
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Encoding Strategies to
solve Soduko with

Quantum Computers

Maximilian Weiß

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Encoding Strategies to
solve Sudoku with

Quantum Computers

Maximilian Weiß

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Sophia Grundner-Culemann

Tobias Guggemos

Korbinian Staudacher

Andreas Spörl (DLR)

Abgabetermin: 19. Juli 2022

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 19. Juli 2022

. .

(Unterschrift des Kandidaten)

Abstract

Quantum computers represent a new generation of computing machines and can solve pro-
blems by exploiting quantum e↵ects in a way that classical computers cannot. Especially for
combinatorial problems, this new way of computing is relevant and could lead to significant
improvements in the future. Quantum Computers use qubits instead of classical bits. Since
high numbers of qubits are not yet available in current quantum computers, e�cient enco-
ding of problems is essential. A well-known and easy-to-understand combinatorial problem
is Sudoku. It is an exciting and fun puzzle that can be mapped to several problem classes
that are more general. This work considers Sudoku as a graph coloring and exact covering
problem. Both are ways to formalize Sudoku and allow di↵erent optimization strategies to
reduce the number of qubits needed. Our work presents optimizations for graph coloring
and exact covering encoding. Techniques for improvement are presented in both cases by
preprocessing the games and using binary encoding. Specifically, we show the impact on
encoding size when the problem gets solved with Grovers’s Algorithm and Quantum Appro-
ximation Optimization Algorithm (QAOA). Also, the number of qubits explicitly needed for
Grover’s Algorithm is improved, reducing the number of auxiliary qubits from N to log(N),
by implementing a counter. Further, we present and briefly explain the software developed
to calculate the number of qubits needed to encode a Soduko with a specific strategy and
Algorithm.

vii

Inhaltsverzeichnis

1 Introduction 1

2 Background 3

2.1 Formalization of Sudoku . 3
2.1.1 Graph Coloring . 3
2.1.2 Exact Covering . 3

2.2 Quantum Computing . 4
2.2.1 Quantum Parallelism and Superposition 5
2.2.2 Measurement . 5
2.2.3 Quantum Circuits and Gates . 5

2.3 NISQ-Era . 7
2.4 Grover’s Algorithm . 7
2.5 Quantum Approximation Optimization Algorithm (QAOA) 9

3 Related Work 11

3.1 Classical Approaches . 11
3.2 Quantum Approaches . 11
3.3 Research Question . 12

4 Optimization Strategies 13

4.1 General Preprocessing . 13
4.2 Graph Coloring . 15

4.2.1 Size Reduction from n⇥ n to n⇥ (n� 1) 15
4.2.2 Field Encoding . 17

4.3 Exact covering . 17
4.3.1 Pattern Generation . 18
4.3.2 Pattern Encoding . 19

4.4 Reducing the number of auxiliary qubits in Grovers Algorithm 19
4.4.1 The basic setup of auxiliary qubits . 19
4.4.2 Auxiliary qubits set up as a counter 20

5 Results 23

5.1 Comparing Results for di↵erent puzzles . 23
5.2 Developed tools . 26

5.2.1 Tools for preprocessing and optimization 26
5.2.2 Developing a UI to calculate numbers of qubits needed 27

6 Conclusion 29

Abbildungsverzeichnis 31

ix

Inhaltsverzeichnis

Literaturverzeichnis 33

Appendix A 37

Appendix B 39

x

1 Introduction

Sudoku is a popular puzzle that people of all cultures play without needing any mathematical
knowledge to solve. A classic Sudoku puzzle is played on a board consisting of 81 cells that
are arranged in a 9x9 square. The board is further subdivided into nine sub-areas consisting
of 3x3 squares. These areas are called subfields. The game’s goal is to fill all the cells with
the digits 1-9. Thereby, numbers may not appear twice in a row, column, or subfield. In
the start state, some cells are already pre-filled; by this default, the player can draw logical
conclusions and solve the puzzle, one cell at a time. Figure 1.1 shows a detailed example
by which the naming of the units can be well understood. However, Sudoku is not only
an entertaining game for puzzle fans. It also engages many mathematicians with questions
that the game raises on an abstract level. For example, the number of possible Sudoku
games or the minimum number of starting squares that need to be filled to get a unique
solution are exciting questions [Del06]. Nevertheless, simply solving the game also occupies
mathematicians and computer scientists. In particular, it is interesting how solutions for
such puzzles can be found as e�ciently as possible. Sudoku games are special cases of more
general problem classes, like Graph Coloring or Exact Covering. Our work will explain both
problem classes in detail. Solving such combinatorial problems is possible on modern, classical
computers, thanks to ever-increasing computing power. However, the algorithms used for
this are ine�cient, so a computation of a solution is not possible in a reasonable time for
larger problems [Lei77]. These combinatorial problems may be suitable to be solved with
quantum-based algorithms. Quantum computers do not work with classical bits but rather
with qubits, enabling new algorithms and solution methods [Hom]. At the current time,
the application of these algorithms in practice is limited by the hardware as the number
of qubits available is very low. Therefore, our work addresses how to reduce the number of
qubits needed to solve a Sudoku puzzle and thus improve the size of problems that can be
solved with quantum-based algorithms.

1

1 Introduction

1
3

9 6
2

7

5

9
8

6

1
5 3

4

8
3

4
7

9
2

3

1
7

Pre-filled
cell with
value 1

Empty cell

Column

Row

Subfield

Figure 1.1: Sections of a Sudoku Board

2

2 Background

This chapter provides an overview of the problem classes, Sudoku will be mapped to in our
work. Also it introduces the reader to basic concepts of quantum computing.

2.1 Formalization of Sudoku

Besides the standard game size, Sudoku puzzles can be played in di↵erent sizes. This work will
focus on the classic version, a 9 x 9 board. For simplification and presentation of concepts, the
smaller version of a 4 x 4 board is used in some places. In order to solve Sudoku puzzles with
the help of computer algorithms, a formal mathematical description is necessary. Therefore
a mapping of the game to known problem classes is performed. This work will discuss the
mapping to a graph coloring problem and an exact covering problem.

2.1.1 Graph Coloring

To understand the idea of the graph coloring problem, consider an undirected graph G(E, V).
Here E represents the set of nodes and V the set of edges, which state connections between
nodes from E. The goal of graph coloring is to assign a color c to each node e 2 E so
that no two nodes connected by an edge have the same color. Formally, this mapping is
described as C : e ! c. For the mapping of the graph to be valid, it must hold that
C(a) 6= C(b)8v(a, b) 2 V [VD12]. First, a graph is constructed to map a Sudoku to a
graph coloring problem. The set of nodes E is formed by the cells of the puzzle. Each node
representing a pre-filled cell is assigned the corresponding digit/color from the start. The set
of vertices V is formed by the relations of the cells inside the Sudoku. That means vertices
are generated between all cells, which lie in the same row, column, or subunit. Thus, every
node in the graph connects to every other node whose cells are in the same row, column,
or subunit in the game. Now the puzzle can be solved by assigning a color to each node so
that no nodes connected by an edge are assigned the same color. As shown in Figure 1.1,
the notions of color and digit are interchangeable in this context. In the classical context of
graph coloring, the notion of color is common, but concerning a Sudoku puzzle, digits are.
Figure 2.1 shows the mapping of a 4 x 4 game onto a graph. Each digit is assigned a color
to illustrate the concept. For readability, the figure shows only the edges of one node, in this
case, the one representing the call (row: 0, col: 0).

2.1.2 Exact Covering

The goal of the exact cover problem is to cover a set of elements, each of them exactly
once. The set can represent any kind of element, for example, the cells of a sudoku board.
For a Sudoku puzzle, the goal would be to cover all cells on the field while staying within
the game’s constraints. This covering is achieved by combining individual patterns for every

3

2 Background

Figure 2.1: Mapping of Sudoku to a Graph Coloring problem

digit. The patterns indicate where the specific digit is positioned on the board. Figure 2.2
shows the mapping of a solved Sudoku to each digit’s pattern.

This approach aims to find a pattern for every digit, achieving an exact cover. The ma-
thematical description of the exact cover problem is: There exists a set with elements
U = {u1, u2, ..., un} and another set C which has all subsets from U . An exact cover is
achieved if a subset S ⇢ C contains all elements from U exactly once. [MO08]

In the case of a Sudoku, which is mapped to an exact cover problem, U contains all cells of
the game (row, col). All subsets from it are formed by C. In the case of Sudoku, a subset
can be interpreted as the distribution of a single digit; that is, which cells are occupied by
that digit. Since in a Sudoku, which is played on a n x n matrix, each number must occur
exactly n times, the special case can be made for all sets in C that each set must contain
exactly n elements to be part of a correct solution. Additional statements can be made about
the set S. The subset S from C now represents a selection of subsets for each digit in the
game. Since there are exactly n di↵erent digits in the game, S must also have the size n. If a
valid S is found, it means that for every digit, i.e., every element in S, there exists a subset
from all cells U, so that every field on the Sudoku is filled and no cell can be occupied twice.
To avoid disturbing the game’s constraints with respect to rows, columns, and subunits, the
subsets must be preselected in C. This process is described in Chapter 4.

2.2 Quantum Computing

As computers get faster and better all the time, their components are getting smaller. This
reduction in size leads to parts that can soon be on the order of single atoms. At this level,
the laws of classical physics no longer apply, and the e↵ects of quantum mechanics must
be considered. By making use of those e↵ects, quantum computers can perform calculations
that are impossible for classical computers. The Homeister [Hom] lecture is a well-suited
resource for an entry to this topic. It was used in this and the following chapters to provide
an overview of the concepts.

4

2.2 Quantum Computing

Figure 2.2: The individual pattern for each color

2.2.1 Quantum Parallelism and Superposition

One important e↵ect is called quantum parallelism. A classical bit can be either in the state
0 or 1. A qubit can be in a so-called superposition over these states. To understand quantum
computing, the concept of superpositions is crucial. In quantum mechanics, states are usually
written in so-called ket notation. Thus, one would write down the classical states 0 and 1 in
terms of qubits as |0i and |1i. For a qubit, these are called the base states. A qubit can now
take all states of the form ↵ · |0i+ � · |1i, where ↵,� are complex numbers. The factors ↵,�
are called amplitudes. These amplitudes express the probability of a qubit being measured
in the corresponding state. The probability is calculated from the square of the amplitude.
It applies |↵|2 + |�|2 = 1, which means that the probablities of measuring eighter of two
states add up to 1.
A single qubit |qi in an equal superposition, meaning it is equally likely to be measured in
the state |0i and |1i, would be written as:

|qi = 1p
2
· |0i+ 1p

2
· |1i (2.1)

The squared amplitudes would result in 1
2 , representing the probability of each state.

There are computational advantages due to the e↵ect of quantum parallelism. A register
with n classical bits can be in 2n unique states, but only one at a time. On the other hand,
a quantum register with n qubits can be in a superposition of all these states. Thus, at one
time, it can be in a superposition that maps 2n states, each to a certain probability.

2.2.2 Measurement

Unlike classical bits, the state of a qubit cannot be simply read out. For qubits, a measu-
rement of the state is necessary. Measuring destroys the superposition, and the qubit takes
the state |0i or |1i. The amplitudes indicate how likely each of the two states is measured.

2.2.3 Quantum Circuits and Gates

Like in classical hardware circuits, several operations can be performed on a qubit. These
are called gates in quantum computing. This chapter introduces the most important gates to

5

2 Background

I II III

+0.5

+0.5 +0.5 +0.5

-0.5

1

0 0 0
+0.25 +0.25

I II III IV

Figure 2.3: A simple Quantum Circuit

understanding the algorithms in later chapters. Figure 2.3 shows a quantum circuit. A quan-
tum circuit consists of one or more qubits forming a quantum register and quantum gates,
representing operations on the qubits. At any point in the circuit, one can calculate the state
of the register, i.e., the values of the individual qubits and their probabilities. In Figure 2.3 a
quantum register consisting of three qubits is initialized; these are called q0, q1, q2. Further,
there are three classical bits c initialized, which will later hold the measuring results of the
three qubits. In the start state, each qubit is set to |0i. So the register at the time I has the
state:

|0i · |0i · |0i = |000i (2.2)

First, an X-gate is applied to q0. This is comparable to the classical NOT. The X-Gate
flips the state |0i to |1i and vice versa. On q1, the Hadamard gate, or H-gate for short, is
executed. This H-gate is used to put qubits into superposition. If the qubit is in the |0i state
at the start, the H-gate puts it in the equal superposition:

1p
2
· |0i+ 1p

2
· |1i (2.3)

If the qubit is in the |1i state at the start, it is also brought into superposition, but the sign
of the amplitude changes. This is not important for the probabilities as they are the square
of the amplitudes, but it allows interesting benefits quantum algorithms can exploit. This
will be important in later chapters as well.

1p
2
· |0i � 1p

2
· |1i (2.4)

Thus, at the time II, the system is in the state:

|1i · 1p
2
(|0i+ |1i) · |0i = 1p

2
(|100i+ |110i) (2.5)

To establish dependencies between multiple qubits, CNOT gates are used. These gates check
whether a particular qubit is |1i; this qubit is called the controlled qubit. If this condition is

6

2.3 NISQ-Era

satisfied, we apply an X-gate on a second qubit. If the controlled qubit is in the |0i state, the
X-gate is not applied. This gate creates a permanent dependence between these two qubits,
which is especially interesting when being applied to qubits in superposition. This e↵ect is
called the entanglement of two qubits. Between q1 as well as q2 a CNOT is applied. The
superposition of the controlled qubit results in the following value of the register at the time
III:

|1i · 1p
2
(|00i+ |11i) = 1p

2
(|100i+ |111i) (2.6)

At the end of the circuit, we perform the measurement. With probability 1
2 we get the results

|100i or |111i. This entanglement leads to matching results in the second and third qubit.
So dependent on the base state the second qubit gets measured in, the third qubit will also
be in the same state.

2.3 NISQ-Era

The state of a qubit is a↵ected by its interaction with the environment, which is also a
quantum system. Due to this e↵ect, which is also named decoherence, errors occur, which
have to be corrected. This error correction is realized by additional qubits in the circuit, which
protect the information of the relevant qubits. [Hom] The currently available hardware is
not yet applicable on a large scale in practice. The current state can be well illustrated
by an experiment conducted by the Google AI Quantum Group in 2019. Here, a quantum
system with 53 qubits was developed and programmed. The system solved a problem within
minutes that would have taken the most powerful classical system to date several days. The
era of current hardware is also known as NISQ. The acronym stands for Noisy Intermediate
Scale Quantum. Noisy means that the systems have no error correction yet, and the qubits
are error-prone. Intermediate scale refers to the size of the systems being over 50 Qubits.
[Pre21] The current most powerful quantum computer is IBM’s 127-qubit processor ’Eagle’.
[IBM21]

2.4 Grover’s Algorithm

The first quantum algorithm relevant to our work was published in 1996 by Lov Grover and
named after its developer. This algorithm demonstrates the computational advantages of a
quantum computer very clearly. It is a search algorithm. Many problems can be reduced to
search problems; thus, optimization problems can also be conceived as a search for a correct,
valid solution. With respect to the Sudoku game, one searches for the correct solution within
all combinatorially possible assignments of individual cells. This is called a search within an
unsorted database. A classical computer solves this by checking each entry in the database
for correctness until it finds a correct solution. For each entry, a function is executed that
checks the correctness. Checking a solution is the limiting factor in this process in terms of
complexity. If the database has N entries, the computer needs N-1 calls in the worst case,
one call in the best case, and (N+1)/2 calls on average. Thus, the time complexity of the
algorithm is O(N).
Many quantum algorithms start by mapping all possible states of a system into a superpo-
sition. Then, the goal is to amplify the amplitude of the correct solution while reducing the
amplitudes of all the incorrect solutions. If this succeeds, the probability that the correct

7

2 Background

state will be measured at the end of the algorithm increases with the amplitude. Grover pro-
ceeds as follows. First, a uniformly distributed superposition is generated, then a so-called
oracle of gates is applied. The needed information to find the right state is encoded in this
oracle; the reason why becomes more clear in the following example. Besides the coding bits,
Grover also needs an auxiliary bit. This is brought into the superposition 1p

2
(|0i � |1i). If

the oracle now finds a valid assignment, a bit flip, i.e., an X-gate is applied to the auxiliary
qubit. Due to the negative amplitude of the auxiliary qubit in |1i, the sign of the amplitude
of the correct assignment thus changes with the bit flip. Grover now amplifies the amplitude
by mirroring each amplitude around the mean value of all amplitudes. Due to the negative
sign of the correct solution, it is amplified, while all others are reduced. The e↵ect of mir-
roring is shown in Figure 2.4. Here four amplitudes are shown. Three of them are at 0.5,
and one of them is -0.5. The average of them is at 0.25, so they get mirrored around this
value. By doing this, the positive amplitudes become exactly 0 while the negative amplitude
is 1. Figure 2.5 shows a simple example of the application of Grover’s algorithm, which is

I II III

+0.5

+0.5 +0.5 +0.5

-0.5

1

0 0 0
+0.25 +0.25

I II III IV

Figure 2.4: Amplitudes getting mirrored around the average.

explained below.
In the example, two independent coin tosses are to be considered. The first coin is represented
by the qubit coin1, the second by coin2. Here the state |0i stands for heads, |1i for tails.
This gives a database of 4 possibilities: [00, 01, 10, 11]. Now we are looking for the entry where
both coin tosses show tails, thus 11. In step I in Figure 2.5, the input qubits coin1, coin2

are initialized in the |00i state. In addition, an auxiliary bit grover bit starts in the |1i
state. Step II uses H-gates to generate a superposition over all possible states:

1p
2
(|0i+ |1i) · 1p

2
(|0i+ |1i) · 1p

2
(|0i � |1i) (2.7)

By transforming the equation, one gets:

1

2
p
2
(|000i+ |010i+ |100i+ |110i � |001i � |011i � |101i � |111i) (2.8)

Step III Is also called oracle. It is used to trigger a NOT gate on grover bit for the
sought occupancy. So in the example, the occupancy |11i of the qubits coin0, coin1. In
this example, two qubits have to be controlled. This double controlling is realized with the
help of a To↵oli-Gate. This is an extension of a CNOT Gate and is only executed when all
controlled qubits show the state |1i. The new state of the register will be:

1

2
p
2
(|000i+ |010i+ |100i+ |111i � |001i � |011i � |101i � |110i) (2.9)

8

2.5 Quantum Approximation Optimization Algorithm (QAOA)

I II III

+0.5

+0.5 +0.5 +0.5

-0.5

1

0 0 0
+0.25 +0.25

I II III IV

Figure 2.5: Grover circuit

If q3 is now pulled out of the bracket again, the negative amplitude can be read out more
clearly:

1

2
(|00i+ |01i+ |10i � |11i) · 1p

2
(|0i � |1i) (2.10)

The amplitude of the searched configuration is therefore negative. In the following step IV
the amplitude is amplified. This is achieved by mirroring around the mean values of the
amplitudes, as already described. In the circuit, we do not consider this part more precisely
since it is not necessary for understanding. The interested reader can also refer to Homeister
[Hom]. After amplification of the amplitudes, the result is measured in the last step. Due
to the amplitude amplification, the searched result can be measured more often than the
wrong results. In this case, with four amplitudes at equal distribution, the amplitude of the
correct solution is 1. This was explained before in Figure 2.4. So the solution is measured
every time if the system works without errors.

2.5 Quantum Approximation Optimization Algorithm (QAOA)

The quantum approximation optimization algorithm (QAOA) was presented by Fahri et al.
and is a metaheuristic method [FGG14, HWO+19]. This algorithm can approximate solutions
of optimization problems [Qis20]. The method is especially suitable when the problem is
modeled as a search for a bit string [Cer20]. A simple example makes this clear. Suppose a
coin is tossed twice. Now we look for all possibilities, where heads and tails alternate. We
now make two statements:

1. First toss shows heads

2. Second toss shows heads

This problem can now be expressed as a bit string with two characters. Each digit in the
string now represents the truth value of the associated statement. A 0 means that the
statement is not true, and a 1 that the statement is true. So in the case of coins, a 0 would
be the result tails since the statement heads is false. So the bitstring 01 would state that
the first toss is tails and the second toss shows heads. This problem can be formulated as
a quadratic unconstrained binary optimization problem (QUBO), which is well suited to be

9

2 Background

solved with QAOA [JN22]. A QUBO model is an optimization problem, which is to minimize
the function (2.11):

y = x
t
Qx (2.11)

x is a vector that represents the variable statements, and Q is a square, upper triangle matrix
with constant values [GKD18]. Concretely in the example of coin tosses, this would mean that
the vector x can take all possible occupations of the two variables so that 00, 01, 10, 11

as possibilities for x exist. The QUBO matrix Q assigns costs to the possible states of x so
that the solution or solutions sought have the lowest value in this function. In this example,
the matrix could look like this:

Q =

�1 2

�1

�
(2.12)

For the vectors
⇥0
1

⇤
and

⇥1
0

⇤
, the result of equation (2.11) is -1. The vectors

⇥1
1

⇤
and

⇥0
0

⇤
have

the result 0. QAOA works as a hybrid variational algorithm and can approximate solutions
to such problems [GKD18]. The algorithm is called a hybrid algorithm because it optimizes
the parameters of operators in iterative steps. This optimization takes place through classical
algorithms. The operators act on quantum systems [GP20]. A detailed explanation of the
algorithm is not necessary for understanding our work since the encoding of the problems
aims at a QUBO, which has been explained in this chapter. For a deeper understanding
of QAOA, the original work by Fahri et al. [FGG14] is suitable. In addition, the article by
Pagano et al. [GP20] represents a good read for QAOA.

10

3 Related Work

As Sudoku Games are an easy-to-grasp version of combinatorial problems, they are used in
a lot of research regarding that topic as an example. This chapter overviews common ways
to solve these problems on classical computers and quantum approaches.

3.1 Classical Approaches

One successful approach to solving Sudoku puzzles using classical computers is SAT solvers.
[PKS13] A SAT solver receives a boolean formula in conjunctive normal form (CNF) as
input and is asked to find an assignment such that the formula is true. A formula is in CNF
if it links clauses by conjunctions (and), and the clauses consist only of literals linked by
disjunction (or). [CESS08] For example, a CNF might look like this:

(A _B _ C) ^ (D _ E) (3.1)

In the case of Sudoku, these literals would represent 3-tuples containing statements about
the occupancy of cells. For example, A = (0, 0, 3) could represent assigning the value 3 for
cell in row 0, column 0. The paper by Pfei↵er [PKS13] gives a good overview of the encoding
of Sudoku puzzles for SAT solvers, as well as a selection of useful solvers for these problems.
It is especially interesting to note that this approach can still e�ciently solve huge Sudoku
games, i.e., games of size 144 x 144.

The Tabu Search algorithm is a metaheuristic that is mainly used for combinatorial pro-
blems [SCGM+15]. The algorithm starts with a small part of the problem and finds an
initial solution. It then extends this solution to larger areas. The algorithm gets its name
from the memory structure, which keeps specific rules in lists. These rules tell which parts
of the solution area may no longer be used, i.e., are tabus. This approach is particularly
interesting in hybrid form with the alldi↵erent constraint, as it is described in the work of
Soto [SCGM+15]. The alldi↵erent constraint acts as a preprocessing of the game and thus
significantly speeds up the search algorithm.

An interesting way to solve Exact Covering Problems is Knuths Algorithm X. As Sudoku
can be mapped to this problem, it is an appropriate method for solving these problems. To
understand this Algorithm, the interested reader might study the original work of Professor
Knuth [Knu00], as the concept is complex and not important for this work.

3.2 Quantum Approaches

For a detailed introduction and a basic understanding of quantum based methods, the work
of Homeister is very suitable [Hom]. Here, the principles of quantum computing based on the
special quantum e↵ects are treated, and all relevant algorithms are taught. For a practical

11

3 Related Work

introduction to quantum algorithms, the textbook from qiskit is appropriate [Qis22]. With
this textbook, algorithms such as Grover and QAOA can be understood and implemented
through many examples. Also, this source’s reference to graph-related problems is very good
for an introduction to solving Sudoku puzzles.
A tutorial from Microsoft provides a simple introduction with examples for solving Sudoku
with Grover’s Algorithm [Mic22]. A more detailed discussion of solving Sudoku puzzles with
quantum computers is provided in the work of Pal et al. [AP]. In Solving Sudoku Game Using
Quantum Computation, they propose an Algorithm to solve a 4 x 4 Sudoku and show how
we as humans can use the concept of superposition while playing sudoku games manually.
Also, the improvement of quantum algorithms, such as Grover and QAOA represents an
interesting optimization opportunity. In their work, Saha et al. [SMS+20] present the exten-
sion of Grover’s algorithm to a qudit quantum system. A qudit system works with computer
units that, unlike a qubit, can have more than two ground states and thus can contain and
process more information per qudit. [WHSK20] The extension to these systems allows them
to optimize Grover’s algorithm, both in the number of qudits needed and the number of
gates needed. Concerning QAOA, interesting optimizations are possible in the formulation
of QUBO. The work of Nüßlein et al. shows the formulation of a QUBO for a k-SAT problem
where they can reduce the growth of the matrix from O(k) to O(log(k)). [JN22]

3.3 Research Question

Most of the related work mentioned here regarding classical Systems focuses mainly on the
question of how to solve such a fixed-size problem as e�ciently as possible. The related work
about quantum systems eighter implements these algorithms without further optimization
or, like the optimization of Grovers Algorithm, tries to improve the algorithm in general.
However, since the number of qubits in the NISQ Era is very limited, the question of how
to reduce problems in size as much as possible to implement already researched algorithms
on them becomes interesting. Also the e�ciency of the encoding itself has an important
impact. The work of Nüßlein et al. [JN22] strongly points in this direction by optimizing
the encoding for QAOA approaches. Our work focuses on reducing the number of required
qubits with respect to Sudoku puzzles, using both the size reduction of the problem itself
and the encoding strategies. As QAOA performs a large part of the optimization with classic
algorithms, our work wants to focus on Grovers Algorithm. Besides being a strict Quantum
algorithm, it is less described in terms of optimizing the number of qubits needed to solve
problems like Sudoku. This makes it an interesting topic for research.

12

4 Optimization Strategies

The most considerable potential to reduce the number of qubits lies in the encoding of the
problem. Our work discusses two approaches: Graph Coloring and Exact Covering, as they
o↵er a very visual representation of the problem. Regardless of the formulation of the pro-
blem, the first step is to exclude parts of the solution space that can be found using classical
computing at an insignificant computational cost. This step is referred to as preprocessing in
the following. Subsequently, individual optimization is performed for di↵erent solution ap-
proaches. This is followed by mapping to an encoding that can be implemented in a Grover
setup or a QUBO matrix that can be solved with QAOA.

4.1 General Preprocessing

The goal of preprocessing is to reduce the complexity of the problem by limiting the possible
digits per cell as much as possible and thus to achieve a lower demand for qubits. The
main focus during our preprocessing is that the classical computations must be e�cient
and fast. If this is not the case, too crucial a part of the problem solution is done with
classic computation that gets ine�cient at a point, and the advantage of quantum algorithms
becomes insignificant. The preprocessing is divided into two steps:

1. The exclusion of digits by given constraints

2. Checking for new constraints generated by step 1

The program iterates over every row and within it over every column. Thus, each (row, column)

cell is considered. If a cell is empty and thus no digit is given, a 3-tuple is appended to the list
open_tuple for each possibility ranging 0 to n-1. The tuple consists of (row, column, digit).
However, this step additionally checks if a digit already occurs within the respective row, co-
lumn, or subunit. If so, the tuple is not appended since the solution can be trivially excluded
by given constraints. At the end of Step 1 there is a list containing all possible assignments for
all free cells according to these constraints. In Step 2, we check whether the computations in
Step 1 found unique assignments for cells that were previously empty. This is easy to detect
since any (row, column, _) combination that is unique in open_tuples satisfies this case.
By additionally storing this as a dictionary, the search e↵ort can be reduced, and the compu-
tation can be done very e�ciently. The cells a value was found to, form new constraints that
apply to all empty cells in open_tuples. Thus, each tuple is iterated over, and any element
that would violate new constraints is removed. This step is repeated until no more solved
cells have emerged after new constraints have been applied. At the end of preprocessing is
open_tuples, a list containing all non-trivially solvable cells with their possible assignments.

For a better understanding of the algorithm Figure 4.1 shows a given Sudoku with four
prefilled cells. These are stored as preset_tuples. These tuples are also stored in the known
format (row, column, digit):

13

4 Optimization Strategies

preset_tuples = [(0, 0, 1), (1, 1, 4), (2, 1, 2), (3, 0, 3)]

For the fields to be filled with a digit, another list open_tuples is created. This list stores
one tuple for each cell for each possible assignment based on the constraints. For a better
visual presentation of the list one cell per line is printed in this example:

open_tuples = [(0, 1, 3),

(1, 0, 2),

(2, 0, 4),

(3, 1, 1),

(0, 2, 4), (0, 2, 3), (0, 2, 2),

(0, 3, 4), (0, 3, 3), (0, 3, 2),

(1, 2, 3), (1, 2, 2), (1, 2, 1),

(1, 3, 3), (1, 3, 2), (1, 3, 1),

(2, 2, 4), (2, 2, 3), (2, 2, 1),

(2, 3, 4), (2, 3, 3), (2, 3, 1),

(3, 2, 4), (3, 2, 2), (3, 2, 1),

(3, 3, 4), (3, 3, 2), (3, 3, 1)]

After applying Step 1 there are four positions for which only one tuple is in open_tuples.
As there is only one possible color, these fields are known after applying Step 1. These tuples
go into the third list called fix_tuples which is an extension to preset_tuples. Figure 4.1
also shows the new state of the game. Now Step 2 of the algorithm is applied, and all tuples
which collide with the new elements in fix_tuple are removed in open_tuple.

fix_tuples = [(0, 1, 3), (1, 0, 2), (2, 0, 4), (3, 1, 1)]

open tuples = [(0, 2, 4), (0, 2, 2),

(0, 3, 4), (0, 3, 2),

(1, 2, 3), (1, 2, 1),

(1, 3, 3), (1, 3, 1),

(2, 2, 3), (2, 2, 1),

(2, 3, 3), (2, 3, 1),

(3, 2, 4), (3, 2, 2),

(3, 3, 4), (3, 3, 2)]

Now for each cell, there is more than one element in open_tuple, so the algorithm terminates.
If there were more single tuple fields contained, steps 1 and 2 would be performed until the
algorithm terminates.

1

3

4
2

1
2
4
3

3
4
2
1

Preprocessing

Figure 4.1: Starting state to preprocessed state

14

4.2 Graph Coloring

For a 4 x 4 Sudoku, this simple algorithm can solve the game in most cases if there is a
unique solution. When applying the preprocessing to a 9 x 9 game, more complicated steps
are involved, such as logically setting relationships between di↵erent cells to solve a game. In
these cases, the algorithm for the preprocessing calculation terminates after a few iterations.
These observations are described in more detail in Chapter 5. An example of a 9 x 9 Sudoku
is shown in Figure 4.2 below. A setup where no fix tuple is found and the preprocessing is
done after applying the preset_tuple constraints to open_tuples. This Sudoku is known
as AI Escargot and is one of the hardest, if not the hardest, known board states [Sud08].
Note that other researchers also use preprocessing when optimizing these problems. A similar

Figure 4.2: AI Escargot

approach can be seen in Soto et al. [SCGM+15], for example.

4.2 Graph Coloring

The graph coloring approach aims to find a selection of tuples from open_tuple that every
node in the graph gets a single color, and all edge constraints are satisfied. Mapped back
to the Sudoku this means exactly one tuple for an empty cell gets selected, and these don’t
violate any row, col, and subunit constraints. The question is whether the size of the gene-
rated graph can be reduced. In this work, the reduction of the number of empty cells to be
solved in order to obtain the solution is investigated.

4.2.1 Size Reduction from n⇥ n to n⇥ (n� 1)

The special thing about solving these problems with the help of a quantum system is that
there is no order in which the cells are assigned. Instead, they all are occupied at the sa-
me time, and an occupation is output as a solution that does not violate any constraints.
This is a significant di↵erence from the classical solving of Sudokus, as humans or classical
algorithms do it. Humans solve cell by cell and thus create more and more new constraints,
which narrow down the solution space and thus allow to solve the Sudoku. This raises the
question of whether there are advantages to be gained from the quantum properties that can
be exploited. One of the questions raised in this work was how this could keep the number of

15

4 Optimization Strategies

qubits smaller. An interesting observation for this is that a completely solved Sudoku built
by n rows and n columns remains unique if one deletes a row or column. The Sudoku is thus
reduced to n ⇥ (n � 1). By logically filling in the missing values, the Sudoku can be easily
restored to its original n ⇥ n form. Maybe it is possible to find only a valid solution for an
n⇥ (n�1) part of the Sudoku. From this arises the question of whether an assignment valid
for n ⇥ (n � 1) is always a part of the correct, unique solution or whether there are also
further assignments that do not violate any constraints for n ⇥ (n � 1) but give a wrong
solution after trivial filling up from n-1 to n rows or columns. If the partial solution always
is a part of the correct assignment, it is su�cient to only solve this region to get the full
solution. The following logic shows by contradiction that a valid n⇥ (n�1) assignment must
always be part of the correct solution of a unique solvable Sudoku. In this logic, the n

th row
is discarded, but the same logic applies to a removed column:

Assumptions:
• The Sudoku is unique, so there is only one correct solution.
• More than one solution exists for a range n ⇥ (n � 1) that completely satisfies the cons-
traints for that subrange of the board

It follows: Except for the one correct partial solution, after completing the n
th row or

column, there must be a solution that is not valid, otherwise the uniqueness of the puzzle is
violated

How can a Sudoku become invalid?
• A digit occurs more than once in a row
• A digit occurs more than once in a column
• A digit occurs more than once in a subunit

Can a digit appear more than once in a col?
It must be true that in the partial solution in each column, another digit is missing. If this
was not the case, a digit would occur at least n times. But since we fill only n-1 rows, a
digit would appear at least twice in a row. The n

th row is then filled with the missing digit
because in each column, another digit is missing, so each column is valid at the end.

Can a digit appear more than once in a row?
Since the partial solution is valid, in each n-1 row, each digit is present only once, in the nth

row also each digit appears only once since in each column another digit is missing. So no
row can be invalid.

Can a digit appear more than once in a subunit?
To violate the rules of assignment in a subunit, the digit in question must already occur in
one of the six filled cells of the subunit. But in the column itself, the value cannot occur yet,
because in the column currently are n-1 digits, and one will add the n

th value now. In the
other two columns of the subunit, the digit must already appear in the two completely filled
subunits below (i.e., the other two subunits, which are traversed by the column). Otherwise,
these two subunits would not be filled with all values and the partial solution would be
invalid. Thus, the digit cannot appear in the other two columns of the subunit that is only
partially filled. Thus, one cannot invalidate the Sudoku with a subunit.

16

4.3 Exact covering

From this follows:
There is no partial solution that is correct up to n x (n-1) and becomes invalid after filling
the nth cells. Since the Sudoku is unique, there can be no other solution, and thus n⇥ (n�1)
is unique.

Note that even if the ignored row contains any preset values, there are no constraints lost as
they are already considered in the step of preprocessing when open_tuples are computed.

4.2.2 Field Encoding

Each cell from the area to be solved n⇥ (n� 1) must be represented in the input quantum
register. At first, for each of the cells, all the possible digits are collected in a list. Every cell
is now encoded by a certain number of qubits. These qubits encode the index of each digit
within the list of possible values in binary format. This encoding improves the basic binary
encoding, where the qubits binary value directly encodes the digit for the cell. By encoding
the index of the list, one only needs enough qubits to encode the length of the list. Figure 4.3
shows this logic. In contrast to the primitive encoding without size reduction and not yet
applied preprocessing, substantially fewer cells must be encoded as well as fewer possibilities
per cell are considered.

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[2, 4, 8, 9]

DatabasePossible digits Encoding

0000
0001
0010
0011
………

0
1
2
3
…

1
2
3
4
…

Qubits Index Digit

00
01
10
11

0
1
2
3

2
4
8
9

Qubits Index Digit

Figure 4.3: Encoding strategy with two examples

4.3 Exact covering

The Exact Covering Problem looks at the individual digits and their distribution in the
Sudoku. For this purpose, each value is assigned an individual pattern representing its dis-
tribution on the Sudoku field. The pattern shows which cells are occupied by the digit and
which are not. For an Exact Covering, a pattern must be selected for each value so that all
patterns give an ideal overlay at the end. This means that all cells must be taken exactly
one time. Figure Figure 4.4 shows the pattern representation of a fully solved puzzle.

17

4 Optimization Strategies

In this work, a pattern is stored as a list of n elements. You can also see the list for each
pattern in the example. In the list, the index within the list represents the column, and the
value at that index represents the row. So for the pattern [2, 0, 1, 3] for digit 1 this
means in column 0 it appears in row 2, and so on for every index.

Figure 4.4: The individual pattern for each color

4.3.1 Pattern Generation

The number of patterns a digit can take increases exponentially with the size of the Sudoku.
The exact number of patterns possible for a Sudoku is calculated with the following formula.
N denotes the width of the Sudoku game, i.e., 9 for a classic 9 x 9 Sudoku, and n denotes
the width of a subunit, i.e., 3 for a classic puzzle. For a detailed derivation of the formula,
see the Appendix A.

n�1Y

i=0

(n� i)2n (4.1)

If no given constraints were considered, a 9x9 Sudoku would already result in 46,656 possible
patterns. However, this number can be narrowed down significantly by excluding patterns
that are impossible due to the given assignment. This generation of patterns is solved by a
tree structure. Starting from the root of the tree, a new level is inserted for each column
of the puzzle. Within a level, all rows are inserted, which can be occupied for the column
with the digit legal. These rows are already known from open_tuple as well as excluding
values that are already in the trace of a node. Afterward, all possible patterns are obtained
by following the path from each leaf of the tree to the root. The saving of a pattern can be
realized with a list. The index within the list indicates the column, and the value at this
position indicates the row. So for each column, it is stored in which row the digit is located.
The following example shows the process for the board in Figure 4.5. The already computed
open_tuples are used to build the tree structure.
From these trees, a set of possible patterns can be derived for each individual color. These
patterns are stored in patterns, where each key represents a color and each value the set of
patterns:

18

4.4 Reducing the number of auxiliary qubits in Grovers Algorithm

Figure 4.5: Possible patterns per color

patterns = {1: [[0, 3, 1, 2], [0, 3, 2, 1]],

2: [[1, 2, 0, 3], [1, 2, 3, 0]],

3: [[3, 0, 1, 2], [3, 0, 2, 1]],

4: [[2, 1, 0, 3], [2, 1, 3, 0]]}

4.3.2 Pattern Encoding

For each digit, all available patterns must be encoded in this solution. This encoding is done
indirectly so that a binary encoding can be applied. For each value, a list is available in
patterns. Instead of encoding the pattern itself, one encodes its index within this list. Thus
exactly so many qubits per value are needed that all indices can be mapped in binary. If
one wanted to represent a digit with 82 patterns, seven qubits would be needed so that all
indices could be represented within this pattern list. The coding 0000011 would then point
to the pattern in the list, which is at position 3.

4.4 Reducing the number of auxiliary qubits in Grovers Algorithm

If more complex oracle functions are used in Grover’s algorithm, additional qubits are often
needed to generate the bit flip of the Grover qubit in the correct state. Here, too, a binary
coding of these auxiliary bits, in the form of a counter, can achieve a significant improvement
over the primitive approach.

4.4.1 The basic setup of auxiliary qubits

In Figure 4.6 a part of a Grover oracle is shown. There are four coding qubits in this circuit.
They have been labeled alpha, beta, gamma, delta. These represent, for example, four
coin tosses, with heads mapped to 0 and tails to 1. The oracle is now to perform the bit
flip on the Grover bit in the |1111i state. We illustrate the use of auxiliary qubits in a short
toy example. It is true that this case could be solved with a To↵oli gate, which controls all
coding qubits and triggers an X-gate on the Grover bit. But the point here is to illustrate
the structure of compare bits. The task of these bits, for more complex queries that cannot
be mapped to the Grover bit with simple gates, is to check the satisfaction of the desired
conditions for each input pair. For example, if the task were to find an assignment where

19

4 Optimization Strategies

Figure 4.6: Basic setup for Compare Bit in a Grover Oracle

heads and tails alternate for each input variable, the need for these compare bits becomes
logical. However, since these oracles would become very large, the example reduces the oracle
function to the simplest case. The compare bits 0-5 are to show now in each case for a pair
of input variables whether the desired condition is given. In this case, the state |1i for both
variables. If each of these compare bits is in state 1, a To↵oli gate generates a bit flip on
the Grover bit. The drawback of the basic compare structure is that an oracle with N input
elements uses

PN
i=2 i compare bits, since each input element must be related to every other

one.

4.4.2 Auxiliary qubits set up as a counter

To reduce the number of required compare qubits, a simple counter is built. This counter
should be incremented by 1 for each pair of input elements that have the desired state in
relation. If this counter shows exactly

PN
i=2 i at the end, all dependencies are fulfilled, and

the Grover bit can be manipulated by a bit flip. The implementation of this counter reduces
the number of

PN
i=2 i to log2

PN
i=2 i+1 necessary qubits. Figure 4.7 shows this counter using

the example from Figure 4.6. Again, the state |1111i is to be found. This time, however,
each pair of input elements maps to a helper bit. If the condition is satisfied, the helper

20

4.4 Reducing the number of auxiliary qubits in Grovers Algorithm

I II III IV V

…

…

…

…

…

…

…

…

counter

Figure 4.7: Compare Bits set up as a counter for a Grover Oracle

bit is flipped. Then, the counter includes this helper bit in the counter. At the end of the
necessary comparisons, a To↵oli gate is applied to the counter bits, which flips the Grover
bit with an X gate when the correct number has been counted. In this case, there are four
input elements, each of which is compared to every other element, so in total six comparisons
are needed. When all of them are satisfied, the counter is at |110i. Thus, in section IV, the
last qubit of the counter is flipped before the To↵oli Gate is ultimately applied.

21

5 Results

This Chapter shows all of our results regarding the achieved reductions of qubits needed and
the tools that were developed to collect these numbers.

5.1 Comparing Results for di↵erent puzzles

The following section compares the number of qubits needed for puzzles of several di�-
culties starting from easy to Expert Level. These Sudokus were taken from the website
www.sudoku.com.To show the impact of each optimization strategy, four di�culties were
looked at. For each di�culty, five di↵erent puzzles were selected. The puzzles used for each
Level are shown in the appendix. Figure 5.1 lists the percentage of puzzles that could be
solved by only preprocessing the game. This shows the impact of this step when much in-
formation is provided to start with. In these cases, the simple algorithm finds the solution
completely alone. For easy and medium hard start states, the solving rate by this step is
pretty similar. Easy puzzles get solved in 80% of the cases while medium hard problems still
are at 60%. For harder Sudoku games listed in expert or AI Escargot, there can not be com-
puted a solution just by preprocessing the game. The rate drops to 0% in these examples.

Graph Coloring Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 391 | 403 455 | 467 529 | 541 522 | 534

Preprocessed OH 103 | 113 105 | 115 234 | 245 224 | 235

Preprocessed Binary 56 | 66 61 | 71 130 | 141 128 | 139

Preprocessed n x (n-1) Binary 45 | 55 47 | 57 109 | 120 109 | 120

Exact Covering Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 3.410 | 3.418 10.567 | 10.575 35.495 | 35.503 28.935 | 28.943

Preprocessed OH 51 | 58 82 | 89 649 | 657 280 | 288

Preprocessed Binary 18 | 25 19 | 26 48 | 56 44 | 52

QAOA Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Graph Coloring Preprocessed n x (n-1) OH 82 | 82 81 | 81 195 | 195 189 | 189

Exact Covering Preprocessed OH 51 | 51 82 | 82 649 | 649 280 | 280

Preprocessing Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Solved by Preprocessing 80 % 60 % 0 % 0 %

Figure 5.1: Solving Rate by Preprocessing

In the first table of results, represented by Figure 5.2, the qubits needed for the Graph
coloring problem solved with Grover’s algorithm are shown. In the left column, the used
optimizations are listed. In the table the following keywords were used to name the di↵erent
ideas:

Primitive: all n digits are assigned to every empty cell as possible value. No exclusion
of digits due to the starting state are computed.
Preprocessed: the preprocessing described in Chapter 4 is applied to the free cells. So the
number of possible digits per cell is significantly reduced. This step is complementary to the
primitive strategy.
OH: one hot encoding is used to encode the options per free cell in graph coloring or per
pattern in exact covering. One qubit is needed for each option, where a 1 of this qubit in-
dicates that this option is part of the solution while 0 indictes its exclusion from the final
solution.
Binary: for each group of options, binary encoding is used. A group of options can be a
cell with its possible colors for graph coloring or a digit with its patterns for exact covering
problems.

23

www.sudoku.com

5 Results

n x (n-1): describes the process of removing one row or column of the Soduko to reduce
the number of cells to be solved as described in the 4th Chapter.

Graph Coloring Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 391 | 403 455 | 467 529 | 541 522 | 534

Preprocessed OH 103 | 113 105 | 115 234 | 245 224 | 235

Preprocessed Binary 56 | 66 61 | 71 130 | 141 128 | 139

Preprocessed n x (n-1) Binary 45 | 55 47 | 57 109 | 120 109 | 120

Exact Covering Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 3.410 | 3.418 10.567 | 10.575 35.495 | 35.503 28.935 | 28.943

Preprocessed OH 51 | 58 82 | 89 649 | 657 280 | 288

Preprocessed Binary 18 | 25 19 | 26 48 | 56 44 | 52

QAOA Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Graph Coloring Preprocessed n x (n-1) OH 82 | 82 81 | 81 195 | 195 189 | 189

Exact Covering Preprocessed OH 51 | 51 82 | 82 649 | 649 280 | 280

Preprocessing Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Solved by Preprocessing 80 % 60 % 0 % 0 %

Figure 5.2: Qubits needed to encode as graph coloring problem

For each strategy and every di�culty level, the number of qubits needed to encode the pro-
blem itself is given. Also, the total number of qubits to set up a Grover circuit, including
the counter and the Grover bit, is provided. For comparison/counting qubits, the optimized
solution from Chapter 4.4 is used. For the levels where Preprocessing has already found a
solution, only the unsolved games were considered to calculate the average number of qubits.
Most easy puzzles in our set started with around 44 empty cells and medium-level puzzles
with around 50. Here, preprocessing accounts for a decrease in the number of qubits needed
of 73% (easy) and 76% (medium). For the harder problems with an average of 59 empty
cells, this number drops to 63%. The reason for this decrease is that fewer digits can be
excluded per empty cell with fewer prefilled units.
The rate of improvement by binary encoding lies between 40%-45% and is not significantly
dependent on the hardness of the quiz. For this step, the number of qubits per cell is reduced
logarithmically, which is only in correlation with the number of options per cell, not with the
number of free cells. As this number is similar for all levels, the e↵ect stays around the same
percentage. The e↵ect is limited due to the low number of possible digits per cell, which are
binary encoded. The e↵ect of removing a row or column, we call this the heavy line, is at
19% and 22% for easy and medium, for expert and AI Escargot problems at 16% and 14%. A
possible explanation for this could be, that in easy puzzles, after preprocessing, some areas
are already solved while others cluster the unsolved cells. By this e↵ect of clustering, the
removed heavy line has a more significant e↵ect on the reduction than with hard problems,
where less of the board is solved by preprocessing and the cells to solve are more distributed.

Graph Coloring Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 391 | 403 455 | 467 529 | 541 522 | 534

Preprocessed OH 103 | 113 105 | 115 234 | 245 224 | 235

Preprocessed Binary 56 | 66 61 | 71 130 | 141 128 | 139

Preprocessed n x (n-1) Binary 45 | 55 47 | 57 109 | 120 109 | 120

Exact Covering Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 3.410 | 3.418 10.567 | 10.575 35.495 | 35.503 28.935 | 28.943

Preprocessed OH 51 | 58 82 | 89 649 | 657 280 | 288

Preprocessed Binary 18 | 25 19 | 26 48 | 56 44 | 52

QAOA Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Graph Coloring Preprocessed n x (n-1) OH 82 | 82 81 | 81 195 | 195 189 | 189

Exact Covering Preprocessed OH 51 | 51 82 | 82 649 | 649 280 | 280

Preprocessing Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Solved by Preprocessing 80 % 60 % 0 % 0 %

Figure 5.3: Qubits needed to encode as exact cover problem

Figure 5.3 shows the results for the same set of puzzles but when solved with the exact
covering approach. An interesting di↵erence here is that due to the way the patterns are
constructed, preprocessing has a more significant e↵ect. When cells and digits per cell are
excluded in the preprocessing step, in graph coloring, these options just get added to the

24

5.1 Comparing Results for di↵erent puzzles

sum of possible solutions. As the exact covering approach uses patterns, another e↵ect comes
into play. As more options for cells to be occupied by a digit appear, the e↵ect of possible
patterns grows through a multiplicative e↵ect, not an additive. The number of combinatori-
ally possible patterns grows very fast so that the reduction e↵ect by preprocessing is above
98% for every single di�culty level. The binary encoding has a larger impact on the absolute
reduction of qubits compared to the graph coloring approach. This lies in the e↵ect of bi-
nary encoding numbers of di↵erent scales. By mapping N elements with binary coding, only
log2 (N) qubits are needed. As Figure 5.4 shows, the absolute number of qubits saved by
binary coding increases with the size of N. Binary coding used for the graph coloring reduces
the number of qubits used per cell. However, since the amount of possibilities per field is
<= n and n is only 9, the absolute e↵ect of qubits saved due to binary encoding is small.
The advantage of the exact covering approach is that one has to encode the valid patterns
for n numbers each. Since the number of patterns per value is often in much higher ranges
(often several hundred patterns per digit possible), the reduction e↵ect by binary coding is
much larger.

f(x) = log2(x)

N
um

be
r

of
 Q

ub
its

Number of elements

Number of elements

N
um

be
r

of
 Q

ub
its

f(x) = round(log2(x))

Figure 5.4: Logarithmic e↵ect of binary representation

This optimization technique reduces the number of qubits used to encode by 64% for easy,
76% for medium, 92% for expert, and 84% with AI Escargot. The number increases with the
di�culty because the number of possible patterns per digit increases by the number of free
cells. The special case of AI Escargot needs fewer patterns in total than an average puzzle
at the expert level. This shows that the e↵ort to solve Sudoku by exact covering does not
exactly match the e↵ort needed to solve it with humanly used, logical operations.

Graph Coloring Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 391 | 403 455 | 467 529 | 541 522 | 534

Preprocessed OH 103 | 113 105 | 115 234 | 245 224 | 235

Preprocessed Binary 56 | 66 61 | 71 130 | 141 128 | 139

Preprocessed n x (n-1) Binary 45 | 55 47 | 57 109 | 120 109 | 120

Exact Covering Grover Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Primitive OH 3.410 | 3.418 10.567 | 10.575 35.495 | 35.503 28.935 | 28.943

Preprocessed OH 51 | 58 82 | 89 649 | 657 280 | 288

Preprocessed Binary 18 | 25 19 | 26 48 | 56 44 | 52

QAOA Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Graph Coloring Preprocessed n x (n-1) OH 82 | 82 81 | 81 195 | 195 189 | 189

Exact Covering Preprocessed OH 51 | 51 82 | 82 649 | 649 280 | 280

Preprocessing Easy
Encoding | Total

Medium
Encoding | Total

Hard
Encoding | Total

AI Escargot
Encoding | Total

Solved by Preprocessing 80 % 60 % 0 % 0 %

Figure 5.5: Qubits needed to encode with QAOA

For the game to be solved with QAOA no extra qubits are needed. Only the qubits that are
encoding the problem are necessary for the QUBO. In our work, only One Hot Encoding was

25

5 Results

looked at for QUBO, which leads to possible optimizations in the future. A binary encoding,
if possible, would significantly improve the number of variables needed. Figure 5.5 represents
the number of qubits needed.

5.2 Developed tools

For this work, we have developed several tools. These aim to calculate the required qubits for
the di↵erent approaches and visualize Sudoku games. Using a GUI, arbitrary setups can be
computed, and thus the user can develop an intuition for the di�culty of puzzles for di↵erent
approaches and the e↵ect of the optimizations. The code was written in Python 3.9.13. We
performed all computations on a MacBook Pro 2021 running an M1 Max chip and 64GB of
RAM. The intention of this chapter is to provide an overview of the most important classes
and give the interested reader an introduction to their use or further development. The code
is accessible at https://gitlab.lrz.de/lmu-gsoc/soduko-qaoa.

5.2.1 Tools for preprocessing and optimization

The SudokuTools.py module contains classes that handle the preprocessing, the generation
of the patterns, and the calculation of the required qubits.

The class Preprocessor receives the puzzle as a two-dimensional array. Its aim is to exclude
trivial assignments for individual cells and remove the most computationally expensive row
or column, as described in the Graph Coloring approach for n x (n-1). This class acts as a
utility for all of the other classes of this project and is one of the main building blocks. For
a deeper look into preprocessing, this class represents the most helpful starting point.

PatternGenerator aims to generate all legal patterns for each digit. This process is im-
portant to understand if the reader is interested in the exact covering approach and possible
further optimization. For this reason, this chapter provides an explanation of it. As described
in Chapter 4, the representation of a pattern is a list of n integers where n represents the
size of the Sudoku field. These integers represent the n cells that this digit would occupy in
this pattern. The integers themselves represent the row of the cells. The index within the list
encodes the corresponding column to each cell. A tree is built as an auxiliary structure to
create patterns. In Figure 4.5 the structure of these trees is shown. For each digit, a separate
tree is constructed. This data structure aims to find every possible and legal pattern of this
digit. The tree is built level by level, each representing a column. The set of all values a leaf
and all of its parent nodes form is called a trace. Within this level, all possible row integers
are attached to each leaf. Before adding, the algorithm checks whether the trace of the leave
contains the row to be inserted. Further, the algorithm checks whether a conflict occurs
because the respective row would lead to a conflict within a subunit. Of so, the row is not
added to the leaf. After constructing the whole tree, the trace of each leaf is computed. Each
trace with a length of n elements represents an individual and legal pattern. This insertion
method prevents a double allocation by a digit within a column, row, or subunit.

EncodingCalculator is used to get the number of qubits needed for each approach. It gets
the di↵erent tuple lists from Preprocessor as an input as well as the dict of possible patterns.
From these data, the di↵erent solution paths are constructed, and the number of qubits is
returned.

26

https://gitlab.lrz.de/lmu-gsoc/soduko-qaoa

5.2 Developed tools

Figure 5.6: User Interface SudokuGUI

5.2.2 Developing a UI to calculate numbers of qubits needed

Besides the calculation of qubit numbers, the developed modules in this work were used to
develop a graphical user interface. Like all other parts of the project, this was developed with
Python3; the library used for this was tkinter. The goal of this tool is, knowing the codebase
or programming itself, to be able to reproduce the results and do your own experiments. The
user can run the program through the command line. For this, Python3 must be installed. By
the command python3 SudokuGUI.py, in the folder where the files were saved, the program
starts. The structure is very compact and straightforward. A screenshot from the software
can be seen in Figure 5.6. The Sudoku field at the top can be edited as desired. The user can
enter puzzles and then use the button Calculate to calculate the result, i.e., the number of
qubits needed. With the button Clear, all cells are deleted, and a new game can be entered.
If one only wants to test the program, the button Example can create a sample quiz. The
interface is not used to solve puzzles but to calculate the qubit count. An extension with the
function in the future is possible.

27

6 Conclusion

Interesting optimization possibilities arise regardless of whether Sudoku games are represen-
ted as Graph Coloring or Exact Covering problems. Both problems are very well suited to be
solved with Grover’s algorithm. For the graph coloring approach, preprocessing and binary
coding were very helpful in reducing the number of qubits. Also, the reduction of the field
by an entire row or column provides an interesting optimization. For the Exact Covering
approach, the binary coding was especially crucial since the logarithmic optimization e↵ect
was beneficial due to the high number of patterns per digit. Besides the pure optimizations
of the encoding of the game, the reduction of the counter bits for Grover was also crucial to
keep the number of qubits needed low. Thus, the best solution to keep the qubit count as
low as possible is to encode the puzzle using a binary-coded exact covering problem. Many
of the reductions increase the number of quantum gates used in the circuits. For example,
using a counter instead of many compare bits in a Grover oracle. The number of gates is
critical to the error-proneness of NISQ Era circuits. Therefore, interesting questions arise
as to what would be an optimum of the number of qubits and the width (grows with the
number of gates used) of the circuit. In addition, examining an e�ciently coded QUBO,
which one solves with QAOA, against a solution with an e�ciently coded Grover algorithm
is attractive in terms of error rate and practicality. Regardless of the algorithms, it may be
worthwhile to go into more detail about preprocessing. Likewise, the reduction of the area
of the Sudoku to be solved can be further analyzed so that the field could become even more
diminutive than n x n(-1). Should the hardware develop constantly, systems will soon be
available to solve Sudoku puzzles with this setup. Regardless, the focus on e�cient coding is
still necessary since real-world applications will be limited by the number of qubits available
for a long time.

29

Abbildungsverzeichnis

1.1 Sections of a Sudoku Board . 2

2.1 Mapping of Sudoku to a Graph Coloring problem 4
2.2 The individual pattern for each color . 5
2.3 A simple Quantum Circuit . 6
2.4 Amplitudes getting mirrored around the average. 8
2.5 Grover circuit . 9

4.1 Starting state to preprocessed state . 14
4.2 AI Escargot . 15
4.3 Encoding strategy with two examples . 17
4.4 The individual pattern for each color . 18
4.5 Possible patterns per color . 19
4.6 Basic setup for Compare Bit in a Grover Oracle 20
4.7 Compare Bits set up as a counter for a Grover Oracle 21

5.1 Solving Rate by Preprocessing . 23
5.2 Qubits needed to encode as graph coloring problem 24
5.3 Qubits needed to encode as exact cover problem 24
5.4 Logarithmic e↵ect of binary representation . 25
5.5 Qubits needed to encode with QAOA . 25
5.6 User Interface SudokuGUI . 27

1 Easy puzzle set used . 39
2 Medium puzzle set used . 39
3 Expert puzzle set used . 39

31

Literaturverzeichnis

[AP] Ankur Pal, Vardaan Mongia-Bikash K. Behera Prasanta K P. Sanghi-
ta Chandra C. Sanghita Chandra: Solving Sudoku Game Using Quan-
tum Computation. https://www.academia.edu/39751260/Solving_Sudoku_

Game_Using_Quantum_Computation. – Abgerufen am 17. Juli 2022

[Cer20] Ceroni, Jack: Intro to QAOA. https://pennylane.ai/qml/demos/

tutorial_qaoa_intro.html. Version: 2020. – Abgerufen am 17. Juli 2022

[CESS08] Claessen, Koen ; Een, Niklas ; Sheeran, Mary ; Sorensson, Niklas: SAT-
solving in practice, 2008. – ISBN 978–1–4244–2592–1, S. 61 – 67

[Del06] Delahaye, Jean-Paul: The Science behind Sudoku. In: Scientific American
06 (2006), Nr. 0606-80

[FGG14] Farhi, Edward ; Goldstone, Je↵rey ; Gutmann, Sam: A Quantum Appro-
ximate Optimization Algorithm. http://dx.doi.org/10.48550/ARXIV.1411.
4028. Version: 2014

[GKD18] Glover, Fred ; Kochenberger, Gary ; Du, Yu: A Tutorial on Formulating
and Using QUBO Models. http://dx.doi.org/10.48550/ARXIV.1811.11538.
Version: 2018

[GP20] Guido Pagano, Patrick Becker-Katherine S. Collins Arinjoy De Paul W. Hess
Harvey B. Kaplan Antonis Kyprianidis Wen Lin Tan Christopher Baldwin Lu-
cas T. Brady Abhinav Deshpande Fangli Liu Stephen Jordan Alexey V. Gors-
hkov Christopher M. Aniruddha Bapat B. Aniruddha Bapat: Quantum appro-
ximate optimization of the long-range Ising model with a trapped-ion quantum
simulator. In: Proceedings of the National Academy of Sciences 117 (2020),
Nr. 41, 25396-25401. http://dx.doi.org/10.1073/pnas.2006373117. – DOI
10.1073/pnas.2006373117

[Hom] Homeister, Matthias: Quantum Computing Verstehen. 5. Aufla-
ge. Springer Vieweg Wiesbaden. http://dx.doi.org/https://doi.org/

10.1007/978-3-658-22884-2. http://dx.doi.org/https://doi.org/10.

1007/978-3-658-22884-2

[HWO+19] Hadfield, Stuart ; Wang, Zhihui ; O'Gorman, Bryan ; Rieffel, Eleanor
; Venturelli, Davide ; Biswas, Rupak: From the Quantum Approximate
Optimization Algorithm to a Quantum Alternating Operator Ansatz. In: Al-
gorithms 12 (2019), feb, Nr. 2, 34. http://dx.doi.org/10.3390/a12020034.
– DOI 10.3390/a12020034

33

https://www.academia.edu/39751260/Solving_Sudoku_Game_Using_Quantum_Computation
https://www.academia.edu/39751260/Solving_Sudoku_Game_Using_Quantum_Computation
https://pennylane.ai/qml/demos/tutorial_qaoa_intro.html
https://pennylane.ai/qml/demos/tutorial_qaoa_intro.html
http://dx.doi.org/10.48550/ARXIV.1411.4028
http://dx.doi.org/10.48550/ARXIV.1411.4028
http://dx.doi.org/10.48550/ARXIV.1811.11538
http://dx.doi.org/10.1073/pnas.2006373117
http://dx.doi.org/https://doi.org/10.1007/978-3-658-22884-2
http://dx.doi.org/https://doi.org/10.1007/978-3-658-22884-2
http://dx.doi.org/https://doi.org/10.1007/978-3-658-22884-2
http://dx.doi.org/https://doi.org/10.1007/978-3-658-22884-2
http://dx.doi.org/10.3390/a12020034

Literaturverzeichnis

[IBM21] IBM: IBM Unveils Breakthrough 127-Qubit Quan-
tum Processor. https://newsroom.ibm.com/

2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor.
Version: 2021. – abgerufen am 10. Juli 2022

[JN22] Jonas Nüßlein, Claudia Linnho↵-Popien Sebastian F. Thomas Gabor G.
Thomas Gabor: Algorithmic QUBO Formulations for k-SAT ans Hamiltonian
Cycles

[Knu00] Knuth, Donald E.: Dancing links. (2000). http://dx.doi.org/10.48550/

ARXIV.CS/0011047. – DOI 10.48550/ARXIV.CS/0011047

[Lei77] Leighton, Frank T.: A Graph Coloring Algorithm for Large Schedu-
ling Problems. In: Journal of research of the National Bureau of Stan-
dards 84 (1977), Nr. 6. http://dx.doi.org/10.6028/jres.084.024. – DOI
10.6028/jres.084.024

[Mic22] Microsoft: Solving Sudoku using Grover’s Algorithm. https:

//docs.microsoft.com/en-us/samples/microsoft/quantum/

solving-sudoku-using-grovers-algorithm/. Version: 2022. – Abge-
rufen am 17. Juli 2022

[MO08] Mihai Oltean, Oana M.: Exact Cover with Light. In: New Generation Com-
puting 26 (2008), Nr. 4. http://dx.doi.org/10.1007/s00354-008-0049-5.
– DOI 10.1007/s00354–008–0049–5

[PKS13] Pfeiffer, Uwe ;Karnagel, Tomas ; Scheffler, Guido: A Sudoku-Solver for
Large Puzzles using SAT. In: Voronkov, Andrei (Hrsg.) ; Sutcliffe, Geo↵
(Hrsg.) ; Baaz, Matthias (Hrsg.) ; Ferm\üller, Christian (Hrsg.): LPAR-17-
short. short papers for 17th International Conference on Logic for Program-
ming, Artificial intelligence, and Reasoning. Bd. 13, EasyChair, 2013 (EPiC
Series in Computing). – ISSN 2398–7340, 52–57

[Pre21] Preskill, John: Quantum computing 40 years later. In: Hey, Anthony J.
(Hrsg.): Feynman Lectures on Computation, 2nd edition, 2021

[Qis20] Qiskit: Solving combinatorial optimization problems using QAOA. https:

//qiskit.org/textbook/ch-applications/qaoa.html. Version: 20. – Abge-
rufen am 17. Juli 2022

[Qis22] Qiskit: Qiskit Textbook (beta). https://qiskit.org/learn/. Version: 2022.
– Abgerufen am 19. Juli 2022

[SCGM+15] Soto, Ricardo ; Crawford, Broderick ; Galleguillos Miccono, Cristi-
an ; Paredes, Fernando ; Norero, Enrique: A Hybrid Alldi↵erent-tabu
Search Algorithm for Solving Sudoku Puzzles. In: Intell. Neuroscience 2015
(2015), 05, S. 40:40–40:40. http://dx.doi.org/10.1155/2015/286354. – DOI
10.1155/2015/286354

[SMS+20] Saha, Amit ; Majumdar, Ritajit ; Saha, Debasri ; Chakrabarti, Amlan
; Sur-Kolay, Susmita: Asymptotically Improved Circuit for d-ary Grover’s

34

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
http://dx.doi.org/10.48550/ARXIV.CS/0011047
http://dx.doi.org/10.48550/ARXIV.CS/0011047
http://dx.doi.org/10.6028/jres.084.024
https://docs.microsoft.com/en-us/samples/microsoft/quantum/solving-sudoku-using-grovers-algorithm/
https://docs.microsoft.com/en-us/samples/microsoft/quantum/solving-sudoku-using-grovers-algorithm/
https://docs.microsoft.com/en-us/samples/microsoft/quantum/solving-sudoku-using-grovers-algorithm/
http://dx.doi.org/10.1007/s00354-008-0049-5
https://qiskit.org/textbook/ch-applications/qaoa.html
https://qiskit.org/textbook/ch-applications/qaoa.html
https://qiskit.org/learn/
http://dx.doi.org/10.1155/2015/286354

Literaturverzeichnis

Algorithm with Advanced Decomposition of n-qudit To↵oli Gate. http://dx.

doi.org/10.48550/ARXIV.2012.04447. Version: 2020

[Sud08] SudokuWiki: Escargot. https://www.sudokuwiki.org/Escargot.
Version: 2008. – Abgrufen am 17. Juli 2022

[VD12] Vishal Donderia, Prasanta K. J.: A novel scheme for graph coloring. In:
Procedia Technology 4 (2012), Nr. 4

[WHSK20] Wang, Yuchen ; Hu, Zixuan ; Sanders, Barry C. ; Kais, Sabre: Qudits
and High-Dimensional Quantum Computing. In: Frontiers in Physics 8
(2020). http://dx.doi.org/10.3389/fphy.2020.589504. – DOI 10.3389/f-
phy.2020.589504

35

http://dx.doi.org/10.48550/ARXIV.2012.04447
http://dx.doi.org/10.48550/ARXIV.2012.04447
https://www.sudokuwiki.org/Escargot
http://dx.doi.org/10.3389/fphy.2020.589504

Appendix A

The Derivation of equation (1)
n�1Y

i=0

(n� i)2n (1)

is explained in this appendix. This equation was shown in Chapter 4. Consider a Sudoku
with a field size of n2 ⇥ n

2. So a subunit has a width and height of n. In the field, there
are n⇥ n subgrids. The equation calculates the number of possible patterns for a digit on a
completely empty field of size n

2 ⇥ n
2. To derive that equation, one looks at the steps that

are involved, to calculate this number for a puzzle step by step.
The calculation is divided into n equations, each calculating the number of possibilities

for each subunit line. A subunit line is constructed of all subunits, that are stacked above
on each other. So a Sudoku of size n

2 ⇥ n
2 would have n of these subunit lines.

For the first line, the calculation is pretty simple. In the first column, there are n subunits
with n empty cells each. So there are n x n possibilities to place the digit. In the second
column, there are n-1 subunits with n empty cells left to place the digit. So the number of
possibilities is n ⇥ (n � 1) for the second column. With each column, the number of legal
subunits to hold the digit is decreased by 1. Until in the n

t
h column, there is only one lift

with n possibilities n⇥ (n� (n+ 1)). So for the first subunit line, there are

[n ⇤ n] ⇤ [n ⇤ (n� 1)] ⇤ ... ⇤ [n ⇤ (1)] = n
n
n�1Y

i=0

(n� i) (2)

possible patterns to arrange the digit in a way that doesn’t hurt any constraints.
The second line can be calculated similarly. As we are in a new subunit line, every subunit

is allowed again to be used. But in each of them, we already have one row that is not allowed
anymore from our placing in subunit line one. So the formula for this line looks like this:

[(n� 1) ⇤ n] ⇤ [(n� 1) ⇤ (n� 1)] ⇤ ... ⇤ [(n� 1) ⇤ (1)] = (n� 1)n
n�1Y

i=0

(n� i) (3)

The pattern is already easy to observe. For every subunit line we calculate, the number
of allowed rows per subunit decreases by one. As we fill up the stacked subunits within a
subunit line, with every column, we exclude one subunit more for the next column. So for
the n

t
h subunit line, the equation looks like this:

[1 ⇤ n] ⇤ [1 ⇤ (n� 1)] ⇤ ... ⇤ [1 ⇤ (1)] = 1n
n�1Y

i=0

(n� i) (4)

Note that all of theses partial products represent the options per subunit line. To get the
options of patterns for the whole game, we need to multiply all of them. The term

n�1Y

i=0

(n� i) (5)

37

Appendix A

shows up for every subunit line, so n-times they are multiplied. So we can write:

n�1Y

i=0

(n� i)n (6)

The factor in front of the term can also be represented by the product:

n�1Y

i=0

(n� i)n (7)

When combining these terms by multiplying them, the resulting term to calculate the number
of pissible patterns for an n

2 ⇥ n
2 Sudoku is:

n�1Y

i=0

(n� i)2n (8)

38

Appendix B

Figure 1: Easy puzzle set used

Figure 2: Medium puzzle set used

Figure 3: Expert puzzle set used

39

	Introduction
	Background
	Formalization of Sudoku
	Graph Coloring
	Exact Covering

	Quantum Computing
	Quantum Parallelism and Superposition
	Measurement
	Quantum Circuits and Gates

	NISQ-Era
	Grover's Algorithm
	Quantum Approximation Optimization Algorithm (QAOA)

	Related Work
	Classical Approaches
	Quantum Approaches
	Research Question

	Optimization Strategies
	General Preprocessing
	Graph Coloring
	Size Reduction from n n to n (n-1)
	Field Encoding

	Exact covering
	Pattern Generation
	Pattern Encoding

	Reducing the number of auxiliary qubits in Grovers Algorithm
	The basic setup of auxiliary qubits
	Auxiliary qubits set up as a counter

	Results
	Comparing Results for different puzzles
	Developed tools
	Tools for preprocessing and optimization
	Developing a UI to calculate numbers of qubits needed

	Conclusion
	Abbildungsverzeichnis
	Literaturverzeichnis
	Appendix A
	Appendix B

