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Abstract—This letter investigates the stability properties
of the soft inverted pendulum with affine curvature - a tem-
plate model for nonlinear control of underactuated soft
robots. We look at how changes in physical parameters
affect stability and equilibrium. We give conditions under
which zero dynamics corresponding to a collocated choice
of the output is (locally or globally) stable or unstable. We
leverage these results to design a switching controller that
stabilizes a class of nonlinear equilibria of the pendulum,
which can drive the system from one equilibrium to another.

Index Terms—Emerging control applications, stability of
nonlinear systems, robotics.

I. INTRODUCTION

CONTINUUM soft robots are nature-inspired mechanical
systems [1] entirely made of continuously deformable

materials. This feature gives them morphological flexibility so
their body can swirl, twist, and bend in space. However, these
capabilities come at the price of a substantially more complex
control problem. Many researchers have resorted to machine
learning and model-free strategies to solve the challenge of
controlling these systems [2].

On the other hand, research in soft robot modeling has
shown that simple yet accurate models [3], can lead to a
breakthrough in applying model-based control approaches [4].
While the initial research stream has mainly been oriented
toward the kinematic control of soft robots [5], this trend
later expanded to dynamic control by artificially casting the
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problem as fully actuated [6]–[8]. Nevertheless, this approach
requires imposing coarse approximations. Indeed, the high
(theoretically infinite) dimensionality of soft robots’ dynam-
ics makes any accurate description inherently underactuated.
Thus, naturally, control of underactuated soft robots is attract-
ing a growing amount of attention nowadays. Linear approxi-
mations have proven to be a feasible solution when aiming for
local results [9], [10]. Moving to the nonlinear case, most of
the existing approaches work under the (sometimes implicit)
assumption that the soft robot is stiff-enough. Examples are
the PD-poly in [11], the computed torque plus zero-dynamics
damping injection in [12], the PD+ in [13], and the energy
shaping controllers in [14]–[16]. Recently, two template mod-
els for soft robots have been proposed: the soft pendulum with
a revolute base [17] and the soft inverted pendulum (SIP) with
affine curvature [18]. The former is a soft version of the double
pendulum and the latter of the acrobot [19]. The ultimate goal
is to follow a similar path of nonlinear control of underactuated
rigid robots: to relax hypotheses by focusing on specific, low-
dimensional, but representative systems. Energy-based control
and feedback linearization are investigated [17], [18]. Beyond
the initial results, a complete understanding of the behaviors
of these template models is far from being achieved.

In this letter, we dig into the essential characteristics of
the SIP, towards a more comprehensive understanding of its
structural properties. We expand the analysis in [18] and focus
on how the robot’s physical parameters impact the number
of equilibria, potential energy, and collocated zero-dynamics
stability. With respect to [18], we also provide analytic results
and perform numerical characterizations regarding the local
and global stability, and the instability of the zero dynamics
for different values of the collocated component. We propose
an energy-injection switching control strategy that allows the
transition from one open-loop unstable equilibrium to another
one, sharing the same collocated variable, or among equilibria
with different collocated components. This controller is inspired
by the swing-up control strategy used in classic pendulum
systems [20]. We envision this analysis may serve during the
design of a soft robot as a guideline to ensure the existence of a
single equilibrium, e.g., in a soft neck, or of several ones when
the robot has to manipulate objects by spiralling around them
or to move with constant tip orientation. Units are omitted in
this letter for brevity reasons. Angles are in radians and all
other quantities are in the units of the MKS system.

II. THE SOFT INVERTED PENDULUM MODEL

We report here a succinct introduction to the dynamic model
of an inextensible SIP with affine curvature. An interested
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Fig. 1. This letter analyzes the structural properties of the soft pen-
dulum with affine curvature, with a special focus on collocated control.
This template model has two degrees of freedom and one degree of
actuation, and it presents a soft version of the rigid acrobot.

reader can refer to [18] for an in-depth description of this
template model. Referring to Fig. 1, consider a soft-bodied
robot consisting of a SIP, i.e., a flexible cylinder-shaped seg-
ment with a total length L, a width D, and a damping β,
attached to the ground. Let s ∈ [0, 1] be a first local coordi-
nate parametrizing all points of the pendulum’s central axis.
We define it as the normalized arc length of the curve going
from the base to the point of interest, so that the base cor-
responds to s = 0 and the tip to s = 1. Let d ∈ [ − 1

2 , 1
2 ]

be a second local coordinate parametrizing all points within
the pendulum’s cross section, so that d = 0 is the central
axis and d = ± 1

2 are the outer parts. Let ρ(s, d) and k∗(s, d)
be the local mass and stiffness, respectively, and the total

mass be m = ∫ 1
0

∫ 1
2

− 1
2
ρ(s, d) dd ds. Assume the robot’s curva-

ture is affine in s, i.e., μs(t) = (1, s) θ(t) = θ0(t) + θ1(t) s,
where θ = (θ0, θ1)

T is its configuration vector. An exter-
nal input torque τ can be applied at its tip, while the whole
system is subject to the gravity force. The SIP dynamics reads
B̃(θ) θ̈ + C̃(θ, θ̇ ) θ̇ + G̃(θ) + k H θ + β H θ̇ = H(τ, 0)T , with
B̃, C̃ ∈ R

2×2 being the inertia matrix and the matrix collect-
ing Coriolis and centrifugal terms, respectively, G̃ ∈ R

2 the

gravity vector, and H =
(

1 1/2
1/2 1/3

)

is a Hankel matrix [18].

The coordinate change q = (q0, q1)
T = Hθ allows separating

the actuated and unactuated dynamics as:

B(q) q̈ + C(q, q̇) q̇ + G(q) + Kq + � q̇ = (τ, 0)T (1)

where B(q) = H−1B̃(H−1q)H−1 is positive definite and
bounded, C(q, q̇) = H−1C̃(H−1q, H−1q̇)H−1 is chosen so
that Ḃ(q) − 2C(q, q̇) is skew-symmetric, K = H−1k, � =
H−1β, and G(q) = H−1G̃(H−1q). We assume here that G and
∂G/∂q are bounded, which can be verified numerically over
large domains of q. Moreover, B, C, and G are continuously
differentiable in all their input arguments. Defining the orien-
tation angle αs = ∫ s

0 μv(t) dv allows giving a physical meaning
to the newly-introduced coordinates. Namely, q0 = θ0+ 1

2θ1 =
α1 is the tip orientation and q1 = 1

2θ0 + 1
3θ1 = ∫ 1

0 αs ds is the
average orientation.

III. A STUDY OF EQUILIBRIA AND POTENTIAL ENERGY

The first peculiarity of a SIP stems from the number of pos-
sessed equilibria. While a rigid double pendulum has always
a stable downward equilibrium and an unstable upward one,
a SIP may have many equilibria with parameter-dependent
stability. To delve into this feature, we consider its potential
energy and study the equilibria and their stability. In doing
this, we focus on mass distributions of the form

ρ(s, d) = m0(1 + κ) +
κ∑

i=1

(mi − m0) δ(s − si, d) (2)

where mi = m σi, σi ∈ (0, 1] is the i-th local mass pro-
portion with respect to the total mass m,

∑κ
i=0 σi = 1, and

δ(s, d) is a Dirac’s delta. This form is quite general and
allows describing uniform distributions, discrete distributions
of κ lumped masses mi located along the SIP’s central axis,
i.e., at s = si and d = 0, or their combinations. For a uni-
form mass distribution it holds ρ(s, d) = m0 for all s, d

and m = m0 as the SIP’s volume
∫ 1

0

∫ 1
2

− 1
2

dd ds is unitary. In

the general case, direct calculations show, as expected, that
m = ∫ 1

0

∫ 1/2
−1/2 m0(1+κ) dd ds+∑κ

i=1((mi −m0)
∫ 1

0

∫ 1/2
−1/2 δ(s−

si, d) dd ds) = ∑κ
i=0 mi.

A. Potential Energy
The number of equilibria of a mechanical system is mapped

to that of (local) minima of its potential energy. A major fea-
ture distinguishing the SIP from its rigid counterpart stems
in the form of its potential energy. Such energy is the sum
of the gravity potential energy UG and the elastic potential
energy UK , i.e., U = UG +UK , each summing all infinitesimal
contributions as below:

UG =
∫ 1

0

∫ 1
2

− 1
2

ρ(s, d) g (xs,d(q)sφ + ys,d(q)cφ) dd ds

UK =
∫ 1

0

∫ 1
2

− 1
2

1

2
k∗(s, d) qTH−1q dd ds (3)

where (xs,d(q), ys,d(q)) is the Cartesian coordinate of a generic
point (s, d) moving along the SIP, sφ = sin φ, cφ = cos φ, with
φ ∈ [0, 2π ] being the angle that the base of the robot has
w.r.t. the gravity field. Interestingly, UG can be conveniently
factorized so as to extract all geometric and inertial parameters.
Recall first from [18] that xs,d(q) = L x′

s(q) + d D cos(θ0 +
θ1s2/2) and ys,d(q) = L y′

s(q) + d D sin(θ0 + θ1s2/2), with D
the SIP’s width, θ0 = 4q0 −6q1, θ1 = −6q0 +12q1, and x′

s(q)
and y′

s(q) being independent of L. Then, it stands:
Proposition 1: For all mass distributions as in (2), it holds

UG = mgL

(

σ0(1 + κ)

∫ 1

0
ps(q) ds +

κ∑

i=1

(σi − σ0) psi(q)

)

,

where ps(q) = x′
s(q) sφ + y′

s(q) cφ .
Proof: Plugging (2) into UG yields

UG = mg

(

σ0(1 + κ)

∫ 1

0

∫ 1
2

− 1
2

νs,d(q) dd ds

+
κ∑

i=1

(σi − σ0)

∫ 1

0

∫ 1
2

− 1
2

νs,d(q)) δi dd ds

)

,

with νs,d(q) = xs,d(q)sφ + ys,d(q)cφ and δi = δ(s − si, d).
Expanding the expressions of xs,d(q) and ys,d(q) one gets
∫ 1

2

− 1
2
(xs,d(q)sφ + ys,d(q)cφ) dd = L ps(q), by observing that the

addends depending on d vanish as they are odd functions inte-
grated over symmetrical intervals. Moreover, using the shifting
property of Dirac’s delta and the relations xs,0(q) = L x′

s(q)
and ys,0(q) = L y′

s(q), the second addend in the above expres-
sion of UG can be simplified as

∑κ
i=1(σi − σ0)(xsi,0sφ +

ysi,0cφ) = L
∑κ

i=1(σi −σ0) psi(q). Putting all together leads to
UG’s expression in the statement.

Moreover, UK can also be factorized as follows:
Proposition 2: For a SIP with local stiffness k∗(s, d), it

holds UK = k qTH−1q, where k = ∫ 1
0

∫ 1
2

− 1
2

1
2 k∗(s, d) dd ds is

the SIP’s average stiffness.
Proof: Observing that qTH−1q is constant in s and d, the

property immediately follows from UK’s definition.
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B. Equilibrium Pattern and Local Stability
Given a constant input torque τ̄ , an equilibrium pair (q̄0, q̄1)

of a SIP consists of constant solutions q0(t) = q̄0, q1(t) = q̄1
of (1) for τ = τ̄ and q̇0 = q̇1 = q̈0 = q̈1 = 0. It satisfies the
equilibrium conditions:

G1(q̄0, q̄1) + K1,1q̄0 + K1,2q̄1 = τ̄

G2(q̄0, q̄1) + K2,1q̄0 + K2,2q̄1 = 0 (4)
where Gi is the i-th component of G. Due to the complexity
of G1 and G2, the equilibrium pairs (q̄0, q̄1) solving (4) cannot
be obtained in closed form and must be determined numer-
ically. Examples of their shapes are graphically presented
in [1]. We analyze here their stability, which can be done by
looking at the definiteness of the stiffness matrix as suggested
in Theorem 1 from [4]:

K(q̄0, q̄1) = ∇q(G(q) + Kq)|q=(q̄0,q̄1). (5)
Namely, an equilibrium pair (q̄0, q̄1) of the SIP is asymptot-
ically stable if, and only if, the matrix K(q̄0, q̄1) is positive
definite, which can be studied, e.g., via Sylvester’s criterion.
Towards this goal, using Prop. 1, the gravity vector can be
factorized as G(q) = ∇T

q UG(q) = mgL �(q), with

�(q) = ∇T
q

(

σ0(1 + κ)

∫ 1

0
ps(q) ds +

κ∑

i=1

(σi − σ0) psi(q)

)

and hence, at the equilibrium pair, it holds Gi(q̄0, q̄1) =
mgL �i(q̄0, q̄1), for i = 1, 2, and the boundedness of � and
∂�/∂q are inherited from those of G and ∂G/∂q. Then, using
the relations K1,1 = 4k, K1,2 = K2,1 = −6k and K2,2 = 12k,
where Ki,j are the components of K in (1), (4) is rewritten as

mgL

(
�1(q̄0, q̄1) + γ (4q̄0 − 6q̄1)
�2(q̄0, q̄1) + γ (12q̄1 − 6q̄0)

)

=
(

τ̄
0

)

(6)

with γ = k
mgL . Moreover, the stiffness matrix in (5)

is expanded as K = mgL

(
∂�1(q̄0,q̄1)

∂q0
+ 4γ

∂�1(q̄0,q̄1)
∂q1

− 6γ
∂�2(q̄0,q̄1)

∂q0
− 6γ

∂�2(q̄0,q̄1)
∂q1

+ 12γ

)

.

By Sylvester’s criterion, K is positive definite if, and only if
1

mgL
K1,1 = ∂�1(q̄0, q̄1)

∂q0
+ 4γ > 0

1

mgL
|K| =

(
∂�1

∂q0

∂�2

∂q1
− ∂�1

∂q1

∂�2

∂q0

)

+ 12γ 2

+
(

12
∂�1

∂q0
+ 4

∂�2

∂q1
+ 6

∂�2

∂q0
+ 6

∂�1

∂q1

)

γ > 0

(7)
where mgL > 0 and the dependency of the functions on the
equilibrium pair (q̄0, q̄1) is omitted.

Noticeably, the forms of (6) and (7) reveal that the location
and stability of each equilibrium depend on the ratio γ , sug-
gesting the construction of charts illustrating their trends as a
function of it. In this respect, Fig. 2 shows the sets of isolated
equilibria (q̄0, q̄1), for various values of γ with no external
input (τ̄ = 0). As in [18], we consider here a mass concen-
trated at the tip. The features appearing in the figure allow
conjecturing the following three statements: Conjecture 1.
The number of equilibria increases when γ decreases, which
makes γ a bifurcation parameter. An example of this is in
the rightmost plot of the figure. Conjecture 2. Stable equi-
libria may become unstable for decreasing values of γ . If
so, two stable equilibria appear in the origin’s close vicinity.
This phenomenon happens for the upright position equilib-
rium at (q̄0, q̄1) = (0, 0), which is asymptotically stable for
γ > 13+2

√
31

60 and unstable for lower values (the bifurcation
value can be found by testing when Sylvester’s conditions are

Fig. 2. Pattern, stability, and number of equilibria with no external
input (τ̄ = 0). From left to right, the first and second plots illustrate the
location and stability of the equilibrium pairs (q̄0, q̄1) against the bifur-
cation parameter γ = k/mgL (stable equilibria are painted in green and
unstable ones are marked in red); the third plot reports the trend of the
equilibrium number.

Fig. 3. Cartesian (x, y) shapes of the SIP for all equilibria existing
for γ = 0.01. Green and red mark stable and unstable configurations,
while color fading is used to distinguish the various configurations.

Fig. 4. Equilibrium pattern (q̄0, q̄1) for increasing values of input τ̄ with
γ = 0.01. Large values of τ̄ generally reduce the number of equilibria,
until only a single one remains.

not anymore met). The appearance of two new symmetrically-
placed stable equilibria, in a close-by neighborhood, is a “safe”
design feature, also meaning that the system exhibits super-
critical pitchfork bifurcation. Conjecture 3. Stable equilibria
exist even for small γ .

Moreover, Fig. 3 depicts the SIP shapes for all equilibria
when γ = 0.01. By the same token, it is worth examining
the effect of the external input (τ̄ �= 0) on the equilibrium
pattern, which leads to: Conjecture 4. Large input values gen-
erally reduce the equilibrium number down to a single one.
This is shown in Fig. 4. Also, relating the potential energy
the following can be said: Conjecture 5. For decreasing γ ,
two phenomena occur within the shape of potential energy:
1) new local minima appear that are separated from each
other by hill-shaped barriers, 2) some local minima turn into
local maxima. This is displayed in Fig. 5. Per Conjecture 1,
the former is explained by the bifurcation in the equilibrium
number and the latter in that by which some stable equilibria
become unstable.

Remark 1: Noteworthy, from (6) with τ̄ = 0, the equilib-
rium pairs solve γ H q̄ = −�(q̄). Due to oscillatory behavior
at constant frequency and damped peaks of �i (cf. e.g., Fig. 6),
when moving away far enough from q̄, it can be conjectured
that the number of such solutions remains finite, except for
γ = 0. However, this would imply a SIP with k = 0, m → ∞,
or L → ∞, which is not physically attainable.
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IV. STABILITY OF THE ZERO DYNAMICS RESULTING

FROM COLLOCATED CONTROL STRATEGIES

Moving now to a control-oriented perspective, we imme-
diately see that the SIP is structurally underactuated as it
has two configuration variables and only one control vari-
able. Referring to (1), q0 is collocated with the actuation
variable τ and q1 is non-collocated. Accordingly, a feedback
law τ = τ(q0, q1, q̇0, q̇1) regulating q0 to a desired value q̄0
is said to be a collocated control strategy, while one regu-
lating q1 is called non-collocated. Regardless of the choice,
it is always necessary to prove the stability of the remaining
dynamics, which forms the so-called internal zero-dynamics.
Conveniently, the stability of such zero dynamics directly
implies that of the overall system (cf. [20, Th. 1]).

We assume in the remainder that a collocated control law
is realized, with the aim to stabilize the pendulum’s tip ori-
entation q0 to the desired value q̄0, and want to study the
stability of all equilibria of the non-collocated q1. To do
so, observe that a collocated control amounts to choosing
the output function y = q0 − q̄0 and to regulate it to zero.
This is achieved for example via the feedback control law
τ = K1,1q̄0 + K1,2q̄1 + G1(q̄0, q̄1)− kp(q0 − q̄0)− kdq̇0, where
kp and kd are positive control gains. Moreover, the expression
of the second time-derivative of y contains the input variable τ ,
thus proving the existence of a zero dynamics since the SIP’s
relative degree (r = 2) is smaller than the dimension of its
configuration space (n = 4). By zeroing y and its first two
time derivatives, i.e., assuming y = ẏ = ÿ = 0 for all times,
gives q0 = q̄0, q̇0 = 0, and q̈0 = 0, which, plugged into the
second relation of (1), leads to sought zero-dynamics:

B2,2(q̄0, q1) q̈1 + C2,2(q̄0, q1) q̇1 + G2(q̄0, q1)+ K2,1 q̄0 + K2,2 q1 + �2,2 q̇1 = 0. (8)

A. Zero-Dynamics Equilibrium Pattern
We now characterize the equilibria of the zero-dynamics

associated with a given collocated control. Knowledge of the
control function is unnecessary, but it is assumed to be applied
at all times to steer q0 to q̄0.

A zero-dynamics equilibrium is a constant solution q1(t) =
q̄1 of the differential model in (8). Plugging then q̇1 = q̈1 = 0
into (8) gives G2(q̄0, q1) + K2,1 q̄0 + K2,2 q1 = 0. Using,
as above, the expressions K2,1 = −6k, K2,2 = 12k, and
G2(q̄0, q1) = mgL �2(q̄0, q1), the above is rewritten as

mgL �2(q̄0, q1) − 6k q̄0 + 12k q1 = 0 (9)

from which we deduce that the equilibria’s existence and loca-
tion depend both on the system parameters and the desired
collocated variable value q̄0. In this context, it is useful to try
inferring the asymptotic behavior of the solutions of (9). To
this purpose, rewrite (9) in the two equivalent forms:
�2(q̄0, q1)

6γ
− q̄0 + 2q1 = 0, �2(q̄0, q1) + 6γ (2q1 − q̄0) = 0.

(10)
The first relation allows concluding that for large enough γ
(γ → ∞), there is only one equilibrium that tends to the
value q̄1 = 1

2 q̄0; from the second relation follows that, for
small enough values of γ (γ → 0), the equilibria converge
to the solutions of �2(q̄0, q1) = 0. Referring to Fig. 6, where
the functions ξ = �2(q̄0, q1) and ξ = 0 (the horizontal plane)
are plotted, we can see that, for γ → 0, the equilibria become
countably-infinitely many, and, given the desired q̄0, they lay
indeed at the intersections between the plotted functions and
the line q0 = q̄0.

For all intermediate values of γ and with q1 �= 1
2 q̄0, (9) is

rewritten as γ = �2(q̄0, q1)/(6q̄0 − 12q1) which shows that

Fig. 5. Potential energy forms for various values of the bifurcation
parameter γ . The figure highlights the radially unbounded behavior
of U; analytically speaking, while UG is bounded via the Lagrangian
description of the SIP [4], UK = 1

2 qT Kq → ∞ for ||q|| → ∞.

Fig. 6. Zero-dynamics equilibria for γ → 0. The equilibria become
countably-infinitely many and, given the desired value for the collocated
variable, q̄0, they tend to the intersections between the plotted functions
and the line q0 = q̄0.

Fig. 7. Zero-dynamics equilibria for intermediate values of γ and
various desired tip orientations q̄0. Equilibria are found intersecting
ξ = �2(q̄0, q1)/(6q̄0 − 12q1) and ξ = γ . The upper plot reports the
graphs for q̄0 ∈ {−2π, 0, 2π} and the lower one for q̄0 = {1, −1}.

the equilibria are found by intersecting ξ = �2(q̄0, q1)/(6q̄0 −
12q1), with the horizontal line ξ = γ . If q1 = 1

2 q̄0, the second
relation in (10) indicates that �2(q̄0,

1
2 q̄0) = 0. This occurs

only for q̄0 = 2κπ , with κ ∈ N. Three representative cases
are depicted in Fig. 7 and relate to the SIP: 1) in the upright-
position (q̄0 = 0), 2) surrounding an object (q̄0 = 2π ), and
3) with a generic orientation (q̄0 = 1). For q̄0 ∈ {0,±2π},
�2(q̄0,

1
2 q̄0) = 0 always stands and so the equilibrium q̄1 = q̄0

2
exists for all γ . The Cartesian SIP’s shapes in some zero-
dynamics equilibria are in Figs. 8 and 9.

B. Stability of Zero Dynamics Equilibria
A first insight into the stability of the zero-dynamics equi-

libria q̄1 when a collocated control law is applied to regulate
q0 to q̄0, can be found in the following:

Proposition 3: A zero-dynamics equilibrium q̄1 is stable if,
for all q1 in a neighborhood of q̄1, it holds

G2(q̄0, q1) + K2,1 q̄0 + K2,2 q1 > 0. (11)
Proof: Under the hypothesis in (11), the stability is proved

by the Lyapunov function (and its time-derivative):
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Fig. 8. Cartesian (x, y) shapes of the SIP at all zero-dynamics equilibria
for q̄0 ∈ {0, 2π} and γ ∈ {0.05, 0.005}. Abscissas and ordinates indicate
x and y coordinates.

Fig. 9. Cartesian (x, y ) shapes of the SIP with intermediate tip orien-
tation (q̄0 = 1). The left plot displays the three possible zero-dynamics
equilibria for γ = 0.05, while the right plot is intended to show how the
unique equilibrium varies for values of γ ≥ 0.1. Stable equilibria are in
green and the unstable one is in red.

V = B2,2(q̄0, q1)
q̇2

1

2
+ K2,2

q2
1

2
+

∫ q1

q̄1

(
G2(q̄0, y) + K2,1q̄0

)
dy,

V̇ = −�2,2 q̇2
1 ≤ 0.

The above derivative calculation uses the skew-symmetry of
the matrices in (1) and Leibniz’s integration rule by which

d

dt

∫ q1

q̄1

(
G2(q̄0, y) + K2,1q̄0

)
dy

= ∂

∂q1

∫ q1

q̄1

(
G2(q̄0, y) + K2,1q̄0

)
dy q̇1

= (
G2(q̄0, q1) + K2,1q̄0

)
q̇1.

As V̇ is only negative semi-definite, the proposition concludes
only that the system is stable, but nothing is said about its
asymptotic convergence to the equilibrium.

More conclusive results are obtained below exploiting
Lagrange-Dirichlet’s Theorem and [20, Th. 1], proving that
underactuated systems’ stability can be reduced to that of their
zero-dynamics.

Proposition 4 (On Local Asymptotic Stability): The SIP’s
full model is locally asymptotically stable around a zero-
dynamics equilibrium q̄1 if, for all q1 in a neighborhood of
q̄1, it holds

γ > − 1

12

∂

∂q1
�2(q̄0, q1). (12)

Proof: According to Lagrange-Dirichlet’s Theorem, the
local minima of the system’s potential energy are Lyapunov-
stable equilibria. This motivates the choice of the potential
energy function

U(q1) =
∫ q1

q̄1

(
G2(q̄0, y) + K2,1q̄0

)
dy + 1

2
K2,2 q2

1

=
∫ q1

q̄1

(
G2(q̄0, y) + K2,1q̄0 + K2,2 y

)
dy.

All points (q̄0, q̄1) satisfying (9) make the first derivative
of U(q1) with respect to q1 vanish, meaning that they are
extrema (minima or maxima) of U(q1). In fact, if the condi-
tion in (12) holds, they are minima since the second derivative
of U(q1) with respect to q1 is positive:
∂2U

∂2q1
= ∂G2(q̄0, q1)

∂q1
+ K2,2 = mgL

∂�2(q̄0, q1)

∂q1
+ 12k > 0. (13)

Under some stricter conditions, the following sufficient
condition for global asymptotic stability can be proved:

Proposition 5 (On Global Asymptotic Stability): Under the
same hypothesis of Prop. 4, the SIP’s full model has a glob-
ally asymptotically stable equilibrium (q̄0, q̄1), where q̄1 is the
unique solution of (9), if

γ > maxq1

(

− 1

12

∂

∂q1
�2(q̄0, q1)

)

. (14)

Proof: The proof follows the steps of Prop. 4. In addition,
since the function − 1

12
∂

∂q1
�2(q̄0, q1) is bounded, its maximum

exists. Then, when γ = k/mgL is larger than such a maximum,
as implied by (14), the concavity expression in (13) of the
potential energy U(q1) never changes, which further implies
that U(q1) has a unique extremum q̄1 that is the solution of (9)
and that is a global minimum.

Finally, the following instability result can be provided:
Proposition 6 (On Instability): The SIP’s full model is

unstable around a zero-dynamics equilibrium q̄1, if, for
some q1 arbitrarily close to q̄1, it holds

γ < − 1

12

∂

∂q1
�2(q̄0, q1). (15)

Proof: For all q1 that are arbitrarily close to q̄1 and for
which the condition in (15) holds, the condition on the second
partial derivative of U(q1) in Prop. 4 holds with the negative
sign. This implies that the first derivative ∂U

∂q1
(q1) turns from

being null at q̄1 (recall that q̄1 is a zero-dynamics equilibrium
solving (9)) to a negative value, and, in turn, that q̄1 is either
a saddle point or a (local) maximum for U(q1). Hence, small
perturbations from q̄1, along the direction where (15) holds,
leads to divergence from the equilibrium.

Remark 2: Verifying (11) amounts to check if the sign of
the scalar nonlinear function G2(q̄0, q1) + K2,1 q̄0 + K2,2 q1 is
positive∀q1 ∈ [q̄1−η, q̄1+η], whereη > 0 is a suited value to be
(numerically) found. Similar reasoning holds for (12) and (15).
More conveniently, we propose to prepare, for each q̄0 of
interest, a chart allowing graphical determination of the number
of equilibria (q̄0, q̄1), the q̄1 coordinate, and their stability, for
the γ of interest. An example of these charts is reported in
Fig. 10. Given the charts, a SIP designer can simply draw a
horizontal line for ξ = γ to retrieve this data.

V. ENERGY-INJECTION SWITCHING CONTROL

We provide herein insights into a possible control strategy
steering the SIP from one stable equilibrium to another. The
collocated control law in [18] consisting of a partial feedback
linearization and given by τ = h1 − (B2,1/B2,2)h2 + (B1,1 −
B2

2,1/B2,2)u with h = (h1, h2)
T = C(q, q̇) q̇+G(q)+K q+� q̇

and u = −kp(q0 − qd
0) − kdq̇0, is used to let the SIP’s tip

orientation track a desired trajectory qd
0.

The idea is to capitalize on the shape of the SIP’s potential
energy (Fig. 5) where stable equilibria are separated by “hill”
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Fig. 10. Zero dynamics stability for a SIP in the upright-configuration
(q̄0 = 0), completely surrounding an object (q̄0 = 2π ), at an
intermediate configuration (q̄0 = 1). The boundary is given by γ =
− 1

12
∂�2(q̄0,q1)

∂q1
, which conservatively limits the global asymptotic sta-

bility region; also, the global asymptotic stability of zero-dynamics
equilibria for q̄0 = 2π is guaranteed for much lower values of γ , which
intuitively implies that the SIP spiraling increases its stiffness.

Fig. 11. Energy-injection-based control of SIP with γ = 0.05 (top)
and γ = 0.005 (bottom). Left-side graphs show the SIP trace in the
Cartesian coordinates as the SIP moves with time, top-right plots the
temporal evolution of q0 and q1, and bottom-right those of the potential
energy terms (UK , UG, and U).

barriers, and to exploit Lagrange-Dirichlet’s intuition for sta-
bility. Intuitively, one can tailor the reference qd

0 so as to inject
additional energy into the SIP and allow it to reach the hills’
top and end up in the region of attraction of a new equilibrium.
This is done as in the swinging-up strategy of a pendulum [20],
i.e., by setting qd

0 = α arctan q̇1 + β, with α and β suitable
constants. Once the SIP enters the region of attraction of the
new equilibrium, the stability is automatically guaranteed.

To exemplify this, consider first a SIP with γ = 0.05 and a
desired null tip orientation (q̄0 = 0). In this case, there are two
stable zero-dynamics equilibria in m1 = (0,−1.46) and m2 =
(0, 1.46) (cf. Fig. 8). After letting the SIP move from an initial
configuration (q0, q1) = (0.4, 0.1) belonging to the region of
attraction of m1 to m1 itself, the goal is to steer it towards m2.
This is shown in Fig. 11 in which the collocated control gains
are kp = 10 and kd = 25. Specifically, the collocated trajectory
is initially chosen as qd

0 = 25 arctan q̇1, which makes the SIP
start swinging and straightening up, gradually injecting energy
into it, and brings it to the side opposite to m2. As soon as
the gravity potential energy in (3) is large enough, reaching
the threshold UG = 4, the reference signal is instantaneously
set back to qd

0 = q̄0 = 0, which finally brings the SIP to m2.
To probe the strategy further, consider the richer case for

q̄0 = 0 and γ = 0.005, including four stable equilibria
m1 = (0,−2.4), m2 = (0, 2.4), m3 = (0,−6.1), m4 = (0, 6.1)
(Fig. 8). As above, the SIP is first regulated to m1. Repeating
the same procedure in the previous paragraph can only bring

the pendulum to the symmetrical m2, so to reach the equilib-
rium m3; so, a two-step procedure needs to be followed. First
the pendulum is set to swing with qd

0 = 25 arctan q̇1 +3π until
the gravity potential energy reaches UG = 1. Then qd

0 is set to
qd

0 = 3π , and the SIP makes a loop around its base. Finally,
the tip orientation is brought back to qd

0 = 0 and the pendulum
seizes equilibrium m3.

VI. CONCLUSION

This letter provided an in-depth analysis of the stability of a
soft inverted pendulum with affine curvature, portraying how
the equilibrium pattern and stability depend on its physical
parameters. Choosing the collocated variable as the system’s
output, conditions were derived for zero-dynamics stability,
local and global asymptotic stability, as well as instability. We
leveraged these insights to design an energy-injection switching
control law, steering the system among stable equilibria within
the manifold of q0 = q̄0. Future work will be devoted to the
experimental verification of the proposed control strategy while,
in our vision, the presented results will guide the development
of control strategies for the more complex soft robots.

REFERENCES

[1] C. D. Santina et al., “Soft Robots,” Encyclopedia of Robotics,
M. H. Ang, O. Khatib, B. Siciliano, Eds. Berlin, Germany: Springer,
2020, pp. 1–15, doi: 10.1007/978-3-642-41610-1_146-2

[2] T. G. Thuruthel et al., “Control strategies for soft robotic manipulators:
A survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, 2018.

[3] C. Armanini et al., “Soft robots modeling: A literature unwinding,” 2021,
arXiv:2112.03645.

[4] C. Della Santina et al., “Model based control of soft robots: A survey
of the state of the art and open challenges,” 2021, arXiv:2110.01358.

[5] R. J. Webster, III and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” SAGE Int. J. Robot.
Res., vol. 29, no. 13, pp. 1661–1683, 2010.

[6] V. Falkenhahn et al., “Model-based feedforward position control of con-
stant curvature continuum robots using feedback linearization,” in Proc.
Int. Conf. Robot. Autom., 2015, pp. 762–767.

[7] C. D. Santina et al., “Model-based dynamic feedback control of a planar
soft robot: Trajectory tracking and interaction with the environment,”
SAGE Int. J. Robot. Res., vol. 39, no. 4, pp. 490–513, 2020.

[8] M. Trumic et al., “Adaptive control of soft robots based on an enhanced
3D augmented rigid robot matching,” in Proc. Amer. Control Conf.
(ACC), 2021, pp. 4991–4996.

[9] M. Thieffry et al., “LPV framework for non-linear dynamic control of
soft robots using finite element model,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 7312–7318, 2020.

[10] K. Wu and G. Zheng, “Fem-based gain-scheduling control of a soft
trunk robot,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3081–3088,
Apr. 2021.

[11] C. D. Santina and D. Rus, “Control oriented modeling of soft robots:
The polynomial curvature case,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 290–298, Apr. 2020.

[12] F. Boyer et al., “Dynamics of continuum and soft robots: A strain
parameterization based approach,” IEEE Trans. Robot., vol. 37, no. 3,
pp. 847–863, Jun. 2021.

[13] P. Pustina et al., “Feedback regulation of elastically decoupled underac-
tuated soft robots,” Robot. Autom. Lett., vol. 7, no. 2, pp. 4512–4519,
Apr. 2022.

[14] E. Franco and A. Garriga-Casanovas, “Energy-shaping control of soft
continuum manipulators with in-plane disturbances,” Int. J. Robot. Res.,
vol. 40, no. 1, pp. 236–255, 2021.

[15] B. J. Caasenbrood et al., “Energy-based control for soft manipulators
using Cosserat-beam models,” in Proc. 18th Int. Conf. Inf. Control
Autom. Robot., 2021, pp. 311–319.

[16] P. Borja et al., “Energy-based shape regulation of soft robots with unac-
tuated dynamics dominated by elasticity,” in Proc. Robosoft, 2022, pp.
396–402.

[17] L. Weerakoon and N. Chopra, “Swing up control of a soft inverted
pendulum with revolute base,” in Proc. 60th Conf. Decis. Control (CDC),
2021, pp. 685–690.

[18] C. D. Santina, “The soft inverted pendulum with affine curvature,” in
Proc. 59th Conf. Decis. Control (CDC), 2020, pp. 4135–4142.

[19] I. Fantoni and R. Lozano, Non-Linear Control for Underactuated
Mechanical Systems. London, U.K.: Springer, 2002.

[20] M. W. Spong, “Partial feedback linearization of underactuated mechani-
cal systems,” in Proc. Int. Conf. Intel. Robots Syst. (IROS), vol. 1, 1994,
pp. 314–321.

Open Access funding provided by ‘Università degli Studi di Palermo’ within the CRUI CARE Agreement

http://dx.doi.org/10.1007/978-3-642-41610-1_146-2


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


