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2020, 2020.

[25] S. A. Bowyer, B. L. Davies, and F. R. y Baena, “Active con-
straints/virtual fixtures: A survey,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 138–157, 2013.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[27] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, 2021.
[Online]. Available: https://elib.dlr.de/146386/

