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Human beings can achieve a high level of motor performance that is still unmatched in

robotic systems. These capabilities can be ascribed to two main enabling factors: (i) the

physical proprieties of human musculoskeletal system, and (ii) the effectiveness of the

control operated by the central nervous system. Regarding point (i), the introduction of

compliant elements in the robotic structure can be regarded as an attempt to bridge the

gap between the animal body and the robot one. Soft articulated robots aim at replicating

the musculoskeletal characteristics of vertebrates. Yet, substantial advancements are

still needed under a control point of view, to fully exploit the new possibilities provided

by soft robotic bodies. This paper introduces a control framework that ensures natural

movements in articulated soft robots, implementing specific functionalities of the human

central nervous system, i.e., learning by repetition, after-effect on known and unknown

trajectories, anticipatory behavior, its reactive re-planning, and state covariation in

precise task execution. The control architecture we propose has a hierarchical structure

composed of two levels. The low level deals with dynamic inversion and focuses on

trajectory tracking problems. The high level manages the degree of freedom redundancy,

and it allows to control the system through a reduced set of variables. The building blocks

of this novel control architecture are well-rooted in the control theory, which can furnish

an established vocabulary to describe the functional mechanisms underlying the motor

control system. The proposed control architecture is validated through simulations and

experiments on a bio-mimetic articulated soft robot.

Keywords: motion control algorithm, motor control, natural machine motion, articulated soft robots,

human-inspired control, compliant actuation

1. INTRODUCTION

Daily activities of human beings are a clear example of the exceptional versatility of their motor
control system. Tasks that are still challenging for robots are indeed easily executed by people.
Responsible for such a high level of performance are the musculoskeletal system and the Central
Nervous System (CNS). The musculoskeletal system allows to exert forces and to percept the
external world through a multitude of receptors. One of the main characteristics of this system
is its compliant nature. Indeed, body flexibility provided by muscles and tendons enables features
like energy efficiency, power amplification and shock absorption (Roberts and Azizi, 2011).
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The same feature are usually hard to be achieved by traditional
rigid robots. Inspired by the effectiveness of the biological
example, researchers developed robots with compliant elements
to mimic the animal body. This novel generation of systems,
namely soft robots, can be categorized as invertebrate-inspired
or vertebrate-inspired (Della Santina et al., 2020). The latter class
includes articulated soft robots, which are systems with rigid links
and elasticity lumped at the joints (Albu-Schaffer et al., 2008). In
this paper, we focus on the latter category, i.e., robots actuated
by series elastic actuators (SEA) (Pratt and Williamson, 1995)
or variable stiffness actuators (VSA) (Vanderborght et al., 2013).
The musculoskeletal system of vertebrates allows to adjust its
dynamics, for instance, it allows to vary joint stiffness via co-
contraction of antagonistic muscles. Agonistic-antagonist VSAs
mimic this mechanism as described in Garabini et al. (2017),
thus they try to replicate the working principle of the human
musculoskeletal system.

Several works in literature describe how the features of
a flexible body can be conferred also to a robot through
different solutions (Landkammer et al., 2016; Zhang et al.,
2019; Pfeil et al., 2020). Particularly relevant are the solutions
that completely replicate the whole structure of the human
musculoskeletal system. For examples, Kenshiro (Asano et al.,
2016) is a humanoid robot reproducing the human skeleton
and muscle arrangement. Marques et al. (2010) presents
ECCE, an anthropomimetic humanoid upper torso. Jäntsch
et al. (2013) proposes Anthrob, a robot mimicking a human
upper limb.

Yet, controlling soft robots still remains a very challenging
task. The reason is that articulated soft robots have highly
non-linear dynamics, presenting also hysteresis, bandwidth
limitation and delays. Therefore, obtaining an accurate and
reliable dynamic model is not a trivial task that could directly
affect the performance of model-based control techniques.
Moreover, articulates soft robots present anatomical degrees of
freedom (DoFs) redundancy, because they typically have more
than one motor per joint, and they may have kinematic DoFs
redundancy, depending on the platform. The majority of existing
model-based control approaches has the strong drawback of
requiring an accurate model identification process, which is
hard to be accomplished and time-consuming. In Buondonno
and De Luca (2016) feedback linearization of VSA is faced. In
Zhakatayev et al. (2017) an optimization framework to minimize
time performance is proposed. In Keppler et al. (2018) the
Authors propose a controller to achieve motion tracking while
preserving the elastic structure of the system and reducing the
link oscillations. On the other hand, model-free algorithms are
promising, but usually require long-lasting learning procedures
and face generality issues (Angelini et al., 2018; Hofer et al., 2019).

However, the complexity of the articulated soft robot body
is analogous to that of their source of inspiration. Indeed, the
human body is a complex system that presents an unknown non-
linear dynamics and redundancy of degrees of freedom (DoFs).
Despite that, the CNS is able to cope with these issues, fully
exploiting the potential of the musculoskeletal system. For this
reason, in this work, we analyze the effectiveness of a bio-inspired
algorithm to control bio-mimetic robots.

To the authors best knowledge, despite the variety of
approaches in the motor control field, an architecture based on
control theory able to present at the same time various CNS
behavior is still lacking for articulated soft robots (Cao et al., 2018;
Ansari et al., 2019). The study of the humanCNS has been already
exploited to enhance robot capability. For instance, in Medina
et al. (2019) the Authors propose a method for modeling human
motor behavior in physical and non-physical human-robot
interactions. Based on previous observations, the developed
model is able to predict the force exerted during the interaction.
Capolei et al. (2019) presents a cerebellar-inspired controller
for humanoid robot moving in unstructured environment. The
controller is based onmachine learning, artificial neural network,
and computational neuroscience. In Kuppuswamy et al. (2012)
the Authors propose a motor primitive inspired architecture for
redundant and compliant robots. Lee et al. (2018) proposes a
model of human balancing with the goal of designing a controller
for exoskeleton.

In this work, our goal is to make a step further toward
the development of human-inspired controllers for articulated
soft robots: taking inspiration from motor control theories,
we implemented a hierarchical control architecture exhibiting
well-known characteristics of human motor control system
(i.e., learning by repetition, anticipatory behavior, synergistic
behavior). Such a control framework is a proper combination of
feedback control, feedforward, Iterative Learning Control, and
Model Predictive Control. The goal is to design a bio-mimetic
control architecture for bio-inspired robots, focusing on
trajectory planning and tracking tasks.

A major contribution of this work is to show how
well-established paradigms belonging to the control theory can
be used to approach the motor control problem. Finally, the
authors want to clearly state that is beyond the scope of this work
to infer possible neurophysiological implications based on the
presented control framework.

Our belief is that a control system able to work like the
CNS, such the one proposed here, can successfully manage a soft
robotic system. We test here this hypothesis, among with the
human-like behaviors, both in simulation and in experiments,
using as testbed robots actuated by VSAs.

2. THE BIOLOGICAL INSPIRATION

The unparalleled performance of the animal CNS are an
ambitious goal for the robotic community, especially because the
issues faced by the CNS are very similar to the ones occurring
in robots, i.e., unknown non-linear dynamics and redundancy of
degrees of freedom. These are (Latash, 2012):

• Unknown non-linear dynamics. The human body is a
complex system, with strong non-linearities at every level.
Moreover, environmental force fields can not be known
a priori.

• Degree of freedom (DoF) redundancy. The human body
presents three types of redundancy. Anatomical—human
body is characterized by a complex highly redundant
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FIGURE 1 | Representation of some human behaviors considered in this work. Learning by repetition (A): a subject is able to reach a series of point in space with its

end effector, when a force field is imposed the trajectories result deformed, repeating the reaching trials many times the subject results able to restore the initial

behavior. Aftereffect in known trajectories: (B) Hand trajectories of a typical point to point movement. The typical movement is a strict line. If a force field is introduced

the trajectory is firstly deformed. After some repetitions the strict movement is recovered. If the force field is then removed the hand trajectory is deformed in a way

specular to the first deformation. This is called aftereffect. Aftereffect in unknown trajectories: (C) Hand trajectories of typical point to point movements. When the

force field is introduced the subject make experience through learning by repetition of just trajectories 3 and 5. When the force field is removed aftereffect is present on

trajectories not experienced closer to trajectories 3 and 5: trajectory 4 presents maximum aftereffect, trajectories 1 and 7 presents negligible aftereffect (image

obtained from an elaboration of images in Gandolfo et al., 1996).

structure. The number of joints is greater than the number
of DoFs necessary to accomplish a generic task, and the
number of muscles is greater than the number of joints.
Kinematic—infinite joints trajectories can achieve the same
task, or simply perform the same end effector point to
point movement. Neurophysiological—each muscle consists
of hundreds of motor units, and they are activated by moto-
neurons that can spike with different frequency (hundreds
of variables).

For this reason, we use the motor control theory as a source of
inspiration for our controller.

2.1. Hierarchical Nature of the Central
Nervous System
There are several evidences that the Central Nervous System
can cope with the incredible complexity of the musculoskeletal
apparatus by relying on a hierarchical organization of subsequent
simplifications of the control problem (Swanson, 2012;
Hordacre and McCambridge, 2018). For example, the Bernstein
classification (Bemstein, 1967) categorizes the construction of
movement in six levels, from symbolic reasoning to muscle tone
activation. Level A is called rubro-spinal level or paleokinetic
level, and it provides reflex function and manages muscle tone.
Level B, i.e., thalamo-pallidal level, is the level of synergies and
patterns and produces coordinate movement patterns. Finally,
level C1, is the striatal or extrapyramidal level. This is one of the
two levels of the spatial field level, and it specifies a way to reach
performance defined by higher levels. The other three levels, C2,
D, and E, describe higher level of abstractions, as meaningful
actions and information transmission. Therefore, they will not
be treated in by the proposed control architecture.

2.2. Some Salient Characteristics of the
Human Motor Control
In this section we list a few of salient characteristics of the
neural control architecture that we consider of paramount
importance for the human motion performance, and that we

aim at replicating on the considered bio-mimetic robots. In the
remainder of the article we will often refer to them as (i)–(v).
These peculiar characteristics of the CNS are:

(i) Learning by repetition (Shadmehr and Mussa-Ivaldi, 1994):
CNS inverts an unknown dynamic over a trajectory,
repeating it several times. Figure 1A represents a classical
experiment. It is possible to notice that the subject is asked
to reach some points in the workspace. Then a force field
is introduced. Initially, trajectories are strongly deformed.
After repetitions of the same movements, performances
obtained before the introduction of the force field are
achieved again. The same behavior can be found in
the development, where the CNS needs to adapt to its
own dynamics.

(ii) Anticipatory behavior (Hoffmann, 2003): ability of CNS to
usually anticipate the necessary control action relying on
sensory-motor memory. The acquired previous experiences
cause a shift in the control action from closed loop
to open loop. Anticipatory behavior is fundamental in
many human activities, such as manipulation (Fu et al.,
2010), coordinated (Flanagan and Wing, 1993), and fast
movements (Haith et al., 1988).

(iii) Aftereffect over a learned trajectory (Lackner and Dizio,
1998) and aftereffect over unknown trajectories (Gandolfo
et al., 1996). After recovering the performance loss due to
the introduction of the external force field, by removing
the force field, subjects exhibit deformations of the
trajectory specular to the initial deformation due to the
force field introduction. This behavior is called mirror-
image aftereffect Figure 1B. This effect arises also in novel
trajectories as depicted in Figure 1C.

(iv) Synergistic behavior (Latash, 2010): synergy can be defined
as “[. . . ] a hypothetical neural mechanism that ensures
task-specific co-variation of elemental variables providing
for desired stability properties of an important output
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FIGURE 2 | Representations of the synergistic behavior. In the figure there are

different possible distributions of task configuration in task space. The dashed

line is locus of configurations that meets the task. Vgood is the variance of the

distribution along the dashed line, Vbad is the variance in the orthogonal

directions. The fact that Vgood > Vbad indicates that a task synergy exists (1). If

Vgood ⋍ Vbad no synergy exists (2). If Vgood << Vbad a destabilizing synergy

exists (3).

(performance) variable.” Given an “important output
variable” we can define two variables Vgood and Vbad.
Vgood is the variance through the directions where output
is constant and the constraints are verified (named
uncontrolled manifold), while Vbad is the variance in the
other directions (Scholz and Schöner, 1999). The system
presents a synergistic behavior when Vgood > Vbad.
Figure 2 visually explains this point.

(v) Re-plan of anticipatory action: CNS modifies the
anticipatory motor actions on-line if the goal changes
(e.g., Soechting and Lacquaniti, 1983), or if the sensory
outcome is different from the expected one (e.g., Engel
et al., 1997). Note that this is fundamentally different from
feedback. Indeed, feedback actions are proportional to the
instantaneous error, while re-plan of anticipatory action
depends on the outcome of the task.

3. PROBLEM STATEMENT

Inspired by the biological example, we design the control
architecture with a hierarchic structure similar to the one of CNS.
In particular we reproduce the first three levels of the Bernstein
classification (Bemstein, 1967) (briefly summarized in section
2.1) with the goal of executing a task reference ν generated by the
three higher abstraction levels. Furthermore, the controller has

to reproduce the peculiar behaviors of the human CNS described
in section 2.2.

We refer to a generic dynamic system, which may
represent both articulated soft robots and biological models
(Figures 3A,B), i.e., ẋ(t) = f (x(t), u(t)), y(t) = h(x(t)), where
f is the dynamic function, x = [qT, q̇T]T ∈ R

2n is the state
vector, q ∈ R

n are the Lagrangian variables, y ∈ R
l is the output

variable, and h(x) is the output function. It is worth mentioning
here that human muscles and agonistic antagonistic variable
stiffness actuators share similar characteristics as depicted in
Figures 3C,D (Garabini et al., 2017). We propose a bio-mimetic
control architecture for bio-inspired robots. The architecture is
divided into two layers and summarized in Figure 4. The whole
controlled system is organized in four building blocks: the two
control levels, the dynamic system, and the output function h(x)
selecting the portion of the state from which depends the task to
be accomplished.

The low level features characteristics similar to level A of
the Bernstein classification, i.e., it provides low level feedback
and dynamic inversion. Thus, it generates as output the efferent
action u depending on afferent proprioceptive inputs, i.e., q, q̇,
and higher level reference ρ ∈ R

p, generated by the high
level control, relying on q and y. Thus, given a desired output
trajectory ŷ :[0, tf) → R

l, where tf is the terminal time, the
low level control is an appropriate controller able to track that
trajectory. On the other hand, the high level control is inspired
by level B and level C1 and provides task management.

The low level controller has to present three behaviors:
learning by repetition (i), anticipatory behavior (ii), and
aftereffect over known and unknown trajectories (iii). The high
level control will present synergistic behavior (iv) and ability of
re-plan the anticipatory action (v).

To design the control architecture we assume the desired
robot impedance behavior as given. Future extension of this work
will also consider a direct learning of the optimal impedance
depending on the task.

4. FROM MOTOR CONTROL TO MOTION
CONTROL

In this section we describe the proposed control architecture
and its components. To obtain learning by repetition (i) we
will employ a learning algorithm able to cope with the non-
linear dynamics of the studied class of robots. In particular, we
rely on the Iterative Learning Control (ILC) framework (Bristow
et al., 2006). The employed ILC method merges a low gain
feedback with a feedforward action. Through repetitions the
feedforward action will prevail over the feedback action leading
to the desired anticipatory behavior (ii). It is worth mentioning
that ILC is a local method and requires a new learning phase
for every novel desired trajectory. Conversely, humans are able
to generalize the motion learned through repetitions (Sternad,
2018). To obtain the same feature, we employ Gaussian Process
Regression (GPR) (Williams and Rasmussen, 2006) to create a
map of learned trajectories. We aim at obtaining also aftereffect,
i.e., behavior (iii)—to test the level of bio-mimecity of the
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FIGURE 3 | Similarity between humans and robots. Variable definitions in humans (A) and robots (B). q ∈ R
n are the Lagrangian variables, x = [qT, q̇T]T ∈ R

2n is the

state vector, u ∈ R
m is the input and y ∈ R

l is the output. These variables are valid both for biological systems and articulated soft robots. Experimentally measured

force–length characteristics in natural (C) and robotic (D) system. (C) Elastic characteristic of agonist and antagonist muscles acting on the elbow joint in the human,

taken from Gribble et al. (1998). (D) Elastic characteristic of a agonist and antagonist variable stiffness actuator (Garabini et al., 2017).

FIGURE 4 | Control structure. u is the low level control variable or efferent action, ρ is the high level control variable, ν is the reference in the task space, q is the

position vector, q̇ is the speed vector, x = [q(T ), q̇(T )](T ) is the state vector, y is the output vector, h(·) is the output function. The control system is supposed equipped

by a complete proprioception.

proposed architecture. We base the high level controller on an
optimization problem to define the desired task and to solve the
redundancy issue. From this optimization problem a synergistic
behavior (iv) results. Finally, to re-plan an anticipatory action (v)

we propose two different approaches, one based on proportional
control and the other one based on Model Predictive Control
(MPC). Bothmethods will be tested and compared.We also focus
on a trade off between problem dimensionality and accuracy.
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4.1. Low Level Control
Let us define the error signal as e : = x̂ − x, where x is the
measured state vector, while x̂ is the desired evolution, given by
higher levels of the architecture. In addition, let us define the
inverse functional W :C1[0, tf) → C0[0, tf), mapping a desired
state trajectory x̂ into the input û able to track that trajectory.
The purpose of the low level controller is to perform dynamic
inversion of the system given any desired trajectory x̂, thus to
find a map approximating W. In addition, we aim at replicating
the CNS features (i), (ii) and (iii). To this end, we propose a
new algorithm combining Iterative Learning Control (ILC) and
Gaussian Process Regression (GPR).

4.1.1. Learning to Track a Trajectory
The learning by repetition behavior (i) can be achieved using
a learning technique. Emken et al. (2007) presents a model of
learning by repetition process, derived from a statistic model of
error evolution over iterations

ui+1 = α ui + βei , (1)

where α,β ∈ R
+ are two positive constants, while ui and ei are

the control action and the error at the i-th iteration, respectively.
In this way an input sequence is iteratively computed such that
the output of the system is as close as possible to the desired
output. Iterative Learning Control (ILC) (Bristow et al., 2006)
permits to embed this rule in a general theory, and already
achieved good results when applied to VSA robots (Angelini
et al., 2018). ILC exploits the whole previous iteration error
evolution to update a feedforward command, according to
the law

ui+1 = L(ui)+ z(ei) , (2)

where the function z(ei) identifies the iterative update, while L(ui)
is a function1 mapping the control action of the previous iteration
ui into the current one.

While in works, such as Tseng et al. (2007) is described the
pure contribution of error signals, there are evidence, such as
Kawato (1996), that feedback motor correction plays a crucial
role in motor learning. Hence, a more general algorithm able to
merge all of these contribution is needed. Thanks to the described
inclusion we can design an ILC controller merging both feedback
and feedforward, applying a control law, such as

ui+1 = L(ui)+ z(ei, ei+1) , (3)

where the presence of the error of the current iteration ei+1

leads to the feedback action. The combination of feedback and
feedforward actions, allows to profitably collect sensory-motor
memory implementing also the described anticipatory behavior
(ii). Furthermore, relying mostly on a feedforward action, ILC
allows a limited stiffening of the robot (Della Santina et al.,
2017a).

Among all the ILC algorithms, in order to opportunely
generalize (1) maintaining its intrinsic model-free structure, in

1L(ui) is typically a smoothing function.

this work we use an PD-ILC law in the form of the ones proposed
(e.g., in Shou et al., 2003; Ruan et al., 2007), to obtain a minimal
dependence on a model of the system dynamics. The proposed
approach has been already preliminarily introduced in Angelini
et al. (2020a). The adopted iterative update is

z(t, i) = ŴFFp ei(t)+ŴFFd ėi(t)+ŴFBp ei+1(t)+ŴFBd ėi+1(t) , (4)

where, ei is the error evolution at the i-th iteration, ŴFFp ∈

R
m×2n and ŴFFd ∈ R

m×2n are the PD control gains of the
iterative update while ŴFBp ∈ R

m×2n and ŴFBd ∈ R
m×2n are

the PD feedback gains. We choose a decentralized structure for
the ILC controller, hence, the gain matrices are block diagonal.
The gains of the control algorithm can be chosen through several
methods. Trial and error approaches could be adopted, but they
are usually time consuming and the final performance depends
on the experience of the human operator. The ILC framework
proposes several techniques to guarantee the convergence of the
iterative process depending on the control gains. Thus, other
tuning approaches rely on these convergence condition to choose
the gains. Some relevant examples of convergence conditions
can be found in Arimoto et al. (1984), Ahn et al. (1993), Moore
(1999), Bristow et al. (2006), and Wang et al. (2009). In Angelini
et al. (2018) an algorithm to automatically tune the control gains
is proposed. Finally, it is worth mentioning that the feedback
gains should be set low to avoid alteration of the softness of the
controlled system (Della Santina et al., 2017a; Angelini et al.,
2018).

The adopted solution achieves aftereffect over known
trajectories (iii). Indeed, the method is able to compensate also
unmodeled potential external force field, because it is model-
free and learning based. This means that the learned action
depends on the external force disturbances that were present
during the learning phase. Furthermore, since the method is
mostly feedforward, when the external force field is removed, the
system presents the desired aftereffect (iii).

4.1.2. Generalization of the Learned Trajectories
Given a desired trajectory x̂, ILC returns an input û such that
û = W(x̂), thus it returns a pair (x̂,W(x̂)). However, the
method lacks of generality. Indeed, ILC is a local method, and it
requires a novel learning phase for each novel desired trajectory
x̂. Conversely, humans are capable of effectively performing
novel tasks exploiting and generalizing the previously acquired
experiences (Sternad, 2018). Angelini et al. (2020b) proposes a
method to generalize the control actions w.r.t. to time execution
given a limited set of pairs (x̂,W(x̂)). Given a desired trajectory
x̂, the method allows to track x̂ with any desired velocity,
without any knowledge of the robot model. In this paper, we
are interested in generalizing the learning control action w.r.t.
the joint evolution, replicating the feature of human beings. To
this end, we apply GPR on a set of learned pairs (x̂,W(x̂)), in
order to regress a map—approximating W—able to track any
novel desired trajectory x̂. Then, the system will present also
the desired behavior aftereffect over unknown trajectories (iii).
This is achieved because the regressed map will be based on the
learned feedforward control actions.

Frontiers in Robotics and AI | www.frontiersin.org 6 September 2020 | Volume 7 | Article 117

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Angelini et al. Soft Robots Human-Like Control

FIGURE 5 | Proposed regression approach: instead of trying to regress the whole inverse functional W(·), the idea is to regress the function M(·), which provides an

approximation [defined by S(·)] of control action needed to induce a reduced set of evolution [defined by B(·)].

Several approaches can be applied to compute the inverse
functional W. Some methods contemplate the independent
estimation of a complete model of the system (e.g., Arif et al.,
2001; Purwin and D’Andrea, 2009). The limitations of complete
model estimation (Nguyen-Tuong et al., 2008) approaches are
well-known (e.g., computational onerous). Conversely, in our
approach we will focus on a reduced space of control actions and
trajectories, in order to limit the computational burden.

W is the functional mapping the functional space of the
state trajectories into the functional space of the input signals.
Computing the regressor of a functional is not a trivial task.
For this reason, we reduce the problem complexity limiting our
analysis to an approximated solution. In particular we transform
the functionalW into a function through the introduction of two
parameterization functions. Then, we focus on the regressor of
this approximated solution.

Let us define:

• a parameterization B of a subspace of the trajectories space
F ⊆ C1[0, tf), with dimension p, B :R

p → F.

• a parameterization S of a subspace of the input space V ⊆

C0[0, tf), with dimension d, S :Rd → V.

The trajectory parameterization B constraints low level controller
to manage only a sub-set F of the possible evolutions. The
parameterization S defines an approximation of control actions,
reducing them to the ones included in V. Hence, with an abuse
of notation, we indicate with S−1 the application that, given a
control action u, returns the set of parameters that identifies its
approximation, and such that S−1(S(µ)) = µ ∀µ ∈ R

d. Hence
M(ρ) :Rp → R

d is so defined

M(ρ) : ρ 7→ S−1(W(B(ρ))) . (5)

M(·) is the map we are interested for (Figure 5). ρ is the array of
parameters defining the desired trajectory. The map can then be
approximated using a non-linear regression technique. We can
then use the approximated map to estimate the control action
needed to track a new trajectory. We employ here Gaussian
Process Regression (GPR), because it achieves good performance,
while maintaining low the computational cost. In particular,
in the GPR algorithm implementation, we employ the squared
exponential as covariance function (Williams and Rasmussen,

2006) described as kc(x1, x2) = σ 2
f
e
−(x1−x2)

2

2 γ 2 +σnδ(x1−x2) ,where
δ(·) is the Kronecker delta, and σf, σn, and γ are free parameters.

Each novel control action will update the map used for
generalization. However, to further limit the number of regressed
points, for each pair (ρ̄, S−1(W(B(ρ̄)))), we remove all the stored
points from the map which are in a sphere of radius δerr, centered
in ρ̄.

The parametrization of the sub-spaces F and V can be
chosen freely, with the primary goal of keeping low the
method complexity without compromising its generality. Several
solutions could be implemented and tested. For instance, F can
be set as a space of polynomial with a fixed order, or as a space
of sums of sinusoidal signals. On the other hand, V can be
approximated as a Gaussian space, or simply a discretization of
the signal (Herreros et al., 2016).

Regarding the choice of the sub-space F, we would like
to adopt trajectories that mimic the human motions. Which
are the main characteristics of a motion that make it human-
like is still an ongoing debate in literature. In Mombaur et al.
(2010), the Authors apply inverse optimal control to define
a model of human locomotion path and to exploit it for
humanoid robot motion generation. In Tomić et al. (2018) it is
studied the problem of human dual-arm motion in presence of
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FIGURE 6 | Low level control scheme. u = ufb + uff is the resulting afferent action, and ufb and uff are respectively the closed loop and the open loop control

components, u0ff is the a-priori feedforward estimation returned by the map S−1(W(B(·))), ρ is the parameter array, x is the configuration vector. The Feedback Controller
is a PD controller, the Learning Algorithm is the ILC algorithm, the block Parametrization implements the B(·) function. Dashed lines indicates flux of information.

contacts with the environment, and it is proposed an algorithm
merging inverse optimal control and inverse kinematics to
map human motion to humanoid robot motion. An additional
method to characterize the human-likeness of robot motion
is the adoption of functional synergies directly extracted from
human examples as base space (Averta et al., 2017). Without
any claim about the solution of this debate, in this work, we
adopt the hypothesis formulated in Flash and Hogan (1985) and
Friedman and Flash (2009), which states that human movements
minimize the jerk. Minimum jerk trajectories are fifth order
polynomial (Flash and Hogan, 1985), thus—without any claim
of exhaustiveness—we set the vector ρ as the coefficients of
the polynomial.

For what concerns the input space parametrization, in this
work we focus on piece-wise constant functions with a fixed
number d of constant length segments, and we implement S−1

as a time discretization, since it is one of the more natural signal
approximation in control. Future work will analyze different
choices of parametrization of the input and output spaces.

In Figure 6 we report the resulting low level control scheme.
The input ρ is used in the form of B(ρ) as efferent copy for
feedback compensation, and through M(ρ) = u0

ff
as estimated

anticipatory action. Then, this action can be refined through the
learning algorithm. It is worth to be noticed that the proposed
low level controller combines learned anticipatory actions and
feedback control, working mainly in feedforward when the map
reaches the convergence.

It is worth remarking that the adopted solution achieves
aftereffect over unknown trajectories (iii). Indeed, the regressed
map depends on the learned actions. These actions depend on the
external force disturbances that were present during the learning
phase. Therefore, when the external force field is removed, the
system presents the desired aftereffect (iii).

The acquired control inputs and, more in general, the
regressed map depends on the impedance behavior. This was

assumed as provided by an higher level of control in this article
(section 3). However, future extension of this work will aim
at learning the optimal impedance behavior too, imitating the
human capabilities (Burdet et al., 2001). In Mengacci et al. (2020)
it is presented a method to decouple the control input to track a
trajectory and the control input to regulate the robot impedance,
removing the dependency between learned control input and
desired stiffness profile. This, in combination with GPR, could
be used to generalize the acquired control input w.r.t. the desired
stiffness profile and the desired task.

4.2. High Level Control
The role of the high level controller is to perform DoFs
management in task execution. In particular we are interested
in reproducing two of the characteristics of the CNS: synergistic
behavior (iv) [i.e., given the desired output h(x), Vgood > Vbad in
the configuration space] and re-plan of anticipatory action (v).

The degrees of freedom redundancy in humans is classified
as anatomical, kinematic or neurophysiological (section 2). Here
we focus on the kinematic redundancy, and the proposed high
level control produces a synergistic behavior for this class of
synergies. However, we believe that it could be extended also to
the anatomical redundancy. Future work will focus on this point.
The neurophysiological redundancy does not have a counterpart
in robotics, so it is the Authors’ opinion that it is not required to
deal with it.

Several works report evidences of the discrete nature of the
higher levels of the neural control of movements (e.g., Morasso
and Ivaldi, 1982; Loram et al., 2011). In particular, in Neilson et al.
(1988) is postulated that the CNS does not plan a new movement
until the previous one is finished. This happens because the
CNS plan a new motion after receiving the desired perceptual
consequences of a movement in a finite interval of time. In
order to replicate this behavior we choose a time-discrete control
approach. Hereinafter we will use the superscript [k], k ∈ R to
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indicate the k-th planned movement. Each interval will have the
same fixed duration tf.

Low level controller abstracts the largely unknown and
non-linear system into a discrete one which depends on the
choice of the subspace. As a trade-off between complexity
and accuracy, we heuristically chose a smaller subspace: fifth
order monic polynomial with two constraints, which reduces
space dimension to 3, while ensuring that subspace elements
juxtaposition is of class C2. In particular we will focus on
trajectories fulling these constraints

∂2q

∂t2

∣

∣

∣

∣

t={0,tf}

= 0 , qf = qs + q̇ftf , (6)

where qs and qf are the starting and final values of the
polynomials, respectively. Following this choice, we find that
ρ = [qs, q̇s, q̇f]. Given this definition of ρ, the resulting
curve is a polynomial spline, and the abstracted dynamics is a
discrete integrator

q[k+1] = q[k] + tf ρ
[k]
3 , (7)

where ρ
[k]
3 is the third element of ρ[k]. Note that ρ

[k]
1 and ρ

[k]
2

are constrained by the initial conditions, thus they do not appear
in (7).

Hence, the high level controller uses ρ as control variable, and

its role is to choose the sequence of ρ
[k]
3 , generating a polynomial

spline reference.
Level C2 in Bernstein classification (Bemstein, 1967) specifies

the task to be accomplished. Analogously, we aim at replicating
the same behavior in the proposed high level controller. We
define as task a cost function and a set of constraints. Thus, the
high level controller is defined by a solver and an optimization
problem formulated as

min
1ρ,q

J(ŷ− h(q), q[k],1ρ3)

s.t. ‖gq(q
[k])‖ ≤ λq ,∀k

‖gρ(1ρ3)‖ ≤ λρ

q[k+1] = q[k] + tfρ
[k]
3 ,

(8)

where J is the cost function. h(·) is the output function selecting
the variables of interest for the task.1ρ3 is the difference between
two consecutive control commands, i.e., at the k-th interval we
have 1ρ3 : = ρ

[k]
3 − ρ

[k−1]
3 . gq and gρ are generic constraint

functions, while λq ∈ R and λρ ∈ R are the values of the
upper bounds. It is worth noting that ‖1ρ3‖R assumes the role
of actuation cost, while the difference between the desired and
the actual output ‖ŷ− h(q)‖Q is a metric for performance.

We test two different solvers for the high level control:

• Proportional Control (P): it consists in pre-solving the
problem and controlling the system over xopt through a
proportional controller, which is a dead beat controller for
the discrete integrator if P = t−1

f
I, with the identity matrix.

• Model Predictive Control (MPC): it consists in recalculating
the optimum on-line at each time interval, using the

first element of the resulting control sequence (Köhler
et al., 2020). Conventionally, MPC is hardly applicable to
mechanical systems due to their high bandwidths, but the
architecture here presented allowsMPC application because
it is sufficient to apply it only each tf seconds.

P control and MPC usually present much different performance
and implementation complexity. For this reason, we decided to
test both of them to check if a simpler P solver is effective enough,
or if the difference in performances can justify the use of a more
demanding method, such as MPC.

The high level feedback loop consists in a periodical re-plan of
the control sequence, if the actual sensory outcomes are different
from the expected ones.

To obtain the desired synergistic behavior (iv), we rely on
the uncontrolled manifold theory (Scholz and Schöner, 1999).
As briefly described in section 2.2, the uncontrolled manifold
is the variance through the directions where output is constant
and the constraints are verified. This means that the uncontrolled
manifold can be identified as the manifold such that h(q) −

ŷ = 0. Focusing on the regulation of the output, rather than
on the joint error, is sufficient to obtain the desired synergistic
behavior (iv).

It is worth noting that the quality of the task execution is
strongly affected by the accuracy of the learned low level map.
A pre-learning of the map is time consuming and generally not
required. So, we will use an online approach to generate the
map: if a new task is not properly executed (i.e., its error is
greater than a certain threshold ηth) then the accuracy of the map
should be improved through the introduction of a new point,
obtained through an ILC execution along the failed trajectory.
This approach results in a task-oriented learned map: most of the
points will be collected in the portions of the subspace F that are
more useful for the tasks, obtaining a very good trade-off between
map dimension and accuracy.

5. VALIDATION

In this section, we test the effectiveness of the proposed
control architecture through simulations and experiments. In
both cases, we employ as testbed a two degrees of freedom
robotic arm, actuated by VSAs (Figure 7). Specifically, we
employ two qbmoves Maker Pro (Della Santina et al., 2017b),
which are bio-metitic variable stiffness actuators presenting
characteristics similar to human muscles (Garabini et al.,
2017). In both validations we consider the following gains
for the algorithm ŴFFp is blkdiag([1, 0.1], [1.25, 0.0375]),
ŴFFd is blkdiag([0.1, 0.001], [0.0375, 0.001]), ŴFBp

is blkdiag([0.25, 0.025], [0.25, 0.025]), and ŴFBd is
blkdiag([0.025, 0.001], [0.025, 0.001]). The parameters of the
squared exponential as covariance function in GPR algorithm
are σf = 1, σn = 0.05, γ = 2, and δerr = π/20.

For performance evaluation we use the error norm 1 of the
tracking error evolution, i.e., the integral over time of the norm
of the error,mean error hereinafter. Furthermore, we refer as total
error evolution the sum of the absolute tracking error of each
joint at a given time.
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FIGURE 7 | Two degrees of freedom robotic arm used as validation setup.

The manipulator is actuated by two qbmoves Maker Pro, which are bio-metitic

VSAs.

In section 5.1 we present simulations proving that the
proposed control architecture presents the desired behaviors (i)–
(v) separately. In section 5.2 we present experiments testing the
complete control architecture.

5.1. Simulation Results
The employed model is a two degrees of freedom arm. Each link
wights 0.5kg and is 0.5m long. Viscous friction equal to 1.2Ns on
output shaft is considered. Joints limits are [0, π

2 ]rad. The model
of the actuators takes into account hardware parameters, such
as measure noise, communication delays, saturations, motors
dynamics2. In the following the test separately the low level and
the high level controllers.

5.1.1. Low Level Control
In this section, we verify that the proposed low level control
achieves the human-like behaviors described in (i)–(iii). We
present a set of three simulations to test each behavior. First, we
validate the presence of learning by repetition (i) and anticipatory
action (ii). Then, we test the effectiveness of the learned map.
Finally, we verify that the system presents aftereffect over know
and unknown trajectories (iii).

First, we perform trajectory tracking over 50 trajectories
randomly selected in F through a uniform distribution. Results
are shown in Figure 8. Figure 8A shows that the system
profitably implements learning by repetition [behavior (i)],
reducing the error by repeating the same movement. Figure 8B
shows that the controller is able to capitalize the sensory-motor
memory over a trajectory increasing the role of anticipatory
action [behavior (ii)].

Then, we validate the effectiveness of the map. To this end,
we test two scenarios: trajectory tracking without any map and

2The simulink model is available online at

www.naturalmachinemotioninitiative.com.

trajectory tracking with a pre-trained map. In the latter case
the map is trained on the 50 learning phases performed in
the previous simulation. Given the two scenarios, we simulate
2 · 103 trajectories randomly selected in F through a uniform
distribution. The results are reported in Figure 9. Results show
that the performance using the map learned with only 50 random
repetitions are more than one order of magnitude better than the
ones without the map, and with a sensibly lower variance.

Finally, we verify the presence of the aftereffect, i.e., behavior
(iii). Results are shown in Figure 10, specifically we show
aftereffect over known trajectories in Figure 10A, and aftereffect
over unknown trajectories in Figure 10B. In the first case, the
green asterisk line represents the motion of the robot at the
end of the learning phase. Then, we introduce an external force
field, which acts on the joints as an external torque described
by 11(q, q̇) = −q̇31 − 2q1 + π and 12(q, q̇) = −q̇32 −

0.4q2, for the first and second joint, respectively. The trajectory
is deformed as a consequence of the force field introduction
(diamond red line). We repeat the learning process to recover
from performance loss, and the system is again able to follow
the initial trajectory (again, green asterisk line). Finally, the
field is removed, and the end-effector presents the mirror-image
aftereffect, i.e., the trajectory (circle blue line) is specular to the
red one.

In the second case we test presence of the aftereffect on
unknown trajectories. To this end, we simulate a motor control
experiment accounted in Gandolfo et al. (1996). The controller
experiences the unknown force field only on two trajectories. In
this simulation the external torque is described by 11(q, q̇) =

−0.5q̇1−0.15 and12(q, q̇) = −0.5q̇2+0.15. After field removal,
we track five additional trajectories. Each one presents aftereffect.
Moreover, its effect is more evident near in the trajectories close
to the experienced ones. This result proves that the proposed
control architecture presents a typical behavior of the CNS,
validating its human resemblance.

5.1.2. High Level
In this section, we verify that the proposed high level control
achieves the human-like behaviors described in (iv)–(v). We
present a set of two simulations to test each behavior. First, we
validate the ability to re-plan an anticipatory action (v) and we
compare the two approaches (P and MPC). Then, we verify that
the system presents a synergistic behavior (iv).

We evaluate the iterative procedure through 20 tasks. As
output we employ the task position of the end-effector along the
x axis, i.e., h(x) = a cos(q1)+a cos(q1+q2), where a is the length
of both links. Each task consists in moving the arm such that
‖h(x)− ȳj‖ is minimized, where ȳj is the desired evolution of task
j. The map is regressed online with a threshold ηth = tf

π
10 = π

20 .
This means that there is no pre-learned map and a new learning
process is executed each time the tracking error is greater than
ηth. Figure 11 shows the result. Figure 11A reports the average
number of sub-tasks that presents error greater than ηth at each
iteration. It is worth noting that the map converges to a complete
representation of the inverse system, i.e., no more learning
is needed, after ∼8 tasks, with both P and MPC algorithms.
Figure 11B shows that the MPC performance are better than the
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FIGURE 8 | Simulation results of the tracking performance of 50 trajectories randomly selected from F. (A) Total error over iterations. The control architecture presents

the learning by repetitions behavior. (B) Ratio between the feedforward and the feedback action. The control architecture presents the anticipatory behavior.

FIGURE 9 | Mean error of 2 · 103 simulations. (A) No map is used. The mean error is 1.5929rads with a variance of 0.6272rad2s2. (B) A learned map is used. The

mean error is 0.226rads with a variance of 0.0055rad2s2.

FIGURE 10 | Simulations present aftereffect over known and unknown trajectories. Before field introduction are the tracking performance before the introduction of

the external force field. The reference trajectory can be considered overlapped. After field introduction is the trajectory deformed by the external force field. Aftereffect
is the trajectory after the field removal. (A) Known trajectory. (B) Two known trajectories and five unknown trajectories.

P one. This occurs thanks to the re-optimization at each iteration
that permits to fully exploit task redundancies. In other terms, if
the system moves to a state x̃ different from the desired one x̂,
but such that h(x̃) = h(x̂), then the P controller reacts trying to
regulate the two states to be the same, while the MPC recognizes

that the task is accomplished and does not generate any further
control action.

In terms of tracking, the P controller presents good
performance but worse than MPC. Therefore, due to the greater
complexity of the latter method it would be possible to opt for
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FIGURE 11 | (A) Average number of low level evolution tracking which fails the error test at each iteration. (B) Error distributions with the two approaches at the first

step of the learning process: the MPC approach presents lower error than P approach exploiting the task redundancy.

FIGURE 12 | Synergistic behavior. The same task is executed 250 times with randomly selected initial conditions using a normal distribution with standard deviation

equal to 0.03 and mean value equal to the correct initial condition value. (A) The evolution of the joint present high variability. (B) The evolution in the task space

presents an analogous behavior, thus the performance are unvaried. (C) The distribution in configuration space highlights the synergy-like behavior of the high level

controller.

the P controller. However, we are also interested in obtaining
a synergistic behavior (iv). To this end, the MPC approach is
preferable. To verify the presence of the synergistic behavior (iv),
we track a reference trajectory with different initial conditions.
In particular, we randomly select 250 initial conditions using
a normal distribution with standard deviation equal to 0.03
and mean value equal to the correct initial condition value.
Figure 12A shows high variability in joints evolution, while
Figure 12B highlights that the task performance are preserved.
Considering the definition of synergy reported in section 4.1,
this simulation shows the presence of a synergistic behavior
of the controlled system, presenting Vgood >> Vbad in the
configuration space (Figure 12C).

5.2. Experimental Results
In this section we test the complete control architecture, and
we verify that it presents the desired behavior (i)–(v). Three
experiments are presented, one testing the learning by repetition
(i) and anticipatory behavior (ii), one testing the aftereffect (iii),
and one testing the performance of the online map learning. It is
worth noting that the reference trajectory is provided by the high
level control, validating the complete architecture.

The robotic platform is the two degrees of freedom planar arm
depicted in Figure 7. The output function h(x) is the end-effector
position given by h(x) = [b cos(q1)+b cos(q1+q2) , b sin(q1)+
b sin(q1+ q2)], where b = 0.1m is the length of the links. Given a
desired position ȳ, and a discrete time interval k̄, the experimental
task is to maximize the velocity of the end effector in the desired
position ȳ at the desired time step k̄. This task can be modeled as
the optimization problem

min
1π ,q

‖ȳ− h(q[k̄])‖Qp − ‖h(q[k̄])− h(q[k̄−1])‖Qv + ‖1π‖R

s.t.
¯
λq ≥ q[k] ≥ λ̄q , ∀k = 1, . . . , 10

q[k+1] = q[k] + tfπ
[k]
3 , ∀k = 1, . . . , 9 ,

(9)

where
¯
λq and λ̄q are the joint limits. R, Qp and Qv are the weight

matrices of the input, the final position cost, and the final velocity,
respectively, and their value is set asR = 0.1 I20×20,Qp = 20 I2×2,
and Qv = 10 I2×2.

Figure 13A shows the solution of the optimization problem
(9) with parameters tf = 0.5s,

¯
λq = [0, 0]T and λ̄q =

[π/2, π/2]T, k̄ = 9, ȳ = [0.2 0]T. This is the reference trajectory
of the fist experiment, and it is equal for both joints.
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FIGURE 13 | ILC experiment. (A) Reference trajectory resulting from the optimization problem (9). The trajectory is equal for both joints. (B) Tracking error evolution for

different meaningful iteration of the ILC algorithm. (C) The evolution of the error over iterations shows the learning by repetitions behavior. (D) The ratio between

feedforward and feedback actions shows an anticipatory behavior.

The results are shown in Figure 13. The proposed algorithm
learns the task through repetitions: in 40 iterations the achieved
performance are satisfying. Figure 13B shows the tracking error
evolution over time, for a few meaningful iterations. Figure 13C
proves that the system implements learning by repetition
[behavior (i)], reducing the error exponentially by repeating the
same movement. The mean error decreases approximately about
63.7% w.r.t. its initial value in 10 iterations, and of the 95% in
40 iterations. Finally, Figure 13D depicts the ratio between total
feedforward and feedback action, over learning iterations. This
shows the predominance of anticipatory action at the growth of
sensory-motor memory [behavior (ii)]. It is worth to be noticed
that feedback it is not completely replaced by feedforward, which
is coherent with many physiological evidences (e.g., Shadmehr
et al., 2010).

The second experiment has two goals. First, it tests the
ability of the control algorithm to cope with aggressive external
disturbances as springs in a parallel configuration (Figure 14A).
Then, it validates the presence of mirror-image aftereffect
[behavior (iii)]. The robotic arm learns to move its end-effector
following the movement depicted in Figure 14B (green asterisk
line). After the learning process we introduced an external
force field. The unknown external force field is generated by
a couple of springs of elastic constant 0.05Nm−1, connected
as in Figure 14A. Due to the spring introduction, the robot
end-effector evolution is altered as depicted in Figure 14B (red

diamond line). At this point, the algorithm recovers the original
performance after few iterations, proving its ability to cope with

external disturbances (learning process not shown for the sake
of clarity). Finally the springs are removed, and the end-effector
follows a trajectory (blue circle line in Figure 14B), which is

the mirror w.r.t. the nominal one, of the one obtained after

field introduction, therefore proving the ability of the proposed
algorithm to reproduce mirror-image aftereffect [behavior (iii)].

To conclude we test the map in the complete control

architecture. The idea is to repeatedly perform similar tasks, and
to quantify the map performance. In particular, we are interested

in verifying that the map capitalizes upon the information of the
previous task executions in the new trials. In this experiment, we

sequentially perform 10 tasks. The task parameters are tf = 0.5s,

¯
λq = [0, 0]T and λ̄q = [π/2, π/2]T, and ȳ = [0.2 0]T. In this

experiment, k̄ is chosen randomly with a uniform distribution
in the interval {2, . . . , 10} for each task. This means that each

task aims to maximize the link velocity at a different time step.
The resulting trajectory has a form similar to the one depicted in

Figure 13A, eventually scaled on the abscissa axis respect to the

value of k̄, and on the ordinate respect to the values of
¯
λq and

λ̄q: the system moves as slow as possible (i.e., in k̄ − 1 steps) in
the configuration that is most distant from the starting point (i.e.,
λ̄q), then in a time step it moves at the maximal possible speed to
the initial position, finally it remains stationary.
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FIGURE 14 | The designed control architecture presents aftereffect on known trajectories. (A) An unknown external force field is applied to the robotic arm through

the addition of springs. (B) The introduction of the force field deforms the trajectory (red line) After some repetitions the strict movement is recovered. If the force field

is then removed the trajectory (blue line) is deformed in a way specular to the first deformation.

For each task we performed a learning process lasting for
40 iterations. The resulting low level control is used for map
regression. This process is repeated 20 times. Hereinafter each
of these repetition is referred as trial. To analyze the results we
define two error metrics E and Ii. For every i-th task in the j-th

trial we evaluate (i) e
i,j
nm, i.e., the tracking error without the use of

themap, and (ii) e
i,j
wm, i.e., the tracking error with themap learned

with previous trajectories.

It is worth to be noticed that both error values e
i,j
nm and e

i,j
wm

are not correlated with index j. However, while e
i,j
nm is neither

correlated with index i, e
i,j
wm appears to be correlated with task

i, due to the presence of the map.
What we are interested in evaluating is how much the error

e
i,j
wm decreases respect to the performance without map e

i,j
nm.

Hence we define the metric

E =
1

Ni Nj

∑

i=1,...,Ni
j=1,...,Nj





1

T

T
∫

0

‖e
i,j
nm(t)‖dt



 , (10)

where T = 10tf is the task duration, Ni = 10 is the number of
tasks in a sequence of learning, Nj = 20 is the number of trials.
Hence E is the mean value of error without map, and it will be
used for normalization purpose.

Therefore the considered error index for the i-th task is
defined as

Ii =
1

E

1

Nj

∑

j=1,...,Nj





1

T

T
∫

0

‖e
i,j
wm(t)‖dt



 . (11)

Ii represents the normalized mean controlled system behavior
over trials at the i-th task. Ii > 1 indicates that the map degrades
the performance of the system, Ii = 1 indicates that the map does
not modify the system behavior, Ii ∈ [0, 1) indicates that the map
increases the system performance.

However, it is worth noticing that the regressed map has
the goal of improving the performance also of trajectories that
differ from the ones stored in the map itself. In particular, the
regressedmap aims at improving the performance of dynamically
similar tasks, while maintaining unaltered the performance of
dynamically different tasks. To analyze this point, we test it in
presence of a novel different trajectory w. Iiw represent index (11)
for the novel reference. Specifically, the employed trajectories are:
s, i.e., dynamically similar, and r, i.e., dynamically different

sk =
π

4
sin

(

3π

2
k

) [

1
1

]

, rk =
π

4
sin

(

3π

2
k

) [

−2
1

]

.

(12)
The two trajectories are presented in Figures 15A,B, respectively.
It is worth noticing that the s motion is more similar to the
task trajectories than the r motion since both joint evolution
are concordant.

This experiment has been performed with two different
scenarios: low and high stiffness. The results are reported in
Figures 15C,D, respectively. Both figures show that the map
converges to a complete inversion of the system in the set of tasks
of interest in ∼5 iterations, i.e., when five tasks are included in
the map there is no more improvement and the best performance
are achieved. Furthermore, the method is able to reduce the
error on the trajectory dynamically similar, without degrading the
performance of the trajectory dynamically different. This result is
achieved both in the low stiffness case and in the high one.

6. CONCLUSIONS AND FUTURE WORK

In this work a novel control architecture that simultaneously
shows the main characteristics of human motor control
system (learning by repetition, anticipatory behavior, aftereffect,
synergies) has been stated. The effectiveness of the proposed
control framework has been validated in simulations and
via experimental tests. The experiments have been conducted
on a robotic platform, the qbmoves, closely resembling
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FIGURE 15 | Experimental map evaluation. (A) Dynamically similar trajectory. (B) Dynamically different trajectory. Evolution of the error index (11) used for map

evaluation in soft (C) and stiff (D) scenario. The error index Ii on the set of tasks of interest converges to the best reachable performance after ∼5 tasks in both cases.

Then, two different trajectories are tested: s which is dynamically similar and r which is dynamically different. The map reduces the error on the dynamically similar
trajectory (Iis), and it leaves unadulterated the performance on the dynamically different trajectory (Iir).

the muscular system and in which the control inputs,
namely reference position and stiffness preset, have their
biological counterpart in the reciprocal and co-activation,
as per Equilibrium Point Hypothesis. The proposed control
architecture translates elements of the main motor control
theories in well-stated mechanisms belonging to control theory.
Control Engineering could provide a useful framework for theory
falsification in motor control, and it could give an already well-
formed global language for problem definition. Furthermore,
human behavior can be used to ensure human-like performance
in robotic systems, and hence be used as a starting point for novel
control models. We will further analyze this point in future work.

Future work will also aim at increasing the human-likeness
of the proposed control architecture. First we will focus on
merging the generalization method proposed in Angelini et al.
(2020b) and the generalization method based on GPR that was
presented in this paper. The union of the two approaches will
grant to the robot the ability to track any desired trajectory,
with any desired velocity, considerably limiting the amount of
required learning procedures. This solution will further close the
gap between robot and human capability in terms of previous
experience exploitation. Then, we will aim at replicating the
impedance behavior learning that is typical of human beings,
and it is generally related to the performed task. Indeed, thanks
to our control architecture the robot compliance is not altered,

meaning that it can be freely exploited. Additionally, we will
exploit functional synergies extracted from recorded human
motions to increase the human-likeness of the robot movements
(Averta et al., 2020). Finally, this work focused on robot powered
by mono-articular actuators, i.e., platforms where each motor
separately drives each link. However, some systems, e.g., human
musculoskeletal system, present a poly-articular structure. In
Mengacci et al. (2020), a few preliminary insights about the
application of ILC to poly-articular systems have been discussed.
Starting from these results, future work will also study the
application of the proposed control architecture to poly-articular
robots, achieving also a anatomical synergistic behavior.
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