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Turbomaschinen, Flugtriebwerke, Aeroelastik, Flattern, Modenkopplung 
(Veröffentlicht in englischer Sprache) 

Matthias SCHUFF 
DLR, Institut für Aeroelastik, Göttingen 
 
Flattern durch Modenkopplung von Turbomaschinenbeschaufelungen 
 
Dissertation, Technische Universität Berlin 
 
Neuere Designs von Turbomaschinen, vorallem bei der Fan-Stufe von Flugtriebwerken, senken 
das Verhältnis von Schaufelmasse zur umliegenden Luft. Bei steigendem Einfluss der 
aerodynamischen Kräfte im Vergleich zu den Inertialkräften der Struktur kann eine aeroelastische 
Kopplung nicht mehr ausgeschlossen werden. Üblicherweise werden sogenannte entkoppelte 
Methoden zur Flatteranalyse verwendet, z.B. die Energiemethode nach Carta, welche allerdings 
eine nicht-konservative Vorhersage des aeroelastischen Stabilitätslimit liefern. 
Das zu betrachtende aeroelastische System zwischen Strukturdynamik und Aerodynamik führt 
zur aeroelastische Stabilitätsgleichung, die durch ein generalisiertes Eigenwertproblem abhängig 
von der aeroelastischen Frequenz beschrieben wird. In der Flatteranalyse von Starrflüglern 
wurden verschiedene Methoden zur Lösung der Stabilitätsgleichung etabliert. Das heutzutage 
meistverwendete Verfahren ist die p-k-Methode nach Hassig. 
In dieser Arbeit wird die p-k-Methode für Anwendung auf Turbomaschinen angepasst. Dabei wird 
auf die spezifischen numerischen Aufbauten, insbesondere zyklische Symmetrie und die 
Veränderung der Struktur-Eigenformen (Modeshapes) und Struktur-Eigenfrequenzen mit der 
Rotordrehzahl und Drosselungszustand, eingegangen. Unter der Annahme kleiner 
Auslenkungen beim Einsetzen von Flattern können die Vibrationen mit einem linearisierten 
Ansatz behandelt werden, der eine Superposition der aerodynamischen Antworten erlaubt. Die 
instationären aerodynamischen Kräfte durch erzwungene Schwingungen werden deshalb mit 
einem Frequenzbereichsverfahren ermittelt und können dann für die aeroelastische Frequenz 
interpoliert werden. 
Das Ziel dieser Arbeit ist die Verifikation und Validierung der angepassten p-k-Methode für die 
Simulation und Untersuchung von Flattern durch Modenkopplung von Turbomaschinen. Die 
Ergebnisse werden mit Fluid-Struktur-gekoppelten Zeitschrittverfahren verglichen und zeigen 
gute Übereinstimmungen. Eingängige Untersuchungen der beeinflussenden Parameter, wie z.B. 
Massenverhältnis, Frequenzabstand und Schaufelabstand, wird durchgeführt. Die Anwendung 
des hier entstandenen Prozesses auf eine Fan-Schaufel mit niedrigem Massenverhältnis zeigt, 
dass sich, im Vergleich zur üblicherweise verwendeten Vorhersage per Energiemethode, der 
flatterfreie Bereich deutlich verkleinert. 
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Matthias SCHUFF 
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Coupled Mode Flutter of Turbomachinery Blades 
 
Doctoral Thesis, Technical University of Berlin 
 
With new turbomachinery designs, especially for the fan stage of aero engines, the ratio of blade 
mass to the surrounding air is significantly reduced. As the aerodynamic forces become relevant 
in relation to the inertial forces of the structure, aeroelastic coupling cannot be neglected 
anymore. The classically used decoupled methods for flutter analysis, such as Carta’s energy 
method also known as the work-per-cycle approach, yield a non-conservative statement in 
predicting the aeroelastic stability boundary. 
The resulting aeroelastic system of structural dynamics and aerodynamics leads to the 
aeroelastic stability equation, which itself is a generalized eigenvalue problem depending on an 
aeroelastic frequency. In fixed-wing analysis, different methods to solve the stability equation 
were introduced over the decades. The most prominent technique used nowadays is the p-k 
method as described by Hassig. 
Within this thesis, the p-k method is adapted for the usage in turbomachinery with respect to the 
specific numeric setups, such as cyclic symmetry, or the change of mode shapes and natural 
frequencies over rotor speed and throttling state. Assuming small perturbations in the vicinity of 
flutter onset, vibrations can be handled by a linearized approach so that aerodynamic responses 
are independent of the amplitude and allow a superposition. Thus, the unsteady aerodynamic 
forces are gained from a set of frequency domain forced motion simulations and interpolated at 
the aeroelastic frequency. 
The goal of this thesis is to verify and validate the adapted p-k method for coupled-mode flutter 
in turbomachinery. The results are compared against time-marching fluid/structure-coupled 
simulations and show good agreement. An intensive investigation of the influencing parameters, 
i.e. mass ratio, frequency separation and solidity, is performed. Applying the herein established 
process to a low mass ratio fan blade, it is shown that the flutter-free regime is significantly 
reduced in comparison to the classical energy method approach. 
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“Numerical aeroelasticity is extensive.
You set up a simulation, and you wait. You go on vacation.

Then you set up another simulation. You go on vacation.
That way, you get a lot of vacation.”

Not his exact words, but in this spirit: Dr. Walter A. Silva, NASA Langley

“In pieces they stagger”
Claudio Sanchez in The Second Stage Turbine Blade’s 33

“A rapturous verbatim
Someone said, but who’s to know?”

Cedric Bixler-Zavala in Take the Veil Cerpin Taxt





Abstract

With new turbomachinery designs, especially for the fan stage of aero engines,
the ratio of blade mass to the surrounding air is significantly reduced. As the
aerodynamic forces become relevant in relation to the inertial forces of the
structure, aeroelastic coupling cannot be neglected anymore. The classically
used decoupled methods for flutter analysis, such as Carta’s energy method
also known as the work-per-cycle approach, yield a non-conservative statement
in predicting the aeroelastic stability boundary.

The resulting aeroelastic system of structural dynamics and aerodynamics leads
to the aeroelastic stability equation, which itself is a generalized eigenvalue
problem depending on an aeroelastic frequency. In fixed-wing analysis, different
methods to solve the stability equation were introduced over the decades. The
most prominent technique used nowadays is the p-k method as described by
Hassig.

Within this thesis, the p-k method is adapted for the usage in turbomachinery
with respect to the specific numeric setups, such as cyclic symmetry, or the
change of mode shapes and natural frequencies over rotor speed and throttling
state. Assuming small perturbations in the vicinity of flutter onset, vibrations
can be handled by a linearized approach so that aerodynamic responses are
independent of the amplitude and allow a superposition. Thus, the unsteady
aerodynamic forces are gained from a set of frequency domain forced motion
simulations and interpolated at the aeroelastic frequency.

The goal of this thesis is to verify and validate the adapted p-k method for
coupled-mode flutter in turbomachinery. The results are compared against time-
marching fluid/structure-coupled simulations and show good agreement. An
intensive investigation of the influencing parameters, i.e. mass ratio, frequency
separation and solidity, is performed. Applying the herein established process to
a low mass ratio fan blade, it is shown that the flutter-free regime is significantly
reduced in comparison to the classical energy method approach.





Kurzfassung

Neuere Designs von Turbomaschinen, vorallem bei der Fan-Stufe von Flugtrieb-
werken, senken das Verhältnis von Schaufelmasse zur umliegenden Luft. Bei
steigendem Einfluss der aerodynamischen Kräfte im Vergleich zu den Iner-
tialkräften der Struktur kann eine aeroelastische Kopplung nicht mehr aus-
geschlossen werden. Üblicherweise werden sogenannte entkoppelte Methoden
zur Flatteranalyse verwendet, z.B. die Energiemethode nach Carta, welche
allerdings eine nicht-konservative Vorhersage des aeroelastischen Stabilitätslimit
liefern.

Das zu betrachtende aeroelastische System zwischen Strukturdynamik und
Aerodynamik führt zur aeroelastische Stabilitätsgleichung, die durch ein
generalisiertes Eigenwertproblem abhängig von der aeroelastischen Frequenz
beschrieben wird. In der Flatteranalyse von Starrflüglern wurden verschiedene
Methoden zur Lösung der Stabilitätsgleichung etabliert. Das heutzutage
meistverwendete Verfahren ist die p-k-Methode nach Hassig.

In dieser Arbeit wird die p-k-Methode für Anwendung auf Turbomaschinen
angepasst. Dabei wird auf die spezifischen numerischen Aufbauten, insbeson-
dere zyklische Symmetrie und die Veränderung der Struktur-Eigenformen
(Modeshapes) und Struktur-Eigenfrequenzen mit der Rotordrehzahl und
Drosselungszustand, eingegangen. Unter der Annahme kleiner Auslenkun-
gen beim Einsetzen von Flattern können die Vibrationen mit einem lin-
earisierten Ansatz behandelt werden, der eine Superposition der aerodynamische
Antworten erlaubt. Die instationären aerodynamischen Kräfte durch erzwungene
Schwingungen werden deshalb mit einem Frequenzbereichsverfahren ermittelt
und können dann für die aeroelastische Frequenz interpoliert werden.

Das Ziel dieser Arbeit ist die Verifikation und Validierung der angepassten
p-k-Methode für die Simulation und Untersuchung von Flattern durch Mod-
enkopplung von Turbomaschinen. Die Ergebnisse werden mit Fluid-Struktur-
gekoppelten Zeitschrittverfahren verglichen und zeigen gute Übereinstimmungen.
Eingängige Untersuchungen der beeinflussenden Parameter, wie z.B. Massen-
verhältnis, Frequenzabstand und Schaufelabstand, wird durchgeführt. Die An-
wendung des hier entstandenen Prozesses auf eine Fan-Schaufel mit niedrigem
Massenverhältnis zeigt, dass sich, im Vergleich zur üblicherweise verwendeten
Vorhersage per Energiemethode, der flatterfreie Bereich deutlich verkleinert.





Acknowledgments

The research presented in this thesis resulted from my work as research associate
at the Institute of Aeroelasticity of the German Aerospace Center DLR in
Göttingen. First of all, I sincerely thank Prof. Dr.-Ing. Dieter Peitsch, Head
of the Chair for Aero Engines at the Technical University of Berlin, for being
my doctoral supervisor and his strong interest in my research work as well as
providing valuable stimuli.

I would like to thank those who enabled me to conduct my research, embedded in
challenging project work: Prof. Dr.-Ing. Lorenz Tichy, Head of the Institute of
Aeroelasticity, Dr. rer. nat. Holger Mai, Head of the Department of Aeroelastic
Experiments, and Dr.-Ing. Joachim Belz, the leader of the group Aeroelasticity
of Turbomachinery. I thank Prof. Tichy for being a reviewer to my doctoral
thesis, his profound insight, and the link to the airframe and wing theory of
aeroelasticity. I also thank Dr. Belz for the (sometimes lengthy) discussions
about my thesis topic and beyond, and for his professional advice.

Many thanks are due to Dr.-Ing. Virginie Anne Chenaux for providing new
perspectives on many topics, the many fruitful discussions, and also for the
many research papers we co-authored together. I like to thank Dr. David Quero
Martin, Christoph Kaiser, and Dr. Jan Schwochow for discussions on the p-k
method and how to adapt it to turbomachinery usage, which ultimately made
it possible to work out the theory for this thesis. For interesting discussions on
simulation practices and other aeroelastic topics I like to thank Dr. Markus
Ritter. For deepened discussion on aeroelasticity of turbomachinery, I like to
thank Michael Blocher, Prof. Dr.-Ing. Holger Hennings, and Prof. Dr.-Ing.
Volker Carstens. Special thanks to Dr. Oliver Hach for being the internal
mentor for my thesis (although I luckily did not need to counsel as there were
no difficult situations with my doctoral committee), but also for providing the
software engineering environment. Many thanks to Urte Turlach and Heike
Landhäußer for providing and maintaining the IT infrastructure and taking
care of a lot of “background stuff” in this matter.

Of course, many thanks are due to Björn Grüber, Harald Schönenborn, and
Detlef Korte from MTU Aero Engines in Munich for the collaboration over the
past years. I also want to thank the colleagues from the Institute of Propulsion
Technology in Cologne, the Department of Numerical Methods for providing
the TRACE solver suite, and the Department of Fans and Compressors for
providing the CRISPmulti geometry.



viii

A big part of being a successful researcher, in my very humble opinion, is the
companionship with co-workers and them being actual friends. Therefore, credit
goes to my DLR colleagues at the Institute of Aeroelasticity, the whole DLR
campus in Göttingen, and all the DLR sites across Germany. While the paper
production industry might be disappointed by this, I cannot name each and
every one personally here. However, for companionship, being it in sportive
activities, watching American Football #JedenVerdammtenSonntag, simple
leisure activities or just enjoying a good coffee break, I like to thank Kjell and
Katharina Bramsiepe (special thanks for taking care of my apartment and my
plants in my absence), Markus Zimmer, Tobias Hecken, Raphael Schöppe, Vega
Handojo, Arne Voß, Marc Johan Feldwisch, Dominik Schäfer, Christopher Koch,
Martin Tang, Sebastian Helm, Goran Jelicic, Anne Hebler, Jannis Lübker, and
Jörn Biedermann.

Most of all, I am very thankful for the unconditional support of my family, my
partner Melanie, and the “old-time” friends from and at what-still-feels-like-
home, who provided a reliable non-work environment. Thanks for accepting
and enduring the times, when I was deeply covered with work and could not
meet up. Dear Sebastian, Michael, Patrick, and Julian: I guess, this counts as
my last space flight internship. Thanks for constantly reminding me of what
my field of study is actually called: “Pilot and Astronaut”.

To satisfy the philosopher within me, here are some thoughts: As with life,
writing a doctoral thesis is a constant fight with new challenges. You are
presented with an ever growing amount. How to cope with them is personal
gusto. If you decide to work on solutions, you will be in constant struggle how
to face and integrate new situations. But I believe, this only makes us stronger
as the world is in constant change.

Matthias Schuff, Göttingen, June 2022



Contents

Abstract iii

Kurzfassung v

Acknowledgments vii

Table of Contents ix

List of Figures xiii

List of Tables xix

Nomenclature xxi

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Aeroelastic Phenomena in Turbomachinery . . . . . . . . . . . 2
1.3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1. Aeroelastic Stability Analysis in Turbomachinery . . . . 4
1.3.2. Previous Investigations on the Limitations of the Energy

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Theory 11
2.1. Free Vibration of the Harmonic Oscillator in the Time Domain 11

2.1.1. Damping and Excitation . . . . . . . . . . . . . . . . . . 13
2.1.2. Structural Energy . . . . . . . . . . . . . . . . . . . . . 14

2.2. Aeroelastic Modeling for Turbomachinery . . . . . . . . . . . . 15
2.2.1. Equation of Motion and Forces Acting on Structure . . 15
2.2.2. Prestressed Modal Analysis . . . . . . . . . . . . . . . . 16
2.2.3. Mechanics of Rotationally Symmetric Structures . . . . 18
2.2.4. Traveling Waves: The Inter-Blade Phase Angle . . . . . 21
2.2.5. Generalized Aerodynamic Forces . . . . . . . . . . . . . 22
2.2.6. Reduced Frequency . . . . . . . . . . . . . . . . . . . . . 25
2.2.7. Aeroelastic Stability Equation in Modal Form . . . . . . 26

2.3. The Energy Method . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1. Rationale of the Energy Method . . . . . . . . . . . . . 26
2.3.2. Aerodynamic Work per Cycle . . . . . . . . . . . . . . . 27



x Contents

2.3.3. Logarithmic Decrement of Aerodynamic Damping . . . 28
2.3.4. Local Excitation . . . . . . . . . . . . . . . . . . . . . . 30

2.4. Aerodynamic Coupling of Modeshapes . . . . . . . . . . . . . . 30
2.4.1. Aeroelastic Eigenvalue Problem . . . . . . . . . . . . . . 31
2.4.2. Solving the Flutter Equation . . . . . . . . . . . . . . . 33
2.4.3. Physical Representation of Aeroelastic Modeshapes . . . 36

2.5. Parameters in Coupled-Mode Flutter Analysis . . . . . . . . . . 37
2.5.1. Mass Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2. Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3. Frequency Separation and Distance . . . . . . . . . . . . 40
2.5.4. Normalized Logarithmic Decrement . . . . . . . . . . . 41

3. Numerical Approach 43
3.1. Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . 43
3.2. Computational Structural Mechanics . . . . . . . . . . . . . . . 45
3.3. Aeroelastic Coupling . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4. Aeroelastic Toolchain . . . . . . . . . . . . . . . . . . . . . . . . 46

4. Geometries and Test Cases 51
4.1. FUTURE-EPFL 2D Linear Cascade . . . . . . . . . . . . . . . 51
4.2. NACA3506 2D Linear Cascade . . . . . . . . . . . . . . . . . . 55
4.3. CRISPmulti Fan Stage . . . . . . . . . . . . . . . . . . . . . . . 58

5. Verification and Validation of the P-K Method 65
5.1. General Remarks on Time-Marching Simulations . . . . . . . . 66

5.1.1. General Observations . . . . . . . . . . . . . . . . . . . 67
5.1.2. Post-Processing the Time History of Deflections . . . . 68
5.1.3. Disclaimer on Used Non-Reflecting Boundary Conditions 70

5.2. FUTURE-2D-LC . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1. GAF Matrix Generation . . . . . . . . . . . . . . . . . . 71
5.2.2. Subsonic Operating Point with Frequency Separation 1:2 73
5.2.3. Subsonic Single-Mode Flutter vs. Low Frequency Separation 79
5.2.4. Operating Point Transonic I . . . . . . . . . . . . . . . . 81
5.2.5. Operating Point Transonic II . . . . . . . . . . . . . . . 86

5.3. NACA3506-2D-LC . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1. Subsonic . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2. Transonic . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4. CRISPmulti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1. Time-Marching FSC Simulations . . . . . . . . . . . . . 92
5.4.2. P-K Analysis . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5. Mode Tracking Strategies . . . . . . . . . . . . . . . . . . . . . 98
5.5.1. Mode Crossing . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2. Frequency Coalescence . . . . . . . . . . . . . . . . . . . 98



Contents xi

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Aerodynamically Coupled Modeshapes in a Linear Compressor Cascade103
6.1. General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2. Subsonic Operating Point . . . . . . . . . . . . . . . . . . . . . 104

6.2.1. Influence of Mass Ratio and Frequency Separation . . . 104
6.2.2. Aerodynamic Resonance and Effect on Modal Coupling 109
6.2.3. Influence of Solidity . . . . . . . . . . . . . . . . . . . . 114

6.3. Transonic Operating Point . . . . . . . . . . . . . . . . . . . . . 117
6.3.1. Influence of Mass Ratio and Frequency Separation . . . 117
6.3.2. Aerodynamic Resonance and Effect on Modal Coupling 121
6.3.3. Influence of Solidity . . . . . . . . . . . . . . . . . . . . 126

6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7. Application to Low Mass Ratio Fan Blade 131
7.1. General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2. Modal Coupling at a Specific Operating Point . . . . . . . . . . 132

7.2.1. Generalized Aerodynamic Forces . . . . . . . . . . . . . 132
7.2.2. Energy Method and Coupled-Mode Analysis Compared 135
7.2.3. Modal Participations . . . . . . . . . . . . . . . . . . . . 135
7.2.4. Considering Different Modeshapes in P-K Analysis . . . 139

7.3. Flutter Boundary above Working Line . . . . . . . . . . . . . . 141
7.3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.2. Subsonic to Transonic Flow at Medium Rotational Speed 142
7.3.3. Transonic Flow at Medium-High Rotational Speed . . . 143
7.3.4. Higher Rotational Speed . . . . . . . . . . . . . . . . . . 146

7.4. Mechanism of Modal Coupling . . . . . . . . . . . . . . . . . . 149
7.5. Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . 156

8. Conclusion 157
8.1. Aerodynamic Coupling of Modeshapes in Turbomachinery . . . 157
8.2. Occurrence of Aerodynamically Coupled-Mode Flutter . . . . . 158
8.3. The P-K Method: Verification vs. Validation . . . . . . . . . . 159

Bibliography 161

A. Appendix 171
A.1. IBPA Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.2. Additional Validation for FUTURE-2D-LC Case Transonic I . 173
A.3. Computational Efficiency: Time-Marching Simulation vs. P-K

Method Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.3.1. Natural Frequencies of Modeshapes . . . . . . . . . . . . 183



xii Contents

A.4. CRISPmulti: Parameter Changes Throughout the Compressor
Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.4.1. Twist-to-Plunge Ratio of Modeshapes . . . . . . . . . . 185

Curriculum Vitae 187



List of Figures

1.1. Schematic of the turbofan engine and its evolution . . . . . . . 1
1.2. Typical areas of flutter and where they occur in the compressor

map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Sketch of the harmonic oscillator and a cut-free version . . . . 12
2.2. Displacement curves . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Finite-element model of a simplified bladed disk with ten cyclic

symmetric segments . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4. Modal analysis result of full annulus finite-element model of a

simplified bladed disk . . . . . . . . . . . . . . . . . . . . . . . 20
2.5. Definition of inter-blade phase angle σ with the example of σ = 90◦ 23
2.6. Flowchart of p-k Method . . . . . . . . . . . . . . . . . . . . . . 35
2.7. Example for frequency and damping of the aeroelastic branches

over qs for a system with two structural DOF . . . . . . . . . . 37
2.8. Parameters in coupled-mode flutter analysis . . . . . . . . . . . 39

3.1. Static fluid structure coupling process . . . . . . . . . . . . . . 46
3.2. Mapping strategies in FSC . . . . . . . . . . . . . . . . . . . . . 47
3.3. Concept of aeroelastic toolchain ATAC . . . . . . . . . . . . . . 48

4.1. Test case “FUTURE-2D-LC”: 3D model of the non-rotating
annular cascade with the position of the extracted midspan slice 53

4.2. Test case “FUTURE-2D-LC”: CFD mesh of the single passage
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3. Structural model of an individual blade in the FUTURE-2D-LC
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4. FUTURE-2D-LC, Mach number in steady flowfields of selected
operating points . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5. Test case “NACA3506-2D-LC”: CFD mesh of the single passage
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6. NACA3506-2D-LC, Mach number in steady flowfields of selected
operating points . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7. Illustration of the CRISPmulti fan stage . . . . . . . . . . . . . 59
4.8. Compressor map of CRISPmulti with torsion at blade tip of first

rotor due to static deformation . . . . . . . . . . . . . . . . . . 61
4.9. Maximum static deformation due to rotational and aerodynamic

loads of the CRISPmulti first rotor . . . . . . . . . . . . . . . . 62
4.10. Computation meshes of the CRISPmulti fan stage . . . . . . . 62



xiv List of Figures

4.11. Vacuum modeshapes with frequency f and reduced frequency k
of CRISPmulti first rotor at 70% speedline (above WL, close to
OP3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1. Generic time history of blade deflections in fluid/structure-
coupled time-marching simulations, evaluation of vibration fre-
quency and logarithmic decrement in harmonic part . . . . . . 68

5.2. Detailed time history of physical and modal deflections of a four
passage setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3. FUTURE-2D-LC, case “subsonic”: Generalized aerodynamic
forces for selected IBPAs . . . . . . . . . . . . . . . . . . . . . . 71

5.4. FUTURE-2D-LC, case “transonic I”: Generalized aerodynamic
forces for selected IBPAs . . . . . . . . . . . . . . . . . . . . . . 72

5.5. FUTURE-2D-LC “subsonic”: Random initial deflections and
velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6. FUTURE-2D-LC “subsonic”: Starting condition equiv. to pitch
modeshape displacements with σ = 180◦ . . . . . . . . . . . . . 76

5.7. FUTURE-2D-LC, case “subsonic”: Structural energy of various
time-domain FSC computations, markers: a) random initial
deflections, b) initial motion close to final pattern and high initial
structural energy, c) no initial motion (“free release”) . . . . . . 77

5.8. FUTURE-2D-LC, case “subsonic”: p-k solution history . . . . 78
5.9. FUTURE-2D-LC, case “subsonic” with fheave = 500 Hz and

fpitch = 600 Hz: p-k solution history at σ = −90◦ . . . . . . . . 80
5.10. FUTURE-2D-LC “transonic I”: Random initial deflections and

velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.11. FUTURE-2D-LC, case “transonic I”: Structural energy of various

time-domain FSC computations, markers: a) random initial
deflections, b) initial motion close to final pattern and high initial
structural energy, c) no initial motion (“free release”), d and e)
random initial deflectios at different level than a . . . . . . . . 83

5.12. FUTURE-2D-LC, case “transonic I”: p-k solution history . . . 84
5.13. FUTURE-2D-LC, case “transonic I”: p-k solution history . . . 85
5.14. FUTURE-2D-LC, case “transonic II”: Structural energy of vari-

ous time-domain FSC computations, markers: a) random initial
deflections, b) initial motion close to final pattern and high initial
structural energy, c) no initial motion (“free release”) . . . . . . 86

5.15. FUTURE-2D-LC, case “transonic II”: p-k solution history . . . 87
5.16. NACA3506-2D-LC, case “subsonic”: Total and individual blade

structural energy for same setup with different initial conditions 88
5.17. NACA3506-2D-LC, case “subsonic”: p-k solution history . . . . 90
5.18. NACA3506-2D-LC, case “transonic”: p-k solution history . . . 91



List of Figures xv

5.19. CRISPmulti, n = 70 % above WL: Total and individual blade
structural energy for setup with 2 passages, final vibration IBPA
is σ = 0◦ in both cases . . . . . . . . . . . . . . . . . . . . . . . 95

5.20. CRISPmulti, n = 70 % above WL: Total and individual blade
structural energy for setup with 5 passages . . . . . . . . . . . 95

5.21. CRISPmulti, n = 70 % above WL, 2 passages, σ = 0◦: p-k
solution history . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22. CRISPmulti, n = 70 % above WL, 5 passages, σ = 72◦: p-k
solution history . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.23. Mode tracking via frequency or MAC sort (case: FUTURE-2D-
LC, transonic I, σ = −144◦, fheave = 300 Hz, fpitch = 600 Hz)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.24. Mode tracking strategies with MAC and pw-MAC method (case:
FUTURE-2D-LC, transonic I, σ = −108◦, fheave = 300 Hz,
fpitch = 400 Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1. Frequency separation 1:2, FUTURE-LC-2D, case “subsonic”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 106

6.2. Frequency separation 2:3, FUTURE-LC-2D, case “subsonic”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 107

6.3. Frequency separation 5:6, FUTURE-LC-2D, case “subsonic”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 108

6.4. FUTURE-2D-LC, case “subsonic”, IBPA σ = −54◦: Generalized
aerodynamic forces around resonance condition with different
frequency sampling rates . . . . . . . . . . . . . . . . . . . . . . 109

6.5. FUTURE-2D-LC, case “subsonic”, IBPA σ = −72◦: Generalized
aerodynamic forces around resonance condition with different
frequency sampling rates . . . . . . . . . . . . . . . . . . . . . . 110

6.6. FUTURE-2D-LC, case “subsonic”, IBPA σ = −54◦: p-k solution
histories at two different frequency separations with different
frequency sampling rates . . . . . . . . . . . . . . . . . . . . . . 112

6.7. FUTURE-2D-LC, case “subsonic”, IBPA σ = −72◦: p-k solution
histories at two different frequency separations with different
frequency sampling rates (where the orange/purple lines are not
visible, they are hidden behind the red/blue lines) . . . . . . . 113

6.8. FUTURE-LC-2D, case “subsonic”: Normalized aerodamping of
second aeroelastic modeshape depending on mass ratio, frequency
separation, and solidity . . . . . . . . . . . . . . . . . . . . . . 115



xvi List of Figures

6.9. FUTURE-LC-2D, case “subsonic”: Normalized aerodamping of
second aeroelastic modeshape depending on mass ratio, frequency
separation, and solidity . . . . . . . . . . . . . . . . . . . . . . 116

6.10. Frequency separation 1:2, FUTURE-LC-2D, case “transonic I”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 118

6.11. Frequency separation 2:3, FUTURE-LC-2D, case “transonic I”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 119

6.12. Frequency separation 5:6, FUTURE-LC-2D, case “transonic I”,
solidity s = 1.22: Traveling wave diagram compared between EM
and p-k for varying mass ratio . . . . . . . . . . . . . . . . . . . 120

6.13. FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: Gen-
eralized aerodynamic forces around resonance condition with
different frequency sampling rates, computed by HB method
with one (colored symbols) and five (black dots) harmonics . . 121

6.14. FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: p-k solu-
tion histories with different GAF frequency sampling rates for
pitch-only system and heave-pitch coupling . . . . . . . . . . . 124

6.15. FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: p-k so-
lution histories for smaller frequency separation between heave
and pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.16. FUTURE-LC-2D, case “transonic I”: Normalized aerodamping
(lower value of first or second aeroelastic modeshape) depending
on mass ratio, frequency separation, and solidity . . . . . . . . 127

6.17. FUTURE-LC-2D, case “transonic I”: Normalized aerodamping
(lower value of first or second aeroelastic modeshape) depending
on mass ratio, frequency separation, and solidity . . . . . . . . 128

7.1. Matrix interpolation for the generalized aerodynamic forces of
the first three vacuum modeshapes (OP n070b, IBPA σ = 36◦) 133

7.2. OP n070b: Damping diagram for EM, p-k 1x1, and p-k 6x6 . . 136
7.3. OP n070b: Modal participations of the fundamental aeroelastic

modeshapes (AE mode) compared between 3x3 and 6x6 analysis 137
7.4. OP n070b: Modal participations of the higher aeroelastic mode-

shapes (AE mode) in 6x6 analysis . . . . . . . . . . . . . . . . 138
7.5. OP n070b: Damping diagram considering different number of

higher modeshapes in the p-k analysis . . . . . . . . . . . . . . 139
7.6. Aeroelastic stability above the working line compared between

the energy method and different p-k analysis . . . . . . . . . . 142
7.7. OP n065b: Damping diagram for EM, p-k 3x3, and p-k 3x6 . . 144
7.8. OP n075b: Damping diagram for EM, p-k 3x3, and p-k 3x6 . . 144



List of Figures xvii

7.9. OP n075b: Modal participations of the fundamental aeroelastic
modeshapes (AE mode) compared between 3x3 and 6x6 analysis 145

7.10. Comparing the manifestation of the vac. modeshape 1 (1B) at
ωt = φ = 0◦ between OP n070b and n075b . . . . . . . . . . . . 145

7.11. Comparing the manifestation of the vacuum modeshape 3 (1T)
and aeroelastic modeshape 3 (from p-k 3x3 and 3x6) between
OP n070b and n075b . . . . . . . . . . . . . . . . . . . . . . . . 146

7.12. OP n090b: Damping diagram for EM, p-k 3x3, and p-k 3x6 . . 147
7.13. OP n090b: Modal participations of the fundamental aeroelastic

modeshapes (AE mode) compared between 3x3 and 6x6 analysis 147
7.14. OP n090c: Damping diagram for EM, p-k 3x3, and p-k 3x6 . . 148
7.15. OP n100c: Damping diagram for EM, p-k 3x3, and p-k 3x6 . . 148
7.16. Supersonic areas at the blade tip region of rotor 1 . . . . . . . 149
7.17. OP n070b, σ = 36◦: Local excitation in the tip region of rotor 1

for different modeshape vibrations . . . . . . . . . . . . . . . . 150
7.18. OP n075b, σ = 36◦: Local excitation in the tip region of rotor 1

for different modeshape vibrations . . . . . . . . . . . . . . . . 151
7.19. OP n090b, σ = 36◦: Local excitation in the tip region of rotor 1

for different modeshape vibrations . . . . . . . . . . . . . . . . 154
7.20. OP n090c, σ = 144◦: Local excitation in the tip region of rotor

1 for different modeshape vibrations . . . . . . . . . . . . . . . 155

A.1. FUTURE-2D-LC, case “subsonic”: Generalized aerodynamic
forces for selected IBPAs . . . . . . . . . . . . . . . . . . . . . . 174

A.2. FUTURE-2D-LC, case “transonic I”: p-k solution history for two
IBPA (left: full view, right: detailed view) . . . . . . . . . . . . 175

A.3. NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only
the pitch mode is allowed with natural frequency fvac = 115 Hz:
Total and individual blade structural energy, and individual blade
displacements, unfavorable initial conditions . . . . . . . . . . . 179

A.4. NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only
the pitch mode is allowed with natural frequency fvac = 115 Hz:
Total and individual blade structural energy, and individual blade
displacements, initial conditions close to final vibration pattern 180

A.5. NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only
the pitch mode is allowed with natural frequency fvac = 200 Hz:
Total and individual blade structural energy, and individual blade
displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.6. Traveling wave damping diagram for pitch mode with different
vacuum frequencies, compared between energy method (EM)
and as 1x1 system in the p-k analysis (NACA3506-2D-LC, case
“subsonic”) at a high mass ratio of µ = 2803 . . . . . . . . . . 182



xviii List of Figures

A.7. CRISPmulti, rotor 1: Modal frequencies of modes 1 to 4 through-
out compressor map . . . . . . . . . . . . . . . . . . . . . . . . 183

A.8. CRISPmulti, rotor 1: Modal frequencies of modes 5 to 10 through-
out compressor map . . . . . . . . . . . . . . . . . . . . . . . . 184

A.9. CRISPmulti, rotor 1: Changes of twist-to-plunge ratio through-
out the compressor map . . . . . . . . . . . . . . . . . . . . . . 186



List of Tables

1.1. Two Engine Generations in Comparison . . . . . . . . . . . . . 2

4.1. Parameters of the FUTURE-2D-LC Geometry . . . . . . . . . 52
4.2. FUTURE-2D-LC Operating Points . . . . . . . . . . . . . . . . 52
4.3. FUTURE-2D-LC: Reduced frequency k for selected combinations 52
4.4. Parameters of the NACA3506-2D-LC Geometry . . . . . . . . . 55
4.5. NACA3506-2D-LC Operating Points . . . . . . . . . . . . . . . 55
4.6. NACA3506-2D-LC: Reduced frequency k for selected combinations 56
4.7. CRISPmulti Design Parameters . . . . . . . . . . . . . . . . . . 60

6.1. “Baseline” Configuration of the FUTURE-2D-LC Geometry . . 103
6.2. Solidity Variation of the FUTURE-2D-LC Geometry . . . . . . 104

A.1. Phase shift of each blade depending on the IBPA . . . . . . . . 172





Nomenclature

Latin Symbols

A area
D damping matrix
E energy
Es,tot total structural energy
E0 total energy
F̃ matrix of harmonic force perturbations
K stiffness matrix
K̃ modal stiffness matrix
M mass matrix
M̃ modal mass matrix
Ma Mach number
N number of segments/blades
Q̃ generalized aerodynamic forces (GAF) matrix
T period (of one oscillation)
T temperature
Tt total temperature
V volume
Wc (aerodynamic) work per cycle
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1
Introduction

1.1. Motivation
“Current designs in aero-engines have reached their limit in efficiency and new
designs are required.” -Vahdati et al [1]

Aero engine design is driven by the reduction of fuel consumption and noise
emission. To increase the efficiency and overall performance, higher bypass
ratios and increased fan diameters are consistent trends. Another associated
technical requirement is lightweight design, what can be achieved through
thinner and slender blades, and also via the usage of composite materials. A
more efficient core engine allows for stage reduction, which is also a way to
decrease the amount of moving parts, or from a general point of view, a way to
downsize the engine core [3]. This evolution is sketched in fig. 1.1. The trends
are more graspable when comparing numbers for two generations of turbofan
engines in table 1.1. Although the newer generation of fans produce more bypass

LPC HPC HPT LPT

Fan Combustor

(a) Legacy

Gearbox

Increased Bypass Ratio

Larger Fan 

Lightweight
Material

Less Stages

“Wide-chord“
Blades

(b) Newer Generation

Figure 1.1.: Schematic of the turbofan engine and its evolution (adapted from
Zhou et al [2])
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Table 1.1.: Two Engine Generations in Comparison [4, 5, 6]
CFM-56B4 PW1100-G

Aircraft A320 A320neo
Fan 36 blades, titanium alloy 20 blades, aluminum alloy,

geared
Fan Diameter 1.73m 2.06m
Compressor Stages 4 LP, 9 HP 3 LP, 8 HP
Turbine Stages 1 HP, 4 LP 2 HP, 3 LP
Bypass Ratio 5.7 12.5
Service Entry 1988 2016

ratio at a higher diameter, the number of blades was significantly reduced. As
a consequence, the individual blade loading is increased throughout the engine.

If stages in the compressor are reduced but the same overall pressure ratio shall
remain, each individual stage has to operate at a higher blade loading. Within
this operating range, the angle-of-attack increases and the ultimate limit to the
operating range is the stall of one or more rotors. Compressor stall or surge
is a severe event which leads to rapid destruction due to intermittent reversed
flows and the induced vibrations. Before the occurrence of these aerodynamic
instabilities, compressor and fan blades are prone to aeroelastic instabilities,
i.e. flutter. The accuracy of flutter predictions, not only but especially in this
operating regime, is therefore of great importance.

For the scope of this thesis, the major consequence from lightweight design and
higher individual blade loadings is the decrease of the mass ratio of structure-to-
air. Many analysis methods used in aeroelasticity of turbomachinery are based
on the assumption of a high mass ratio.

1.2. Aeroelastic Phenomena in Turbomachinery
Any elastic structure will deform under the influence of aerodynamic forces.
If the structure is flexible enough, the deformations become significant. In
aeroelasticity, these interactions of an elastic structure with the surrounding fluid
flow are studied. Lightweight design increases the vulnerability for aeroelastic
effects and make the structure prone to negative impacts. A rough division
can be made into two major fields. Static aeroelasticity is the steady-state
response of the structure when exposed to aerodynamic loadings. Deformations
induce an additional stress in the material that can cause plastic deformations
and even fractures. If the static reaction of the structure reinforces an increase in
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torsion or angle-of-attack, divergence might occur. Dynamic aeroelasticity
describes vibrational phenomena, which can further be divided into external
disturbances (e.g. turbulence or gusts) and self-induced vibrations (flutter).
While the first type of vibrations are normally damped or at least limited in
amplitude, the latter ones will lead to an unbound growth of the amplitude and
ultimately to rapid structural failure.

Transferred to turbomachinery, the aeroelastic phenomena are distinguished
into:

• Static deflections across the operating range are typically considered to
be very small and thus neglectable. This assumption is true for most of
the turbomachines in usage due to the high stiffness of what is basically
a big block of solid metal. It is still true for many of the components
nowadays, but with the increase of lightweight design, it has at least to
be re-evaluated for newer designs [7, 8].

• Flutter is a self-excitation without external forces acting on the blade
and thus a stability problem. A positive feedback between the motions
of the blade and the fluid responses causes these oscillations to grow
exponentially. The influence of adjacent blades of the same rotor play
an important role in this context. The amplitudes may be limited due
to nonlinearities in the fluid or structure, so that a limit cycle oscillation
(LCO) establishes. However, if not rapidly destructing the blades, these
vibrations ultimately lead to fatigue. Therefore, methods to predict and
evaluate such problems mainly focus on the onset of flutter, which should
be avoided at all costs. As the frequencies are not known a priori by simple
determination of integer multiples of the fundamental rotation frequency,
flutter onset might occur at any point in the operating range. However,
the phenomenon is always associated with one of the eigenfrequencies of
the system [9, 10].

• Forced response describes vibrational influence of one blade row, or in a
more broader context by any geometrical feature i.e. vanes or non-uniform
inflow disturbances from geometrical features, onto another blade row.
The aerodynamic excitation usually comes from the wake of preceding
or the potential influence of the following blade rows. The pressure
disturbances are periodic in nature: their frequency is an integer multiple,
or engine order (EO) of the engine rotational speed, and is thus called a
synchronized vibration. So-called frequency crossings between EOs and
the structural eigenfrequencies can be determined in advance and then
checked for resonance amplitudes. A typical crossing that is prone for
resonance is the blade passing frequency. With the decrease in mass ratio,
amplitudes at off-resonance points might also become very high [11].
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• Non-synchronous vibrations (NSV) describe a phenomenon that can-
not be clearly sorted into either of the two previous categories, see Kielb
et al [12]. Non-synchronous means that they do not occur at fixed
integer multiples of the engine shaft speed, what is also true for flutter,
but the nature of NSV is different. NSV occurs when the frequency of an
aerodynamic instability (e.g. tip vortices, trailing edge flow separation,
or shock-induced flow separation), or as they are sometimes called ‘fluid
vibration modes’ [13, 1], comes close to the structural eigenfrequency.
The aerodynamic frequency will then shift to the structural frequency,
what is called lock-in. These vibrations are even more difficult to predict
than the previous categories. In the transonic regime, fluid vibration
modes are originating from the decrease of flow stability as stated by Gao
and Zhang, and that the coupling with the structural modes “causes
a misleading of contributing these aeroelastic phenomena to the forced
vibration” [14]. In general, this sort of instabilities is similar to the buffet-
ing phenomenon in fixed-wing. Nitzsche et al describe the coupling of
fluid and structural modes as being “essentially flutter” [15], but more
research is still necessary to improve the sorting and understanding of the
different phenomena.

The two major areas of research are most certainly flutter and forced response.
However, the others are gaining importance as they arise with lower mass
ratios and higher aerodynamic loading. Please note, that this thesis focuses on
flutter (with some excursions to static deflections), keeping in mind that there
are other phenomena which have to be investigated in the design process of
turbomachinery.

1.3. State of the Art
1.3.1. Aeroelastic Stability Analysis in Turbomachinery
While the first turbojet engines of Ohain or Whittle [16] might have been
uncritical from an aeroelastic point-of-view as they were built for mechanical
stability and suffered from fundamental aerodynamic challenges, subsequent
developments where focused on increasing efficiency. Aeroelastic problems were
encountered during rig testing or worse, in-flight. Soon, aeroelastic analysis
would be included in design studies. As numerical analyses were not yet available
and introduced slowly over time, surrogate and reduced order models would be
used from early on. The most simple flutter avoidance method was based on
analytical thoughts and empirical data, so that the geometry was designed in a
way to avoid too low reduced frequencies within the operating range.
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Nowadays, typical techniques used for aeroelasticity of turbomachinery are of
reduced order, e.g. the principle of traveling wave modes by Lane [17] or
the energy method for flutter analysis by Carta [18], and have not only
“stood the test of time” [19, p. 28], but are also viable from a physical point of
view [20, pp. 527-532].

The applied fundamental assumptions of the energy method, which is also
known as the work-per-cycle approach, are manifold. In most cases they can
be traced back to the high mass ratio of structure to air and its implications.
As a consequence, the aerodynamic forces acting on the structure only have an
exciting or damping effect on the structure, but do not change the structural
response, so that they are comparable to a vacuum behavior with mechanical
dampers or exciters. This allows for a massive order reduction of the investigated
model and with the benefit of huge savings in computational effort. Unsteady
aerodynamic pressure perturbations are integrated to calculate the amount of
work exchanged between fluid and structure. A positive energy feed into the
structure will lead to flutter.

Over the decades, aeroelastic methods in turbomachinery cascades were reviewed
by many researchers, see e.g. the works of Mikolajczak et al, Försching,
or Marshall and Imregun [21, 9, 13]. Typical areas of flutter in compressor
stages as illustrated in fig. 1.2 were already identified by Mikolajczak et al
and their existence in these regimes can still be found in modern compressors
and fans, which indicates a fundamental physical mechanism.

Figure 1.2.: Typical areas of flutter and where they occur in the compressor map
[21]
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1.3.2. Previous Investigations on the Limitations of the Energy
Method

When it comes to the limitations of the decoupled energy method for flutter
analysis of turbomachinery bladings, the literature gets scarce. Flutter in tur-
bomachinery is still considered as a single-mode instability and modal coupling
or frequency coalescence is not expected. Frequency neighborhood of natural
frequencies, which could lead to frequency coalescence, is often intentionally
avoided by design. While the early researchers also use the term “modal cou-
pling”, they usually refer to inertial coupling of bending and torsion degrees of
freedom. Bendiksen and Friedmann investigated the bending-torsion flutter
in cascades due to structural, aerodynamic and inertial coupling but could not
find frequency coalescence associated with aerodynamically coupled-mode flutter
as found in fixed-wing aircraft [22, 23]. The review articles by Mikolajczak
et al, Försching, or Marshall and Imregun [21, 9, 13] confirmed the
single-mode assumption.

Srivastava and Reddy were one of the first to compare single-mode and
coupled-mode analysis methods by the means of CFD [24]. The baseline results
show that there is a possibility for coupled-mode flutter of fan blades, in contrast
to the single-mode analysis which yielded a stable system. Their investigation
was limited to subsonic flow conditions and only applied non-viscid CFD based
on the Euler equations. For the coupled-mode investigation, a fluid/structure-
coupled (FSC) solver and an eigenvalue analysis, similar to the one presented in
this thesis, were utilized. The eigenvalue method presented was computationally
much more expensive than the time-marching FSC, in stark contrast to the
presented results here. However, their proposed method for understanding the
flutter characteristics is to use an eigenvalue method.

Investigations with a fluid/structure-coupled solver were performed by
Carstens and Belz on a linear cascade of NACA3506 airfoils [25]. It was
shown, that for certain aerodynamic conditions i.e. a chocked passage, the
decoupled methods could not predict the flutter onset. In this case, the flutter
onset was due to alternately rotating blades, also known as alternate passage
divergence. The blades are slightly increasing or decreasing their stagger angle,
which leads to choked and unchocked passages. As a next step, the changed
aerodynamic pressure perturbations lead to an instability. The research was
extended by Sadeghi and Liu [26] as they investigated the same effect for
different mass ratios of the cascade. They showed that a lower mass ratio
increased the alternate staggering effect due to static loading. Aerodynamic
coupling of different modeshapes was not investigated in both articles. However,
the findings show that decoupled methods can have significant prediction errors
for low mass ratio compressor cascades.
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Clark et al investigated an open rotor fan blade with a very low mass ratio [27,
28]. They showed that coupled-mode flutter is possible for certain combinations
of mass ratio, frequency separation and solidity and that the decision for the
use of coupled or decoupled methods is essentially a function of these three
parameters. To solve the aeroelastic eigenvalue problem, they implemented a
p-k method as it will also be used in this thesis. However, they did not include
further descriptions of the techniques used to iterate and solve it with the p-k
method. Especially some of the major issues and obstacles when adapting and
applying the p-k method to turbomachinery – as highlighted throughout this
thesis – were not described. Furthermore, their research in coupled-mode flutter
was focused on open rotor technology and relied on surrogate models to obtain
the aerodynamic responses.

Korte and Peitsch investigated modal coupling for a turbine rotor [29] with
different approaches i.e. energy method and different sorts of coupled/uncoupled
eigenvalue solvers. The difference in the eigenvalue solvers were the inclusion of
changes in aerodynamics due to frequency shifts, the resulting damping of the
aerodynamic forces, and the coupling of off-diagonal elements in the eigenvalue
solution. The variant including these effects in a full aeroelastic eigenvalue
analysis is called the p-method that allows to predict true damping values
for non-zero damping [30, 31]. The investigation concentrated on intentional
mistuning, which is typically considered as a stabilizing contributor in flutter
prevention. However, the small frequency separation of the mistuned blades
can lead to an aerodynamic coupling within the same modeshape family and
thus destabilizes the system. It was shown that for the mistuned rotor, the
uncoupled eigenvalue solver had significant prediction errors compared to the
more complex approach of solving the coupled eigenvalue problem. As typical
for turbine blades, they had a very high mass ratio and coupling between the
two investigated mode families could not be observed. Especially the tuned
rotor showed no difference between coupled and uncoupled solvers. Similar
findings were reported by Corral et al [32] while investigating vane packing
for turbine geometries in comparison to a continuous rig. They report that if
the aerodynamic forces become high enough, the stabilizing effect of mistuned
packets is lost. Small frequency separation can lead to coupling effects that
decrease the stability margin in contrast to the predictions by the energy
method.

Chahine et al compared decoupled and coupled methods for low mass ratio
and low stiffness blades in a three-dimensional case [33, 34]. A major finding
shows that even without modal coupling the frequency shift due to aeroelastic
response of the blade can already lead to a significant change in stability. The
most critical case, where flutter onset is observed, was not the lower mass
ratio (compared to “conventional” design) but the low stiffness case. This
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is not surprising, as lower stiffness leads to lower natural frequencies, which
are known to increase the flutter susceptibility due to the effects of a lower
reduced frequency. Their research did not include aerodynamic coupling between
modeshape families, but the results emphasize the needs to include aeroelastic
coupling effects in the analysis of low mass ratio blades.

1.4. Research Objective
Legacy, past and many current turbomachinery designs were investigated for
flutter using the energy method, e.g. Jeffers and Meece, Clark et al,
Korte and Peitsch, or Chahine et al [35, 27, 29, 33]. Thus, it can be
deduced empirically that for current turbomachinery components, flutter caused
by aerodynamic modal coupling is most likely not of concern. At least if
they are built in the “classical” design as solid metal blocks. For them, the
energy method represents an adequate reduced order model for flutter analysis.
This is backed up by the theoretical thoughts e.g. from Bisplinghoff et
al, Mikolajczak et al, Bendiksen et al, Försching, Marshall and
Imregun, or Vahdati et al [20, 21, 22, 23, 9, 13, 1]. However, the previous
results found in literature question this approach for newer turbomachinery
generations, especially ultra-high bypass ratio fans.

Hypotheses
A. Turbomachinery blades can experience significant aerodynamic cou-
pling between modeshape families. This results in the so-called coupled-
mode flutter phenomenon.

B. The energy method is non-conservative in such cases.

C. The main driver of the aerodynamic coupling is the design approach
resulting in a low structure-to-air mass ratio.

On the Modal Coupling Effect The structural vibrations in the absence
of aerodynamic forces (or more precisely in a vacuum) is describable with
modeshapes, e.g. bending or torsion. The process to determine these vibrations
and its frequencies is known as modal analysis. Introducing aerodynamic forces,
a structural response is enforced. If the aerodynamic forces are high enough
in comparison to the structural inertia, a coupled system has to be respected.
As a consequence, the vibration frequencies will shift under the participation
of multiple modeshapes, the so-called aeroelastic frequency and aeroelastic
modeshapes. From a mathematical point-of-view, the resulting aeroelastic
system is describable as an eigenvalue problem.
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On the Non-conservative Character of the Energy Method Using the energy
method for flutter analysis, the aerodynamic damping of structural vibrations is
determined. The approach is straight forward and relies on a geometry that will
only vibrate at the natural frequencies as if being in a vacuum. Superposition
of modeshapes is possible as they are not affecting each other. In other words:
they are decoupled. The conservative margin is the a priori unknown structural
damping, which is always positive and thus stabilizing. If the key assumption
of no interference between decoupled modeshapes is not justified anymore, the
resulting aeroelastic modeshapes can vary significantly from the energy method
– to a good or bad outcome.

On the Influence of the Mass Ratio There may not be a universal and
absolute value of mass ratio (or other indicators) where to switch to a flutter
analysis method that includes aerodynamically coupled modes. However, the
mass ratio is a good indicator of the proportion between aerodynamic and
structural forces. As a coarse classification, turbine geometries can be as high
as µ = O(1000) − O(10 000), whereas modern hollow titanium or CFRP fan
rotors will be in the lower three digits (µ = 100 − 300) or even below that.

The Treatment of the Aeroelastic Eigenvalue Equation Time-marching
fluid/structure-coupled simulations for sure provide a viable solution to deter-
mine the aeroelastic stability at a certain operating condition. On the downside,
the approach is neither systematic nor resource-efficient. Coupled-mode flutter
can be analyzed via a frequency domain approach that solves the aeroelastic
eigenvalue equation. In fixed-wing analysis, the most commonly used method
nowadays is the p-k method as introduced by Hassig [36], see the thesis works
of e.g. Schwochow, van Rooij, or Fehrs [31, 37, 38].

Using the p-k method is a logical and viable evolution of the flutter analysis
process for future turbomachinery as it increases the complexity or order of the
analysis by “just one step”1.

The goal of this thesis is to establish a process that suffices as instrument for
aerodynamically coupled-mode flutter analysis. Therefore, the p-k method is
adapted to turbomachinery usage.

1A very large step, metaphorically spoken. But as shown in this thesis, all the required
ingredients and capabilities of the numerical fluid and mechanics solvers are already
available when the energy method in its frequency domain implementation is currently
used. They just have to be applied to a wider group of parameter combinations. The
major “magic” is performed by incorporating them into a LES, namely the aeroelastic
stability equation, and solving it numerically.
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1.5. Outline of the Thesis
The thesis is organized in the following way to introduce the p-k method for
turbomachinery application:

• Chapter 2 explains the theoretical background of the structural mechanics
and how they are combined with harmonic aerodynamic forces to form
the aeroelastic stability equation. The transfer of the the p-k method to
turbomachinery flutter analysis is derived. Furthermore, the numerical
tools/solvers and integration into a toolchain is presented in Chapter 3.

• Chapter 4 presents and describes the test cases and setups used.

• In Chapter 5, the p-k method is extensively compared to time-marching
fluid/structure coupled simulations. The results show good agreement in
predicting the flutter onset.

• Chapter 6 studies variation of key parameters that have an influence
onto the flutter susceptibility of the system, e.g. mass ratio, frequency
separation and solidity. Also, the effects of aerodynamic resonances onto
the interpolation of the aerodynamic responses via pre-computed frequency
domain results is discussed.

• In Chapter 7, the p-k method is applied to a low mass ratio fan blade
and is compared to the energy method. The non-conservative results
of the energy method are demonstrated above the working line over a
wide range of rotational speeds. The influence of using so-called “higher
modeshapes” in the analysis process is discussed.

• Finally, Chapter 8 summarizes the results of the work presented and
puts them into perspective for future design approaches.



2
Theory

The fundamental equations of structural dynamics analysis and
the specific concept of rotationally symmetric structures with a
segment-wise description, as used for modeling turbomachinery
components, is introduced. Aerodynamic responses to structural
motions are characterized as generalized aerodynamic forces.
Using these ingredients for aeroelastic stability analysis, the
energy method and its fundamental assumptions are described.
To incorporate aerodynamic coupling between modeshape families,
the aeroelastic eigenvalue problem is solved by the p-k method.

2.1. Free Vibration of the Harmonic Oscillator in
the Time Domain

Considering the simple harmonic oscillator as in fig. 2.1, the equation of motion
is

mẍ(t) + dẋ(t) + kx(t) = f(t) (2.1)

with the deflections x(t), the mass m, the spring constant k and the viscous
damping coefficient d. The external force f(t) can be any arbitrary function.
The decay constant δ, the damping ratio ζ, the undamped angular frequency ω0
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and the damped angular frequency ω are known from classical mechanics with
the following relations:

δ = d

2m (2.2)

ζ = d

2
√
km

= d

2mω0
(2.3)

ω0 =
√
k

m
(2.4)

ω =
√
ω2

0 − δ2 (2.5)

If d = 0 and f(t) = 0, the oscillator will perform sinusoidal oscillations around
the equilibrium point with constant amplitude x̂ and the angular frequency ω0.
For a structural system alone, only positive damping is possible and any value
of d > 0 decreases the amplitude over time.

Figure 2.1.: Sketch of the harmonic oscillator and a cut-free version

As this thesis deals with flutter, which is a self-excited phenomenon without
any external forces, the homogenous part of the ODE as sinusoidal motion is
stated by

x(t) = x̂ e(−δ+jω)t . (2.6)

Note that the starting condition here at t = 0 is the initial deflection x̂. For
a more general expression, x̂ may be expressed as complex number and only
the real part of x(t) will be the physical displacement. Furthermore, the initial
deflection may also include an offset. Nevertheless, the following explanations
avoid such detailed statements for the sake of simplicity, but without the loss
of generality.
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(a) Excited, δ < 0 (b) Damped, δ > 0

Figure 2.2.: Displacement curves

In a more general context, the physical displacement x(t) can be expressed by
a generalized displacement u(t) that relates to x(t):

x(t) = Re (ϕu(t)) (2.7)
ẋ(t) = Re (ϕ u̇(t)) (2.8)

where ϕ is a reference amplitude, which can also be a vector and will later also
be called modeshape. For a harmonic oscillation with angular frequency ω and
no damping, the generalized displacement and its derivative become

u(t) = ejωt (2.9)
u̇(t) = jω ejωt (2.10)

2.1.1. Damping and Excitation
As stated above, the decay ratio for a purely structural system is always positive.
As shown later, self-excitation is possible if aerodynamic forces are considered.
If δ becomes negative as seen in fig. 2.2a, the amplitudes of the oscillations
grow.

Figure 2.2b marks the amplitudes for two instants in time. In general, comparing
the amplitudes for the times t and t+ nT with the period T = 2π/ω and an
integer-multiple n, the ratio of the oscillation amplitudes

x(t)
x(t+ nT ) = e(−δ+jω)t

e(−δ+jω)(t+nT ) = eδnT (2.11)
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can be reformulated for the logarithmic decrement under the premise of an
underdamped system ζ ≪ 1:

Λ = 1
n

ln
(

x(t)
x(t+ nT )

)
= δT = 2πδ

ω
(2.12)

Please note that the oscillations might occur around a mean value of xm that is
not equal to zero. This becomes of importance when dealing with time domain
data from either experimental or numerical sources. The mean value xm must
therefore be eliminated before before entering in (2.11). As this is not always a
trivial task and dependent on the individual circumstances, it will be discussed
once needed.

2.1.2. Structural Energy
A deeper insight into the aeroelastic behavior can be given by the total structural
energy provided by the sum of kinetic and potential energy [25]. The structural
energy Es,tot increases, if the aeroelastic system is unstable.

The kinetic energy Ekin(t) describes the energy due to masses in motion, the
potential energy Epot is the energy stored in the spring. From classical mechanics
of the one degree-of-freedom (DOF) oscillator, it is known that

Ekin = 1
2 mẋ2(t) (2.13)

Epot = 1
2 k x

2(t) (2.14)

which sum up to the structural energy

Es,tot = Ekin(t) + Epot(t) = 1
2mẋ

2(t) + 1
2kx

2(t). (2.15)

The structural energy may also be expressed in a modal form using the general-
ized coordinate u(t) from (2.9) and (2.10). As detailed later and fully introduced
in section 2.2.2 below, the modal mass and modal stiffness are m̃ = ϕmϕ and
k̃ = ϕk ϕ. By replacing the modal mass respectively modal stiffness and the
generalized coordinate with these definitions, the equivalence of physical E and
modal notation Ẽ is shown:

Ẽkin(t) = 1
2 m̃ u̇2(t) = 1

2 ϕmϕ
(

ẋ
ϕ

)2
(t) = 1

2 mẋ2(t) = Ekin(t) (2.16)

Ẽpot(t) = 1
2 k̃ u

2(t) = 1
2 ϕk ϕ

(
x
ϕ

)2
(t) = 1

2 k x
2(t) = Epot(t) (2.17)
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The usage of the modal form is especially useful, if the structural vibrations are
approximated by the superposition of a sufficient set of modeshapes.

By extension, the energy equation also applies for a system with many DOFs
and is a simple summation over all elements i = 1, 2, . . . , n:

Es,tot =
n∑

i=1

( 1
2miẋ

2
i + 1

2kix
2
i

)
(2.18)

2.2. Aeroelastic Modeling for Turbomachinery
2.2.1. Equation of Motion and Forces Acting on Structure
In a general form, the equation of motion in physical coordinates for a system
with m degrees-of-freedom can be expressed as

Mx x(t) + Dx x(t) + Kx x(t) = f(t) (2.19)

where the left side is implied as the structural part with Mx,Dx,Kx ∈ Rm×m

as the mass, damping and stiffness matrices, respectively and the displacement
vector x ∈ Cm. The right side of the system includes any forces f(t) ∈ Cm

acting on the structure and can be split into:

f(t) = fmotion(x, ẋ, ẍ) + fexternal(t) (2.20)

This is a major distinction in which way the aeroelastic system will be viewed
and treated:

• External forces fexternal are an excitation of the system and cause a
structural response. Classical examples are gust loads of wings or transient
loads from maneuvers. More commonly found in turbomachinery are
periodic loads at a fixed frequency, i.e. the wake of an upstream blade row
or the potential field of downstream blades. This leads to the investigation
of forced response that is, from a general point of view, a driven
harmonic oscillator.

• Motion-induced forces fmotion are the reaction of the fluid to structural
movements and thus depending on the deflection and its time derivatives.
In the forced response case, the motion-induced forces act as a damping
factor and limit the amplitude of the structural reaction. Flutter occurs
when the motion-induced forces alone feed energy from the fluid into the
structure.
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This thesis only deals with the flutter phenomenon that excludes external forces,
so that fexternal = 0.

Aeroelastic stability is a dynamic problem and a good approximation of the os-
cillations is the assumption of sinusoidal motions. Thus, the harmonic structural
deflections and its time-derivative become:

x(t) = x̂ eλt (2.21a)
x(t) = λ x̂ eλt (2.21b)
x(t) = λ2 x̂ eλt (2.21c)

with the amplitude x̂ and λ ∈ C that contains the damping δ and the angular
frequency ω, so that

λ = −δ + jω. (2.22)

If no external forces are acting on the structure, the remaining part on the right
side is the motion-induced aerodynamic response. As stated by Sadeghi et
al [39], the notation of these forces on the right side is common practice in
aeroelastic texts, but may lead to the impression of them being a forcing function
and deny their character as being strictly motion-dependent and not directly
time-dependent. Flutter is not a forced response problem, but an inherent
instability of the aeroelastic system. Considering this, putting (2.20) with
fexternal = 0 and (2.21) into (2.19), the equation of motion for the aeroelastic
stability analysis should be written as

Mx λ
2x̂+ Dx λx̂+ Kx x̂− fmotion(x̂, λ) = 0. (2.23)

In this form, the stability of the system is not time-dependent anymore. The
damping δ, which indicates the stability of the system, is an implicit feature
and is not easy to deduce, as it is depending on the amplitudes in x̂ and the
angular frequency ω. Furthermore, the chosen discretization for investigation
would need to be the same on the structure and aerodynamic models in the
solution process. As this may be impractical in numerical analysis, there are
certain ways to reduce the complexity of this system.

2.2.2. Prestressed Modal Analysis
From a purely structural point of view, the behavior of a structure can be
described by the equation of motion in (2.19). If only time-invariant forces
are applied, i.e. centrifugal and static pressure loads, the system will reach
a new equilibrium state at a deflected position. This is very important in
turbomachinery modeling, as rotational speeds, and to some extent also the
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static aerodynamic loads, have a large impact on the dynamical behavior of the
system. The stiffness matrix consists of different parts (cf. [40, 19]):

Kx = Klinear + Kcentrifugal + Kgeometrical (2.24)

The unloaded system has the linear-elastic stiffness matrix Klinear. Under
constant rotational speed, the changes of centrifugal forces when moving are
included in Kcentrifugal. Centrifugal forces and static pressure distribution cause
the model to deform and geometrical stiffening is added in Kgeometrical.

This allows the investigation of the now operational system under the static loads.
Any dynamical loads are neglected for the moment. Only small perturbations
from the static position are assumed and thus, as it is common practice, the
structural damping can also be neglected. The equation of motion can be
simplified to

Mx x(t) + Kx x(t) = 0. (2.25)

This leaves only the homogeneous part of x(t) and assuming a harmonic motion,
the ansatz writes

x(t) = ϕ eλt. (2.26)

Analogous to (2.21) and with (2.26) in (2.25), a prestressed normal mode
analysis, or modal analysis, is performed via the generalized resulting eigenvalue
problem:

λ2 Mx ϕ e
λt + Kx ϕ e

λt = 0 (2.27a)(
λ2 Mx + Kx

)
ϕ = 0 (2.27b)

This leads to the eigenvalues λ2
i for i = 1 . . . n roots of the LES, where n is

specified by the number of modes of interest. In general, the ansatz (2.26)
yields λ = −δ + jω as in (2.22). As no damping is present, the equation can be
simplified to λ = jω.

With the eigenvalue λ2
i from (2.27), the undamped angular velocity ωi can be

obtained via
λ2 = (jωi)2 = −ω2

i . (2.28)

Each eigenvalue has a linear uncorrelated eigenvector ϕi ∈ Cm, which is also
called a vacuum modeshape2. The physical interpretation is that – under the

2Though vacuum modeshape is not technically correct, as the static aerodynamic load has
an influence on the static deformation of the system and thus the prestressing. However,
this becomes only relevant for highly flexible structures. From a practical point of view,
only the dynamic pressure perturbations will be of interest later on and the source or root
cause of the prestiffened structure is de-facto not relevant. Whether static deformations
come from rotational loads alone or include a static aerodynamic distribution, has the
same effect on the dynamic behavior of the system.
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assumption of a linear behavior for small perturbations – any dynamical motion
of the system can be described by a combination of the n modeshapes with
individual amplitude ûi:

x(t) =
n∑

i=1
ϕi ûie

λit (2.29)

The individual modeshapes are combined in the modeshape matrix Φ ∈ Cm×n:

Φ =
[
ϕ1 ϕ2 . . . ϕn

]
(2.30)

and the generalized displacement vector u ∈ Cn is introduced:

x = Φu (2.31)

Using (2.30) and (2.31) in (2.25) and, the equation of motion in modal form is
derived by multiplying ΦH in front:

ΦHMxΦ︸ ︷︷ ︸
M̃

u+ ΦHKxΦ︸ ︷︷ ︸
K̃

u = 0 (2.32)

where M̃, K̃ ∈ Rn×n contain the modal masses m̃i respectively the modal
stiffnesses k̃i in the diagonals.

M̃ =


. . .

m̃i

. . .

 and K̃ =


. . .

k̃i

. . .

 (2.33)

As a common practice, the eigenvectors ϕi are scaled so that the modal mass
for each modeshape becomes m̃i = 1 kg m2. As a result, the modal stiffnesses
are equivalent to the eigenvalues, so that k̃i = −ω2

i . The modeshapes are the
degrees of freedom of the system described in the modal space and represent a
drastically reduced order of the model.

2.2.3. Mechanics of Rotationally Symmetric Structures
In comparison to the above introduced concept, the extension to a realistic
model of turbomachinery bladings is not straight forward. The obstacles are:

• Modern turbomachinery bladings are more and more manufactured from
one single part as an integrally bladed disk (blisk). The structural damping
of those is negligible and even small aerodynamic forces can have a large
impact on aeroelastic stability.
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• As a fundamental feature of rotor dynamics, the eigenfrequency and
modeshape appearance can change significantly depending on the nodal
diameter. Most of the time, those modeshapes are not real-valued, but
complex and need thorough interpretation.

• Modeling the full setup of a blade row, the number of degrees of freedom
will increase drastically and require high computational resources. To
face this challenge, one can make use of the rotational symmetry of the
structure and only simulate a segment of the rotor. The interpretation for
the full annulus rotor are not trivial and again, need thorough evaluation.

• Despite being neglected in the previous sections, the structural damping
is not zero. In practical terms, it can be neglected for modal analysis and
be considered as a safety margin. Moreover, in numerical flutter analysis,
the onset of flutter at very small amplitudes is sought, so that damping or
excitation of the structural motions is solely attributed to aerodynamic
forces.

• As already explained, the rotational speed of turbomachines has a stiffening
effect that impacts especially on the eigenfrequencies. Although the theory
is briefly described above, the practical implementation into finite-element
solvers can present a challenge.

The whole structural mechanics theory would be worth a full textbook alone,
but it is only used as a tool in the context of this thesis. A focus shall be put on
the concept of traveling waves as first described by Lane [17] and later extended
as well as mathematically verified by Crawley in the “AGARD Manual on
Aeroelasticity in Axial-Flow Turbomachinery”, edited by Platzer and Carta
[41, 42]. A very picturesque explanation and distinguished description of
the traveling wave concept can be found in the thesis of May [19]. A full
mathematical derivation on how to physically interpret complex modal analysis
towards traveling wave modes can be found in a technical report by the author
[43], going from full annulus to segment-wise analysis.

Considering the full annulus FE model (e.g. fig. 2.3a), the returned modeshapes
are real deformations and standing waves. In general, the modeshapes can be
grouped into their physical appearance form ι (e.g. bending, torsion)3, so that
there are eigenvalues λ(ι)

n with corresponding eigenvectors ϕ(ι)
n where n is the

index in this group. One group is also called a modeshape family.

3These names are easy to declare in the simple example given here. More complex 3-
dimensional geometries might be harder to categorize only by visual aspects. Sometimes
the frequency range is an indicator.
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(a) Full annulus (b) Reduced to one segment

Figure 2.3.: Finite-lement model of a simplified bladed disk with ten cyclic sym-
metric segments [43]

(a) ND = 0,
ϕND=0

(b) ND = 1, ϕn=1 (c) ND = 1,
ϕn=−1

(d) ND = 5, ϕn=5

Figure 2.4.: Modal analysis result of full annulus finite-element model of a simplified
bladed disk (blue is eigenvector into plane, red is out of plane) [43]

For each modeshape family, the eigenvalues appear in a certain systematic [19, p.
18 ff.] where N is the number of cyclic symmetric segments, with n = 0, . . . , N/2
(for an even N) resp. n = 0, . . . , N/2 − 1 (for an odd N):

• A single eigenvalue λ(ι)
0 where every blade (or better: each cyclic symmetric

segment) has the same deformation (meaning they are “in phase”), e.g.
fig. 2.4a. This manifestion of the modeshape is a standing wave.

• If there is an even number of cyclic segments, a single eigenvalue λ(ι)
N/2 is

found where the adjacent segments move in the opposite direction with a
phase shift of 180◦, e.g. fig. 2.4d. This also manifests as a standing wave.



2.2. Aeroelastic Modeling for Turbomachinery 21

• All remaining eigenvalues appear in pairs λ(ι)
n = λ

(ι)
N−n. The two mode-

shapes appear as in figs. 2.4b and 2.4c as a pair of standing waves with a
rotation of the eigenvectors’ deformation of half the angle between the
nodal diameters. These two forms can be referred to as real part ϕ(ι)

Re

and imaginary part ϕ(ι)
Im, or more picturesque as cosine and sine form. A

linear combination of two eigenvectors with equal eigenvalues is also an
eigenvector, so that two combinations are possible:

ϕ(ι)
n = ϕ

(ι)
Re + jϕ

(ι)
Im (2.34a)

ϕ
(ι)
−n = ϕ

(ι)
Re − jϕ

(ι)
Im (2.34b)

The nodal diameter now rotates around the annulus and the manifestation
is a traveling wave.

This fundamental characteristic of turbomachinery vibration was first introduced
by Lane [17]. It even applies if almost no structural coupling due to the disk is
present, i.e. clamped composite blades in some rig tests (e.g. the CRISPmulti
geometry). Thus, if structural coupling is negligible the modal analysis can
be performed for an isolated blade and the modeshapes are the same for all
possible IBPA-ND combination. Note that for mistuned structures or more
complicated cases such as lateral motion of the rotor, Lane’s assumption may
no longer hold true.

Although there is a typical distinction between modeshape family and traveling
wave modes, it is to mention that each of those combinations represents an
orthogonal eigenvector of the system.

2.2.4. Traveling Waves: The Inter-Blade Phase Angle
An equivalent description for the nodal diameter is the inter-blade phase angle
σi (IBPA) that is depending on the number of segments respectively blades N :

σi = 2π i

N
with i = 0, 1, . . . , N − 1 (2.35)

Nodal diameters are sign-less from a mathematical or structural dynamicist’s
point of view. The sign only becomes important when transforming the deflection
into time domain. A definition is made, that positive nodal diameters correspond
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to positive IBPA and vice versa. Thus, the nodal diameter ν and IBPA σ can
be derived from each other with the number of segments N :

σ = 2π ν

N
(2.36)

ν = σN

2π (2.37)

Multiple modeshape families and IBPA-ND combinations can vibrate at the
same time and be linearly superimposed. For a specific mode family ι and
IBPA, each blade k = 1, 2, . . . , N oscillates harmonically at the same frequency
ω = 2πf and modeshape ϕ

(ι)
i , but with a constant phase shift of σi. The

deflection xk at a point in time t is

xk(t) = Re
(
ϕ

(ι)
i (cosχ+ j sinχ)

)
with χ = ωt+ (k − 1)σi

= Re
([

Re
(
ϕ

(ι)
i

)
+ j Im

(
ϕ

(ι)
i

)]
(cosχ+ j sinχ)

)
= Re

(
ϕ

(ι)
i

)
cosχ− Im

(
ϕ

(ι)
i

)
sinχ. (2.38)

Normalizing σi into the range of (−π, π], a forward or backward traveling wave
can be defined in geometrical terms by looking at the sign of σi. The positive
direction used in this thesis uses a positive blade counting in the (suggested)
rotational direction, as depicted in fig. 2.5.

2.2.5. Generalized Aerodynamic Forces
The motion-induced aerodynamic forces in (2.23) are in general dependent
on the amplitude x̂, angular frequency ω and damping δ of the oscillation.
Assuming a sinusoidal motion, the unsteady pressure acting on a surface patch
η can be expressed by a harmonic Fourier series of length nk, where the static
pressure (or zeroth harmonic) is pη ∈ R and the harmonic coefficients p̃(k)

η ∈ C
with k = 1, 2, ..., nk.

For small perturbations, the harmonic aerodynamic response is considered as
linear to the amplitude. Furthermore, let assume that changes in amplitude are
only small, so that λ ≈ jω. The unsteady aerodynamic force for an individual
surface patch η is

fη,motion(t) =
nk∑

k=1

(
p̃(k)

η nη + pη n̂
(k)
η

)
Aη e

jkωt (2.39)
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Figure 2.5.: Definition of inter-blade phase angle σ with the example of σ = 90◦

(cascade stagger and dimensions not to scale) [44, 45]

where nη is the outward unit surface normal vector and n̂
(k)
η are its variations

in Fourier harmonics. Aη is the area of the surface patch at rest. The steady
pressure pη ∈ R contributes to the unsteady aerodynamics through the change
in surface area, according to [19] up to 10% of the total value. The harmonic
parts of the force fluctuations can be summed up into a frequency-dependent
part f̃motion(ω)(k) ∈ C3:

fη,motion(t) =
nk∑

k=1
f̃η,motion(ω)(k)ejkωt (2.40)

To evaluate the damping or excitation characteristic, only the first harmonic of
the Fourier series will be of interest as the forces coming from higher harmonics
cancel out over one period in a sinusoidal motion, so that the harmonic part
becomes

f̃η,motion(ω) ≈
(
p̃η nη + pη n̂η

)
Aη, (2.41)

which is inserted into (2.39):

fη,motion(t) ≈ f̃η,motion(ω) ejωt. (2.42)
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Please note, that in numerical analysis the grid resolution for structural and
aerodynamic solvers is mostly not the same. The aerodynamic forces or the
modeshape displacement have to be projected from one to the other resolution.
Typically, the surface displacements of the modeshape are interpolated onto the
aerodynamic surface.

Based on the principle of superposition, the unsteady aerodynamics can be
computed for each vibration mode individually. Extending (2.42) to all surface
points, the unsteady aerodynamic forces at a specific vibration frequency ω
are gathered for all modeshapes. Using the generalized displacement vector
u ∈ Cn again, the forces matrix F̃ ∈ Cm×n where m is the number of degrees
of freedom and n the number of modeshapes of interest, is used to express the
motion-induced forces acting on the surface (some subscripts are dropped for
better readability):

f̃(ω) = F̃(ω)u =
[
f̃1(ω) f̃2(ω) . . . f̃n(ω)

]
u (2.43)

The generalized aerodynamic force (GAF) is the product of a (complex conjugate)
modeshape displacement ϕH

r and a harmonic aerodynamic response f̃ c:

q̃r,c = ϕH
r · f̃ c = ϕr · f̃ c (2.44)

Thus, at any given frequency ω , the harmonic aerodynamic forces acting on the
structure due to modeshape vibrations as described in (2.43) can be combined
into the GAF matrix Q̃ ∈ Cn×n with n modeshapes of interest.

Q̃(ω) =


q̃1,1 q̃1,2 . . . q̃1,n

q̃2,1 q̃2,2 . . . q̃2,n

...
... . . . ...

q̃n,1 q̃n,2 . . . q̃n,n



= ΦHF̃(ω) =


ϕH

1 · f̃1(ω) ϕH
1 · f̃2(ω) . . . ϕH

1 · f̃n(ω)
ϕH

2 · f̃1(ω) ϕH
2 · f̃2(ω) . . . ϕH

2 · f̃n(ω)
...

... . . . ...
ϕH

n · f̃1(ω) ϕH
n · f̃2(ω) . . . ϕH

n · f̃n(ω)


(2.45)

Care has to taken about the scaling of the first harmonic ˆ̃pη and for the
flutter equation later to be physically correct, the entries in the GAF matrix
have to refer to the correct modal mass. When using CFD to obtain the
harmonic pressure perturbations and to assess small amplitudes, the modeshape
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is commonly scaled by an amplitude factor â. As this is common practice, it is
assumed that the deflection amplitudes in the reference modeshape are scaled
so that m̃ = 1, so the relations are:

m̃cfd = â2 m̃ = â2 (2.46)
ϕcfd = â ϕm̃=1 (2.47)

f̃ cfd = â f̃ m̃=1 (2.48)

Thus, the f̃ cfd from CFD is inserted in the GAF matrix as

q̃r,c(ω) = 1
â2 ϕ

H
r,cfd f̃ c,cfd(ω). (2.49)

2.2.6. Reduced Frequency
The angular frequency of the vibration ω can be transformed into the non-
dimensional reduced frequency k:

k = ω lref
v∞

= ω cb

2 v0
(2.50)

with the upstream flow velocity v∞ and a reference length lref. Typically the half
of the chordlength cb is used for further definitions [20]. In turbomachinery, the
upstream flow velocity may be hard to determine if there are upstream stator
blades or other geometric features, which limit the (computational) domain of
the investigated blade row. As a surrogate, the flow velocity v0 at the inlet
boundary will be used instead. The value of the reduced frequency characterizes
the level of unsteadiness in the vibration. This level of unsteadiness can be
divided into subgroups as described by e.g. Leishman [46]. The flow is steady
for k = 0 and quasi-steady for k < 0.05, so that unsteady effects are small. In
the range of 0.05 < k < 0.2, the unsteady effects cannot be neglected anymore,
and for k > 0.2, the flow is highly unsteady. As further defined by Schwochow
[31], if the reduced frequency becomes k > 1, the unsteadiness is likely to not
induce a flutter phenomenon anymore.

While it is easy to define the upstream flow velocity v∞ for free flying wings,
the flow velocity increases with the radius for rotating machinery. Especially
for large fans, there is a significantly higher velocity towards the tip than at
the hub. For aircrafts, the reference chordlength is often averaged over the
whole wing, whereas turbomachinery bladings typically have fewer variation
of the chordlength over the radius. In this thesis, the flow velocity v0 and
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chordlength cn will be measured at 90 % of the channelheight. In this area, the
most significant unsteady aerodynamic effects take place.

2.2.7. Aeroelastic Stability Equation in Modal Form
After deciding about the relevant modeshapes for the flutter analysis – which
is not necessarily a trivial task, but not discussed at the moment – the flutter
equation can be set up in the modal form. Placing (2.31) and (2.43) into (2.23)
and multiplying ΦH in front and neglecting structural damping, the flutter
equation in modal form reads

ΦH Mx Φu + ΦH Kx Φu − ΦH F̃(ω)u = 0
M̃ u + K̃ u − Q̃(ω) u = 0 .

(2.51)

The equation is only depending on the frequency of the oscillation. The
generalized displacement vector u ∈ Cn is the modal participation factor of
each modeshape with the total number of n modeshapes.

2.3. The Energy Method
The energy method (EM) or work-per-cycle method as described by Carta
[18], and later confirmed by Mikolajczak et al [21], is the classical approach
for numerical flutter analysis in turbomachinery. For small deflections inducing
a linear flow response, the onset of flutter is determined by the forced mo-
tion approach obtaining the pressure or force perturbations for an individual
modeshape at a fixed amplitude and fixed frequency.

2.3.1. Rationale of the Energy Method
The basic assumption is that aerodynamic forces have a neglectable influence on
the structural properties and eigenfrequencies. Looking at (2.51), if the entries
in Q̃ are very small compared to K̃, an eigenanalysis will always result in the
trivial solution of the corresponding vacuum frequencies and proper eigenvectors
u are isolated vacuum modeshapes. As a consequence, the structure is effectively
vibrating in vacuum [20, pp. 527-532]. The pressure fluctuations due to the
vibrations produce aerodynamic work that is transferring energy from the
structure into the fluid or vice versa. The stability is therefore assumed as
independent of the modal mass or respectively, the mass ratio of structure-to-air.
This neglects any aerodynamic coupling effects and the energy method is thus
sometimes also called an uncoupled or decoupled approach.
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2.3.2. Aerodynamic Work per Cycle
The aerodynamic work exerted per cycle period T at a surface patch η is

Wc,η =
∫ T

0
x(t) · f(t)dt . (2.52)

The physical displacement and its time-derivative is analogous to (2.29) and
the real part is resolved with the help of Re(z) = 1

2 (z + z) [47], so that for a
sinusoidal motion:

x(t) = Re(ϕ ejωt) = 1
2

(
ϕ ejωt − ϕ e−jωt

)
and (2.53)

x(t) = Re(jω ϕ ejωt) = 1
2jω

(
ϕ ejωt − ϕ e−jωt

)
. (2.54)

The aerodynamic forces are also assumed to be harmonic, so that

f(t) = f̃ ejωt . (2.55)

With ϕf̃ ∈ C3, (2.54) and (2.55) are introduced to (2.52):

Wc,η =
∫ T

0
Re
(
jωϕ ejωt

)
·
(
f̃ ejωt

)
dt

=
∫ T

0

1
2jω

(
ϕ ejωt − ϕ e−jωt

)
·
(
f̃ ejωt

)
dt

= 1
2jω

∫ T

0
ϕ · f̃ ej2ωt − ϕ · f̃dt

= −jπ
(
ϕ · f̃

)
= −jπ ϕH f̃ (2.56)

and summed up to the global work over all surface cells:

Wc = −
∑

η

Wc,η = −jπ
∑

η

ϕH
η f̃η . (2.57)

In analogy to power considerations in electrical engineering, the exerted work
over one period can be split in the real and reactive (imaginary) component [19].
Thus, the actual work exerted between structure and fluid is expressed in the
real part. The imaginary part is the energy shuffling over one period without an
effective outcome. A positive work entry (Re (Wc) > 0) indicates that energy is
transferred from the fluid into the structure and exciting the blade. Vice versa
(Re (Wc) < 0) the blade releases energy so that vibrations are damped.
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Note that the sum consists of the generalized aerodynamic force of the individual
surface cells, for detailed derivation see e.g. the work of May [19]. Therefore,
the energy method is effectively a subset of the GAF matrix in (2.45), being
one of the diagonal entries for the specified modeshape and frequency.

2.3.3. Logarithmic Decrement of Aerodynamic Damping
For a constant amplitude oscillation, the principle of energy conservation (sec-
tion 2.1.2) yields a constant shuffling between potential and kinetic energy, Epot

and Ekin respectively, that is quadratically proportional to the amplitude:

Ekin(t) + Epot(t) = 1
2mẋ

2(t) + 1
2kx

2(t) = Es,tot = const. (2.58)

The total structural energy Es,tot is equal to the maximum kinetic energy (at
the zero deflection point). This statement also holds true for the modal form of
the energy equation which is a practical way to express the structural energy
in this case. The maximum energy can be derived from (2.16) for a harmonic
motion with the generalized velocity as in (2.10).

Emax
kin = max

[
1
2 m̃ Re

(
u̇2(t)

) ]
= 1

2 m̃ max
[

Re
((
jω ejωt

)2) ]

= 1
2 m̃ max

[
Re
(

(jω (cosωt+ j sinωt))2
) ]

= 1
2 m̃ max

[
− ω2 sin2 ωt

]
= 1

2 m̃ ω2 (2.59)

Let the modal mass m̃0 be given at a reference amplitude x̂0 (typically so that
m̃0 = 1 kg m2). The amplitude of the current oscillation has the ratio of â
towards to the reference. Thus, the modal mass of the current oscillation is
m̃ = â2 m̃0 (cf. (2.46)).

Es,tot = Emax
kin = 1

2 m̃ ω2 = 1
2 m̃0 â

2 ω2 (2.60)

The real part of the aerodynamic work per cycle Re(Wc) is draining or feeding
energy into the structure, thus changing the total structural energy Es,tot. Thus,
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the structural energy is changed by the amount of aerodynamic work Re(Wc)
exerted over one period T . Its amplitude changes from

x(t) = â1x̂0 to (2.61)
x(t+ T ) = â2x̂0 . (2.62)

and the relation of the two amplitudes is

x(t)
x(t+ T ) = â1x̂0

â2x̂0
= â1
â2
. (2.63)

Expressing the ratio of structural energy between the two instances in time as

Es,tot

Es,tot + Re(Wc) =
1
2 m̃0 â

2
1 ω

2

1
2 m̃0 â2

2 ω
2 =

(
â1
â2

)2
, (2.64)

it can replace the amplitude ratio in (2.12):

Λ = ln x(t)
x(t+ T ) = ln â1

â2
= ln

√
Es,tot

Es,tot + Re(Wc) = 1
2 ln

(
Es,tot

Es,tot + Re(Wc)

)
(2.65)

Let assume, that the amount of aerodynamic work exerted is much smaller than
the structural energy Re(Wc) ≪ E0 and a linearization of the natural logarithm
is possible, so that

ln Es,tot

Es,tot + Re(Wc) = − ln Es,tot + Re(Wc)
Es,tot

= − ln
(

1 + Re(Wc)
Es,tot

)
≈ −Re(Wc)

Es,tot
. (2.66)

Finally, the logarithmic decrement of aerodynamic damping can be approximated
by entering (2.66) in (2.65):

Λ ≈ −1
2

Re(Wc)
Emax

kin

= Re(Wc)
m̃ ω2 . (2.67)

This definition of damping will be referred to in this thesis if not otherwise
noted.

Though the physical interpretation of the logarithmic decrement is not sound
when the initial assumption of Re(Wc) ≪ E0 is not met, it is a simple way to
non-dimensionalize the aerodynamic work and make it comparable. Thus, will
also be applied if the initial assumption is not true anymore.
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2.3.4. Local Excitation
In analogy to the definition of the global aerodynamic damping in (2.67), a
local equivalent can be given for each surface cell η by the local excitation

ϵη = Re(Wc,η)
2Emax

kin Aη
. (2.68)

The local excitation is given per unit area and accounts for the size of the surface
cell Aη. Note the sign change compared to the global damping. Positive values
mean that the corresponding part of the blade feeds energy into the structure
over one vibration period, thus supporting the motion and contributing to
an instability. Vice versa, negative values indicate areas where the motion is
suppressed. The local excitation may be useful from a designer’s point of view
or to understand the flutter mechanism.

By summing up all the local contributions, the global value of the aerodynamic
damping is given again:

Λ = −
∑

η

ϵηAη. (2.69)

2.4. Aerodynamic Coupling of Modeshapes
If the aerodynamic forces in (2.51) cannot be neglected, the flutter equation can
be treated as an aeroelastic eigenvalue problem. By using a frequency domain
method, the structural and aerodynamic parts can be treated separately and
combined later. Different methods exist that solve the linear flutter problem,
i.e. the “k method”, “p method”, “p-k method” or “g method” [20, 36, 48, 49,
31]. Each method has its own advantage/disadvantage and complexity in terms
of numerical implementation, or representation respectively approximation of
the physics. The chosen method for this thesis is the p-k method, that is the
most commonly used in today’s aircraft flutter analysis.

This section deals with the adaptation of the “classical” p-k method used in
fixed wings to turbomachinery usage. The name p-k method stems from the
definition of the eigenvalue p and the dependence of the GAF matrix on the
reduced frequency k [36]. However, a different definition will be followed in
this thesis. For the sake of convenience/form, it is still called the “p-k method”
throughout the remainder of the thesis, as the fundamental assumptions and
approach is the same.
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2.4.1. Aeroelastic Eigenvalue Problem
Stability Equation

The flutter equation in modal form – without damping as in (2.51) and intro-
ducing the generalized displacement u analogous to section 2.2.2 – becomes

λ2 M̃u+ K̃u− Q̃(λ)u = 0 . (2.70)

The aerodynamic responses are in general dependent on the eigenvalue λ. For
low damping, Hassig demonstrated that a good approximation of Q̃ can be
achieved if it is only depending on the reduced frequency [36]. As a consequence,
the p-k method in general is only valid for the special case of zero damping and
therefore in the vicinity of flutter onset. For highly damped or excited systems,
when strong flow nonlinearities are likely and higher vibration amplitudes occur,
an error has to be expected which can yield misleading results [30]. However, at
the point of zero damping, the p-k method is exact and can therefore be used
to predict a stability boundary. Thus, Q̃ ≈ Q̃(ω) and by reformulating (2.70),
so that

−λ2 M̃u =
(

K̃ − Q̃(ω)
)
u , (2.71)

the flutter equation is a general eigenvalue problem depending on the (angular)
frequency ω of the vibration, that yields a set of λ2

i = (−δi +jωi)2. As ω changes
with the eigenvalue, but influences the Q̃(ω), an iterative solution process is
required. The corresponding eigenvectors ui are the modal participation factors
of the considered vacuum modeshapes and describe the aeroelastic modeshape
(combination of vacuum modes).

In aeroelasticity of turbomachinery, the logarithmic decrement Λ is more com-
monly used to describe the damping characteristics. The stability equation
(2.70) yields the damping constant δ. As already described in section 2.3.3,
the definitions are only physical for underdamped systems. Nevertheless, they
represent a non-dimensionalized form of the damping or excitation and can
be used for comparison even if the system is not strictly underdamped. The
logarithmic decrement is converted from the damping constant with the relation
found in (2.12):

Λ = δ
2π
ω

(2.72)

Root of Eigenvalue to Extract Damping and Frequency

Beware that λ2
i yields an ambiguous solution for the frequency as the square root

has to be extracted. With de Moivre’s theorem [47] of n
√
z = n

√
|z| ej(φ/n+2 k π/n)
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where k = 0, . . . , n − 1 , the square root of the eigenvalue λ2 = r ej φ with
r, φ ∈ R is taken by √

λ2
i =

{√
r ej φ/2

√
r ej(φ/2+π) (2.73)

and thus

λi,± =
√

(−δi + jωi)2 =
{
λi,+ = −δi + jωi

λi,− = δi − jωi

. (2.74)

Only the square root with a positive imaginary part Im
(√

(−δi + jωi)2
)
> 0

is the one with a physical reason.

Physical Interpretation

The system’s degrees of freedom are the modeshapes with properties of the
modal mass m̃i and the modal stiffness k̃i, included in the diagonal matrices
M̃ and K̃, respectively. The GAF matrix Q̃ is fully populated. The diagonals
are the influence of each modeshape on itself. The off-diagonal terms are the
coupling terms of unsteady aerodynamic forces.

To get a better grasp of this, let us perform a thought experiment. One vacuum
modeshape starts to vibrate at its vacuum frequency and thus produces unsteady
aerodynamic forces which fills one column of Q̃. The other degrees of freedom
now see an excitation and respond with an individual amplitude. This amplitude
is majorly influenced by the (modal) mass of the responding oscillator. As the
stiffnesses combine, the frequency of the vibration is also changed. This will
induce a change in the unsteady aerodynamic forces from the first modeshape
and in return also a change in the amplitude of the responding modeshapes. The
lower the mass to be excited, the higher the responses are. For now, the other
modeshapes do not produce unsteady aerodynamic forces. So this example
continues, until a new equilibrium of frequency and amplitudes is achieved. If
we now allow aerodynamics for the other modes, they will also produce entries
in Q̃ and perform an excitation of the original and other modeshapes, becoming
a coupled system.

This interplay is included in the off-diagonals of Q̃(ω). It also becomes apparent,
that very small numbers in comparison to K̃ will have a neglectable outcome
on the eigenanalysis which is the rationale of the energy method described in
section 2.3.
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2.4.2. Solving the Flutter Equation
The variable qs is introduced into (2.71) as a scaling factor of the GAF matrix
for the purpose of mode tracking and as a convergence technique.

−λ2 M̃u =
(

K̃ − qs Q̃(σ, ω)
)
u (2.75)

In line with the linear theorem in Lane’s theory, it is assumed that modal
coupling only happens within the same inter-blade phase angle (resp. nodal
diameter). In the linear and harmonic system, forces exchanged between IBPAs
cancel out over one period and are therefore neglected. For clarity of this, the
IBPA has been added to the dependency of Q̃.

Differences Between Fixed Wing and Rotating Machinery

In the classical fixed wing analysis, the natural frequencies and modeshapes of the
structure remain unchanged throughout the flight envelope and independent of
the load case, although that might not be true anymore for highly flexible wings
[50, 51] (M. Zimmer, personal communication, DLR-Institute of Aeroelasticity,
2018-2019 ongoing discussion). The wing will ultimately start to flutter when
the flight speed becomes high enough. The strategy to solve the flutter equation
is straight forward by successively increasing the flight speed (and thus the
dynamic pressure) until flutter occurs. Depending on the flow condition, the
GAF matrix may be determined by (semi-)analytical equations [52] or via CFD,
the latter one especially if Mach and Reynolds number effects in compressible
flow play an important role [37, 38].

In turbomachinery, natural frequencies and modeshapes vary largely with
rotational speed (and sometimes also with the throttling state), so the physical
rationale in solving the flutter equation is a little different. As a consequence,
for each operating point the flutter equation needs to be solved individually.

The solution is only of interest, if the right proportion of modal mass, modal
stiffness and generalized aerodynamic forces is met. The process in getting
there may be achieved in such a way that implausible physics are used, as it
is only done for mode tracking purpose. From a mathematical point of view,
simply running qs = 0 . . . 1 is justified. Technically, the mass ratio is reduced
with increasing the factor qs, starting with infinite mass ratio at qs = 0, as
only vacuum modeshapes result. At qs = 1 the mass ratio used to calculate the
GAFs is matched.

Definition: Naming of the p-k method in this thesis. The eigenvalue in
Hassig’s paper has the sign p, in this thesis it is λ to avoid confusion with the
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variable for pressure. The reduced frequency k is not part of the GAF matrix
dependency for practical reasons. Thus, the formal name of the used method
here would need to be called λ-ω method. CFD solvers in turbomachinery will
require the angular frequency as an input in some form and the evaluation for
k is a mere pre-/post-processing step. Note that the flutter equation can be
expressed in order to depend on the reduced frequency if needed.

Mode Tracking

The solution of the flutter equation is an iterative process with an initial guess
for ω. The eigenanalysis yields n roots for the system, each contains a new ω
but only one of them is physically reasonable. The task will be to find, or track,
the “right” modeshape for the next iteration. For each mode to be tracked, the
iterative process is started from the beginning.

To decide which eigenvalue is selected, different methods exist. The simplest way
is to sort the eigenvalues by frequency and choose the index which corresponds
to the index of the tracked mode. In lightly coupled cases were frequencies
of the aeroelastic system are close to the in-vacuo structural frequencies, this
works very good. For strongly coupled systems with frequency coalescence or
frequency crossing, a modal assurance criterion (MAC) can be applied to sort
the resulting eigenvectors u compared to the previous iteration.

The complex MAC value when comparing two complex vectors u1 and u2 is
defined by [53]

MAC (u1, u2) =
∣∣uH

1 u2
∣∣2(

uH
1 u1

) (
uH

2 u2
) . (2.76)

If not explicitly stated otherwise, this criterion is used for mode tracking.

In special cases, it might not be sufficient enough as MAC values are close
together. A pole-weighted MAC value containing also the complex eigenvalues
λ1, λ2 can improve the identification [54]:

pw-MAC (λ1, u1, λ2, u2) =

( ∣∣uH
1 u2

∣∣∣∣λ1 + λ2
∣∣ +

∣∣uT
1 u2

∣∣
|λ1 + λ2|

)2

(
uH

1 u1
2 |Reλ1|

+
∣∣uT

1 u1
∣∣

2 |λ1|

)(
uH

2 u2
2 |Reλ2|

+
∣∣uT

2 u2
∣∣

2 |λ2|

)
(2.77)



2.4. Aerodynamic Coupling of Modeshapes 35

Vacuum mode shapes and
sampling frequencies

Create Q(σ, ω) for
all freq.

�

pr
ep

ω= ω i,vacuum

q = 0s 

Get Q(σ, ω)

Eigenanalysis  of flutter equation
2 -  Mu = (K - q ·Q(σ, ω))usλ

Mode tracking: Choose new ω*
  

ω

converged?

Set new ω based on ω*  

no

yesIncrease qs

q  ≥ qs s,max 
yes
no

Operating point: for each IBPA σ 

p-
k 

m
et

ho
d 

so
lv

er
 i
te

ra
ti

on

Choose vacuum mode i to track

Post-processing
(All vac. modes tracked?)

Figure 2.6.: Flowchart of p-k Method (adapted from [44, 45])

Definition: Aeroelastic Modeshape. The eigenvector u ∈ Cn combines the n
vacuum modeshapes of interest for a specific eigenvalue of the flutter equation.
The aeroelastic modeshape is thus a combination of amplitude and phase shift
between the fundamental degrees of freedom. Especially if only light coupling
between modeshape families occur, the associated vacuum modeshape is the
dominating contributor.

Definition: Aeroelastic Branch. An aeroelastic branch is the track of an
aeroelastic modeshape throughout the iterative solution. As the starting vacuum
modeshape is associated with the branch, the branch can be named accordingly,
e.g. “pitch branch” or “bending branch”.
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Workflow and Convergence Iteration of P-K Method

The procedure is depicted in fig. 2.6: We start with an initial guess of ω
(preferably the vacuum frequency of a modeshape) at qs,j=0 = 0 with the trivial
solution (vacuum modeshapes) and successively increase qs in an outer loop j:

qs,j+1 = qs,j +∆qs (2.78)

∆qs is a user choice, but will mostly depend on the gradient of

ω(qs,j+1) − ω(qs,j)
∆qs

. (2.79)

The loop is carried out until qs,max = 1, where the right proportion of structural
and aerodynamic forces is reached. A certain under- or overscaling (running qs

to a value other than 1) can be utilized for mass ratio effects as demonstrated
later.

In an inner loop k at each qs,j the equation (2.75) is solved iteratively: First,
the eigenvalue analysis is performed and next, the mode tracking procedure is
applied. The corresponding eigenvalue’s frequency is retrieved as ω∗

k+1:

ωk+1 = ωk + ϵ(ω∗
k+1 − ωk) (2.80)

Relaxation of ω∗
k+1 with a simple damping factor of ϵ = 0.7 proved to be

sufficient for most cases in order to stabilize the numerical solution. If not
otherwise noted, this factor is used throughout the thesis. The next inner loop
step k + 1 is now carried out with the new ωk+1 until convergence of ω, before
returning to the outer loop and further iterating qs.

These outer loop has to be applied for all aeroelastic branches i that should be
tracked, as depicted in fig. 2.7.

2.4.3. Physical Representation of Aeroelastic Modeshapes
The aeroelastic mode of an aeroelastic branch is the combination of struc-
tural modeshapes. The elements i of the complex eigenvector u =
(u1, . . . , ui, . . . , un)T from (2.75) contain the modal participation factor Γi and
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Figure 2.7.: Example for frequency and damping of the aeroelastic branches over
qs for a system with two structural DOF (adapted from [44, 45])

the phase φi. Analogous to (2.31), the aeroelastic modeshape ψ ∈ Cm is the
sum of all participating structural modeshapes.

ui = Γi (cosφi + j sinφi) (2.81)

ψ = Φu =
n∑

i=1
ϕi Γi (cosφi + j sinφi) (2.82)

The physical deflection at a given time is then the real part:

x(t) = Re
(
ψ (cosωt+ j sinωt)

)
(2.83)

2.5. Parameters in Coupled-Mode Flutter Analysis
2.5.1. Mass Ratio
The mass ratio µ is defined as

µ = mblade
ρ∞π(cb/2)2h

(2.84)

with mblade as the mass of the blade without the root or disk, the upstream
fluid density ρ∞, the chord length cb (in case of 3D blades, a reference chord
length) and the channel height h, see fig. 2.8a.
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The scaling factor qs in the flutter equation has a physical interpretation under
the premise, that changing the mass ratio µ does not change the vacuum
frequencies and modeshapes4.

Considering the existing Q̃ at a mass ratio of µ0 with m̃0, analogous to (2.46),
changing the mass ratio to µ1, the modal mass changes to m̃∗

1, with the relation

m̃∗
1 = â2m̃0 (2.85)

This means that, analogous to the relations in (2.46) and (2.47), the amplitude
of the modeshape would have to be the scaled by 1/â to get a modal mass of
1 for the new mass ration µ1. However, the absolute amplitude and thus the
modeshape ϕ0 is the same on both sides of (2.85). The fundamental definition
of the modal mass for a single DOF oscillation with the mass m, the material
density ρ and the volume V is

m̃ = ϕHmϕ = ϕHρV ϕ . (2.86)

Replacing the modal masses in (2.85) by this definition, it now reads

ϕH
0 ρ1 Vblade ϕ0 = â2ϕH

0 ρ0 Vblade ϕ0 . (2.87)

Eliminating left and right hand side equivalents, it can be derived:

ρ1 = â2 ρ0 (2.88)

The reduction to a single mass point is done for better understanding and
clarity. Note that this operation can be easily written for a system with multiple
mass points, resp. DOFs, as in a typical CSM model and still lead to the same
outcome. Setting the number of the mass points to k, the modal mass is the
sum of all individual elements i. Each element has the local displacements ϕi

of the considered modeshape, the mass mi, and the cell volume Vi, so that

m̃ =
k∑

i=1
ϕH

i miϕi = ϕH
i ρiViϕi . (2.89)

which can be put into (2.85) on both sides and the equivalents are eliminated
in the same manner, so that (2.88) results.

4Although this is not realistic in terms of actual structural dynamics, as changing the mass
has a direct influence on frequencies. For the sake of the purpose here – to demonstrate
the influence of aerodynamic modal coupling – it is usable as a technique.
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Figure 2.8.: Parameters in coupled-mode flutter analysis

The two mass ratios µ0 and µ1 are put in relation and then expanded with
(2.84). The blade mass is replaced by the definition mblade = ρVblade. The
relation becomes

µ0
µ1

= mblade,0/mair
mblade,1/mair

= ρ0
ρ1
. (2.90)

To scale the GAFs for the new µ1, the relation in (2.49) can be utilized.
Comparing it with (2.88) and (2.90), qs is the “ratio of mass ratio” or the
quadratic inverse of the scaling factor â:

Q̃
∣∣∣
µ1

= 1
â2 Q̃

∣∣∣
µ0

= qs Q̃
∣∣∣
µ0

(2.91)

qs = µ0
µ1

= ρ0
ρ1

= 1
â2 (2.92)

The Q̃ for a certain motion only has to be computed once (the reference modal
mass or mass ratio) and can then be transcribed to a certain qs (the target
mass ratio). From a physical perspective, the p-k iterations are running from
infinite mass of the blade until the target mass ratio is reached.

2.5.2. Solidity
The solidity s is a dimensionless description of the distance between two blades:

s = cb

τ
(2.93)
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with the chordlength cb and the blade pitch τ . As seen in fig. 2.8b, it does not
fully describe the spatial distance between two blades. A high stagger angle
β will cause the leading edge and trailing edge of two adjacent blades to be
close together. Nevertheless, the solidity leads to an impression about the ratio
of structure to air volume in the channel. A higher solidity causes stronger
aerodynamic disturbances on the adjacent blades.

From a designer’s point of view, lowering the solidity happens when the number
of blades in one stage is reduced but the same design space (inner/outer
diameters) is kept. Of course reducing the number of blades per stage is not
a trivial design aspect and also comes with a higher individual blade loading
when the same amount of pressure ratio shall be reached.

2.5.3. Frequency Separation and Distance
The frequency separation or frequency distance between modeshapes i and j is
only of interest within the same nodal diameter, as coupling can only happen
within a certain nodal diameter vibration pattern. Frequency separation in
absolute values alone is not a good indicator or suitable for comparison in
coupled-mode flutter analysis. The ratio of the involved structural modeshapes’
frequencies, e.g. fi and fj (where fi < fj) is also important:

fratio,separation = fj

fi
(2.94)

The closer the ratio is to 1, the higher the probabilities are for an aerodynamic
coupling. In literature, sometimes the relative frequency separation is used:

frel,separation = ∆fi,j

fi
= fj − fi

fi
(2.95)

For this ratio, the value needs to be close to 0 for higher probabilities of
aerodynamic coupling. Both ratios represent to same principle, but represent
different aspects.

A generic diagram of frequency over nodal diameter for three different modeshape
families is given in fig. 2.8c. In the given generic example, the second mode has a
low frequency distance towards the first mode for the lower nodal diameters and
with the third mode in the higher nodal diameters. However, close frequencies
are neither a necessary nor a sufficient condition for aerodynamic modal coupling
to take place. The GAF resulting from the vibration also need to meet the
right excitation patterns. Most likely to couple are modeshape combinations
with one bending and one torsional dominated mode (so-called bending-torsion
flutter).
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2.5.4. Normalized Logarithmic Decrement
To compare the energy method and p-k method for different mass ratios, the
logarithmic decrement at a mass ratio µi is normalized with the ratio of mass
ratio µi/µ0, analogous to (2.92), so that the energy method results retain the
value of the reference mass ratio µ0. This is done in order to show that a
drift away from the energy method results. When lowering the mass ratio,
the material density gets smaller. If the same physical amplitude of the mode
shapes is retained, the work per cycle stays the same in (2.67), but the modal
mass decreases. As a result, the absolute value of the logarithmic decrement
increases. To avoid this misleading impression of the system becoming more
stable, the damping values are normalized. Note that in the diagrams of the
aeroelastic branches, the logarithmic decrement is not normalized by this factor.





3
Numerical Approach

The numerical solvers and the fundamental concepts for coupling
between them is presented. As the different tools are exchanging
information and rely on information of the others, a numerical
toolchain for the aeroelastic computations has been implemented
and is briefly introduced.

3.1. Computational Fluid Dynamics
The TRACE (Turbomachinery Research Aerodynamic Computational Environ-
ment) code is a solver suite for internal flows especially in turbomachinery and
consists not only of a fluid solver but also integrates a great variety of pre- and
post-processing tools. It is developed and maintained at the DLR-Institute of
Propulsion Technology [55, 56] and used at several German universities as well
as MTU Aero Engines and Siemens. The version 9.1. of TRACE is used for all
computations shown in this thesis.

TRACE solves the compressible three-dimensional Navier-Stokes equations in a
rotating frame of reference [56] for multistage and multipassage setups in hybrid-
grid (structured/unstructured) setups, but also has efficient implementations
of reduced order setups. Unsteady simulations can be run via a nonlinear
time-marching solver, either with rigid, prescribed motion, or freely vibrating
blades. Fluid/structure coupling (FSC) resp. fluid/structure interaction (FSI)
is available via a modal approach [57, 58]. The modal dynamic equations are
integrated in time with a Newmark scheme and solved with the Newton method.
The coupling of flow and structure is performed with a serial Gauss-Seidel
scheme [59]. For reduced computational effort, frequency domain (FD) methods
included in TRACE are a time-linearized and a nonlinear harmonic balance
(HB) solver in the [60, 61, 62]. The time-linearized solver bases on a frozen eddy
viscosity approach, which is not sufficient in the transonic regime, when e.g.
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shock-induced flow separation occurs [63, 64]. Due to the mathematical basis of
the harmonic balance method, the unsteady perturbations of the turbulence are
included in the simulation if not explicitly deactivated. All presented results
from FD use the HB module, considering only the fundamental harmonic (1st)
with nine sampling points, a constant CFL number of 5 and the 0th harmonic
corresponding to mean flow coupling is activated.

TRACE implements a variety of turbulence models. All computations in this
thesis are carried out with the Wilcox k-ω turbulence model [65, 66]. Periodic
boundary conditions can be applied in the circumferential direction, so that
only one blade passage per rotor is needed in steady-state simulations. Only
the averaged values are exchanged at interfaces between two adjacent rows with
a mixing plane implementation. In contrast, unsteady computations require
the time-dependent exchange of physical variables. Thus, phase-lag boundary
conditions are available in TRACE which allow the setup to be restricted only
the one passage again [56].

At inlet and outlet boundaries, non-reflecting boundary conditions (NRBC) in
the formulations according to Giles can be applied [67]. There are mainly two
formulations (one-dimensional and two-dimensional), both of them are used
in this thesis for different purposes [68, 69, 70, 71, 72]: NRBC are strictly
only analytically defined in the frequency domain, but there are efforts to
translate the formulations into the time domain. The 1D variation neglects
some of the critical wave propagation, which reduces the physical validity in
some cases, if the inlet or outlet boundary is too close to the blades. However, it
is computationally cheap, which makes it attractive especially for time domain
simulations. The 2D formulation in the time domain is implemented via a Fourier
decomposition and relies on the knowledge of the fundamental frequencies in
the fluid flow. Otherwise, the solver has to assume the fundamental frequency,
but this task is not trivial and can quickly lead to unphysical behavior. This
can be circumvented by a preceding spectral analysis. On the downside of
this, if no fixed frequency is set in the simulation (as it is the case for a free
vibration with no a priori determinable vibration frequency), the computational
effort is extremely high because all possible frequencies down to the Nyquist
frequency have to be considered. For applications where actual statements
of the aerodynamics need to be made, it is almost paramount to use the 2D
formulation. In the course of this thesis, the frequency domain results shall be
verified against time domain simulations. In this special case, it is acceptable
to use the 1D variation in order to have the same physical interpretation of the
flow field in both domains. Once this verification is achieved and only frequency
domain methods are used thereafter for the validation, the 2D formulation is
applied.
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3.2. Computational Structural Mechanics
NASTRAN, an acronym for NASA Structural Analysis, is a finite element
analysis program originally developed for NASA and has since been integrated
into a number of different software packages, the most prominent by MSC
Software [73] is used in this thesis in the release version of 2017.

NASTRAN integrates many different structural analysis steps, internally called
“sequences”, including nonlinear static deformation and prestressed normal
mode analysis. Also included is a cyclic symmetry modalanalysis as described
in section 2.2.3. The finite element mesh in Nastran is capable of handling
hybrid-grids containing shell and volume elements with varying number of nodes
(e.g. triangle, quadrilateral, tetrahedron, or hexahedron) and also a variety of
non-volumetric elements (e.g. beams or rigid body elements) [74].

3.3. Aeroelastic Coupling
Aerodynamic loads and static deformations are a coupled problem and both
disciplines, aerodynamics and structural mechanics, have to be executed indi-
vidually. In the most usual case, the meshes in CFD and CSM do not share the
same nodes or cell surfaces, so when information between both solver has to be
exchanged, a mapping between the different meshes is needed.

Figure 3.1 shows the schematic of a static fluid/structure coupled process. The
loop starts with a CFD run and the surface loads are then mapped onto the CSM
mesh. The static structural deflections are applied to the CFD surfaces and a
mesh morphing algorithm is utilized to deform the volume mesh of CFD. The
loop starts again with a new CFD computation and is iterated until convergence
of static deformations and aerodynamics is reached.

In turbomachinery analysis, the CFD mesh is typically generated for an aero-
dynamic design point (“OP 0”), whereas the structural mesh has to be the
unloaded, or “cold”, geometry 5. Thus, the CSM deflections ∆xc→X from the
“cold” to the investigated “OP X” cannot be directly applied onto the CFD
surfaces. The offset ∆xc→0 of each CSM node between the “cold” and “OP0”
geometry has to be known. One way to address this, is the so-called “hot-to-cold”
transformation (as will be described below). As illustrated in fig. 3.2a, the
deflections ∆x0→X , that are to be mapped onto the CFD surface, are

∆x0→X = ∆xc→X −∆xc→0. (3.1)

5Unlike in fixed-wing analysis, where both meshes are typically generated from a so called
“jig-shape”, i.e. the manufacturing geometry from CAD data.
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Figure 3.1.: Static fluid structure coupling process

The actual transfer of the variables is performed by the surface mapping
algorithm in the TRACE suite [75].

For the mapping of the pressure loads onto the CSM mesh, the mapping
assignments have to be generated in the same deflection state of both meshes,
what can be done once at the “OP0” (where the CSM mesh is typically generated
from the CFD surfaces) and reused for all following coupled simulations. The
strategy is to find all overlapping CFD surface cells of each individual CSM
surface cell, see fig. 3.2b, and weighting factors are calculated on the overlap
percentage. This scheme works for both shell and volume elements on the FE
side. With this strategy, the same pressure distribution is transferred from
CFD to CSM, circumventing issues with cutting loads and moments as long as
sufficient mesh resolution is present on both sides.

The mesh morphing algorithm used in this thesis is based on radial basis function
interpolation [76, 77]. The tool RaBaDz implements the algorithm with specifics
for turbomachinery application [78].

3.4. Aeroelastic Toolchain
The required steps when running an aeroelastic analysis consist of a long line of
different tools, programs and heavy data processing in-between. To facilitate
all those steps, a toolchain called ATAC (A Toolchain for turbomachinery
Aeroelasticity Computations) was implemented [79]. ATAC incorporates the
complete steps from setup to computations and post-processing and analysis in
a unified environment. It is intended to control almost all computation steps
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with text-based input files and command line executes and removes the necessity
for the user to change and add program code.

The concept of the toolchain is presented in fig. 3.3. The common database
represents the geometry information and provides all the meshes, as well as
the coupling and mapping data. To initialize the toolchain, the user has to
provide data in a standardized input format. The basic CFD and CSM meshes
are first provided in a certain “running” shape, typically the peak efficiency
or aerodynamic design point (ADP). With this information, the so-called
“unrunning” or “hot-to-cold” procedure can be performed. It results in the
manufacturing or “cold” structural geometry [13, 80], which will be used in
later analysis. The mapping information as described in section 3.3 is gained
based on both running shapes and remains the same for all operating points.

Each steady-state operating point is saved in a standardized format and further
computations are triggered by the user as required or requested. The basic
workflow represents the typical aeroelastic analysis step by step:

1. Steady CFD/FSC: Based on the definition of an operating point, given
by inlet conditions, the rotational speed and outlet conditions, i.e. back
pressure or mass flow, the steady-state fluid solution is obtained. In case
a fluid/structure coupling is activated, the iteration process described in
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Figure 3.3.: Concept of aeroelastic toolchain ATAC

section 3.3 is run. As a result, the steady flowfield and the structural
deformations are stored in the database.

2. Modal analysis: The structural modeshapes and their corresponding
eigenfrequencies are obtained by prestressed normal mode analysis.

3. Flutter analysis:

• The flutter analysis (energy method or p-k method) requires a set of
unsteady CFD computations with forced motion.

• Each computation is based on a specific modeshape, frequency, IBPA,
and amplitude combination. The appropriate set of unsteady compu-
tations is generated from user input, either by using global values for
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a desired range (which is likely used in the first round of the analysis)
or by explicitly stating the parameters in a list (which is useful for a
more detailed study if necessary).

• All unsteady computations are stored in the database for further
evaluation.

All steps require the database to provide the aforementioned coupling and
mapping data for quick exchange of state variables (pressure, deflections, etc.)
on the boundary surfaces. Once the simulation part is done, both methods
(energy method and p-k method) are post-processing steps in terms of the whole
workflow. The post-processing tools are also integrated in the toolchain and
rely on the standardized storage which the simulation part produced.

In general, the solvers for fluid and structure are exchangeable as the whole
toolchain is object-oriented. For the results shown in this thesis, the solvers
described above – namely TRACE and NASTRAN – were fully integrated and
used.





4
Geometries and Test Cases

4.1. FUTURE-EPFL 2D Linear Cascade
The FUTURE-EPFL airfoil is taken from a rig setup of an existing non-rotating
annular compressor cascade, which was previously investigated experimentally
as well as numerically [81, 82, 83]. The geometry is sliced at mid-span (fig. 4.1)
and arranged as a linear cascade in a Q3D mesh (fig. 4.2), and will be called
“FUTURE-2D-LC”.

The structured CFD grid is wall-resolved with y+ < 1 and contains roughly
26 000 volume cells per passage. In the generic structural model as shown in
fig. 4.3, the elastic axis (E.A.) and the center of gravity (C.G.) are at the same
physical coordinates of 50% chord length. Thus, heave and pitch motions are
structurally decoupled and any coupling is solely aerodynamic. The spring
constants kh, kα, in combination with the mass and mass moment of inertia of
the blade, are trimmed to achieve desired natural frequencies and mass ratio of
structure-to-air.

Three flow conditions will be used later on, one subsonic and two transonic. For
all operating points, the total pressure and total temperature is identical, only
the inflow angle α0 and static back pressure is varied as listed in table 4.2 to
achieve the flow conditions which are shown in fig. 4.4. The transonic points
have a higher angle-of-attack than the subsonic point and both have a strong
shock on the suction side. The supersonic bubble is larger for the second
transonic case and the comparison between these two cases can be used for
sensitivity analysis regarding the non-linearity of the shock area. To get an
impression about the non-dimensional reduced frequencies, a selection is listed
in table 4.3.
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Table 4.1.: Parameters of the FUTURE-2D-LC Geometry
Airfoil FUTURE-EPFL annular com-

pressor
Blades N = 20 (in full wheel)
Chord length cb = 69 mm
Stagger angle LE-TE βS = 60◦

Pitch τ = 56.55 mm
Solidity s = cb/τ = 1.22

Table 4.2.: FUTURE-2D-LC Operating Points
Subsonic Transonic I Transonic II

Tt,0[K] 313.15 313.15 313.15
pt,0[kPa] 170 170 170
ρ0[kg m−3] 1.646 1.352 1.295
α0 62.2◦ 65.2◦ 65.2◦

Ma0 0.534 0.847 0.905
v0[m s−1] 184.2 281.0 297.6
p1[kPa] 145 131 128
α1 59.2◦ 60.3◦ 60.4◦

Ma1 0.472 0.601 0.624

Table 4.3.: FUTURE-2D-LC: Reduced frequency k for selected combinations
Vibration frequency f Subsonic Transonic I Transonic II
300 Hz 0.35 0.23 0.22
400 Hz 0.47 0.31 0.29
500 Hz 0.59 0.39 0.36
600 Hz 0.71 0.46 0.44
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Figure 4.1.: Test case “FUTURE-2D-LC”: 3D model of the non-rotating annular
cascade with the position of the extracted midspan slice
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Figure 4.2.: Test case “FUTURE-2D-LC”: CFD mesh of the single passage setup
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Figure 4.3.: Structural model of an individual blade in the FUTURE-2D-LC setup
[44, 45]

(a) Subsonic

(b) Transonic I (c) Transonic II

Figure 4.4.: FUTURE-2D-LC, Mach number in steady flowfields of selected oper-
ating points (adapted from [44, 45])
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4.2. NACA3506 2D Linear Cascade
The NACA3506 linear cascade is also based on the existing non-rotating annular
compressor cascade described for the FUTURE-2D-LC but with a different
blade geometry. The same procedure of extracting a mid-span slice is applied
and it will be referenced to as “NACA3506-2D-LC”. General parameters are
listed in table 4.4 and the geometry is equal to previous publications, see [25,
26, 84].

The structured CFD grid shown in fig. 4.5 is wall-resolved with y+ < 1 and
contains roughly 26 000 volume cells per passage. The same generic structural
model as in fig. 4.3 is used, only using another airfoil for the application of
forces and moments. Refer to the description in the previous section for the
implications on the spring constants and mass ratios.

Two flow conditions are chosen as shown in fig. 4.6, the total conditions at the
inlet are unchanged and the inflow angle and back pressure is varied to adjust to
the current flow condition. A listing of the flow conditions is given in table 4.5,
a selection of the reduced frequencies is listed in table 4.6.

Table 4.4.: Parameters of the NACA3506-2D-LC Geometry
Airfoil NACA3506 with rounded TE
Blades N = 20 (in full wheel)
Chord length cb = 77 mm
Stagger angle LE-TE βS = 40◦

Pitch τ = 56.55 mm
Solidity s = cb/τ = 1.362

Table 4.5.: NACA3506-2D-LC Operating Points
Subsonic Transonic

Tt,0[K] 313.15 313.15
pt,0[kPa] 170 170
ρ0[kg m−3] 1.583 1.302
α0 48.3◦ 51.3◦

Ma0 0.608 0.898
v0[m s−1] 208.1 295.6
p1[kPa] 145 135
α1 38.0◦ 38.6◦

Ma1 0.472 0.561
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Figure 4.5.: Test case “NACA3506-2D-LC”: CFD mesh of the single passage setup
(adapted from [85])

Table 4.6.: NACA3506-2D-LC: Reduced frequency k for selected combinations
Vibration frequency f Subsonic Transonic
100 Hz 0.07 0.05
150 Hz 0.11 0.08
200 Hz 0.14 0.10
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(a) Subsonic (b) Transonic

Figure 4.6.: NACA3506-2D-LC, Mach number in steady flowfields of selected
operating points (adapted from [86])
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4.3. CRISPmulti Fan Stage
The main objective in the future engine development is to reduce the noise
and to improve the efficiency. The most promising fan concepts are the geared
turbofan based on the significant noise reduction and the counter-rotating open
rotor due to the high propulsive efficiency. A possible compromise between
these both concepts could be a counter-rotating ducted fan, which merges the
advantages of both concepts. In the 90s, a common MTU-DLR research project
“CRISP” was dealing with the experimental investigation of a counter-rotating
integrated shrouded propfan [87, 57]. The project “CRISPmulti”, as illustrated
in fig. 4.7, is a multi-disciplinary effort to develop a highly efficient fan stage
regarding every participating discipline based on the initial results from the
earlier project [88, 89, 90]. Main design parameters are listed in table 4.7.

Besides the main goals of increased aerodynamic efficiency, reduced noise
emissions, and overall weight reduction, the design involved a new manufacturing
technique. Different from classical “onion skin configuration”, the blades are
stacked up in a flat plate, shaped by a hot press and the final aerodynamic surface
is milled [80]. The material used is a carbon fiber reinforced PEEK (Polyether
Ether Ketone) and very flexible compared to conventional geometries, resulting
in large static deformations across the compressor map [78], depicted in figs. 4.8
and 4.9. These large static deformations lead to significant changes in the
aerodynamic flowfield when compared to a classical turbomachinery assumption
of rigid blades which do not deflect under rotational and aerodynamic loads.
As a consequence, the static deformation cannot be neglected any more and
needs to be included in the numerical analysis of the aerodynamic, structural
mechanics and aeroelastic characteristics [78, 91].

The meshes used in numerical analysis are illustrated in fig. 4.10. In CFD, one
blade passage of one rotor consists of approx. 400 000 cells, with wall functions
used on every surface. The CSM mesh is a shell element configuration of 16 560
quad cells per blade which represent the local camberline with the respective
thickness of the local blade geometry. Due to their clamping, the blades are
structurally decoupled, thus nodal diameter influences on vibration frequencies
and modeshape appearances are neglectable. The CSM mesh has single-point
constraints on their mounting at the hub. The relevant properties for flutter
analysis were found to be in good accordance with more complex setups, i.e.
volume meshes and structural coupling between blades. The static deflections
of both rotors at each individual OP are gained through the iterative steady
FSC process described in section 3.4. Structural modeshapes are plotted in
fig. 4.11 for a selected OP. Their general appearance stays the same for all OPs,
especially the low integer bending and torsion allocation (1. bending, 2. bending,
1. torsion etc.). As a complex three-dimensional and twisted geometry, there
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Figure 4.7.: Illustration of the CRISPmulti fan stage

are no pure bending or torsion modeshapes. Throughout the compressor map,
this proportion of bending and torsion shifts for each individual modeshape, see
appendix A.4.1. The natural frequencies are affected by the rotational speed
and also, to a lesser extent, by the aerodynamic loading, see appendix A.3.1.
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Table 4.7.: CRISPmulti Design Parameters
Material CF-PEEK
Blades R1/R2* 10/12
Diameter 1 m
Total pressure ratio† 1.3
Corr. mass flow† 159 kg
Rotational speed† R1/R2 -5044‡ / 3982 min−1

Abs. inlet Mach number† 0.69 at tip
Rel. inlet Mach number† 1.06 at tip
Mass ratio µ of R1 between 50 and 70
Chordlength cb of R1 0.156 m at 90 % channelheight
* R1: first rotor, R2: second rotor
† At aerodynamic design point (ADP)
‡ Negative number indicates counter-clockwise rotation

(viewed from front)
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ADP

OP3
“WL“
ηmax

65%

75%

85%

95%

105%
n105e

n040z

Torsion R1: -2.5° -1.5° -0.5° 0.5° 1.5° 2.5°

Figure 4.8.: Compressor map of CRISPmulti with torsion at blade tip of first rotor
due to static deformation (relative to ADP); selected operating points are marked
with a circle
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Figure 4.9.: Maximum static deformation due to rotational and aerodynamic loads
of the CRISPmulti first rotor (relative to ADP)

(a) CFD full stage (b) CSM rotor 1

Figure 4.10.: Computation meshes of the CRISPmulti fan stage
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1 (1B) 2 (2B) 3 (1T) 4 (3B) 5 (2T)
f = 99.5 Hz 267.0 Hz 359.2 Hz 552.3 Hz 752.9 Hz
k = 0.23 0.62 0.84 1.29 1.75

6 7 8 9 10
f = 796.1 Hz 1026.5 Hz 1133.6 Hz 1254.5 Hz 1480.1 Hz
k = 1.86 2.39 2.64 2.92 3.45

Figure 4.11.: Vacuum modeshapes with frequency f and reduced frequency k of
CRISPmulti first rotor at 70% speedline (above WL, close to OP3)





5
Verification and Validation of the

P-K Method

Time-marching simulations with fluid/structure-coupling (FSC)
are performed for the two-dimensional cases FUTURE-2D-LC
and NACA3506-2D-AC, and for the 3D geometry of the CRISP-
multi rotor. Preliminary results of this investigation were al-
ready published by the author [86, 44, 45]. The results are
compared to frequency domain results with the energy method
and the p-k method. It is shown, that the p-k method is able to
predict the modal participation and damping/excitation due to
aerodynamic coupling as evaluated from time domain.
Experimental data for the presented cases was not available, thus
a more thorough analysis with time-marching CFD is performed.
The focus of this chapter is to verify and validate the results of
the p-k method at different flow conditions and geometries. An
interpretation from a physical point-of-view and extension of
parameters is part of the next chapter.

A distinction between verification and validation can be found in the “PMBOK
Guide” [92]:

• “Verification. The evaluation of whether or not a product, service, or
system complies with a regulation, requirement, specification, or imposed
condition. It is often an internal process. Contrast with validation.”

• “Validation. The assurance that a product, service, or system meets
the needs of the customer and other identified stakeholders. It often
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involves acceptance and suitability with external customers. Contrast
with verification.”

In the context of this thesis and especially of this chapter, this separation of
two aspects is important to keep in mind. It is often narrowed down into two
questions:

• Verification: “Are you building it right?”

• Validation: “Are you building the right thing?”

Transferred to the context of this thesis, the first question translates to whether
the mathematical concepts are implemented correctly and represent the phys-
ical rationale. The second question is the applicability to the use case, i.e.
turbomachinery aeroelasticity.

5.1. General Remarks on Time-Marching
Simulations

The majority of this section has been previously published by the author [86]. More
detailed equations are added and some additions for more background have been made.

Time-marching simulations with freely vibrating blades are carried out for the
different geometry test cases. The flow field is initialized by the steady-state
RANS solution. Structural degrees of freedom are the given modeshapes, which
differ with the investigated geometry. The appropriate stiffnesses are applied
to achieve the vacuum eigenfrequency of the respective modeshape. With this
given information, the modal FSI module of TRACE (cf. section 3.1) can be
started.

Various computations with different starting conditions of the structural me-
chanics have been computed separately. The chosen starting conditions vary
in the initial displacement and the initial velocity of the blades. Compared to
the steady-state solution, where all blades are fixed to the same deflection, this
approach adds an artificial discontinuity of the blade motions, which is desired
to introduce an unsteadiness into the flow field. In some of the early simulations
with no initial displacement or velocity a very large number of timesteps was
needed until enough structural energy was in the vibrating system so that the
displacements were clearly distinguishable from numerical noise or numerical
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artifacts 6. As shown later, this approach will introduce enough structural
energy so that a physical vibration is observable right away. Furthermore, by
forcing the blades into certain vibration patterns (e.g. IBPA, small or larger
amplitudes of all blades, or random starting conditions) the transition from a
stable towards an unstable IBPA can be observed.

The blades vibrate in the given modeshapes as degrees of freedom. Each
modeshapes has an individual so-called “modal displacement”. The logged time
history of modal displacements is used to extract the physical displacement
at any blade surface node. The physical displacement zLE(t) presented in the
studies is the distance of the leading edge at a given time t compared to the
resting position.

5.1.1. General Observations
A generic time history of physical displacements is given in fig. 5.1 with two
degrees of freedom, heave and pitch. This behavior is representative for all
performed computations: Depending on the starting condition (i.e. initial
deflection and/or velocity), some blades have a significantly higher energy level.
Especially if the blades are excited randomly, there is an initial phase with
a transient behavior of the blades, which is due to an uneven distribution of
energy in the cascade. The cascade shuffles energy in the cascade to achieve an
equilibrium energy distribution. During this process a distinct IBPA pattern is
formed. After this transient phase, a periodic phase sets in, where the blades
are vibrating harmonically in damped or excited oscillations.

Furthermore, the mean displacement of the blades are not equal to the resting
position as indicated by the envelopes and mean displacement. This phenomenon
can be separated from the coupled-mode flutter as described later and may be
attributed to a slight difference in the treatment of static loading when going
from steady to unsteady flow simulation and thus, not physical. The effect is not
investigated further, as it is not influencing the flutter investigation (which occur
at much higher frequencies). Nevertheless, the local mean displacement has to
be removed from any further evaluations to separate low and high frequency
oscillations.

6“Law” of very small fluid forces that cause very small displacement as a reaction. The
change in field variables can initially be so small that the numbers are too small even with
standard double precision, so it is merely distinguishable from numerical noise. However,
after very many timesteps the blades will start to vibrate in a physical pattern.
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Figure 5.1.: Generic time history of blade deflections in fluid/structure-coupled time-
marching simulations, evaluation of vibration frequency and logarithmic decrement
in harmonic part (adapted from [86])

5.1.2. Post-Processing the Time History of Deflections
From the peaks in the time history two splines are created, representing the
envelope limits in fig. 5.1 as a lower zenv,l and upper zenv,u, respectively. The
mean displacement is the average of both envelope splines. To get the to-
be-evaluated displacement z at a vibration peak time ti the envelopes are
utilized:

z(ti) = zraw(ti) − (zenv,l(ti) + zenv,u(ti)) /2 (5.1)

More sophisticated signal processing tools like high or low pass filters might be
used, but the described procedure is straight forward and turns out to deliver
reasonable data. The technique is applied on modal and physical displacements
before any further processing.

In the time history of blade displacements and once the excited system is
established (after the initial transient phase), the physical displacements z(t)
of each blade can be probed for the vibrational frequency from the period T
between two peaks at ti and ti+1. The logarithmic decrement between the two
peaks is defined as

Λ = ln
(
z(ti) / z(ti+1)

)
. (5.2)

The IBPA needs to be interpreted with the help of fig. 2.5 (order of peaks
from different blades). In the given example in fig. 5.2, the IBPA of −90◦ is
identified. The modal displacements show a participation of heave and pitch in
the resulting vibration pattern.
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Figure 5.2.: Detailed time history of physical and modal deflections of a four
passage setup (adapted from [86])

In addition, the envelope of the modal displacements z̃(t) are used in accordance
with (2.81) to calculate the modal participation factors Γ (confer to the example
in fig. 5.2):

Γh = z̃h/ (z̃h + z̃α) (5.3)
Γα = z̃α/ (z̃h + z̃α) (5.4)

The phase difference or phase lag between pitch and heave is evaluated from
the peaks of the modal displacements

∆φh→α = ∆tlag
T

360◦ (5.5)

∆φα→h = (T −∆tlag)
T

360◦ = 360◦
(

1 − ∆tlag
T

)
(5.6)
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so that it can be compared to the p-k results that are build via:

∆φh→α = φα − φh (5.7)
∆φα→h = φh − φα (5.8)

As there are many vibration periods within the evaluation time, the average is
build and a standard deviation can be calculated.

By rule, the phase lag can be converted accordingly:

∆φh→α = 360◦ −∆φα→h (5.9)
∆φα→h = 360◦ −∆φh→α (5.10)

5.1.3. Disclaimer on Used Non-Reflecting Boundary Conditions
Throughout this chapter, the unsteady non-reflecting boundary condition in the
one-dimensional formulation (NRBC-1D) is used. It is known to the author that
there are deficiencies in the representation of physical effects (cf. section 3.1).
Considering computational effort vs. physical representation and the premise
of this chapter, only the NRBC-1D allows for a direct comparability of results
from frequency and time domain computations on the same grid, where the
frequencies in the fluid flow cannot be determined in advances (non-synchronous
vibration with a free vibration frequency). The p-k method will be compared
with the time-marching simulations both using the NRBC-1D, the task in this
chapter is to verify that the frequency domain computations coupled with a
eigenvalue solution will deliver the same result as a comparable time domain
simulation.

5.2. FUTURE-2D-LC
The FUTURE-2D-LC is investigated at different operating conditions and
with different mass ratios. If not specifically noted otherwise, the vacuum
frequencies of the modeshapes are set to a heave frequency fh = 300 Hz and a
pitch frequency fα = 600 Hz.

Some of the results in this section are previously published by the author [44, 45]. More
detailed investigations and a wider parameter range is given here.
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5.2.1. GAF Matrix Generation
For all operating points, the GAF matrices Q̃(σ, ω) as introduced in (2.45) are
generated for heave ϕ1 and pitch ϕ2 for each individual IBPA. Aerodynamic
responses f1 and f2 for both mode shape vibrations are computed in the
frequency domain at a fixed amplitude of approx. 0.01 % chord length, and
for a set of discrete frequencies in the range from 250Hz up to 650Hz with an
increment of 25Hz.

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(a) σ = −72◦

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) σ = −90◦

Figure 5.3.: FUTURE-2D-LC, case “subsonic”: Generalized aerodynamic forces for
selected IBPAs

As an example, the resulting GAF matrix entries at the discrete frequencies
and their interpolation are plotted for two IBPAs of the operating condition
subsonic and two IBPAs of transonic I in figs. 5.3 and 5.4. It is noticeable, that
magnitude and phase of the GAFs are depending in the frequency as well as
the IBPA.
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ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(a) σ = −72◦

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) σ = 180◦

Figure 5.4.: FUTURE-2D-LC, case “transonic I”: Generalized aerodynamic forces
for selected IBPAs

No obvious conclusion about modal coupling can be deduced from the behavior
in this type of graph, but the quality of the interpolation method for the GAF
matrix can be assessed quickly. In this case, the number of sampling points for
a smooth spline appears to be high enough, even a higher increment for the
frequency samples might have been possible. However, as the setup is rather
small, a higher-than-necessary number of CFD computations is acceptable. The
determination of an optimal number of frequency samples is an interesting
aspect and needs to be addressed for computationally more expensive setups.
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5.2.2. Subsonic Operating Point with Frequency Separation
1:2

Time-Marching FSI

A four passage setup of the FUTURE-2D-LC geometry at subsonic flow with a
mass ratio of structure-to-air µ = 35.2 is investigated with time-marching FSI.
The blades are excited with small random initial deflections and velocities. The
structural energy and physical displacements are plotted in fig. 5.5.

µ = 35.2, nbl = 4 Final vibration IBPA: σ = −90◦

Physical displacements are measured at LE to resting position.

Figure 5.5.: FUTURE-2D-LC “subsonic”: Random initial deflections and velocities

In the initial phase, the energy decreases as the cascade transients from the
random starting conditions to a harmonic motion. During this phase, the
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structural energy decreases until a harmonic vibration sets in. At around
t = 0.01 s, the final vibration IBPA is already established, but the energy levels
of the blades are still not in equilibrium and large amounts of energy are shuffled
between the blades. During this phase, the structural energy in the cascade
reaches a plateau. At around t = 0.025 s, the total energy of all blades is rising
linearly already, but the blades itself still shuffle a larger but steadily decreasing
amount of energy between each other. After t = 0.04 s, the energy is almost
evenly distributed between the blades and all blades perform the same motion
just with a time-lag. A small variation around the linear increasing energy level
of each blade is visible, which can be compared to a nutation-like motion. This
behavior is typical for the time-marching FSI and may be attributed to small
nonlinearities in the flow. They have a negligible effect on the overall outcome
of the frequency, logarithmic decrement or modal participation factors. The
amplitudes continue to grow until finally reaching the capability of the mesh
deformation process and the simulation is aborted.

The blades do not move around the zero displacement axis as described in the
general remarks section 5.1, especially visible in the initial phase (t < 0.1 s).
This effect, which can be attributed to a small difference in load calculation
between steady and unsteady FSC algorithms and is thus a numerical artifact,
is also negligible as seen when amplitudes get bigger (t > 0.1 s).

Figure 5.6 shows the same setup, but the initial motion of the blades is set to a
specific IBPA of σ = 180◦. In the initial phase, the cascades vibrates with this
IBPA until around t = 0.03 s, the phase of the second blade is shifted. At this
point, the cascade transitions from a stable to an unstable IBPA. This behavior
is also typical for cascades vibrating in a stable IBPA, but another IBPA is
aerodynamically excited. The final vibration pattern is equivalent to the first
simulation, only that more wall time is required for the computation.

More computations with four and five blade passages are performed. The
mass ratio is varied and the structural model is always set a heave frequency
fh = 300 Hz and a pitch frequency fα = 600 Hz. In fig. 5.7, the computations
with the marker “a” are randomly excited starting conditions and the “b”-
marked computations have the final vibration IBPA as initial motion. Besides
the different initial transient phase, the final vibration is always the same for
the same model parameters. The four passage setup always vibrates with an
IBPA σ = −90◦, the five passages have an IBPA σ = −72◦. The marker “c”
are computations with no initial vibration set (“free release”) and the transient
phase is much longer. In the end, those computations establish the same excited
vibration pattern as the previous ones. The dependency of coupled-mode flutter
on the mass ratio is represented already in this diagram: the lower the mass
ratio, the higher the excitation becomes. Vice versa, the system is stable at
higher mass ratios.
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Comparison of Time-Marching FSI and P-K Method

Figure 5.8 plots various information of the p-k method solution process over
the scaling factor qscale (that can be translated to a certain mass ratio as
demonstrated in section 2.5.1) for the two IBPA of interest. The results from
the coupled simulations in time domain are plotted at the qscale corresponding
to the mass ratio.

Frequency and logarithmic decrement of the coupled-mode match very good.
Especially the transition from stable to unstable, depending on the mass ratio,
is in a very good agreement. The lower two graphs give information about the
shape of the coupled-mode system in terms of modal participation Γ and the
phase lag ∆φh→α between the pitch and heave mode. Only for the damped case
of four passages (σ = −90◦) the phase shift has a high standard deviation. This
is attributed to the fact that the coupled-mode vibration is not fully established
(as seen in fig. 5.5 between 0.01 s < t < 0.03 s) before the amplitudes become to
low and vanish into noise.
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µ = 35.2, nbl = 4 Final vibration IBPA: σ = −90◦

Physical displacements are measured at LE to resting position.
Displacements of blade 1 and 3 not shown on left graph.

Figure 5.6.: FUTURE-2D-LC “subsonic”: Starting condition equiv. to pitch
modeshape displacements with σ = 180◦
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(a) Four passages (b) Five passages

Figure 5.7.: FUTURE-2D-LC, case “subsonic”: Structural energy of various time-
domain FSC computations, markers: a) random initial deflections, b) initial motion
close to final pattern and high initial structural energy, c) no initial motion (“free
release”)
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Figure 5.8.: FUTURE-2D-LC, case “subsonic”: p-k solution history
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5.2.3. Subsonic Single-Mode Flutter vs. Low Frequency
Separation

If the p-k method is used considering only one modeshape, frequency changes
due to the added mass and damping effects are allowed, but only a single-mode
flutter case is considered. This is a sort of intermediate approach between
full modal coupling and the energy method. For this example, the frequency
separation is changed, by increasing the vacuum frequency of the heave mode
to 500Hz. The results are supported by time-marching FSC simulations at one
specific mass ratio.

The comparison between a single-mode analysis with frequency change and a
modal coupling analysis is shown in fig. 5.9. If only the pitch mode is considered,
the vibration frequency decreases with a lower mass ratio. However, in the
regime shown here, no flutter onset is observed. One could imagine, that the
frequency will decrease further for higher values of qscale (or: even lower mass
ratios) until finally the zero damping line is reached.

Considering modal coupling with the heave mode, the aeroelastic branch of
the pitch mode gets unstable much sooner than the single-mode analysis would
yield. If is interesting to mention, that the vibration frequency at flutter onset
of the coupled system is higher than the single-mode system.

This case points out, that the energy method is potentially non-conservative in
comparison to the a single-mode analysis with allowed frequency change, which
is non-conservative to a coupled-mode method.
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Figure 5.9.: FUTURE-2D-LC, case “subsonic” with fheave = 500 Hz and fpitch =
600 Hz: p-k solution history at σ = −90◦
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5.2.4. Operating Point Transonic I
Time-Marching FSI

A five passage setup with a mass ratio of structure to air µ = 44.4 is investigated
with time-marching FSI, the blades are excited with small random initial
deflections and velocities. The structural energy and physical displacements are
plotted in fig. 5.10.

µ = 44.4, nbl = 5 Final vibration IBPA: σ = −72◦

Physical displacements are measured at LE to resting position.

Figure 5.10.: FUTURE-2D-LC “transonic I”: Random initial deflections and veloci-
ties
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There is a transient phase at the beginning, comparable to the subsonic case.
Once the excited system is established (t ≈ 0.025 s), the amplitudes grow in a
linear fashion but the individual blades still shuffle energy between each other
until around t ≈ 0.075 s. The overall logarithmic decrement is steady (linear
line in logarithmic plot) until t ≈ 0.1 s and decreases thereafter. This is an
amplitude-dependent behavior. At around t = 0.2 s, the vibration turns into a
limit cycle oscillation. Thus, when comparing to the p-k method, the amplitude
in the frequency domain solver needs to be respected. The amplitudes set in
the FD solver to compute the entries of the GAF table are in the order that is
comparable to the time frame between 0.1 s < t < 0.2 s.

In fig. 5.11, more simulations with different mass ratios and number of passages
are depicted. The marker “a” indicates the random initial motion, marker “b”
starts with the now known IBPA pattern and “c” marks the computations
without initial excitation of the blades. As with the subsonic case, the influence
of mass ratio is directly visible: the lower the mass ratio, the higher the excitation.
Also comparable is the wobbling of the structural energy in a nutation-like
manor as described above (on this scale only implicitly visible because some
of the lines in fig. 5.11 are much broader then the reference line thickness in
the legend). Especially visible is the amplitude-dependent behavior for the five
passages setup at the lowest mass ratio µ = 42.9. The four passage setup always
vibrate with an IBPA σ = 180◦, the five passages have an IBPA σ = −72◦.

A special case is the five passage setup for µ = 45.9. The initial amplitudes at
the marker “b” are above the limit cycle level. The amplitudes decrease until
reaching the level of “a”. Computations with marker “d” and “e” show random
initial motions with a different level of structural energy. They all establish the
same pattern as already seen from “a”.

Comparison of Time-Marching FSI and P-K Method

Figures 5.12 and 5.13 plot the p-k method convergence over the scaling factor
qscale for the two IBPA of interest. The results from the coupled simulations in
time domain are plotted at the qscale corresponding to the mass ratio.

The modal parameters (frequency, logarithmic decrement, modal participation,
phase lag) differ slightly and are not meeting the p-k solution perfectly like in
the subsonic case. This can be expected as the transonic flow likely has small
nonlinearities not covered by the p-k method. Still, they are a very close match.
The transition from stable to unstable depending on the mass ratio is met very
good.
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(a) Four passages (b) Five passages

(c) Five passages, detail of (b)

Figure 5.11.: FUTURE-2D-LC, case “transonic I”: Structural energy of various
time-domain FSC computations, markers: a) random initial deflections, b) initial
motion close to final pattern and high initial structural energy, c) no initial motion
(“free release”), d and e) random initial deflectios at different level than a
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Figure 5.12.: FUTURE-2D-LC, case “transonic I”: p-k solution history
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Figure 5.13.: FUTURE-2D-LC, case “transonic I”: p-k solution history
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5.2.5. Operating Point Transonic II

(a) Four passages (b) Ten passages

Figure 5.14.: FUTURE-2D-LC, case “transonic II”: Structural energy of various
time-domain FSC computations, markers: a) random initial deflections, b) initial
motion close to final pattern and high initial structural energy, c) no initial motion
(“free release”)

Four and ten passage setups are investigated, even for a much higher mass ratio
then above. The structural energy and physical displacements are plotted in
fig. 5.14.

Markers “a”, “b” and “c” are again the random initial excitation, excitation in
final IBPA and no excitation at all, respectively. The results are of the same
quality as before. The ten passage setup falls to the IBPA σ = −108◦ and has
an aerodynamically excited coupled-mode at a significantly higher mass ratio
µ = 287.5 than known from the previous cases. For the mass ratio of µ = 70.7,
the excited system has the IBPA σ = −108◦.

Figure 5.15 compares the time-marching FSI and p-k method solution. In the
same quality as for the OP “transonic I”, the results do not perfectly match
but are still in good agreement.
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Figure 5.15.: FUTURE-2D-LC, case “transonic II”: p-k solution history
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5.3. NACA3506-2D-LC
The NACA3506 linear cascade is used to check geometry-dependent features of
the verification and validation process. This case is not as extensively investi-
gated as the FUTURE-EPFL geometry above, but leads to the same conclusion
when comparing time-marching FSC simulations with the p-k method.

The results of the time-marching FSC simulations are previously published by the author
[86]. In the article, it is shown that only the multi-mode coupled system leads to flutter
for the investigated parameters. In the scope of this thesis, only the validation and
verification between time-marching FSC simulations and the p-k method is performed.

5.3.1. Subsonic

(a) Random excitation at start (b) Starting with vibration close to final
pattern

Figure 5.16.: NACA3506-2D-LC, case “subsonic”: Total and individual blade
structural energy for same setup with different initial conditions

The blades have a much higher mass ratio than the FUTURE-2D-LC case. The
effect of this leads to longer time periods until the energy is evenly distributed
in the cascade and all blades perform the same vibrational pattern. This can
be seen in fig. 5.16. If initial deflections are chosen randomly, the cascade
starts to increase the structural energy relatively fast, but the individual blades
have a high deviation. If the starting conditions are chosen very close to the
expected result, the time until a uniform vibration pattern is formed is relatively
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short. The initial transient phase is virtually non-existent and amplitudes grow
right away with the already established vibration pattern. This reflects in the
standard deviation of the modal parameters.

The four passage blade setup results in the IBPA σ = −90◦ and the five passage
setup with the IBPA σ = −72◦. The comparison is in fig. 5.17 plots the p-k
solution convergence of these IBPAs and the results agree very good. The high
standard deviation of the randomly excited case is visible, but also that the
averaged value is already in good agreement with the p-k method.

5.3.2. Transonic
The four passage blade setup results in the IBPA σ = 180◦ and the five passage
setup with the IBPA σ = −72◦. The comparison is fig. 5.18 plots the p-k
solution convergence of these IBPAs. As for the FUTURE-2D-LC case, there
are slight differences between time-marching simulations and the p-k method,
especially in the phase-shift between heave and pitch mode. Still, the results
are very close agreement and predict the excited cases correctly.
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Figure 5.17.: NACA3506-2D-LC, case “subsonic”: p-k solution history
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Figure 5.18.: NACA3506-2D-LC, case “transonic”: p-k solution history
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5.4. CRISPmulti
The CRISPmulti geometry is subject to a deeper analysis later. In the context
of this chapter, time-marching FSC simulations for the isolated first rotor are
compared to results from the p-k method. As a full 3D setup, especially the
time-marching computations are much more demanding in terms of CPU time.
Therefore, only one particular operating point at the 70% speedline above the
working line (WL) is investigated. As will be shown later, this OP is predicted
to be stable with the energy method, but the p-k analysis shows a flutter onset.
This behavior is verified with the time-marching FSC simulations.

The phase difference in the modal participation is build in analogy to sec-
tion 5.1.2, where ∆tlag is the time between the peaks of modeshape i and
modeshape j:

∆φi→j = ∆tlag
T

360◦ (5.11)

∆φj→i = (T −∆tlag)
T

360◦ = 360◦
(

1 − ∆tlag
T

)
(5.12)

and also in analogy are the p-k results build via:

∆φi→j = φj − φi (5.13)
∆φj→i = φi − φj (5.14)

and the conversion is accordingly:

∆φi→j = 360◦ −∆φj→i (5.15)
∆φj→i = 360◦ −∆φi→j (5.16)

5.4.1. Time-Marching FSC Simulations
For the selected OP, two different setups are chosen. Both setups include the
three modeshapes with the lowest frequency: first bending (1B), second bending
(2B), and first torsion (1T), as depicted in fig. 4.11. The first setup consists of
two passages allowing the two IBPAs 0◦ and 180◦. The second setup has five
passages, allowing the five IBPAs 0◦, ±72◦, and ±144◦.

Two Passages

The two passage setup is started with no initial structural deflections (fig. 5.19a).
As the steady flowfield is released to unsteady simulations, there is a small but
relevant flow disturbance. It stems from small unsteadiness, which was not
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fully resolvable in the steady CFD. While this could be artificially damped in
the numerics, it is useful to get some initial energy into the system. Due to
this artifact, the mean modal force changes a little bit, what then causes both
blades to adjust their static deflection slightly. Interestingly, the two blades
perform different deflections in reaction to this, visible through the different
energy level for t < 0.2 s. After that initial phase, both blades transition to a
harmonic vibration and at around t ≈ 0.3 s the final vibration IBPA σ = 0◦

is reached. The structure then continues to increase amplitudes with a stable
logarithmic decrement.

The simulations are is restarted with higher, but random initial deflections
(fig. 5.19b). The small flow disturbance when going from steady to unsteady is
now not significant anymore. The cascade transitions relatively fast to the final
vibration pattern known from the first simulation. At high amplitudes around
t ≈ 1.2 s, a limit cycle oscillation (LCO) is reached.

Five Passages

The first computation of the five passage setup is started with the first torsion
(1T) at an IBPA σ = 0◦ (fig. 5.20a). The vibration couples with the other
modeshapes but stays at this IBPA and increases amplitudes (starting at
t ≈ 0.05 s). At t ≈ 0.2 s, the IBPA pattern transitions to σ = 72◦, which causes
the blades to have largely differing amplitudes. The computation was stopped
at around t ≈ 0.9 s because of large and unfavorable deflections which could
not be handled by the mesh deformation algorithm anymore. Thus, a shift to a
fully established pattern of σ = 72◦ cannot be observed.

The second simulation is now started with the initial IBPA changed to σ = 72◦

(fig. 5.20b). Opposing to the two passages setup, the system does not just
rapidly transition into a harmonic vibration pattern. The cause to this behavior
is not really obvious, but might be due suddenly introduced unsteadiness when
the initial deflections disturb the flowfield. The blades now equalize the energy
distribution between them, but cannot reach a strict harmonic pattern as for
the two passage setup. Nevertheless, the sum of the individual blade structural
energy grows exponentially as in a linearly excited system. This will be the
cause for a high standard deviation in the next section.

5.4.2. P-K Analysis
The p-k convergence plot for both IBPAs, which resulted in the time-marching
FSC computations, are plotted in figs. 5.21 and 5.22. The vibration characteris-
tics (frequency, damping, modal participation) is marked by the triangles in
the respective plot. The phase shift between the modeshapes is relative to the
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dominant vacuum modeshape 1T (phase angle of the respective modeshape,
when 1T is at 0◦).

For the two passage setup, the resulting IBPA σ = 0◦ shows good agreement
in the prediction of the frequency and modal participation of the dominant
vacuum modeshapes 1T (major) and 1B (minor). The participation of 2B has
some errors in the phase shift, but looking at it globally, the values are not that
far off. A similar observation can be made for the IBPA σ = 72◦.

The logarithmic decrement Λ is not predicted exactly. This is not concerning,
as the p-k method is only accurate at the zero damping line. A little below or
above, the frequency domain (p-k) values can thus differ from the time-marching
(FSC) simulations. The important part is that the flutter onset is captured.

The five passage setup allows for both unstable IBPAs shown here, with σ = 72◦

having a slightly higher excitation. The behavior shown in fig. 5.20a actually
shows, that the structure will tend to vibrate in the IBPA with this higher
excitation.
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(a) Low initial structural energy, simula-
tion terminated by choice before reaching
LCO

(b) High initial structural energy, cas-
cade runs into LCO

Figure 5.19.: CRISPmulti, n = 70 % above WL: Total and individual blade
structural energy for setup with 2 passages, final vibration IBPA is σ = 0◦ in both
cases

(a) Initial deflections close to IBPA σ =
0◦, cascade transitions to σ = 72◦

(b) Initial deflections close to final IBPA
pattern σ = 72◦

Figure 5.20.: CRISPmulti, n = 70 % above WL: Total and individual blade
structural energy for setup with 5 passages
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Figure 5.21.: CRISPmulti, n = 70 % above WL, 2 passages, σ = 0◦: p-k solution
history
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Figure 5.22.: CRISPmulti, n = 70 % above WL, 5 passages, σ = 72◦: p-k solution
history
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5.5. Mode Tracking Strategies
5.5.1. Mode Crossing
The eigenvalue analysis of the flutter equation requires the identification of
the physically reasonable eigenvalue and eigenvector results of the aeroelastic
branch (cf. section 2.4.2). As mentioned, the mode identification can be done
with simple frequency sorting and assignment in lightly coupled cases. However,
neglecting the path of the aeroelastic branch along the qscale-axis of the p-k
solution can lead to misleading results.

In fig. 5.23, the tracking via frequency sorting and via MAC matching is
compared. Starting at the vacuum frequencies fheave = 300 Hz and fpitch =
600 Hz, each branch yields two solutions of the eigenanalysis, marked by the
same color. The solid lines mark the tracked mode, the dashed lines are the
unphysical solution that is discarded based on the tracking. For values of
qscale < 4, one solution is the obvious physical solution as it is close to the
vacuum frequency. Slightly over qscale = 6, a kind of bifurcation occurs. The
frequency tracking will lead to a jump in the damping and modal participation
for qscale > 6. In contrast, when MAC tracking is applied, these values continue
smoothly on their previous track.

This behavior can be called “mode crossing” and is easily trackable by the
MAC value as shown. Important to note is that the switch to a unphysical
track results in a very high damping value as opposed to the MAC tracking,
which will predict a flutter onset at qscale ≈ 6.5. Furthermore, the tracks of the
heave mode (red) after the bifurcation are not simply swapped when frequency
tracking is used. Almost not visible, they differ very slightly. This happens
because the eigenanalysis depends on the GAFs corresponding to the given
vibration frequency.

5.5.2. Frequency Coalescence
Jumping between mode tracks of the aeroelastic branches may occur in the case
of frequency coalescence, when two (or more) aeroelastic branches are converging
their frequency. At the same time, the eigenvectors (or modal participation)
also converge to each other.

Figure 5.24a shows the MAC tracking strategy only yields one result for qscale >
1.25. This happens because the modal participation factor is nearly the same,
showing the disadvantages of a criterion that only compares the eigenvectors for
sorting and assigning. The pw-MAC (cf. section 2.4.2) allows a correct tracking
of the two aeroelastic branches even when eigenvectors are very similar and
hard to distinguish: in fig. 5.24b, the vibration frequency are coalescing without
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Figure 5.23.: Mode tracking via frequency or MAC sort (case: FUTURE-2D-LC,
transonic I, σ = −144◦, fheave = 300 Hz, fpitch = 600 Hz)
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converging and separate afterward. The tracks of the two aeroelastic branches
appear much smoother from a visual and physical interpretation. As with the
previous case, the jump is unfavorable since it discards the flutter onset that
occurs at qscale ≈ 1.4 if the lower path would be tracked.
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Figure 5.24.: Mode tracking strategies with MAC and pw-MAC method (case:
FUTURE-2D-LC, transonic I, σ = −108◦, fheave = 300 Hz, fpitch = 400 Hz)

The behavior of the MAC tracking in this case depends on the increment ∆qscale.
If the increment is smaller as shown in fig. 5.24c, the MAC tracking yields the
same result as the pw-MAC tracking. The disadvantage of this method is the
higher computational effort. An adaptive increment size would improve on this
matter and is part of the future extension plans for the p-k solver toolchain.
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5.6. Summary
For all time-marching fluid/structure-coupled simulations with growing am-
plitudes, it can be observed that once the excited system is established, the
amplitudes increase until either the mesh deformation process cannot handle
the large deflections anymore or an amplitude-dependent aerodynamic response
occurs and a limit cycle oscillations is formed. As no fixed IBPA is set in the
simulations, the phase shift between the blades is of natural occurrence in the
coupled system.

Regardless of the initial condition, i.e. modal displacements and velocities of the
cascade at t = 0, if an unstable combination of modeshape and IBPA is present
in the system, the cascade will ultimately vibrate in this pattern. Furthermore,
the system vibrates in one dominant IBPA pattern, even if multiple IBPAs have
an aeroelastically coupled instability. Ultimately, the dominant IBPA is the
one with the highest excitation, as can be observed e.g. in fig. 5.22. This shows
from a practical point of view, that the coupled-mode analysis per individual
IBPA is justified.





6
Aerodynamically Coupled

Modeshapes in a Linear Compressor
Cascade

A deeper analysis with varying key parameters is performed for
the FUTURE-2D-LC cascade. The influence of the mass ratio is
already shown in the previous chapter, but will now be discussed
in detail. Furthermore, the frequency separation and solidity
changes are discussed. In the validation chapter, only selected
IBPA-combinations were looked at. In this chapter, the survey
is extended to the full spectrum of IBPAs and analyzed as a
whole.
Flutter is a geometry-dependent phenomenon and discrete values
for mass ratio or other key parameters are always connected to
the investigated geometry. Nevertheless, the tendencies might
be the same for similar structures (i.e. turbomachinery blades),
but specific numbers may vary a lot.

The fundamental findings from preliminary research were already published by the
author [93]. More detailed and deeper analyses are performed in the scope of this
thesis.

Table 6.1.: “Baseline” Configuration of the FUTURE-2D-LC Geometry
Vacuum Frequency Heave fheave = 300 Hz
Vacuum Frequency Pitch fpitch = 600 Hz
Rotation Axis 50% chordlength
Pitch τ = 56.55 mm
Solidity s = cb/τ = 1.22
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Table 6.2.: Solidity Variation of the FUTURE-2D-LC Geometry
Variation +20 % baseline −20 % −40 %
Solidity s = cb/τ = 1.36 1.22 1.02 0.87
Pitch τ = 50.90 mm 56.55 mm 67.86 mm 79.17 mm

6.1. General Remarks
The CFD simulations in this chapter are now only carried out in the frequency
domain using the harmonic balance solver. In contrast to the validation section,
the two-dimensional unsteady non-reflecting boundary conditions are applied.
The “baseline” is listed in table 6.1, the variations in solidity in table 6.2.

With the energy method, the aeroelastic behavior is not affected qualitatively
when changing the mass ratio as described in section 2.5.4. To avoid misleading
results in the energy method due to mass ratio effects, the aerodynamic damping
in the traveling wave mode diagrams (damping-over-IBPA) in this chapter is
normalized using the mass ratio. As a consequence, the normalized logarithmic
decrement is independent of mass ratio and only plotted once for the energy
method results.

6.2. Subsonic Operating Point
6.2.1. Influence of Mass Ratio and Frequency Separation
For the “baseline” configuration, the damping diagram comparing EM and p-k
method at different mass ratios is plotted in fig. 6.1. At the highest shown mass
ratio µ0 = 226, the damping according to the p-k method stays close to the
EM results, although a slight frequency shift is already visible for the second
aeroelastic branch. An outlier is the IBPA σ = −72◦ of this second aeroelastic
branch, which will be discussed later. Lowering the mass ratios increases the
coupling effects and lead to a drift away from the EM for both branches. Some
IBPAs are affected stronger than others. Again, the IBPA σ = −72◦ strikes out
with a big shift in damping from a very stable point to almost becoming the
point with the highest excitation at the lowest mass ratio. Interestingly, the
IBPAs with the lowest damping values in the EM are the ones that become
unstable (branch 2 at negative IBPAs), while in contrast the highest damped
values become more stable (branch 1 at negative IBPAs and branch 2 at positive
IBPAs). The aeroelastic modeshape for this case changes mainly in terms of the
modal participation while the phase lag between heave and pitch stays almost
unaffected by the mass ratio.
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By moving the vacuum frequency of the heave motion closer to the frequency
of the pitch, the destabilization effect due to a lowered mass ratio increases
as shown in fig. 6.2. More IBPAs become unstable at a higher mass ratio
now, even if the aeroelastic frequencies are not shifted in the same significance.
Figure 6.3 has an even lower frequency separation and the trend continues. In
this case, there is also a frequency coalescence of both branches at the IBPA
σ = 126◦, but the two branches have different aerodampings. Between this and
the next higher IBPA σ = 144◦, a crossover of the aerodamping occurs. While
the aeroelastic frequencies of the branches diverge again, the aerodampings
might be interpreted as wrongly sorted. However, as the IBPAs are periodic,
this would connect the branches to the opponent in the negative IBPA range.
The coalescence character of the high modal coupling becomes also apparent
when looking at the manifestation of both aeroelastic modeshapes. For the
mentioned IBPAs, both modeshapes have almost the same modal participation
and a similar picture as with the aerodamping can be found for the phase lag.
Most important is the correct tracking of the physical aeroelastic modeshapes
along the qscale convergence iterations.
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Figure 6.1.: Frequency separation 1:2, FUTURE-LC-2D, case “subsonic”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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Figure 6.2.: Frequency separation 2:3, FUTURE-LC-2D, case “subsonic”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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Figure 6.3.: Frequency separation 5:6, FUTURE-LC-2D, case “subsonic”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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6.2.2. Aerodynamic Resonance and Effect on Modal Coupling
Figure 6.4a plots the generalized aerodynamic forces over the frequency with
the default sampling rate. Apparently, there are some sort of aerodynamic
resonance phenomena around f ≈ 450 Hz and f ≈ 525 Hz. When using a refined
sampling rate around these two points, fig. 6.4b shows a much smoother track.
A similar phenomenon is visible at another IBPA in fig. 6.5. Other IBPAs have
a more smooth curve and do not show such large resonance points. Some of
these refinements will have a huge impact on the outcome of the p-k analysis.

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(a) Coarse frequency sampling rate

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) Refined sampling rate

Figure 6.4.: FUTURE-2D-LC, case “subsonic”, IBPA σ = −54◦: Generalized
aerodynamic forces around resonance condition with different frequency sampling
rates

Figure 6.6a shows the larger frequency separation, where the natural frequency
of the heave mode is far away from the resonance points and only the pitch
branch is affected by the different sampling rates. If only the coarse frequency
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(a) Coarse frequency sampling rate
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ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) Refined sampling rate

Figure 6.5.: FUTURE-2D-LC, case “subsonic”, IBPA σ = −72◦: Generalized
aerodynamic forces around resonance condition with different frequency sampling
rates

sampling rate is used, the pitch branch has a smooth track along the qscale.
With the better resolved aerodynamic resonance, a frequency and damping
jump occurs at qscale ≈ 5.5. This unsteadiness is not an artifact of the p-k
method convergence but also happens if the ∆qscale is refined. It occurs in
close vicinity to the resonance’s peak frequency. Once the modal coupling
shifts the aeroelastic frequency from one side to other of this peak, a sudden
change in aeroelastic behavior results. Even before that, minor differences
are already visible. The result is a non-conservative damping prediction for a
coarser resolution of the GAFs. However, the damping in the investigated range
does not drop below zero.
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A more severe impact can be seen in fig. 6.6b, where the natural frequency of
the heave mode is very close to one of the resonance points. Due to the lower
frequency separation, the pitch branch gets unstable earlier. A similar behavior
of the pitch branch as discussed above is observed when the refined GAFs are
used. In this case, the pitch branch becomes unstable at qscale ≈ 6, compared
to the coarse resolution where the zero damping is reached at qscale ≈ 7. The
heave branch diverges between coarse and refined frequency sampling already
at around qscale ≈ 2 and finally a huge difference in its character occurs at
qscale ≈ 6.

For the IBPA σ = −72◦, the peak of the resonance is almost at the vacuum
frequency of the pitch modeshape. As the aeroelastic frequency is always lower
than the vacuum frequency, there is no transition from one side to the other of
this peak and thus, no unsteadiness in the p-k solution. Some minor difference
can be seen in fig. 6.5 for the low qs values. However, the impact on the
aeroelastic frequency and aerodamping is neglectable.
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Figure 6.6.: FUTURE-2D-LC, case “subsonic”, IBPA σ = −54◦: p-k solution
histories at two different frequency separations with different frequency sampling
rates
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Figure 6.7.: FUTURE-2D-LC, case “subsonic”, IBPA σ = −72◦: p-k solution
histories at two different frequency separations with different frequency sampling
rates (where the orange/purple lines are not visible, they are hidden behind the
red/blue lines)
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6.2.3. Influence of Solidity
The extension of section 6.2.1 is the application to different blade-to-blade
distances. The solidity is the inverted non-dimensional blade-to-blade distance
and thus a higher solidity means, that the blades are closer together. This
increases the impact of blade-to-blade effects, which are most pronounced at
IBPAs unequal to zero.

Figures 6.8 and 6.9 shows the incremental change of the solidity and frequency
separation listed in table 6.2. At first glance, increasing the solidity leads
to flutter at higher mass ratios. The highest mass ratios are indeed almost
equivalent to the energy method. At higher solidities, the previously observed
trend is confirmed: the least stable IBPAs become unstable, and in contrast, the
most stable IBPAs are increased in stability. Very clearly visible is an outlier
at s = 0.87 and IBPA σ = 36◦ with a very high damping compared to the
surrounding IBPAs. This is also due to an aerodynamic resonance point like
shown above. The vacuum frequency is very close to the resonance peak. In
contrast to the previously presented case, this resonance is acting as a dampening
factor, producing the spike in aerodamping. The aeroelastic frequency is shifted
away from this resonance point at lower mass ratios. Therefore, the impact
is more pronounced (happening at higher mass ratios) for the higher modal
coupling strength at lower frequency separations.
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Figure 6.8.: FUTURE-LC-2D, case “subsonic”: Normalized aerodamping of second
aeroelastic modeshape depending on mass ratio, frequency separation, and solidity
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Figure 6.9.: FUTURE-LC-2D, case “subsonic”: Normalized aerodamping of second
aeroelastic modeshape depending on mass ratio, frequency separation, and solidity
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6.3. Transonic Operating Point
6.3.1. Influence of Mass Ratio and Frequency Separation
Going from high to lower frequency separation in figs. 6.10 to 6.12, a lower
mass ratio or a lower frequency separation leads to a higher coupling strength
when looking at the modal participation factor. So far, this finding is in line
with the subsonic operating point. At the same frequency separation, with a
lower mass ratio, the drift away from the energy method’s results is also in line
with the above results. Between different frequency separations and for the
high positive and negative IBPAs, the damping values of the intermediate mass
ratio of µ = 68 see a higher drift for lower separations. This is especially good
visible for the heave branch at the positive IBPAs. To some extend, this is also
true for the lower IBPAs, but the situation gets more complicate here.

A closer look actually reveals a lower level of excitation in the critical IBPAs with
a lower frequency separation. While the highest damping of the pitch branch
around the IBPA σ = 126◦ is almost unaffected by the change of the heave
vacuum frequency, the area of highest excitation around the IBPA σ = −72◦

shifts upwards in the diagram with lower frequency separation. For the lowest
separation, the most excited IBPA shifts to σ = −90◦. Lowering the frequency
separation for σ = −90◦ also results in a higher excitation, so this is again
in line with the findings from the subsonic operating point. The effect seen
for the IBPA σ = −72◦ can be attributed to the two factors: the mode and
frequency coalescence and the occurrence of an aerodynamic resonance. This
will be addressed in the next subsection.
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Figure 6.10.: Frequency separation 1:2, FUTURE-LC-2D, case “transonic I”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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Figure 6.11.: Frequency separation 2:3, FUTURE-LC-2D, case “transonic I”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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fheave = 500 Hz, fpitch = 600 Hz

Λ
 ∙ 

µ/
µ

  
i

0

σ σ

Heave (EM)
Pitch (EM)

µ =275 0
µ =68 1
µ =442

1 2Branch:

Γ ∆
φ

→
α

σ σ

Figure 6.12.: Frequency separation 5:6, FUTURE-LC-2D, case “transonic I”, solidity
s = 1.22: Traveling wave diagram compared between EM and p-k for varying mass
ratio
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6.3.2. Aerodynamic Resonance and Effect on Modal Coupling
Figure 6.13 depicts the GAFs for a specific IBPA with different sampling rates
in the vicinity of the resonance peak. To exclude nonlinear effects that would
not be resolved by the harmonic balance method using only the first harmonic
[94], simulations with five harmonics were performed and the result added to
the plot. No notable changes between the two harmonic sets are observed. As
in the previous section, the GAFs with a higher sampling rate provide a better
resolution of the resonance.

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(a) Coarse frequency sampling rate

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) Refined sampling rate

Figure 6.13.: FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: Generalized
aerodynamic forces around resonance condition with different frequency sampling
rates, computed by HB method with one (colored symbols) and five (black dots)
harmonics

First, the one degree-of-freedom system with only the pitch mode is investigated.
Figure 6.14a plots the results for the two GAF samplings schemes. At first, the
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aeroelastic frequency changes due to the mass ratio effect. The aerodamping
also drifts away from the energy method’s results as a result of the frequency
change. At around qs ≈ 2.5, the aeroelastic frequency comes close and coincides
with the resonance’s frequency. In the same manner as shown in the previous
section, the aeroelastic behavior has a sudden change. With the finer GAF
sampling in this frequency range, a non-continuous drop in aerodamping can
be observed. Using only the coarser GAF samplings, the drop is smeared over
a broader range of qs (these are not two data points, there are actually many
intermediate solution steps). The same behavior can be observed for the two
degree-of-freedom system in fig. 6.14b, only that now the same drop also applies
to the modal participation and phase lag in the pitch branch. This effect already
explains the large shift of the aerodamping between the energy method and the
coupled-mode system, visible in fig. 6.10.

Figure 6.15 shows smaller frequency separations. In fig. 6.15a, the effect is more
pronounced compared to fig. 6.14b, what is in line with the theorem that the
smaller frequency separation leads to stronger modal coupling effects. Going to
higher qs, the aerodamping of the pitch branch has a smaller gradient over qs for
the lower frequency separation, what appears to be contradicting the previous
findings. Actually, another effect comes into play: When two modeshapes
are coalescing (in terms of frequency and modal participation), increasing the
coupling strength through a lower mass ratio will cause a divergence of the
two coalescing branches after their closest approach. One branch becomes
unstable and the other more stable. This is well-known for fixed-wing structures.
The shallower gradient of the aerodynamic excitation compared to the higher
frequency separation is due to the smaller frequency shift here. The frequency
shift of the pitch mode is the main contributor towards destabilization, as
depicted in the pitch-only plot.

Figure 6.15b depicts a case where coalescence of the modes can be observed.
As the two branches are coalescing towards each other, coming close to the
frequency of the aerodynamic resonance, the pitch branch performs the above
already observed drop in frequency. In this case, the pitch branch hits the
frequency of the heave branch. At this point, the pitch branch gets united with
the heave branch. A full mode coalescence is performed. In this case, the now
unified branches are stable. This explains the absence of an excitation in the
IBPA −72◦ of fig. 6.12. However, from a mathematical point of view, the pitch
branch can be forced to take another track, e.g. by sorting the eigenvalues only
by frequency. This “alternate” tracking can be seen as a green line. The track is
more reminiscent of the previous shown track for a higher frequency separation.
It may be possible that there are three solutions in this case: similar effects are
described for the occurrence of fluid modes and their coalescence or crossing
with the structural/aeroelastic modeshapes [95, 96, 15]. If a fluid mode is to
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be taken into account, the aeroelastic stability equation has to be extended to
this extra degree-of-freedom. Behavior of the generalized aerodynamic forces
for non-zero damping and also nonlinear effects may have to be considered.
The coupling with fluid modes and how to incorporate them into the flutter
analysis is an active research topic in the aeroelasticity community. Method
development for such cases is part of this research [14, 97].
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Figure 6.14.: FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: p-k solution
histories with different GAF frequency sampling rates for pitch-only system and
heave-pitch coupling
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Figure 6.15.: FUTURE-2D-LC, case “transonic I”, IBPA σ = −72◦: p-k solution
histories for smaller frequency separation between heave and pitch
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6.3.3. Influence of Solidity
Different blade-to-blade distances are investigated as in the previous section
Figures 6.16 and 6.17 shows the incremental change of the solidity and frequency
separation listed in table 6.2. While at the subsonic operating point the pitch
branch is always the critical mode to become unstable, at the transonic operating
point either branch can become unstable, depending on the IBPA. Therefore,
at each IBPA-mass ratio combination, the value with the lower aerodynamic
damping (or higher aerodynamic excitation respectively) is taken.

The resulting image is very similar to the subsonic condition. Lowering the
frequency separation or increasing the solidity shifts the flutter boundary to
higher mass ratios. The effect described in section 6.3.2 for the baseline solidity
at the IBPA σ = −72◦ is an outlier: at the lowest frequency separation, the
highly excited area shown in red is broken up by a dark green area of high
damping. At the other solidities, this effect is not visible.
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Figure 6.16.: FUTURE-LC-2D, case “transonic I”: Normalized aerodamping (lower
value of first or second aeroelastic modeshape) depending on mass ratio, frequency
separation, and solidity



128 6. Aerodyn. Coupled Modeshapes in a Linear Compressor Cascade

s = 1.02 (τ-20%) s = 0.87 (τ-40%)

f=
30

0 
H

z,
 f

=
60

0 
H

z 
h

α

σ

µ

100

200
300
500

1000

2000
3000

30
50

σ

µ

100

200
300
500

1000

2000
3000

30
50

f=
45

0 
H

z,
 f

=
60

0 
H

z 
h

α

σ

µ

100

200
300
500

1000

2000
3000

30
50

σ

µ

100

200
300
500

1000

2000
3000

30
50

f=
50

0 
H

z,
 f

=
60

0 
H

z 
h

α

σ

µ

100

200
300
500

1000

2000
3000

30
50

σ

µ

100

200
300
500

1000

2000
3000

30
50

Λ ∙ µ/µ  :i 0 -0.08 -0.04 0.04 0.08 0.12 0.16 0.200.0-0.20 -0.16 -0.12

Figure 6.17.: FUTURE-LC-2D, case “transonic I”: Normalized aerodamping (lower
value of first or second aeroelastic modeshape) depending on mass ratio, frequency
separation, and solidity
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6.4. Summary
As already indicated in the previous chapter: the lower the mass ratio, the
more likely a significant aerodynamic coupling between vacuum modeshapes
occurs. From the observations, an empirical assumption can be made that a
high enough modal coupling strength will lead to destabilizing effects that cause
coupled-mode flutter. Furthermore, the higher the coupling strength, the higher
the drift away from energy method predictions will become.

The three factors that will ultimately lead to flutter due to aerodynamic coupling
of the modeshapes are:

• a low mass ratio

• a low frequency separation

• a high solidity

All these factors contribute towards stronger aerodynamic forces in relation to
the structural inertia forces. As postulated from the beginning of this thesis,
once the aerodynamic forces become high enough, modal coupling cannot be
neglected in flutter analysis and the energy method becomes a non-conservative
approach.

Strictly by definition, the p-k method is only valid for the zero damping case. As
shown before, the p-k method is still usable to predict aeroelastic modeshapes
and their aerodynamic damping or excitation around the zero damping line. For
cases with very strong coalescence of structural and aerodynamic frequencies,
the limit of this prediction method is most likely reached. How to incorporate
or facilitate those effects is an ongoing research topic in the aeroelasticity
community [95, 96, 15, 14, 97].





7
Application to Low Mass Ratio Fan

Blade

The p-k method is applied to the first rotor of the CRISPmulti
fan. It is shown that the near-stall flutter boundary in part
speed is significantly closer to the working line when compared
to conventional energy method results. For selected operating
points, the influence of so-called higher structural modeshapes
on the p-k analysis is investigated.

The fundamental findings from preliminary research were already published by the
author [44, 45]. More detailed and deeper analyses are performed in the scope of this
thesis. Furthermore, the discussion is majorly extended.

7.1. General Remarks
Definition: Operating Point Names. The operating points addressed in this
chapter are named by the convention n000a. The digits are replaced by the
rate of rotation in percent. The last character refers to specific marker in the
compressor map diagram as shown in fig. 7.6, e.g. n070b means the OP at the
70% speedline marked with a “b”.

Definition: p-k Analysis Names. The coupled-mode analyses with the p-
k method are shown for various numbers and constellations of considered
modeshapes. The naming convention is AxB, where A means the number of
the aeroelastic branches that are investigated. B shows how many vacuum
modeshapes are considered and always means the first B modeshapes from the
ascending order of their respective frequency. Thus, a 3x6 descriptor translates
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to a coupled analysis where three branches (associated to the three modeshapes
with the lowest frequency) are obtained at and the vacuum modeshapes 1 to
6 are included as degrees-of-freedom of the system. In the special case of a
1x1 system, only one vacuum modeshape is considered in the matrices as a
single-mode analysis with an allowed frequency shift.

7.2. Modal Coupling at a Specific Operating Point
The operating point n070b is subject to a detailed analysis how vacuum mode-
shapes influence the aeroelastic branches. Modal coupling might occur for all
modeshapes but may have a critical influence only on the lowest frequencies.
Thus, the influence of the first six aeroelastic branches (in ascending order of
their fundamental modeshape’s frequency) is investigated. As shown here, eval-
uating only the first three branches is justified for the rest of similar operating
points above the working line. This information is critical for the number of
required sampling points that need to be computed with CFD.

7.2.1. Generalized Aerodynamic Forces
In general, if modal coupling only slightly shifts the frequencies, it is a good
start to take three sampling points around the natural frequencies of the vacuum
modeshapes (one below, one above and one at the natural frequency). If there
is no phenomenon that causes strong spikes in the aerodynamic responses like
acoustic resonances within this interval, this approach will allow for an adequate
interpolation of the aerodynamic forces.

From preliminary investigations, the expected frequency ranges of the aeroelastic
branches were already known. The approach as described above for frequency
sampling is used with some exceptions: Around the modeshape 1B an additional
lower frequency is added. The third aeroelastic branch (belonging to 1T) will
only have lower frequencies than the respective vacuum frequency and thus, only
samples below this frequency are taken. The sampling scheme listed in table 7.1
is applied to all operating points. Depending on how many aeroelastic branches
are investigated, only the frequencies around the fundamental natural frequency
is selected, i.e. for a 3xB scheme only the first three rows and for a 6xB all rows
accordingly. At each frequency sampling point, the aerodynamic responses to
the considered vacuum modeshapes are computed for a fixed amplitude and all
IBPAs. With that information, the matrix of generalized aerodynamic forces
(GAF) Q̃ can be generated.
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Figure 7.1.: Matrix interpolation for the generalized aerodynamic forces of the
first three vacuum modeshapes (OP n070b, IBPA σ = 36◦)
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Table 7.1.: Frequency sampling scheme for the CRISPmulti geometry
Vac. modeshape Percentage deviation from natural frequency
1 (1B) −20 % −10 % 0 % +10 %
2 (2B) −10 % 0 % +10 %
3 (1T) −10 % −5 % 0 %
4 −10 % 0 % +10 %
5 −10 % 0 % +10 %
6 −10 % 0 % +10 %

Some entries of Q̃ are plotted in fig. 7.1 for the lower frequency regime, showing
only the entries of the upper left 3x3 system. The other entries are also relevant,
but would make the plot very confusing. Thus, only a selection is shown here.
Of course, the basic evaluation of the GAF sampling and interpolation needs to
be applied to all entries and possible frequency regimes.

The scattered points are the discrete points at which GAFs are computed, the
lines show the interpolated data. The interpolation scheme chosen has two
decisions that need to be made:

1. The entries are complex values, thus the values can be interpolated
for magnitude and phase or for real and imaginary part, both having
advantages and disadvantages. The real/imaginary option is chosen here.

2. The values in between the discrete sampling points can then be interpolated
with a linear or higher order approach (e.g. splines with quadratic, cubic
etc. ansatz). A linear interpolation is chosen here.

The consequences of those decisions are visible in the GAF plot. The GAFs
can be plotted in two different ways, each visualizing different aspects. When
looking at magnitude and phase over frequency, the computed frequencies
appear as clusters, that can be attributed to a certain natural frequency of
the vacuum modeshape7. As long as the aeroelastic frequencies are within a
respective “cluster” of frequency samples, there is not much difference between
the two choices of interpolation and both will deliver a sufficient result. In
contrast, the plot in the complex plane shows the difficulties for large gaps in
frequency sampling. In general, the GAFs follow a track through the complex
plane, although the frequency affiliation is not immediately visible anymore. The
linear interpolation delivers reasonable results within the clusters, but have more
or less deficiencies outside. Q11 and Q31 might be accepted as “close enough”,

7Although the two clusters of the modes 2B around f ≈ 270 Hz and 1T around f ≈ 360 Hz
are not as distinct from the others as the cluster at 1B around f ≈ 99 Hz.
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but the track of Q33 already shows an unreasonable “shortcut” that might look
much more curve-like with a higher order spline. Even more critical are tracks
like Q12 or Q13. This loop-like behavior is typical for GAFs throughout the
complex plane and the reason why the resulting aeroelastic frequencies need to
be inside a cluster. Furthermore, the behavior of the GAFs inside the cluster is
crucial: if large GAF variations were found, a higher sampling would have been
needed.

7.2.2. Energy Method and Coupled-Mode Analysis Compared
Figure 7.2 compares the energy method with the p-k method for the first
six modeshapes of the OP n070b. In a single-mode analysis with a variable
frequency (1x1 ), the vacuum modeshapes are not coupling with each other,
but a frequency shift is already allowed. This frequency change might be a
strong contributor to the aerodynamic response already [34]. The flutter-critical
aeroelastic modeshape in all analyses is number 3, which is associated to the
first torsion as the dominant participant. For the 1x1 systems, the aeroelastic
frequencies shift away from the vacuum frequencies, especially for the flutter-
critical mode, and damping is reduced significantly, although the operating point
is evaluated as stable. When allowing modal coupling in the 6x6 system, the
critical aeroelastic mode 3 does not significantly change the frequency compared
to the 1x1 analysis, but the aerodamping is now below zero for three IBPAs.

For the aeroelastic mode 6, the 1x1 analysis has a larger frequency shift than
the 6x6 system, but the aerodamping is not much affected in the 1x1 system,
whereas the 6x6 analysis yields a clear reduction in aerodamping. It is to
mention, that the damping of the mode 6 is in the magnitude of the mode
2. Mode 5 and 6 have a low frequency distance, which is a contributor to
the strength of the modal coupling. Although it does not get unstable in this
scenario, the clear reduction of aerodamping due to modal coupling, mainly
between mode 5 and 6, shows that not only the fundamental modes (“first
bending”, “first torsion”) can participate in a coupled-mode flutter scenario.

7.2.3. Modal Participations
A deeper insight into the mechanisms that are at work is delivered by the
modal participation of the aeroelastic modeshape. As introduced in section 2.4,
the modal participations can be extracted from the eigenvectors of the flutter
equation. Figures 7.3 and 7.4 plot those factors for each aeroelastic modeshapes,
comparing the 3x3 and 6x6 results. For the unstable aeroelastic mode 3, a
high participation of the first bending is visible. When the higher modes are
considered in 6x6, the percentage of the first bending stays almost unchanged,
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Figure 7.2.: OP n070b: Damping diagram for EM, p-k 1x1, and p-k 6x6
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Figure 7.3.: OP n070b: Modal participations of the fundamental aeroelastic
modeshapes (AE mode) compared between 3x3 and 6x6 analysis
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Figure 7.4.: OP n070b: Modal participations of the higher aeroelastic modeshapes
(AE mode) in 6x6 analysis
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Figure 7.5.: OP n070b: Damping diagram considering different number of higher
modeshapes in the p-k analysis

but the participation of the added modes gradually decrease the dominance of
the dominant first torsion.

A clear sign for strong coupling, or coalescence, between two modeshapes is
the behavior in aeroelastic mode 5 and 6: both aeroelastic modes are clearly
dominated by their associated vacuum modes, but also have a high participation
of the frequency-wise close neighboring vacuum mode. The coalescence of these
two modes can also be observed in the damping diagram above (fig. 7.2), where
one branch gets more stable and the other more unstable. This behavior is
characteristic for coupled-mode flutter. Looking at the aeroelastic modes which
get destabilized compared to the single-mode energy method approach, there is
always a “partner” aeroelastic mode which becomes more stable (aeroelastic
modes 1 and 3, aeroelastic modes 5 and 6). Both partnering aeroelastic modes
will have a strong participation of the associated vacuum mode.

7.2.4. Considering Different Modeshapes in P-K Analysis
Figure 7.5 depicts the result of a different number of considered vacuum mode-
shapes in the p-k analysis. The 3x6 results are the same as in the previous
subsection with the 6x6 system and used as a reference. When the three
modeshapes with the highest frequency are dropped in the analysis, the 3x3
system results. In general, the results with the 3x3 system are very close to the
3x6 system already with slightly less excitation especially for the critical IBPA.
The 3x10 system considers more higher frequency vacuum modeshapes, but
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almost no impact is found 3x6. Nevertheless, the more vacuum modeshapes are
considered, the more unstable the system becomes. As expected, the influence
decreases with the frequency distance.

Summing up, the 3x3 system delivers already a very good impression, the
3x6 system appears to be the best comprise in the regime were the fan is
transitioning from stable to unstable. The influence on the position of the
flutter boundary is discussed in the next section.



7.3. Flutter Boundary above Working Line 141

7.3. Flutter Boundary above Working Line
7.3.1. Overview
The flutter analysis with the different methods EM, p-k 3x3, and p-k 3x6, is
performed for many OPs above the working line (WL). For each OP, the lowest
aerodamping of all modes and IBPAs in the damping diagram is extracted per
analysis method and plotted in the compressor map in fig. 7.6. The stability
limit is interpolated and drawn for all three methods.

At first glance, the EM delivers a non-conservative result. Considering modal
coupling, the stability limit moves much closer into the compressor map. As
already found for one specific OP, the inclusion of more vacuum modeshapes
into the analysis slightly decreases the stability. This is especially visible for
OPs like n065b, n080b, and n085b, where the difference between 3x3 and 3x6
is decisive whether some aeroelastic modeshapes are evaluated with positive
or negative damping. Although the shift of flutter boundary position is nearly
marginal, considering less modeshapes is non-conservative.

The OPs at higher rotational speeds (above 90%) appear very stable in this
kind of plotting. This is a result of the color maps choice in the particular
figure and also the information that is plotted (lowest overall damping). Indeed,
a destabilization of the flutter-critical modeshapes can be observed as shown
later, but flutter does not occur before reaching the surge line.

The reduction or loss in stability margin are extracted and put into table 7.2.
The margin is calculated as percentage of the relation between ṁflutter as the
highest mass flow at the speedline where flutter is predicted, and ṁηmax as the
mass flow at the working line, so that

Margin =
(

1 − ṁflutter
ṁηmax

)
· 100 % . (7.1)

It gives an idea how far the mass flow can be reduced at a respective speedline
before reaching the possible flutter onset.

The absolute loss is the direct subtraction of both margin percentages (the
reduced distance to the WL)

Abs. Loss = Marginpk − Marginem = ṁflutter,em − ṁflutter,pk
ṁηmax

· 100 % (7.2)

and the relative loss (decrease of stability margin compared to the EM)

Rel. Loss = Abs. Loss
Marginem

= ṁflutter,em − ṁflutter,pk
ṁηmax − ṁflutter,em

· 100 % . (7.3)
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Figure 7.6.: Aeroelastic stability (lowest damping of af all modeshapes and IBPAs)
above the working line compared between the energy method and different p-k
analyses. The interpolated stability limit is generated using 2D triangulation and
subsequent contour plotting for the zero value line in Tecplot [98, ch. 20-10]

The highest impact is found for the lower rotational speeds around 65% to 70%,
where a mild flutter onset is found. For medium-high speeds around 90% a
more abrupt onset is predicted. As the stability margin is quite low already
here, small changes in absolute loss have a high impact on the relative loss.

7.3.2. Subsonic to Transonic Flow at Medium Rotational
Speed

The two OPs n065b and n075b in figs. 7.7 and 7.8 appear very similar to
the extensively investigated n070b. The main conclusion is confirmed: the
modeshapes at higher frequencies have a slight influence on the aerodamping
especially for the flutter-critical aeroelastic modeshape. The 3x3 analysis is
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Table 7.2.: Loss of Aeroelastic Stability Margin at Best Efficiency Line
RoR ṁηmax MarginEM Marginpk,3x6 Abs. Loss Rel. Loss
60 % 103 31 % 23 % −8 % −25 %
65 % 110 24 % 13 % −11 % −46 %
70 % 117 20 % 10 % −10 % −48 %
75 % 124 15 % 8 % −7 % −44 %
80 % 132 12 % 7 % −5 % −43 %
85 % 139 11 % 6 % −5 % −40 %
90 % 147 10 % 8 % −2 % −20 %

already quite sufficient but it becomes clear again, that lesser considered vacuum
modeshapes offers a non-conservative approach.

The general shape of the damping curve over IBPA changes a little bit: for
n065b, the lowest damping is at the IBPA σ = 0◦ and shifts to the IBPA σ = 36◦

for n075b. The change in aerodynamic excitation is progressive, but the modal
participation appears to shift abruptly. The phase lag of the first bending in
the third aeroelastic mode is shifted by about 180◦, see fig. 7.3 vs. fig. 7.9, now
being almost in phase with the torsional mode. This is a deception: Looking at
the manifestation of the first bending at both OPs in fig. 7.10, the vectors of
displacement are flipped by 180◦ between n070b and n075b (with some minor
changes to due different centrifugal stresses). As eigenvectors of a system remain
linearly independent eigenvectors, even when multiplied with a negative scalar,
the physical output of the displacement vectors depends on the normalization
in the CSM tool. Small changes in the static deformation, and thus prestressing,
lead to the flipped modeshape. The physical influence of the modal coupling
is thus the same, as the manifestation of the third aeroelastic mode is almost
identical comparing n070b and n075b in fig. 7.11.

7.3.3. Transonic Flow at Medium-High Rotational Speed
At the 90% speedline, the EM already delivers an interesting damping curve.
The OP n090b in fig. 7.12 has the lowest damping of the third mode (1T) at the
IBPA σ = 180◦. This is due to a strong transonic effect, where the flowchannel
is periodically increasing and decreasing the convergent-divergent geometry.
Apparently, the lowest aerodamping values at this OP are found for the second
mode (2B).

When looking at the coupled-mode analysis, the second aeroelastic mode gets
stabilized compared to the associated mode (2B) in the energy method. This
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Figure 7.9.: OP n075b: Modal participations of the fundamental aeroelastic
modeshapes (AE mode) compared between 3x3 and 6x6 analysis

Figure 7.10.: Comparing the manifestation of the vac. modeshape 1 (1B) at
ωt = φ = 0◦ between OP n070b and n075b
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Figure 7.11.: Comparing the manifestation of the vacuum modeshape 3 (1T) and
aeroelastic modeshape 3 (from p-k 3x3 and 3x6) between OP n070b and n075b

behavior was also found for the previously investigated OPs. The third aeroelas-
tic mode is destabilizing due to the modal coupling influence as also seen before.
However, the aerodamping values are still higher than the second aeroelastic
mode. For the overview in the compressor map (fig. 7.6), only the lowest aero-
damping overall was selected, which is now coming from the second aeroelastic
mode (instead of the third aeroelastic mode below the 90% speedline). When
only considering such a global value as criterion, the impression might arise
that the rotor gets stabilized by the modal coupling in this flow regime. But
this would be a false conclusion or deception. Actually, the third aeroelastic
mode already shows clear tendency towards excitation.

Some similarity to the n075b are found in fig. 7.13. In the third aeroelastic
mode, the first vacuum modeshape (1B) is almost in phase with the third (1T).
In contrast, the sixth vacuum modeshape has jumped by approximately 180◦, a
behavior by the modalanalysis in the opposite direction than it was found for
1B when comparing n070b to n075b.

At the OP n090c, the third aeroelastic mode is now finally destabilized, see
fig. 7.14. Also the analysis including more vacuum modeshapes in particular
leads to a higher excitation in the unstable IBPAs.

7.3.4. Higher Rotational Speed
At the highest rotational speeds, the rotor appears to be unaffected by the modal
coupling effects when looking at the compressor map in fig. 7.6. As pointed
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out in the previous subsection, this conclusion may be a deception. Figure 7.15
clearly points out, that the third aeroelastic mode is destabilized by the modal
coupling, but the second aeroelastic mode still has the lower aerodamping over
all. A very same picture is also found at n095c and n105c: Until reaching the
surgeline, the destabilization is not strong enough to impact the aeroelastic
stability of the rotor for this particular geometry. Those examples point out,
that such a behavior has to be tracked and no false conclusion is drawn from
preliminary results.
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Supersonic bubble

Figure 7.16.: Supersonic areas at the blade tip region of rotor 1

7.4. Mechanism of Modal Coupling
In the previous section, the effects on the aerodamping due to modal coupling,
as well as the modal participation factors, were observed. Now, the mechanism
which leads to destabilization of the vibrating system is investigated.

By looking at the steady flowfields in fig. 7.16, an evolving supersonic system
can be seen. At n070b, the flowfield already has a very small bow shock at the
tip leading edge, but aside from the tip region, the rest of the blade does not
see supersonic flow and shocks along the flow path. In contrast, a supersonic
bubble appears at the leading edge from tip to around the half-span for the
n075b. A full transonic region is established at n090b, with a strong shock
located around 10% to 20% of the chordlength.

When looking at the damping diagrams in figs. 7.2 and 7.5 comparing the EM
with p-k in 1x1, 3x3, 3x6, and 3x10, an evolving pattern can be observed: going
from EM to 1x1, the third modeshape starts to destabilize which is further
increased as more vacuum modeshapes are coupled in. The same pattern is
visible for the other OPs as shown (figs. 7.7, 7.8 and 7.12).

The local excitations of selected cases in fig. 7.16 are analyzed in the following.
For the EM results, the unsteady aerodynamic pressures are directly taken
from the CFD computations. The p-k results are interpolated for each vacuum
modeshape at the respective frequency and assembled according to the modal
participation factors and phase lag as determined by the p-k solver. The
combination of modeshape and unsteady pressure leads to the local excitation
as in equation (2.69).
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Figure 7.17.: OP n070b, σ = 36◦: Local excitation in the tip region of rotor 1 for
different modeshape vibrations
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Figure 7.18.: OP n075b, σ = 36◦: Local excitation in the tip region of rotor 1 for
different modeshape vibrations
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For the OP n070b, the local excitations in fig. 7.17 already experience minor
changes between EM and p-k 1x1 as only the vibration frequency is changed.
Especially the locally damped area on the suction side (SS) marked by “a” is
slightly less intensive. Once other vacuum modeshapes are coupled in, this
region has an even lower intensity. The marker “b” indicates an additional
area where the stabilizing forces are reduced. Furthermore, the already strongly
excited area at the leading edge marked by “c” becomes a little larger. On the
pressure side (PS), the locally excited area marked by “d” in the front part
increases. Looking at the manifestation of the aeroelastic modeshape (fig. 7.11),
the elastic axis is shifted towards the leading edge due to the modal coupling.
As a consequence, the coupled modeshape has a lower amplitude in the front
part, which effectively decreases the aerodynamic work done by the pressure
fluctuations. The aeroelastic mode which includes six vacuum modeshapes has
almost the same elastic axis position, but especially in the leading edge region
of the blade, the amplitude is slightly higher than the aeroelastic mode with
only three vacuum modeshapes. The sixth vacuum modeshape contributes to
this behavior what can be observed by looking at its appearance (fig. 4.11).
This particular region has high pressure amplitudes and because of the high
excitation resulting from this, their contribution by integration to the global
excitation of the blade has a large impact. A very similar mechanism with
minor local differences is acting for the OP n075b, see fig. 7.18.

Generally, the fully transonic OP n090b shifts the unstable IBPAs towards higher
angles. Figure 7.19 does not show similarity to the above discussed mechanisms
and also the IBPA σ = 36◦ is damped, even when modal coupling is considered.
The strong shock location is very much visible, leading to a locally very highly
damped trench, marked by “a”. However, once modal coupling is included, this
trench appears less strong and additionally, behind the shock location an excited
area marked by “b” is now contributing to the destabilization of the blade. The
marker “c” on the pressure side (PS) shows small contributions when respecting
more vacuum modeshapes to the aeroelastic system. On contrary, the pressure
side (PS) has a slight stabilization effect marked by “d”.

The aerodynamically excited IBPA σ = 144◦ of the OP n090c is shown in
fig. 7.20. For this case, the front part of the blade remains almost unaffected
by the modal coupling. With a lowered aeroelastic frequency of the vacuum
modeshape alone, at around 50% of the chordlength and towards the trailing edge
marked by “a”, the large damped area is removed. The aeroelastic modeshape
contribute to destabilizing this particular area even further. A similar effect is
shown by the marker “b”. The marker “c” and “d” show a similar behavior as
already reported for n090b above.

In this way, small contributions in either direction are possible. They may big
differences in the analysis methods when drastic flowfield changes are distinct.
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However, even small changes over a large surface are, as small as they may be,
can influence to overall outcome due to their sum after integration over the
whole surface.
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Figure 7.19.: OP n090b, σ = 36◦: Local excitation in the tip region of rotor 1 for
different modeshape vibrations



7.4. Mechanism of Modal Coupling 155
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Figure 7.20.: OP n090c, σ = 144◦: Local excitation in the tip region of rotor 1
for different modeshape vibrations
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7.5. Summary and Outlook
Aerodynamic coupling of modeshapes between the working line and stall mainly
leads to a destabilization coming from the third aeroelastic modeshape. It
mainly consists of the first torsion of the vacuum modeshapes. Especially in
mid-speed operating points, modal coupling is significant when comparing to
the conventional work-per-cycle approach. It is shown that mainly the first
three fundamental vacuum modeshapes contribute to the coupling behavior
of the geometry. Adding so-called higher vacuum modeshapes has only minor
influence on the analysis outcome for this geometry. Nevertheless, the trend
of including those additional modeshapes leads to a further destabilization,
although with a decreasing impact the higher the distance of the respective
natural frequencies is.

It shall be mentioned that the presented analysis is only valid for the flutter
onset. Based on the results in chapter 5, it can be assumed that aerodynamic
nonlinearities will counteract the aerodynamic excitation at higher vibration
amplitudes. While those initial coupled CFD-CSM simulations are a strong
lead, the current solver environment used at the time of writing this thesis did
not allow to investigate those cases in more detail. Furthermore, structural
damping is neglected in the flutter onset analysis. The CRISPmulti geometry
is manufactured using a CFRP material which may possess a high structural
damping. In practical terms, assumptions about structural damping of the
CRISPmulti are merely educated guesses as no numerical model or experimental
data was available at the time of writing this thesis. Both factors, aerodynamic
nonlinearities and structural damping, can lead to limit cycle oscillations which
may be tolerated for a certain amount of time in off-design operating points.
Currently, different methods for including such factors into the solvers are
being worked on [99] and a future combination of those methods is very much
achievable as a next step.



8
Conclusion

8.1. Aerodynamic Coupling of Modeshapes in
Turbomachinery

Aerodynamic coupling between mode shape families cannot be neglected and
needs to be included in the analysis process of future lightweight turbomachinery
bladings. In the investigated 3D case, the flutter-free regime is significantly
reduced when modal coupling is taken into account. The stability boundary is
much closer to the working line than predicted by the energy method. Three
main conclusions can be drawn [44, 45]:

• The energy method approach yields a non-conservative statement about
aeroelastic stability of the blades when the mass ratio is low.

• The p-k method allows a good assessment of the coupled-mode flut-
ter phenomenon. The validation results show good agreement with the
time-marching simulations, even in regimes with slight aerodynamic non-
linearities.

• The p-k method, when used with aerodynamic responses from frequency
domain solvers, offers a pre-determined effort over time-marching simula-
tions.

Time-marching simulations require a large computational setup with full-wheel
configurations, that include several uncertainties. In contrast, with the p-k
method only the modeshapes of interest need to be determined. CFD with the
already existing infrastructure can be performed at several different frequency
sampling points and then be post-processed by an eigenvalue solver. This method
allows the assessment of the modal participation factors of the fundamental
structural mode shapes, or in other words: the flutter characteristics (what
is in line with Srivastava and Reddy’s proposals [24]). The sensitivity of
modal coupling towards mass ratio or frequency separation can be assessed with
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a refined sweep of the scaling variable of the GAF matrix in the aeroelastic
eigenvalue analysis.

8.2. Occurrence of Aerodynamically Coupled-Mode
Flutter

There is no general guideline that avoids coupled-mode flutter by design. Flutter
is a geometry-specific phenomenon and needs to be treated as such. The only
way to avoid coupled-mode flutter is mainly by having a high mass ratio of
the component, and secondarily by decreasing the aerodynamic load on the
blades. This contradicts the engineering approach and challenge of lightweight
design and stage reduction. Generally, flutter cannot be excluded by design and
numerical analysis has to be carried out anyway. For a design which is similar
to known cases, the previous flutter analysis results may be utilized to get a
general idea of how far away from an instability the new design might be. If
any of the parameter changes in the new design is considered as critical towards
a coupled-mode flutter, the p-k method provides a good numerical tool for the
flutter analysis of such cases.

Qualitatively, the main contributors which increase the aerodynamic modal
coupling, and as a consequence, might lead to a destabilization, are: a low mass
ratio, a low frequency separation and a high solidity (or low blade-to-blade
distance respectively low pitch). The influence of the latter design variable is
contradicting the findings of Clark [27, 28], who reported a higher solidity
would lead to a stabilizing effect.

If aerodynamic damping of the single mode analysis at a fixed frequency is
already low for some IBPAs, flutter with coupled modes is likely to occur at
this IBPA range first. A higher modal coupling will widen the list of critical
IBPAs. Besides the general observations, in the presence of an aerodynamic or
acoustic resonance phenomenon the cascade can be (metaphorically) “pushed
over the edge” by the frequency coalescing behavior of the modal coupling.

None of the investigated cases had a subcritical bifurcation (damped at low
amplitudes, excited at higher cases). That does not rule out the possibility, but
as known from van Rooij [37], the subcritical bifurcation will be succeeded
by a “regular” flutter case at higher loads. Thus, in practical terms, a safety
margin in critical cases (large gradient of logarithmic decrement) is advisable.
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8.3. The P-K Method: Verification vs. Validation
In classical project management or software engineering, the two terms verifi-
cation and validation fulfill two different purposes. The first is to check if the
requirements of a product are met. The latter checks if the requirements fit to
a certain purpose.

Asking the question “Are you building it right?” (verification), the clear answer
is yes. The p-k method was adapted from fixed-wing to turbomachinery usage
and delivers the coupled-mode parameters i.e. vibration frequency, aerodynamic
damping, modal participation factors (magnitude/phase) from a precomputed
set of frequency domain sampling points in the regime of linear flow responses.
Comparison to the time-marching simulations clearly shows this for the subsonic
operating conditions. The question is more challenging for the transonic cases:
the flutter onset is predicted in accordance with the time-marching simulations,
even though there are some minor differences in the coupled-mode parame-
ters. This leads to the second question: “Are you building the right thing?”
(validation). This question is ambiguous.

First, the p-k method is only valid at the point of flutter onset and requires a
linear flow response, as already laid out in the theory section. Nevertheless, it
can be used even in areas where typical flow nonlinearities arise, i.e. shockwaves
and slight flow separation. Discrepancies will arise from these nonlinearities,
but if only small amplitudes are investigated, the overall differences between
time-marching and frequency domain simulations is small. If the requirement is
“We need a tool to predict coupled-mode flutter onset.”, the question of validation
is also answered with “yes” as engineering problems are always confronted with
uncertainties – the smaller, the better. To perform an uncertainty quantification,
more experience and comparison with different geometries is needed, especially
experimental comparison will be required.

Another aspect which was excluded from the beginning is amplitude-dependent
behavior. The p-k method per se cannot predict the limit-cycle oscillations
as shown for higher amplitudes in some of the transonic conditions. But it
was never intended to. An interesting approach is the amplitude-dependent p-k
method as implemented by van Rooij [37]. This so-called ADePK method
comes with an even more increased computational effort and its usage will
have to be evaluated carefully and weighted against time-marching methods
for special selected cases. The “general” p-k method may however be a good
indicator where to look for LCOs in a wider parameter range (compressor map,
flight levels etc.).

As in many cases, the application of a certain method comes down to an
engineering judgment and does not relieve from critical evaluation.
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A
Appendix

A.1. IBPA Patterns
Table A.1 gives an overview of different IBPA patterns of periodic geometry
with 20 identical segments. For a 20 blade cascade, the individual phase shift
of each blade is listed according to a certain IBPA. Thus, to achieve the IBPA
pattern without phase-lag boundary conditions, the number of passages needed
are summed at the bottom of the table. A periodic setup is restricted to a
certain selection of IBPAs, e.g. a four passage cascade allows σ to be 0◦, ±90◦,
or 180◦ and five blades allow σ to be 0◦, ±72◦, or ±144◦. For a geometry
with 10 identical segments (10 blades), only every second column is applicable
(starting at 0◦).
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Table A.1.: Phase shift† of each blade depending on the IBPA∗ σ

bl.
σ 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

1 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

2 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

3 36◦ 72◦ 108◦ 144◦ 180◦ 216◦ 252◦ 288◦ 324◦

4 54◦ 108◦ 162◦ 216◦ 270◦ 324◦ 18◦ 72◦ 126◦

5 72◦ 144◦ 216◦ 288◦ 72◦ 144◦ 216◦ 288◦

6 90◦ 180◦ 270◦ 180◦ 270◦ 90◦

7 108◦ 216◦ 324◦ 288◦ 36◦ 252◦

8 126◦ 252◦ 18◦ 36◦ 162◦ 54◦

9 144◦ 288◦ 72◦ 144◦ 288◦ 216◦

10 162◦ 324◦ 126◦ 252◦ 54◦ 18◦

11 180◦ 180◦ 180◦ 180◦

12 198◦ 234◦ 306◦ 342◦

13 216◦ 288◦ 72◦ 144◦

14 234◦ 342◦ 198◦ 306◦

15 252◦ 36◦ 324◦ 108◦

16 270◦ 90◦ 90◦ 270◦

17 288◦ 144◦ 216◦ 72◦

18 306◦ 198◦ 342◦ 234◦

19 324◦ 252◦ 108◦ 36◦

20 342◦ 306◦ 234◦ 198◦

M‡ 1 20 10 20 5 4 10 20 5 20 2
† Blank lines mean the pattern from above is repeated.
∗ Negative IBPAs would have negative signs in each row.
‡ A multiple of this number of passages is required to allow for this IBPA to

be simulated without phase-lag boundary conditions.
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A.2. Additional Validation for FUTURE-2D-LC Case
Transonic I

The case study was already introduced in section 5.2. For the operating point
“Transonic I”, the mass ratios µ1 = 47.5, µ2 = 45.9, µ = 44.4, and µ4 = 42.9
were used for the validation of the p-k method against the time domain fluid-
structure-coupled simulations. For the setup using four blade passages, the
excitation occured in the IBPA σ = 180◦. This behavior was in line with the
p-k method results. When extending the validation for even lower mass ratios,
a switch of the IBPA with the highest excitation will occur. This behavior is
also captured by the p-k method.

For two IBPAs, σ = −90◦ and σ = 180◦, the generalized aerodynamic forces are
plotted in fig. A.1. Although there are larger gradients in the GAFs, they are
not as characterstic as the aerodynamic resonance in chapter 6. Figure A.2 plots
the p-k history for these two IBPAs, where σ = 180◦ is already known from
section 5.2. At a high values of qscale, the pitch branch of σ = −90◦ performs
a sudden drop in aeroelastic frequency and aerodamping that comes with a
sudden change of the aeroelastic modeshape. The time-marching simulations
establish the IBPA σ = 180◦ at the various mass ratios already known from
section 5.2. At the lowest mass ratio of µ = 39.3, the aerodamping solution of
the IBPA σ = −90◦, according to the p-k method, falls below the solution of
the IBPA σ = 180◦. At this point, the time-marching solution with four blades
establish the more unstable pattern of the changed IBPA (aeroelastic frequency,
damping and aeroelastic modeshape). As mentioned in the main chapters,
the behavior of the time-marching simulations is to ultimately establish the
vibration pattern with the highest excitation.



174 A. Appendix

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(a) σ = −90◦

ϕ  f1 1

ϕ  f2 1 ϕ  f2 2

ϕ  f1 2

(b) σ = 180◦

Figure A.1.: FUTURE-2D-LC, case “subsonic”: Generalized aerodynamic forces
for selected IBPAs
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Figure A.2.: FUTURE-2D-LC, case “transonic I”: p-k solution history for two IBPA
(left: full view, right: detailed view)
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A.3. Computational Efficiency: Time-Marching
Simulation vs. P-K Method Analysis

The advantage of time-marching simulations with fluid/structure coupling is
that each interaction or coupling mechanism is respected in the simulation
(given that the “right” spatial and time resolution are adequately high enough).

In a favorable condition, i.e. when flutter onset is checked and the initial
vibration pattern is close to the flutter vibration pattern, the result might
be quite rapidly available. But the usage of time-marching methods comes
also with a great disadvantage: if the coupling mechanism, frequency and
final vibration pattern is not known initially, the user may decide for a very
unfavorable starting condition.

Figure A.3 shows a case, where the simulation with time-marching simulations
takes a very long time. The mass ratio of this case is quite high, which causes
a long delay until the aerodynamic forces can change the vibration pattern.
The walltime of this case is multiple weeks. In fig. A.4, the initial starting
conditions are changed to the known final vibration pattern and the vibration
amplitude rises almost immediately. The walltime is now a few days. Although
the behavior of the individual blades between t = 1.5 s and t = 2.0 s in fig. A.3,
where the structural energies drift apart, may be an indicator that the blade
vibration is not final, it is not necessary an indicator the blade becomes unstable.
At a higher natural frequency, the system is stable but still a similar behavior
can be observed in fig. A.5.

The energy method (EM) and p-k analysis of this case is shown in fig. A.6. Both
methods are very close together, so that the EM might be sufficient. No major
stability change is induced when the p-k analysis is applied, but the frequency
changes are already quite distinct and could influence the stability analysis in
unfavorable cases of GAF-over-frequency distribution.

The EM and the p-k method require many “smaller” computations in the
frequency domain (FD) which have much less walltime than the time-marching
simulation. To make a comparison of the computational effort, the CPU hours
need to be compared.

The required CPU time tFD,total can be estimated via

tFD,total = nae nvac nσ nf ncpu tfd (A.1)

with the number of investigated aeroelastic branches nae, the number of con-
sidered vacuum modeshapes nvac, the number of IBPAs nσ, the number of
frequency samples nf , the required number of CPUs ncpu and the average
walltime of a single frequency domain computation tfd.
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Considering only the four blade passage setup, there are four possible IBPAs.
For each IBPA, at least three different frequencies (nf = 3) around the vacuum
frequency should be simulated to get a good approximation of the GAF behavior
over the frequency.

Each simulation took an average of tfd = 40 min on 64 CPUs8. Thus, the total
CPU time is approx. 500 CPU hours for the p-k analysis. The time-marching
simulations were carried out on 256 CPUs9 and took several weeks to finish,
what comes down to an order of 130 000 CPU hours. Even in the best case
scenario, a walltime of under 2 hours is required so that the time-marching
simulations would in the same order of magnitude of computational costs.

For the full 20 blades setup, the CPU time for the p-k analysis is approx. 2600
CPU hours. The time-marching simulation with 1280 CPUs (assuming a linear
scale-up of required CPUs to the four passage setup, and a similar walltime)
would be about 700 000 CPU hours.

Only one modeshape was considered in this case. For more considered mode-
shapes, the CPU hours increase linear for each investigated aeroelastic branch.
As more aeroelastic branches are investigated, the number increases linear by
each branch. As a consequence, the total amount increases exponentially. A
p-k analysis with a 3x3 system for all 20 IBPAs results in approx. 23 000 CPU
hours, with a 3x6 system approx. 46 000 CPU hours.

8This does not result in an “optimal” number of cells per CPU as per hand-rules in various
textbooks. The applied splitting is merely a result of a simple distribution of “one
computation per cluster node”, which consists of 64 CPUs.

9Also not the “optimal” distribution, but to match the FD computations, the same CPU
load was applied.
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Figure A.3.: NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only the pitch
mode is allowed with natural frequency fvac = 115 Hz: Total and individual blade
structural energy, and individual blade displacements, unfavorable initial conditions
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Figure A.4.: NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only the
pitch mode is allowed with natural frequency fvac = 115 Hz: Total and individual
blade structural energy, and individual blade displacements, initial conditions close
to final vibration pattern
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Figure A.5.: NACA3506-2D-LC, case “subsonic”, nbl = 4, µ = 2803, only the
pitch mode is allowed with natural frequency fvac = 200 Hz: Total and individual
blade structural energy, and individual blade displacements
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σ σ

Λ

EM, f=115 Hz
EM, f=200 Hz
p-k 1x1, f =115 Hz vac
p-k 1x1, f =200 Hz vac

Figure A.6.: Traveling wave damping diagram for pitch mode with different vacuum
frequencies, compared between energy method (EM) and as 1x1 system in the p-k
analysis (NACA3506-2D-LC, case “subsonic”) at a high mass ratio of µ = 2803
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A.3.1. Natural Frequencies of Modeshapes
Due to rotational and aerodynamic loads, the eigenmode frequencies in the
structural dynamics change for each operating point. As depicted in figs. A.7
and A.8 for the CRISPmulti geometry, the major change comes from the change
in rotational speed, but also the influences of the different aerodynamic loading
of different throttling states is visible.

Figure A.7.: CRISPmulti, rotor 1: Modal frequencies of modes 1 to 4 throughout
compressor map
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Figure A.8.: CRISPmulti, rotor 1: Modal frequencies of modes 5 to 10 throughout
compressor map
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A.4. CRISPmulti: Parameter Changes Throughout
the Compressor Map

A.4.1. Twist-to-Plunge Ratio of Modeshapes
As stated by Vahdati [100], the twist-to-plunge ratio parameter α is defined as
the product of the twist angle amplitude (in radians) times the semichord of
the blade at the tip divided by the plunging amplitude at the tip of the blade
and can be calculated from

α = 2 (zLE − zT E)
zLE + zT E

(A.2)

where zLE and zT E are the magnitudes of the displacements and the leading edge
and at the trailing edge, respectively. To gain the magnitude, the displacement
vector is projected onto a normal vector that is perpendicular to the chordline.
From this projected vector, the vector length is taken as the magnitude. As
a rule, the positive normal vector points towards the suction side. Therefore,
magnitudes pointing to the suction side have a positive sign, vectors pointing
to the pressure side have a negative sign.

The higher the twist-to-plunge ratio, the more twisting component is included
in the modeshape. This ratio is measured at the tip of the blade, and being
an integral value of the whole blade, it is only meaningful for the fundamental
modeshapes, i.e. first or second bending and first torsion.

For the CRISPmulti geometry, the twist-to-plunge ratios of the first rotor are
plotted for the three fundamental modeshapes “1. bending” (Mode 1), “2.
bending” (Mode 2), and “1. torsion” (Mode 3) in fig. A.9.
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Figure A.9.: CRISPmulti, rotor 1: Changes of twist-to-plunge ratio throughout
the compressor map
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