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Abstract— We present an analytical trajectory generation
framework for the combined computation of multiple walking
and running sequences with continuous gait transitions. This
framework builds on the Divergent Component of Motion
(DCM)-based walking algorithm and the spline-based trajec-
tory generation of the Biologically Inspired Deadbeat (BID)
control for running. We describe our approach to generating
closed-form center of mass (CoM) trajectories for walking
and running by alternately linking the two gaits through
continuity constraints. Thereby, we distinguish between vertical
and horizontal planning. The vertical trajectory is computed
in a forward recursion from the first to the last gait sequence.
Due to the coupling of the gait sequences in the horizontal
direction, we show the efficient generation of the horizontal
CoM trajectory in a single matrix calculation. Subsequently, we
unify the control strategies using a DCM tracking controller for
the complete trajectory and integrate the proposed framework
into an inverse dynamics-based whole-body controller. Finally,
the presented approaches are validated in simulations with the
humanoid robot Toro.

I. INTRODUCTION

Bipedal locomotion promises improved accessibility and
navigation of complex and non-barrier-free terrain compared
to wheel-based mobility. However, this versatility has the dis-
advantage of generally achieving slower locomotion speeds.
In contrast to most of today’s humanoid robots, humans can
significantly increase their locomotion speed by changing
their gait from walking to running.

Non-human-like locomotion machines are capable of high
speeds [1] and powerful jumps [2] but are highly specialized.
For humanoid robots designed for versatility, running is
still challenging due to the short, potentially underactuated
contacts and the high torque demands on the joints. Fur-
thermore, the biomechanics of walking and running differ
significantly. In walking, the body’s center of mass (CoM)
reaches a maximal height in the middle of the stance phase,
while the opposite is true for running [3]. Usually, different
mathematical models and control strategies are adopted to
reproduce the CoM motions for the two gaits.

Most scientific works in robotic bipedal locomotion follow
the idea of focusing on the robot’s CoM dynamics for
generating gait trajectories. One of the most popular models
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Fig. 1. Time series of the humanoid robot Toro [4] in simulation during
the walk-to-run (W2R) transition with CoM motion indicated (continuous
line: walking, dashed line: running).

for walking is the Linear Inverted Pendulum (LIP) model
[5]–[7]. In this approach, the CoM acceleration can be
completely described by the position of the zero moment
point (ZMP) relative to the CoM. The ZMP is defined as
a point on the ground where the horizontal moments of
contact forces around the CoM are zero. Using the concept
of the Divergent Component of Motion (DCM) introduced
by [8], the second-order CoM dynamics can be separated
into stable and unstable components. As a generalization of
the capture point (or 2D DCM) [9]–[11], Englsberger et al.
[12] extended this concept to 3D with the introduction of the
Virtual Repellent Point (VRP). In this formulation, the CoM
naturally converges to the DCM (stable dynamics), and the
DCM diverges away from the VRP (unstable dynamics). By
embedding the DCM-based walking controller into a whole-
body control framework, stable walking motion was shown
in simulation and experiments on the humanoid Toro.

The generation of running trajectories is commonly based
on switching dynamical constraints between the stance and
flight phases. In the stance phase, approaches similar to
walking using the LIP model are adopted to generate a
running pattern [13]–[15]. Other studies utilize the Spring-
Loaded Inverted Pendulum (SLIP) model, which consists
of a point mass on top of a massless, compliant leg. With
appropriate parameters and initial conditions, the SLIP model
can be shown to be open-loop stable [16] or can be controlled
to return to a stable limit cycle [17]–[19]. However, there are
no closed-form solutions for the SLIP model. This motivates
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the approach by [20], which aims to use polynomial splines
to design CoM trajectories that produce approximately nat-
ural ground reaction forces by fulfilling a set of boundary
conditions. This trajectory planner is utilized to construct
a deadbeat controller, the so-called Biologically Inspired
Deadbeat (BID) controller, and integrated into an inverse
dynamics-based whole-body control framework to produce
stable full-body running motion in simulation.

A variety of approaches are used for the transition between
walking and running. Rummel et al. [21] found overlaps
between stable limit cycles of walking and running, showing
that the same locomotion speed can be achieved with both
gaits, and [22] discretely changes the locomotion mode
between walking, running, and hopping for push recovery.
Similar to the VRP approach, Sugihara et al. [23] enhanced
the ZMP model to 3D, which can represent variations of the
CoM height and enables seamless transitions between walk-
ing and running without pre-planning the overall trajectory.
Most recently, Smaldone et al. [24] used an MPC approach
to realize transitions between walking and running.

The main contribution of this paper is the introduction
of a combined analytical trajectory generation for walking
and running, which allows to pre-plan a complete multi-step
motion reference. We show that the proposed method merges
two distinctly different planning approaches for walking [12]
and running [20] into a single framework. Together with
a unified control approach, we achieve smooth transitions
between standing, walking, and running in a whole-body
simulation. The paper is organized as follows. Section II
introduces the two trajectory generation concepts for walking
and running. Section III presents our approach for the
combined trajectory generation of the two gaits separately for
the vertical direction (Section III-A) and horizontal directions
(Section III-B). We evaluate the proposed methods in a
whole-body simulation with the humanoid robot TORO in
Section IV, and Section V concludes the paper.

II. PRELIMINARIES

A. DCM-based Trajectory Generation for Walking

The trajectory generation for walking is based on the con-
cepts of three-dimensional Divergent Component of Motion
(DCM) and Virtual Repellent Point (VRP), introduced in
[25]. Here, the DCM ξ is defined as a linear combination
of the CoM position x and velocity ẋ as

ξ = x+ bẋ, (1)

where the time constant b =
√

∆z/gz is determined by
the average height of the CoM over the ground ∆z and the
gravitational constant gz . The total force f on the CoM is
encoded by the VRP v as

f =
m

b2
(x− v) , (2)

where m is the total mass. This force-to-point transformation
simplifies handling the robot’s hybrid dynamics by allowing
discrete foot positions to be mapped to VRP waypoints,
from which a VRP trajectory is generated by piecewise

interpolation. We find the DCM dynamics by differentiating
(1) and inserting the CoM dynamics ẍ = f/m with (2) as

ξ̇ =
1

b
(ξ − v) . (3)

To generate DCM and CoM trajectories, the walking motion
is split into nφ transition phases. We choose a DCM target
point ξf and a CoM start point xs as boundary conditions
for the complete motion. By specifying a VRP trajectory
vφ(t) for each transition phase φ, we can solve (1) and
(3) with appropriate initial and terminal values to obtain the
DCM trajectory ξφ(t) and CoM trajectory xφ(t) (for details
see [26]). We denote vφ(0) = vφ,0 as the VRP phase start
points and vφ(Tφ) = vφ,T as the VRP phase end points,
where Tφ is the phase duration, and equivalently define the
DCM and CoM start and end points. To ensure continuity
of the complete trajectory, the transition phase start and end
points of adjacent phases are linked, i.e. vφ,0 = vφ−1,T ,
ξφ,0 = ξφ−1,T and xφ,0 = xφ−1,T . Thus a complete VRP,
DCM and CoM trajectory can be described as a piecewise in-
terpolation of n = nφ+1 VRP waypoints V = [v1 . . .vn]

T,
DCM waypoints Ξ = [ξ1 . . . ξn]

T and CoM waypoints
X = [x1 . . .xn]

T, respectively. An efficient computation of
the DCM and CoM waypoints can be summarized to[

X
Ξ

]
=

[
Xcx

Xcξ
0 Ξcξ

]
︸ ︷︷ ︸

AW

[
xT
s

ξTf

]
+

[
XCV
ΞCV

]
︸ ︷︷ ︸

BW

V , (4)

where the detailed analytical computation of the components
of AW and BW can be found in [26]. The backward
mapping for the DCM is chosen due to its increased numeric
stability compared to a forward mapping.

B. Spline-based Trajectory Generation for Running

In [20], a biologically inspired running trajectory gen-
eration was introduced as part of the BID framework to
design CoM trajectories that produce approximately natural
ground reaction forces (GRF). It was shown that human GRF
profiles could be approximated by a second-order polynomial
in the vertical direction and third-order polynomials in the
horizontal directions. This corresponds to the CoM position
being expressed by fourth-order polynomials in the vertical
direction and fifth-order polynomials in the horizontal direc-
tion. The polynomial encoding is given by σ(t)

σ̇(t)
σ̈(t)

 =

 1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3

pσ =

 tTσ
tTσ̇
tTσ̈

pσ,

(5)
where σ ∈ {x, y, z}. The last components of tTσ , tTσ̇ =
d/dt tTσ = ṫTσ and tTσ̈ are grayed out to indicate that they are
used only for the horizontal directions. The running motion is
divided into n stance phases and corresponding flight phases.

1) Vertical planning: For each stance phase i (duration
Ts,i), four linear vertical boundary conditions for five pa-



rameters pz,i ∈ R5 are determined as
zTD,i

żTD,i

−gz
−gz


︸ ︷︷ ︸

bz,i

=


tTz (0)
tTż (0)
tTz̈ (0)

tTz̈ (Ts,i)


︸ ︷︷ ︸

Bz,i

pz,i. (6)

Here, the first element in bz,i specifies the CoM height at the
start of the stance phase (touchdown, TD) and the last two
elements imply that the stance phase’s initial and terminal
CoM acceleration equals minus gravity, i.e., the vertical leg
force is zero. The general solution of (6) is given by

pz,i = BT
z,i

(
Bz,i B

T
z,i

)−1

bz,i︸ ︷︷ ︸
pz,i,0

+rz,i p̃z,i, (7)

where rz,i spans the one-dimensional nullspace of Bz,i.
With the remaining degree of freedom p̃z,i, we aim to achieve
the desired apex height of the next flight phase. The stance
time Ts,i, apex height and TD height are design parameters
of the planning approach (for details, see [20]).

2) Horizontal planning: For each stance phase i, five
linear horizontal boundary conditions for six polynomial
parameters P χ,i∈R6×2 (rows for x and y) are defined as

χTD,i

χ̇TD,i

0

0

χft,i


︸ ︷︷ ︸

Hχ,i

=


tTχ (0)

tTχ̇ (0)

tTχ̈ (0)

tTχ̈ (Ts,i)

lTχ,i


︸ ︷︷ ︸

Bχ,i

P χ,i. (8)

In general, the vector χ = [x y] summarizes horizontal
positions. Here, the first element in Hχ,i specifies the
horizontal CoM position at the start of the stance phase.
The third and fourth elements imply that the stance phase’s
initial and terminal acceleration equals zero, i.e., horizontal
leg forces are zero. In the last row of Bχ,i, the vector lTχ,i
maps the polynomial parameters to the foot positions χft,i

(see [20], where lTχ,i is denoted as eTχ,i). The general solution
of (8) is analogous to (7). With the remaining degrees of
freedom p̃∗

χ,i = [p̃x,i p̃y,i] ∈ R2, we aim to provide the best
possible focus of leg forces at the foot target position. The
solution for (8) is found as

P χ,i =

(
I −

rχ,i r
T
χ,i Mχ,i

rTχ,i Mχ,i rχ,i

)
︸ ︷︷ ︸

Ωχ,i

BT
χ,i

(
Bχ,i B

T
χ,i

)−1

︸ ︷︷ ︸
B+

χ,i

Hχ,i.

(9)
For details on the analytical computation of the polynomial
parameters P χ,i and matrix Mχ,i, see [20].

III. COMBINING TRAJECTORY GENERATION FOR
WALKING AND RUNNING

In this section, we propose a method to combine the
planning of walking and running trajectories by transforming

the corresponding equations of the running gait generation
to enable the linkage of the two gaits through continuity
constraints. We do not change the trajectory generation
methods or introduce additional design parameters. Similar
to the division of walking into transition phases and running
into stance and flight phases, we divide the overall motion
into Ng gait sequences and assume it always starts and ends
with walking1 (i.e., Ng is odd). In this paper, we use basis
vectors of different lengths to define selectors. Thus, we
denote with eℓ,i the i-th basis vector of Rℓ. To simplify
notation, we assume that each walking and running sequence
consists of n waypoints and stance phases, respectively.

As shown in the previous section, the planning methods
for each gait sequence g ∈ {1 . . . Ng} differ significantly.
However, enforcing continuity of position, velocity, and
acceleration suffice to ensure smooth gait transitions. Thus,
we define three continuity conditions for each gait transition:

x1,g = xn,g−1, (10)
ẋ1,g = ẋn,g−1, (11)
ẍ1,g = ẍn,g−1, (12)

for all g ∈ {2, 3, . . . , Ng}, where x1,g is the first position
waypoint in gait sequence g and xn,g−1 is the last position
waypoint in the previous gait sequence g−1. For a combined
calculation of walking and running gaits, we agree on the
quantities of walking, i.e., CoM x, DCM ξ, and VRP v,
as common variables for the continuity conditions. We use
a DCM position and CoM velocity terminal condition for
each walking and running2 sequence, respectively, to ensure
stability of the trajectory. Hence, we transform the velocity
continuity condition (11) with (1) to a DCM continuity
constraint and reformulate as a backward recursive equation:

ξn,g = ξ1,g+1 ∀g ∈ {1, 2, . . . , Ng−1}, (13)

where ξn,g is the last DCM waypoint in gait sequence g and
ξ1,g+1 is the first DCM waypoint in the next gait sequence
g+1. For each walking sequence, the VRP trajectory depends
on the robot’s foot positions and can be predetermined. By
inserting (2) divided by the total mass m into (12), we
find that the acceleration continuity condition is fulfilled
by continuity of the CoM position (10) and a continuity
requirement on the VRP trajectory. We satisfy this constraint
by choosing the first and last VRP waypoints in running as

v1,g = vn,g−1 ∀g ∈ gr, (14)
vn,g = v1,g+1 ∀g ∈ gr. (15)

Here, the set gr = {2, 4, . . . , Ng−1} contains the even
indices of the running sequences. Additionally, we denote
with gw = {1, 3, . . . , Ng} the set of odd walking sequence
indices. Consequently, two continuity conditions remain, i.e.
(10) and (13), which must be satisfied alternately by walking
or running. Equivalently to a single walking sequence, we

1The gait transition can be performed in the footstep after the initial and
before the final double support phase, respectively.

2The terminal condition exists only for the horizontal planning in running.
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Fig. 2. Outline of the vertical planning computation flow

choose a global CoM start point x̄s and DCM target point
ξ̄f in the first and last gait sequence, respectively, as

x̄s = v1,1, (16)
ξ̄f = vn,Ng

. (17)

With these inputs, the entire trajectory can be represented as
a function of the foot targets and VRP waypoints, which are
themselves a function of the foot targets. Since the horizontal
and vertical trajectory for running is calculated separately, we
maintain this separation for the combined computation.

A. Vertical Planning of Walking and Running

This section presents the computation of the vertical
trajectory for multiple walking and running sequences. The
computation flow is outlined in Fig. 2 and illustrates the
continuity conditions between the gait phases, which are
described in more detail below.

1) Walking: Each walking sequence g depends on both
the preceding and the succeeding gait sequence. By choosing
the final vertical DCM position in (4) to coincide with the
respective last vertical VRP position, i.e.,

ξz,n,g = vz,n,g, (18)

we can resolve the dependence on the next gait sequence
in the vertical direction (this assumption is valid as the TD
height is a design variable in running). With (18) and the
third row of (10), we write (4) for the vertical direction and
gait sequence g as[
zg

ξz,g

]
=

[
Xcx
0

]
zn,g−1 +

[
Xcξ,ge

T
n,n + XCV,g

Ξcξ,ge
T
n,n + ΞCV,g

]
vz,g.

(19)
Here, the second row only depends on vz,g . Thus, we can
calculate the DCM waypoints for all walking sequences in
advance and independent of the running sequences. The
vertical component of the CoM waypoints still depends on
the last CoM position waypoint of the previous gait sequence.
With the third row of (16), we can calculate the vertical CoM
waypoints in a forward recursion, as shown in Fig. 2.

2) Running: For all but the first and last stance phases
of each running sequence, the boundary conditions consist
of (6). In contrast, we must adjust the boundary conditions
in the first and last stance phase to connect the trajectory
generation for running to the walking sequences. As the

terminal value for walking is fixed in (18), we need a
continuity constraint for the initial DCM position as

ξz,1,g = ξz,n,g−1 ∀g ∈ gr. (20)

In the first stance phase, we use (1) and (2) divided by m to
transform the CoM velocity to DCM and CoM acceleration
to VRP continuity conditions, respectively, and insert (20)
and the third rows of (10) and (14) as

zn,g−1

ξz,n,g−1

vz,n,g−1

−g


︸ ︷︷ ︸

bz,1

=


tTz (0)

tTz (0) + b tTż (0)

tTz (0)− b2 tTz̈ (0)

tTz̈ (Ts,1)


︸ ︷︷ ︸

Bz,1

pz,1. (21)

Here, the last boundary condition remains unchanged as it
specifies the acceleration at the end of the first stance phase.

While the first three boundary conditions of (6) remain
unchanged in the final stance phase, the fourth boundary
condition is replaced by a VRP continuity condition. Addi-
tionally, we introduce a terminal DCM boundary condition
for the final stance phase that replaces the non-linear apex
height boundary condition. The five linear boundary and
continuity conditions in the final stance phase are given by

zTD,n

żTD,n

−g
vz,1,g+1

ξz,1,g+1


︸ ︷︷ ︸

bz,n

=


tTz (0)

tTż (0)

tTz̈ (0)

tTz (Ts,n)− b2 tTz̈ (Ts,n)

tTz (Ts,n) + b tTż (Ts,n)


︸ ︷︷ ︸

Bz,n

pz,n. (22)

Here, with five boundary conditions and five polynomial pa-
rameters pz,n, the square, full-rank matrix Bz,n is invertible.
The detailed calculation of the waypoints is shown in [20].

B. Horizontal Planning of Walking and Running

In horizontal planning, we avoid constraining the last
DCM position, so the coupling to the preceding and suc-
ceeding gait sequence remains. Therefore, we need to solve
for all gait sequence waypoints in a combined computation.
First, our goal is to obtain a mapping between gait sequence
initial and terminal waypoints and the respective foot targets
for each gait sequence g as indicated in Fig. 3. Secondly, by
using these equations, we assemble a global matrix equation
to compute the initial and terminal waypoints for all gait
sequences in terms of foot positions, the global CoM start
point x̄s and DCM target point ξ̄f .

1) Walking: The horizontal VRP and foot positions co-
incide. Thus, we find a compact expression of the VRP
waypoints (VRP stationary in foot center during single
support) in terms of foot positions for gait sequence g as

V χ,g = Bf,gX ft,g, (23)

where Bf ∈ Rn×nt is a block diagonal matrix whose
diagonal contains the matrices bf,k = [1 1]T, k ∈ {1 . . . nt},
and nt is the total number of foot targets. This equation is
generally valid except for the stationary initial and terminal
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double support phase. Equation (4) shows the calculation of
all CoM and DCM waypoints. To obtain the mapping to the
last CoM position χn,g and first DCM position ξχ,1,g , we
select the corresponding rows in (4) and insert (23) as[
χn,g

ξχ,1,g

]
=

[
eTn,n 0
0 eTn,1

](
AW

[
χ1,g

ξχ,n,g

]
+BWBf,gX ft,g

)
=

[
χaχ,g

χaξ,g
0 ξaξ,g

] [
χ1,g

ξχ,n,g

]
+

[
χbt,g
ξbt,g

]
X ft,g.

(24)
This yields the mapping between the initial and terminal
waypoints and the foot positions of walking, which is later
used to assemble the global matrix equation.

2) Running: In this section, the waypoints of the running
trajectory are computed efficiently in a matrix equation,
which is subsequently transformed to resemble the common
structure shown in (24) for walking. The takeoff (TO) state
at the end of each running stance phase i is defined as[

χTO,i

χ̇TO,i

]
︸ ︷︷ ︸

STO,i

=

[
tTχ (Ts,i)

tTχ̇ (Ts,i)

]
︸ ︷︷ ︸

Tχ,i

P χ,i. (25)

We insert (9) into (25) as

STO,i = T χ,iΩχ,iB
+
χ,i︸ ︷︷ ︸

Dχ,i∈R2×5

Hχ,i. (26)

Combining the first two columns in Dχ,i and separating the
remaining columns allows (26) to be extended to

STO,i = Dα,i

[
χTD,i

χ̇TD,i

]
︸ ︷︷ ︸

STD,i

+dβ,iχ̈TD,i+dγ,iχ̈TO,i+dδ,iχft,i,

(27)
where Dα,i summarizes the first two columns and dβ,i, dγ,i,
and dδ,i denote the third, fourth, and fifth columns of Dχ,i,
respectively. For all running stance phases, we assemble the
TD state STD,i, TO state STO,i and foot positions χft,i

in the TD state matrix STD = [ST
TD,1 · · ·S

T
TD,n]

T, the
TO state matrix STO = [ST

TO,1 · · ·S
T
TO,n]

T and the foot
position matrix X ft = [χT

ft,1 · · ·χT
ft,nt

]T, respectively. In
each running sequence, there are two acceleration waypoints
in the transition to walking that are not equal to zero, i.e., the
first TD acceleration χ̈TD,1 and last TO acceleration χ̈TO,n

3.

3Note that there is no actual TD and TO in the first and last stance phase
of running due to the transition from and to walking, respectively. However,
the quantities are still indicated as TO/TD for consistency of notation.

All other acceleration waypoints are zero, and the respective
boundary conditions are implicitly satisfied. We write (27)
in matrix form for all n running stance phases as

STO = DαSTD +Dβχ̈TD,1 +Dγχ̈TO,n +DδX ft, (28)

where Dβ = ZT
1 dβ,1, Dγ = ZT

Ndγ,n and Dα and Dδ

are block diagonal matrices whose diagonal contains the
single-phase matrices Dα,i and vectors dδ,i, respectively.
The selection matrices Z1 = [e2n,1 e2n,2]

T and ZN =
[e2n,2n−1 e2n,2n]

T select the first and last state from the
state matrices STO and STD. Additionally, we introduce the
selection matrix ZT = [e2n,3 . . . e2n,2n]

T, which selects the
states 2 . . . n from the state matrices (STD and STO) and
denote with STD,T = ZTSTD the corresponding states.
Thus, we can separate the mapping of the first TD state
STD,1 to the TO state matrix STO in (28) as

STO = ZT
1 Dα,1STD,1 +DαZ

T
TSTD,T

+DδX ft +Dβχ̈TD,1 +Dγχ̈TO,n.
(29)

Here, ZT
1 Dα,1 are the first two columns and DαZ

T
T are all

remaining columns of Dα. In the flight phase, we compute
the upcoming TD state in terms of the TO state as[

χTD,i+1

χ̇TD,i+1

]
︸ ︷︷ ︸

STD,i+1

=

[
1 Tf,i

0 1

]
︸ ︷︷ ︸

AF,i

[
χTO,i

χ̇TO,i

]
︸ ︷︷ ︸

STO,i

, (30)

for all i ∈ {1 . . . n−1}. We write in matrix form for all
running phases n as

STD,T = AFZ0STO, (31)

where AF is a block diagonal matrix whose diagonal con-
tains the single flight phase mapping matrices AF,i and the
selection matrix Z0 = [e2n,1 . . . e2n,2n−2]

T selects the states
1 . . . n−1 from the state matrices STD and STO. We insert
(31) into (29) and solve for STO as

STO=DR

(
ZT

1 Dα,1STD,1 +DδX ft +Dβχ̈TD,1 +Dγχ̈TO,n

)
,

(32)
where DR = (I − DαZ

T
TAFZ0)

−1. This is valid as the
matrix D−1

R is a lower triangular matrix with non-zero
elements on the diagonal and thus invertible. By selecting
the last two rows of (32), we obtain the final TO state as

STO,n = ZNDRZ
T
1 Dα,1STD,1 +ZNDRDδX ft

+ZNDRDβχ̈TD,1 +ZNDRDγχ̈TO,n.
(33)

This yields the mapping between running initial and terminal
waypoints and foot positions, which must be transformed
to the coordinates of the walking trajectory. Reordering,
we augment the final TO state and first TD state by their
respective CoM accelerations and write for gait sequence g:[
I2×2 −ZNDRDγ

]︸ ︷︷ ︸
AN,g

[
STO,n,g

χ̈TO,n,g

]
= ZNDRDδ︸ ︷︷ ︸

AT,g

X ft,g+

[
ZNDRZ1Dα,1 ZNDRDβ

]︸ ︷︷ ︸
A1,g

[
STD,1,g

χ̈TD,1,g

]
.

(34)



To obtain the identical coordinates for walking and running,
we introduce the coordinate transformation for the final
augmented TO state for gait sequence g as χTO,n,g

χ̇TO,n,g

χ̈TO,n,g

 =

 1 0 0
−1/b 1/b 0
1/b2 0 −1/b2


︸ ︷︷ ︸
hχ

︸︷︷︸
hξ

︸ ︷︷ ︸
hv

 χn,g

ξχ,n,g
vχ,n,g

 .

(35)

We insert the coordinate transformation (35) and its equiva-
lent for the first augmented TD state into (34) and group the
χTO,n and ξTD,1 terms on the left-hand side as[

AN,ghχ −A1,ghξ

]︸ ︷︷ ︸
BN,1,g

[
χn,g

ξχ,1,g

]
= −AN,ghvvχ,n,g+

A1,ghvvχ,1,g +
[
A1hχ −ANhξ

]︸ ︷︷ ︸
B1,N,g

[
χ1,g

ξχ,n,g

]
+AT,gX ft,g.

(36)
To satisfy the VRP continuity constraint, we choose the
first and last horizontal foot position to coincide with the
respective last VRP of the previous and the first VRP of
the next walking sequence, i.e., χft,1,g = vχ,n,g−1 and
χft,n,g = vχ,1,g+1. With the first and second row of (14)
and (15), we insert into (36) to obtain

BN,1,g

[
χn,g

ξχ,1,g

]
= B1,N,g

[
χ1,g

ξχ,n,g

]
+

(A1,ghvent,1 −AN,ghvent,nt
+AT,g)︸ ︷︷ ︸

BT,g

X ft,g,
(37)

Finally, we find the explicit solution for the final CoM
position χn,g and first DCM position ξχ,1,g as[

χn,g

ξχ,1,g

]
=

[
χcχ,g

χcξ,g
ξcχ,g

ξcξ,g

]
︸ ︷︷ ︸

B−1
N,1,gB1,N,g ∈ R2×2

[
χ1,g

ξχ,n,g

]
+

[
χf t,g
ξf t,g

]
︸ ︷︷ ︸

B−1
N,1,gBT,g∈R2×nt

X ft,g.

(38)
Here, the matrices are written in terms of their components
to resemble the equation structure shown in (24) for walking.

3) Assembly of the global matrix equation: For the com-
putation of multiple gait sequences, we utilize the common
structure of (24) and (38) (see Fig. 3). Our goal is to obtain
a matrix equation similar to (4) for computing the waypoints
of the entire motion, i.e., the sequences’ start and end points,
in terms of a global CoM start and DCM target point and
the foot positions. First, we alternately select the first rows
of (24) and (38), insert (10) and summarize as

χg = mχ,gχg−1 + nχ,gξχ,g + τχ,gXt,g, (39)

where

mχ,g = χaχ,g

nχ,g = χaξ,g

τχ,g = χbt,g

∀g ∈ gw,

mχ,g = χcχ,g

nχ,g = χcξ,g

τχ,g = χf t,g

∀g ∈ gr.

Here, the gait sequence target matrix Xt,g contains the
respective foot positions and we droped the subscripts 1 and

n for the CoM and DCM position. Similarly, we alternately
select the second rows of (24) and (38) and insert (13) as

ξχ,g = mξ,gχg + nξ,gξχ,g+1 + τ ξ,gXt,g, (40)

where
mξ,g = ξaχ,g

nξ,g = ξaξ,g

τ ξ,g = ξbt,g

∀g ∈ gw,

mξ,g = ξcχ,g

nξ,g = ξcξ,g

τ ξ,g = ξf t,g

∀g ∈ gr.

Equations (39) and (40) form a coupled forward and back-
ward recursion that must be solved simultaneously, and thus
we adopt the notation from Section II-A to reformulate (39)
and (40) in terms of sequence start and end points as

χg,T = mχ,gχg,0 + nχ,gξχ,g,T + τχ,gXt,g, (41)

ξχ,g,0 = mξ,gχg,0 + nξ,gξχ,g,T + τ ξ,gXt,g, (42)

where the subscript 0 denotes start points, e.g., ξχ,g,0 and
the subscript T denotes end points, e.g., χg,T . We collect
the N =Ng+1 CoM gait sequence waypoints χj in a matrix
XG = [χT

1 . . .χT
N ]T and the DCM gait sequence waypoints

ξχ,j in a matrix ΞG = [ξTχ,1 . . . ξ
T
χ,N ]T. All foot target

positions are combined in the global target matrix X̄t =
[XT

t,1 . . .X
T
t,Ng

]T. With (41) and (42), we can assemble a
global matrix equation for the gait sequence waypoints of
equivalent structure as (4). We express the global CoM start
and DCM target point in terms of XG and ΞG as

eN,1e
T
N,1XG = eN,1χ̄s, (43)

eN,NeTN,NΞG = eN,N ξ̄χ,f . (44)

We define two selection matrices, S0 = [eN,1 . . . eN,N−1]
T

and ST = [eN,2 . . . eN,N ]T, that select the gait sequence
start and end points from the waypoint matrices XG and
ΞG. The CoM start points XG,0 = S0XG combine the
waypoints 1 . . . N−1 and the CoM end points XG,T =
STXG combine the waypoints 2 . . . N . The DCM start and
end points ΞG,0 and ΞG,T are defined analogously. Thus we
write (41) and (42) in matrix form for Ng gait sequences as

XG,T = MχXG,0 +NχΞG,T + T χX̄t, (45)
ΞG,0 = M ξXG,0 +N ξΞG,T + T ξX̄t, (46)

where Mχ, Nχ, M ξ, and N ξ are square diagonal matrices
whose diagonals contain the coefficients mχ,g , nχ,g , mξ,g ,
and nξ,g , respectively. The matrices T χ and T ξ are block
diagonal matrices whose diagonals contain the vectors τχ,g

and τ ξ,g , respectively. Rewriting (45) and (46) in terms
of XG and ΞG, multiplying from the left by ST

T and
ST

0 , respectively, adding (43) and (44), respectively, and
combining in a single matrix equation yields[

XG

ΞG

]
︸ ︷︷ ︸
Σ∈R2N×2

=

[
ST

TMχS0 ST
TNχST

ST
0 M ξS0 ST

0 N ξST

]
︸ ︷︷ ︸

G∈R2N×2N

[
XG

ΞG

]
︸ ︷︷ ︸
Σ∈R2N×2

+

[
ST

TT χ

ST
0 T ξ

]
︸ ︷︷ ︸
K∈R2N×Nt

X̄t +

[
0

eN,N

]
︸ ︷︷ ︸
ēN∈R2N

ξ̄χ,f +

[
eN,1

0

]
︸ ︷︷ ︸
ē1∈R2N

χ̄s,

(47)



where Nt is the total number of target waypoints. The global
target matrix X̄t consists of foot target positions except for
the initial and terminal foot position, where different from
(23) the respective two horizontal VRP waypoints are chosen
to coincide with the midpoint between the two feet. Solving
for Σ with the initial and terminal constraints (first and
second row of (16) and (17)) yields

Σ = (I −G)−1(K + ēNeTNt,Nt
+ ē1e

T
Nt,1)︸ ︷︷ ︸

U

X̄t, (48)

where (I − G)−1 is square, full rank, and thus invertible.
Equation (48) is the main result of the horizontal planning.
However, we want to satisfy two additional constraints that
enable a continuous stand-to-walk transition and a walk-to-
stand transition in finite time (without the constraint, the
CoM will only converge to the DCM). Thus, we introduce
the following constraint equation[

xn,Ng

ξχ,1,1

]
=

[
eTN,N 0

0 eTN,1

]
U︸ ︷︷ ︸

Q∈R2×Nt

X̄t
!
=

[
vχ,n,Ng

vχ,1,1

]
︸ ︷︷ ︸

vdes

. (49)

We choose the second and second-to-last VRP waypoints in
X̄t to satisfy the constraints and solve (49) for these points:[

vχ,2,1

vχ,n−1,Ng

]
=
[
qc2 qcN−1

]−1 (
vdes −QremX̄t,rem

)
,

(50)
where qc2 and qcN−1 are the second and second-to-last
columns of Q, and Qrem and X̄t,rem are the remaining
columns and rows of Q and X̄t, respectively.

By inserting the VRP waypoints from (50) into the global
target matrix X̄t in (48) and solving, we obtain the start
and end points of each gait sequence. They are utilized to
calculate all waypoints of each gait sequence from which the
complete horizontal trajectory can be determined.

IV. EVALUATION AND SIMULATION

This section evaluates the proposed methods. Figure 4
shows a series of five consecutive gait sequences with three
footsteps each. The robot’s CoM motion alternates between
walking and running gaits while transitioning from standing
to walking and back in the first and last gait sequence, re-
spectively. The VRP, DCM, and CoM trajectories are C0, C1,
and C2 continuous, respectively, and consistent in the walk-
to-run (W2R) and run-to-walk (R2W) transitions. Although
the VRP leaves the footstep region during running, the leg
forces line of action always passes through a very narrow
area around the foot center, as shown in Fig. 5. During
walking single support, the enhanced Centroidal Moment
Pivot (eCMP), which encodes external forces (similar to
the VRP, see [12]), is stationary in the foot center. During
running, it passes below the ground and maintains the force
focus. The VRP trajectory results in continuous external
forces for the complete trajectory, as shown in Fig. 6.

The pre-planned trajectory is tracked with a combined
control approach. Due to the naturally stable CoM dy-
namics, only the unstable first-order DCM dynamics must
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Fig. 4. Top view of a trajectory consisting of five consecutive gait sequences
with 0.25m step length, double support time TDS = 0.12 s, and single
support time TSS = 0.6 s during walking and 0.4m step length and stance
time Ts = 0.12 s during running.
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Fig. 5. Side view of the trajectory in x- and y-direction highlights the focus
of external forces in the foot center. For visibility, only running sequences
are displayed in the plot on the right.

be controlled. The DCM control framework used for this
purpose is adopted from [25]. The trajectory generation and
DCM controller are integrated into an inverse dynamics-
based whole-body control (WBC) framework, which has
been shown to provide satisfactory results for both gaits
individually [12], [20]. The simulations are performed in
Matlab/Simulink, which is linked to the OpenHRP [27]
simulation platform. Fig. 1 shows snapshots of the transition
from walking to running of the humanoid robot Toro in
simulation for time intervals of 0.2 s. The plot starts at the
end of the last walking double support phase at t = 0 s and
the gait transition occurs in the last single support phase
at t = 0.4 s. The DCM and CoM reference trajectories
compared to the actual values calculated in the whole-body
simulation are shown in Fig. 7 and demonstrate satisfactory
tracking with minimal deviations in the walking sequences.
We can observe an increasing CoM tracking error in the
running sequences while the DCM tracking performance
stays constant. This highlights the importance of online re-
planning of the trajectory based on state measurements.
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Fig. 6. Leg forces over time of the humanoid robot Toro (m = 79.2 kg).
Step lengths and timings according to Fig. 4.
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V. CONCLUSION AND FUTURE WORK

This paper presented an analytical trajectory generator for
gait transitions between walking and running. We showed
that the proposed framework combines two significantly
different planning approaches to produce a consistent CoM
trajectory for the two gaits. The method was verified in a
whole-body simulation with the humanoid robot Toro.

Future research will focus on online re-planning of the
trajectory based on state measurements to react to distur-
bances. Furthermore, the gait parameters, i.e., stance times,
apex height, and step length, will be adjusted depending on
the current locomotion velocity to obtain a more natural and
human-like gait. Finally, we plan to experimentally evaluate
the presented methods on a humanoid robot.
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