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A thorough understanding of Earth's dynamic processes requires systematic high-resolution imaging 
with short temporal baselines. Conventional SAR systems fail to comply with the requirements on the 
resolution and temporal baseline simultaneously, and can only offer one at the expense of the other. 
Multi-aperture SAR systems make use of several transmit and receive channels for boosting the 
performance of the system. Such a concept with one transmit and multiple receive units can be utilized 
for high-resolution wide-swath (HRWS) imaging with digital beamforming in azimuth. This work focuses 
on the investigation of advanced processing methods for multistatic SAR constellations with large along-
track baselines in order to pave the way for the realization of highly flexible SAR concepts for HRWS 
imaging. It introduces an efficient methodology to assess the performance of reconstruction algorithms 
without going through the processing steps. A comprehensive analysis on the important aspects of an 
accurate reconstruction strategy leads to the development of several novel reconstruction approaches 
suitable for along-track multi-aperture systems ranging from single-platform to distributed constellations 
with large along-track baselines. These approaches are capable of accommodating both range-time and 
range-frequency dependent terms in the Doppler domain as well as in the time domain. Finally, orbit 
control requirements for multistatic SAR systems and the influence of the available technology on the 
accurate reconstruction are investigated, and then a realistic system concept is identified. 
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Prozessierungsmethoden für multistatische SAR-Konstellationen mit großem Sender-
Empfänger-Abstand in Flugrichtung 
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Um die dynamischen Prozesse auf der Erde hinreichend zu verstehen, werden systematisch 
hochauflösende Bilder innerhalb kurzer Zeitintervalle gebraucht. Konventionelle Radarsysteme mit 
synthetischer Apertur können diese Anforderung nicht erfüllen, da sie nur entweder hochauflösend 
oder innerhalb kurzer Zeitintervalle akquiriert werden können. SAR-Systeme mit mehreren Aperturen 
können die Leistungsfähigkeit erhöhen, indem sie mehrere Sende- und Empfangskanäle nutzen. 
Dieses Konzept kann mit einer Sende- und mehreren Empfangseinheiten verwendet werden, um 
anhand von digitalem Beamforming in Azimut hochauflösende Bildgebung mit großer Streifenbreite 
(HRWS) zu erreichen. Diese Arbeit beschäftigt sich mit fortgeschrittenen Prozessierungsmethoden für 
multistatische SAR Konstellationen bei großer Entfernung entlang der Flugrichtung, um die 
Realisierung von zukünftigen hochgradig flexiblen SAR Konzepten mit HRWS-Bildgebung zu 
ermöglichen. Für solch eine Evaluierung wurde in dieser Arbeit ein Verfahren entwickelt, bei dem die 
Leistungsfähigkeit eines Rekonstruktionsalgorithmuses bestimmt werden kann, ohne dafür die 
einzelnen Prozessierungsschritte durchführen zu müssen. Anhand von einer umfangreichen Analyse 
exakter Rekonstruktionsstrategien, können neue Rekonstruktionsansätze sowohl für Systeme mit 
mehreren Aperturen auf einer einzelnen Plattform, als auch für verteilte Konstellationen bei großer 
Entfernung in Flugrichtung, entstehen. Diese Verfahren können Abhängigkeiten in der Range-Zeit und 
auch in der Range-Frequenz, sowohl in der Doppler-Domäne als auch in der Zeitdomäne, 
berücksichtigen. Abschließend wurden in dieser Arbeit die Anforderungen an die Umlaufbahnkontrolle 
und der Einfluss vorhandener Technologie auf die exakten Rekonstruktionsverfahren untersucht und 
ein realistisches Systemkonzept wurde ausgearbeitet.   
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Abstract

Nida SAKAR

Processing Approaches for Multistatic Large Along-Track
Baseline SAR Constellations

Spaceborne Synthetic Aperture Radar (SAR) systems have become an irreplace-
able source of information for the scientific community over the past three decades
due to its wide range of practical applications. A thorough understanding of Earth’s
dynamic processes requires systematic high-resolution imaging with short tempo-
ral baselines. Conventional SAR systems fail to comply with the requirements on
the resolution and temporal baseline simultaneously, and can only offer one at the
expense of the other. Therefore, next-generation spaceborne SAR systems aim at
fulfilling this demanding requirement via advanced imaging and signal processing
techniques.

Multi-aperture SAR systems make use of several transmit and receive channels
for boosting the performance of the system. Such a concept with one transmit and
multiple receive units can be utilized for high-resolution wide-swath (HRWS) imag-
ing with digital beamforming in azimuth. Compared to single-platform systems
with multiple channels where the deployable maximum antenna length poses a lim-
itation, multistatic SAR systems offer flexibility, cost-efficiency and sustainability.
This work focuses on the investigation of advanced processing methods for multi-
static SAR constellations with large along-track baselines in order to pave the way
for the realization of highly flexible SAR concepts for HRWS imaging.

This thesis evaluates multi-aperture reconstruction algorithms with particular
emphasis on their suitability and shortcomings for multistatic SAR constellations
with large along-track baselines. It introduces an efficient methodology to assess
the performance of reconstruction algorithms without going through the processing
steps. A comprehensive analysis on the important aspects of an accurate reconstruc-
tion strategy leads to the development of several novel reconstruction approaches
suitable for along-track multi-aperture systems ranging from single-platform (multi-
channel) to distributed constellations with large along-track baselines. These ap-
proaches are capable of accommodating both range-time and range-frequency de-
pendent terms in the Doppler domain as well as in the time domain. Finally, orbit
control requirements for multistatic SAR systems and the influence of the available
technology on the accurate reconstruction are investigated, and then a realistic sys-
tem concept is identified.
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Chapter 1

Introduction

1.1 Synthetic Aperture Radar Remote Sensing

The concept of remote sensing refers to acquiring information about an object with-
out being in its vicinity. Nowadays, the term is used mostly to de�ne Earth observa-
tion with a sensor mounted either on a spacecraft or on an airplane. Remote sensing
sensors are typically classi�ed as a) active, providing the source of transmitted en-
ergy and b) passive, recording scattered signals of an external source. The remote
sensing instrument considered in this thesis consists of both active radar (RAdio
Detection And Ranging) sensors and passive radar receivers.

Radar measures the distance between the target and the sensor by measuring
the time delay between the transmitted microwave or radio frequency signal and
its echo scattered from the objects in its line of sight (LOS). The �rst radar called
"Telemobiloscope" was invented by the German physicist, Christian Hülsmeyer,
in 1904 to prevent ship collisions in fog (Hülsmeyer, 1905). It was mainly used
for object detection, not being capable of measuring the distance to the object.
The invention of radar technology is essentially based on the theoretical work of
James C. Maxwell on electromagnetic �elds (Maxwell, 1865) and on the experimen-
tal work of Heinrich H. Hertz on proving the existence of electromagnetic waves
and their propagation properties through space and different types of materials in
the late 19th century (Skolnik, 1980). Similar to many other technologies, the radar
technique caught worldwide interest during World War II to be utilized for mili-
tary applications and experienced a rapid development. After the war, the aviation
industry bene�ted from these recent developments in radar.

Synthetic Aperture Radar (SAR) is a technique invented by Carl Wiley while
working at Goodyear Aerospace in 1951 (Wiley, 1965; Wiley, 1985). The technique
exploits the motion of the radar platform to improve the azimuth resolution of a
side-looking aperture radar (SLAR) by transmitting pulses over a target region and
coherently combining the received echoes. In the following two decades, compre-
hensive research activities made SAR an established technique (Cutrona et al., 1961;
Sherwin, Ruina, and Rawcliffe, 1962; Brown, 1967), opening the door for the golden
age of civilian and military SAR missions. In 1978, NASA/JPL launched the �rst
civilian spaceborne SAR sensor for an experimental mission operated at L-band, the
Seasat, whose objective was to collect information about oceans (NASA Jet Propulsion
Laboratory (August, 2020), “Seasat” [Online]n.d.). Despite its short lifetime in orbit, it
is considered to be the pioneer of Earth observation missions. After the success of
the Seasat mission, a great number of SAR satellites have been launched for Earth
observation by the European Space Agency (ESA), the Japanese Aerospace Explo-
ration Agency (JAXA), the Canadian Space Agency (CSA), NASA's Jet Propulsion
Laboratory (JPL), the Indian Space Research Organisation (ISRO) and the German
Aerospace Center (DLR). Some early examples of the missions are NASA's Space
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FIGURE 1.1: Seasat images with a geometric resolution of 25 m over Kuskokwim Delta, USA
processed 26 years apart (Seasat data 1978 (NASA). Processed by ASF DAAC 2013. Retrieved
from ASF DAAC 11 July 2020.[Online]n.d.). Left: processed in 1978, right: processed in 2013.
The constant data processing and storage development in the last three decades allows for
usage of more Seasat data for quantitative analysis. Note that the white line in the right is

the calibration pulse.

Shuttle Imaging Radar (SIR) program with SIR-A ( NASA Jet Propulsion Laboratory
(August, 2020) “Shuttle Imaging Radar-A” [Online]n.d.) in 1981 and SIR-B (NASA Jet
Propulsion Laboratory (August, 2020) “Shuttle Imaging Radar-B” [Online]n.d.) in 1984,
ESA's ERS-1 (ESA Earth Observation Portal, (August, 2020) “European Remote Sens-
ing Satellite” [Online] n.d.) (1991), the Soviet system ALMAZ-1 (ESA Earth Observa-
tion Portal, (August, 2020) “Almaz-1 Mission” [Online]n.d.) (1991) and JAXA's JERS-1
(JAXA, (August, 2020), “Japanese Earth Resources Satellite "FUYO-1" (JERS-1)” [On-
line] n.d.) (1992). Another historically signi�cant mission is the �rst fully polarimet-
ric multifrequency spaceborne SAR, SIR-C/X-SAR, launched in 1994 (Freeman et al.,
2019) which was the result of a cooperation between NASA, the German Aerospace
Center (DLR) and the Italian Space Agency (ASI). This mission opened a new door to
interferometric applications and paved the way for delivering the �rst world-wide
Digital Elevation Model (DEM) in 2000 together with the Shuttle Radar Topography
Mission (SRTM) of NASA ( NASA Jet Propulsion Laboratory, (August, 2020) “Shuttle
Radar Topography Mission” [Online]n.d.).

Today, 117 years after the invention of the radar, SAR is a very popular remote
sensing technique due to its �ne resolution and its established applications including
SAR interferometry (Rosen et al., 2000; Ferretti, Prati, and Rocca, 2001), polarimet-
ric interferometry (Papathanassiou and Cloude, 2001), and SAR tomography (Reig-
ber and Moreira, 2000), that provide information for disaster management, security,
land and sea traf�c observation, wide area surveillance, and environmental moni-
toring. Additionally, SAR owes its popularity to the fact that the electromagnetic
waves of the radar are affected by neither weather nor light conditions. As shown
in Figure 1.1, the advances in processing methods and data storage capacity only
increase the appeal of SAR, leading a new path to the new spaceborne missions.
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