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Abstract When an epidemic spreads into a population, it is often unpractical8

or impossible to have a continuous monitoring of all subjects involved. As an9

alternative, algorithmic solutions can be used to infer the state of the whole10

population from a limited amount of measures. We analyze the capability of11

deep neutral networks to solve this challenging task. Our proposed architecture12

is based on Graph Convolutional Neural Networks. As such it can reason on13

the effect of the underlying social network structure, which is recognized as14

the main component in the spreading of an epidemic. We test the proposed15

architecture with two scenarios modeled on the CoVid-19 pandemic: a generic16

homogeneous population, and a toy model of Boston metropolitan area.17
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Fig. 1 The goal of this work is to test the use a neural architecture to extract the full
state of an epidemic spreading on a social network, from the knowledge of the health state
evolution of a small set of subjects.

1 Introduction20

Many natural and artificial systems can be described with models whose state21

assumes value on a graph rather than on a standard Euclidean space. Within22

this class of systems, the problem of estimating the full state from partial mea-23

surements is a very relevant one. If the network follows linear and continuous24

dynamics, standard techniques can be used. Yet, things get substantially more25

complicated as soon as non-ideal effects are modeled. For example, (Battis-26

telli et al., 2012) introduces constraints in communications bandwidth. State27

estimation for networks with distributed delays is discussed in (Liu et al.,28

2008). A similar problem is dealt in (Wang et al., 2005) for the state esti-29

mation of a delayed neural network with known output, and in (Xu et al.,30

2017) for parameter uncertainty and randomly occurring distributed delays.31

The case of switched networks with communication constraints is discussed in32

(Zhang et al., 2017). In this context, much attention has also been devoted to33

distributed estimation algorithms (Soatti et al., 2016; Ding et al., 2019). For34

example, (Liu et al., 2017) proposes a consensus-based Kalman filter for sensor35

networks subjected to random link failures, (Ding et al., 2017) introduces a36

distributed filter robust to malicious attacks, and (Battistelli and Chisci, 2016)37

proposes a distributed extended kalman filter for sensor networks measuring38

a single nonlinear dynamics.39

A network dynamics with interesting applications and behavior is the one40

describing the spreading of an epidemic within a fixed population (Kiss et al.,41

2017). An effective way of modeling this behavior is to describe the social42

network as a graph. Each node represents either a subject or a group of sub-43

jects, and the arcs the contacts. Simple rules are then used to describe the44

spreading. For example, these models have been used to describe the spread-45

ing of Covid-19. In (Linka et al., 2020) nodes represents European nations.46

The use of multi-level networks is discussed in (Nande et al., 2021). A survey47

on the interplay of diseases, behaviors, and information spreading in epidemics48

is provided in (Wang et al., 2019). Network models have been later extended49

to simplicial complexes in (Iacopini et al., 2019).50
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Estimating the state of a epidemics from a reduced number of measure-51

ments has clear practical implications. For example, being able to estimate not52

only the number of infected subjects, but also who those infected subjects are,53

can allow to implement precise isolation policies (Bahr et al., 2009; Block et al.,54

2020), feedback strategies (Di Lauro et al., 2020; Kompella et al., 2020), and55

possibly prevent the generation of clusters (Shim et al., 2020). Nonetheless,56

we are not aware about previous works in epidemiology dealing with this chal-57

lenge on the subject (i.e. node) level. Several works deal instead with the much58

more common problem of extracting robust statistics on the total amount of59

subjects being infected, recovered, hospitalized etc (Péni et al., 2020; Britton60

et al., 2019). This estimation can be used to forecast the evolution of the epi-61

demics (Valle, 2020; Tizzoni et al., 2012). Despite requiring to reason on the62

network dynamics, the task is still such that it can be attacked with model63

based techniques, since it is essentially a forward integration.64

Instead, estimating the full state of the epidemics is an essentially more65

difficult problem since it requires reasoning backward on the effects that the66

nodes of which we know the state could have had on the unknown states. This67

task is made even harder by the highly nonlinear, state-discrete, and stochastic68

dynamics which characterizes these systems (see Sec. 2). This makes very69

hard to make inference on the level of the subjects directly using model based70

techniques. In this work we investigate the use of deep learning for creating71

a nonlinear inference system which can solve the discussed problem (Brunton72

and Kutz, 2019). Recently, many works have dealt with the generalization of73

deep learning to non Euclidean domains (Bronstein et al., 2017). Particular74

interest have been given to deep learning on graphs (Scarselli et al., 2008; Zhou75

et al., 2018; Bacciu et al., 2020), i.e. to the learning from data of the graph76

type. Many of these techniques have been chategorized under the umbrella77

term Graph Neural Networks (GNNs). We are interested here in the use of78

GNNs as classifiers of nodes. The goal is to determine the labeling of nodes79

by integrating available information on them and on their neighborhood (Kipf80

and Welling, 2016). This is for example used as a recommendation engine -81

see Pinterest (Ying et al., 2018), and Uber Eats (Jain et al., 2019). This task82

naturally generalizes to the case of state reconstruction, by considering as83

desired output the full state of the system. We apply this strategy to epidemics,84

by combining multiple GNN layers with a mechanism for codifying temporal85

information. The goal of this work is summarized in Fig. 1. We test the results86

by using state of the art models of epidemics, with particular focus on CoVid-87

19 spreading in Italy and United States. Our results show that GNNs can be88

a viable solution to state reconstruction problem, even when the number of89

monitored subjects is as low as the 5% of the population.90

Note that several works already applied GNNs to epidemics, specifically91

in the CoVid-19 context. Yet the focus has been different w.r.t. the present92

work. In (Kapoor et al., 2020; Gao et al., 2020) graph neural networks are used93

to forecast the pandemic evolution. An inverse problem is instead tackled in94

(Cutura et al., 2020), where authors deal with the temporal reconstruction of95
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Fig. 2 (left) four snapshots of the state of a small Erdős-Rényi network of size 70 with
average degree 20.Links in red carry the infection from an infectious node to a susceptible
neighbor. (right). Representation of the transitions a node might undergo with the epidemic
model.

the epidemics spreading. Similarly, in (Shah et al., 2020) these techniques are96

used to identify the patient zero.97

2 Epidemics on Networks98

Deterministic models for epidemic spreading on a population are well-known99

because of their simplicity and their usefulness in terms of giving good pre-100

diction in terms of aggregate statistics (such as the total number of infected101

nodes) of the population. Yet, these models do not allow to describe the actual102

spreading of the epidemics on a population, thus preventing the implementa-103

tion of targeted measures. For our objective, we need a model that can capture104

the fact that each individual is part of a social structure, and that the intrinsic105

hazard of getting infected depends not only on how many people they interact106

with, but also on how far they are from clusters of infections. A natural candi-107

date is the framework of Network Epidemiology (Pastor-Satorras et al., 2015;108

Kiss et al., 2017). This framework allows to separate the topological properties109

of a contact network from the biological dynamics of the disease progression.110

2.1 Network Model111

A network is described as a set (V, E), where V is a set of N nodes (or vertices),112

and E is a set of edges (or links) connecting nodes, i.e. tuples {u, v}, where113

u, v ∈ V . In terms of modeling, individuals are associated with nodes, and con-114

tacts that are at risk of carrying the disease as links between nodes. For sim-115
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plicity, we consider undirected networks, such that {u, v} ∈ E ⇐⇒ {v, u} ∈ E .116

Figs. 2 shows a pictorial representation of network.117

2.2 Epidemic model on Network118

We consider a model for disease transmission inspired by recent modeling of119

Covid-19 Yang et al. (2020); He et al. (2020). Each individual is in one of120

the following states: S (susceptible), E (exposed), I (infected/infectious), R121

(recovered), or D (deceased). For this reason, this model is known as SEIRD.122

Fig. 2 illustrates the possible transitions of a susceptible node that is in contact123

with two infectious neighbors. Outbreaks are modeled as Markovian processes124

on the generated network, in which an infected node spreads the disease, via125

links, to its susceptible neighbors at a constant rate β, turning them into ex-126

posed. Exposed nodes represent people who are undergoing their latent people,127

and are about to become infectious. The next transitions that exposed nodes128

undergo are network-independent. An E node becomes I after a time expo-129

nentially distributed with rate γE . Once a node is infectious, he transmits130

the disease to its neighborhs at a constant rate β. The node eventually stops131

being infectious after an exponentially distributed random time with rate γI .132

When this happens, with probability pD the node becomes D - represent-133

ing individuals that do not survive to the disease. The remaining nodes are134

instead recovered and play no further role in the epidemic. At time t = 0,135

I(0) = Nı(0) ≪ N randomly chosen nodes are infected. The remaining ones136

are initialized as susceptible. We use a Gillespie algorithm (Gillespie, 1977)137

adapted to networks (Kiss et al., 2017) to simulate this process. In Fig 2 we138

show a realization of an outbreak on a network of modest size, to highlight139

how the topology impacts the dynamics.140

We describe the the evolution of the state of the pandemic on the network141

as142

x : R+ → {S,E, I, R,D}N . (1)

Therefore at each time t > 0 the variable x(t) provides a full picture of thee143

spreading of the disease. Without loss of generality, we consider t to be ex-144

pressed in days. We refer to the state of the node i ∈ V as xi ∈ {S,E, I, R,D}.145

3 State inference from incomplete data146

3.1 Goal147

Consider the graph (V, E) describing the social network. We hypothesize to148

have full knowledge of the state of a subset of nodes M ⊂ V at the end of149

each day. We will populate M by selecting nodes from V according to an150

uniform random distribution. We therefore define the set of measurements151

as y ∈ {S,E, I, R,D}#M. Finally, for the prediction purposes, classes are152
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Fig. 3 The proposed architecture is made up of three stages. The first one samples data
from the evolution of the known nodes y in the past k days, and counts the occurrences
of the three classes. In this way it creates labels l encoding the temporal information. The
second stage performs most of the computation, and it is made of three graph convolutional
layers. Finally, the high dimensional internal information is compressed again by the output
layer, i.e. a fully connected network and a soft max. The output is an estimation of the
current full state of the epidemics spreading.

combined based on their usefulness in intervention into 3 classes. Our goal is153

thus to find an algorithm which implements the following mapping154

{V,M, E , y([0, t))} 7→ x̃(t) (2)

where x̃ ∈ {S,E+I, R+D}N is our reconstructed state, with E+I representing155

nodes that either exposed or infected, and with R+D We want (2) to be such156

that x̃ is as coherent as possible with the full state x. Indeed, in the practice we157

are only interested in knowing if the subject is healthy (S), has contracted the158

virus (E and I), or is no more infected (R and D). This challenge is summarize159

in Fig. 1.160

Note that in this work we assume full knowledge of the social structure161

(V, E) as input for the network. This is a strong assumption that we will relax162

in future work. Also, we will discuss the robustness of the algorithm to changes163

of topology.164

3.2 First stages165

We start by transforming y([0, t)) in a data structure that can be effectively166

put as input of our neural network. More specifically, we introduce the nodes167

label l ∈ N
N×3. For all i ∈ M, the vector li codifies the state of the nodes168

in the past k days. We do that in a bag-of-words fashion (Weinberger et al.,169

2009). We sample y on a daily basis yi(⌊t⌋), yi(⌊t⌋ − 1) . . . , yi(⌊t⌋ − k + 1).170

The value k ∈ N is an hyperparameter which will be later optimized. We then171

take li,1 equal to the number of times the state S appears in the sampling.172

Similarly, li,2 counts the occurrences of E and I, and li,3 of R and D. Therefore173

the sum of elements in li is always equal to k for i ∈ M. The remaining nodes174

are labeled as unknown by taking li = 0 for all i /∈ M. These operations are175

graphically summarized in the left part of Fig. 3.176
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3.3 Neural architecture177

Graph Neural Networks operate in the domain of the graph. In the graph,178

each node comes with its label. A common framework in the GNN is the clas-179

sification problem setup where the goal is to predict the label of the unlabeled180

nodes given the labeled ones. As mentioned before we want to predict the full181

state of the pandemics spreading x, see Fig. 1.182

The central part of Fig. 3 shows the core GNN layers in our architecture.183

The target of our GNN is to learn the state embedding li ∈ N
3 for i = 1, 2, 3,184

which contains the information of neighborhood for each node. The initial node185

feature corresponds to the node state itself, encoded in binary vector ∈ N
3

186

that contains only one element equal to 1. We preprocess this information187

by integrating li along the time horizon of k. We cannot use k too big to188

avoid that the neural network leverages on this pattern to recognize that the189

state coincide with the node label. Due to the fact that it is a classification190

problem setup, we then mask a certain percentage of node (95 − 90 − 80%)191

depending on the scenario we are considering. We finalize the preprocess by192

loading data by batch by using the Dataloader class defined inside the Pytorch193

library (Paszke et al., 2019). Thanks to a specific variable, named ’batch’,194

the data loader can associates node and edges to a specific graph. Since a195

DataLoader aggregates nodes, edges and the features from different graphs196

into batches during the message passing layers, the GNN model needs this197

information to know which nodes belong to the same graph. For what concern198

message passing layer, it describes how li is passed through the layers of the199

network to create the node embedding. As we know, the message passing layer200

is the result of the generalization of the convolution operator by extending the201

concept of the neighbourhood from pixels to nodes (Kipf and Welling, 2016).202

Given the state of the node i at the layer h, lhi we find the lh+1
i by applying203

the activation function of the message passing layer to lhi and the aggregation204

of lhj where j ∈ Ni is a neighbour of node i (and Ni is the neighbourhood of205

node i). As the node embedding evolve through the message passing layers,206

as the knowledge of the neighborhood of each single node increases. Thus,207

the message passing layers enlarge, in general, the size of the node feature.208

The number of the message passing layers could be considered again as a209

hyperparameter. Without loss of generality, in our case, three message passing210

layers with a rectifier as the activation function (ReLu) are considered. The211

first message passing layer has an input size of 3 (i.e. the number of features),212

and output size of 64. The second and the third message passing layers have213

an input and output sizes of dimension 64. Between layers there the dropout214

regularization method is used during training to avoid over-fitting.215

As a result of this processing, each node is equipped with a rich description216

of its possible state as inferenced by its neighbours own representations. This217

state need to be converted into one of the three states {S,E+ I, R+D}. This218

is done through the Output Layer (right part of Fig. 3). First we have a fully219

connected layer. Its input size is 64 and output size of 3. It is defined with a220

linear activation function. Then, a softmax function in introduced as defined221
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in the Pytorch library. It is applied to the observation li so to retrieve the222

highest probability that the node will be labeled with a certain class.223

For what concerns the training, an Adam optimizer with a fixed learn-224

ing rate is defined and we select loss L1(·) as the cross entropy. Given the225

unbalanced classes c ∈ {S,E + I, R + D} we compute weight wc to normal-226

ize observation li. The weight of each class is determined by the Nmax

Nc

where227

Nmax is the the number of observations in the class with maximum occurrence228

and Nc is the number of observations or nodes belonging to class c in the229

training set. We use the loss function for measuring the performance of the230

algorithm as described by the Pytorch library. The losses are then averaged231

across observations:232

L1(·) =

∑3

c=1 loss(xc)
∑3

c=1 wc

. (3)

Given a fixed number of epochs (250 in our case) we train our network and we233

measure the loss function as previously defined to measure the loss. Hyperpa-234

rameter optimization is done using balanced accuracy. Balanced accuracy is235

calculated as the average of the proportion corrects of each class individually.236

Balanced accuracy is suitable for datasets with class imbalance unlike other237

metrics which may favour results from the majority class.238

4 Simulations239

We test the proposed architecture in two scenarios, with different topological240

characteristics. The first one is an homogeneous network, in which any node241

has the same probability of being connected with all the others. We use this242

scenario to test extensively the effectiveness and scalability of the method.243

The second scenario is instrumental to test the neural architecture in a more244

challenging setting, closer to a real world scenario.245

4.1 Scenario 1: random network246

We consider Erdős-Rényi networks, which are a class of well-known network247

models. Such random networks are relatively simple to describe, and at the248

same time offer some heterogeneity in terms of the degree distribution. The249

generative algorithm can be described as follows: we start with N isolated250

nodes, then we place a link between any two nodes with probability 0 < p <251

1. The degree distribution of the network is therefore binomial B(N, p). We252

showcase results for networks with average degree 〈k〉 = 30. This value is253

comparable with the number of daily contacts at risk as measured in a recent254

survey (Melegaro et al., 2011).255

We generate training set from 80 realizations, each one happening on a256

different and randomly generate social network with a population of 500 nodes.257

The epidemic spreads between 0 and 120 days. Yet in the initial month, the258

behavior is quite stationary due to the well-know slow increase of the total259
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Table 1 Accuracy (Ac.) and precision (Pr.) of the classification for Scenario 1, evaluated
only on the nodes which are not in M. The testing set is generated with networks of 500
nodes. Three levels of supervision are considered - i.e., number of nodes of V which are in
M as well.

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%
S 0.93 0.84 0.93 0.84 0.93 0.85

E+I 0.52 0.56 0.51 0.57 0.51 0.57
R+D 0.74 0.78 0.75 0.77 0.76 0.77
All 0.75 - 0.75 - 0.76 -
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Fig. 4 Evolution of overall statistics associated to the epidemics, when evolving on a
medium-small homogeneous network (scenario 1). More specifically, we show the amount
of nodes which are susceptible - Panels (a,d) - which got infected by the pathogen - Panels
(b,e) - and which either recovered or died - Panels (c,f). Actual evolutions are in red, while
estimations are in green. The solid lines represent the mean, while the translucent areas
the variance. Training and testing sets are made of realizations produced by simulating the
epidemic spreading on random social networks of 500 subjects. In Panels (a-c) only 5% of
subjects is tested at any time, while in Panels (d-f) this number reaches 20%.

number of infected subjects. Therefore, a few samples from the initial days260

is enough to learn the pattern during that period. Only 3 random days are261

selected from the first month of each realization. All the remaining days from262

30 to 120 are used for training. The hyperparameters are 0.3 for dropout,263

64 hidden units, 3 layers. We use a learning rate of 0.0002, we train for 250264

epochs, with a batch size of 256.265

At first, we test the trained architecture on a set of 40 realizations, rep-266

resenting evolutions on randomly generated social networks with 500 nodes267

(same size of the training set). We repeat the analysis for the cases in which268

the size of M (i.e. monitored subjects) is 5%, 10%, 20% of the size of V (i.e.269

the total amount of subjects in the considered population). It is worth to no-270

tice that this is a very sparse amount of information. Indeed, 10% of tests271
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Table 2 Accuracy (Ac.) and precision (Pr.) of the classification for Scenario 1, evaluated
only on the nodes which are not in M. The testing set is generated with networks of 105

nodes. Three levels of supervision are considered - i.e., number of nodes of V which are in
M as well.

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%
S 0.97 0.92 0.96 0.92 0.93 0.85

E+I 0.50 0.58 0.50 0.57 0.51 0.57
R+D 0.79 0.81 0.80 0.81 0.76 0.77
All 0.83 - 0.83 - 0.83 -

with an average connectivity of 10 means that any node has on average just272

a single neighbor whose the state is known (see Fig. 1 to get a visual sense273

of this ratio). Accuracy and precision of the predictions are provide in Tab.274

4.1. Note that these values are evaluated only on the nodes which are not275

part of M since they are always perfectly known. Thus, we prefer to leave276

them out to not artificially increase the performance of the neural network.277

Interestingly, the quality of the predictions do not change significantly with278

the size of M. In general classes with larger amount of subjects have better279

performance. This can be due to the higher amount of examples which are280

available from the training set. Overall the performance is satisfactory, with a281

general accuracy always higher than 0.75. To get a sense of how these results282

reflect in the estimation of cumulative statistics of the pandemic evolution, in283

Fig. 4 we plot the total size of each class against the amount of nodes which284

are classified to be part of that class. The match is good. The network is not285

sensitive to small deviations of S and R+D from the maximum and the min-286

imum value. This may be due to the fact that so small variations may not be287

captured by changes in M. Also, the neural network tends to over estimate288

the presence of subjects which got infected at the pick. It is very important289

to stress here that these overall statistics serve here only to get a sense of the290

overall quality of the network predictions. The goal of the neural architecture291

is indeed not to estimate these values directly, but the exact way in which292

each class is spread over the social network. This is an important distinction293

because the direct estimations of the size of the three classes is a relatively294

simple task, as discussed in the Introduction.295

A nice property that our architecture inherits from Graph Convolutional296

Neural network is that once trained it can be applied to graphs of any size. This297

is because we directly learn the weights of the convolution operator, which can298

then be applied to notworks of all sizes. There is however no guarantee that the299

classification will keep being effective. Indeed, the way in which the pandemic300

evolves is clearly affected by the size of the social network despite the local301

rules remaining the same. We therefore tested the ability of the architecture302

to generalize to larger populations by building an additional testing set of 10303

realizations with a total number of nodes which is several orders of magnitude304

larger than before: 105 subjects. It is very important to stress that no re-305

training is performed. Therefore, we are training the neural architecture with306

a small-village community, and testing it with a medium size city. Tab. 4.1307
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Fig. 5 Evolution of overall statistics associated to the epidemics, when evolving on an
homogeneous network (scenario 1). Actual evolutions are in red, and estimations in green.
The solid lines represent the mean, while the translucent areas the variance. The testing
set is made of realizations produced by random social networks of 105 subjects. Instead the
training set contains only networks which are 500 nodes big. In Panels (a-c) only 5% of
subjects is tested at any time, while in Panels (d-f) this number reaches 20%.

Geography Age

Subjects

East Cambridge

MIT

Wellington-

Harrington

Area

Four

Cambridgeport

West

Cambridge
Mid-Cambridge

Riverside

Agassiz

Neighborhood Nine

Fenway

Back Bay

South End

Downtown

Beacon Hill

West End

North End

16-20

1-5

11-15 6-10

26-30
21-25 31-35

Fig. 6 The second scenario is a toy model inspired by the spreading of CoVid in the Boston
and Cambridge, Massachusetts. The topology of the graph is built on three layers, which
integrate the geographical distribution of the population, the demographics, and the subject
level variability.

and Fig. 5 show the result of this analysis. No essential differences can be308

observed. Overall the performance is still satisfactory, with a general accuracy309

which is even higher than the previous test set and always equal to 0.83. This310

may be due to the fact that larger social networks generate more homogeneous311

distributions of the illness since the border-effects are less dominant.312
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4.2 Scenario 2: Boston313

The second scenario we consider aims at modeling a more realistic social struc-314

ture, such as the one of a relatively big city. We need to consider both a model315

that takes into account the existence of different neighborhoods and the age316

distribution of people living in that area. We take as a reference the City of317

Boston and Cambridge, Massachusetts, USA.318

The generative model, which takes inspiration from the work in (Mistry319

et al., 2021), is divided into three steps, as in fig. 6. Initially, we outline a320

map of the neighborhoods of the urban area we focus on. At this stage, each321

neighborhood is a network on its own. The size of each neighborhood is taken322

from the official website of the city of Boston1 and Cambridge2. Within each323

neighborhood, the topology reflects the contact patterns between different age-324

classes, as described in the Supplementary material of (Mistry et al., 2021). To325

do so, we cohort the population into age groups of size 5 years, and we model326

the contact patterns among groups based on their age with a stochastic block327

model (Holland et al., 1983). Stochastic block models are generative models for328

random graphs that are use to generate topologies that have a community-like329

structure. Each node is given a unique label (the age cohort). Then, we define330

a symmetric matrix (known as Affinity matrix) whose elements are Aij = pij ,331

where pij is the probability that a node whose label is i is in contact with a332

node whose label is j. The Affinity matrix we use is the Massachusetts age-333

contact matrix, as described in the supplementary material of (Mistry et al.,334

2021). The last step is to connect different neighborhoods by allowing nodes335

in each neighborhood to have links with nodes from other neighborhoods. To336

do so, we consider a diffusion-like procedure: for each couple of neighborhoods337

we place a random number of links between randomly selected nodes from338

both communities, depending on the length of the shortest path connecting339

the two on the geographical level: neighborhoods at distance d from each other340

will share, on average, 1/d links with respect to neighborhoods at distance 1.341

The number of links shared between any two communities is drawn from a342

Binomial with probability p = 1
50

1
d
.343

We generated a training composed of 20 realizations, each one happening344

on a different and randomly generate social network with a population of345

104 nodes. This is one order of magnitude less than the actual population of346

that area. This choice has been imposed by limits on the hardware resources347

available. In this scenario, the epidemic spreads over a relatively long period348

of time, with each day being of importance and different. Hence we select349

a total of 201 of days from each realizations, starting 100 days before the350

pick of the infection, and ending 100 days after. No sample is removed. The351

hyperparameters are 0.4 for dropout, 64 hidden units, 3 layers. We use a352

learning rate of 0.0002, we train for 250 epochs, with a batch size of 64.353

1 http://www.bostonplans.org/getattachment/7987d9b4-193b-4749-8594-e41f1ae27719
2 https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_

profile_neighborhood_2019.pdf
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Table 3 Accuracy (Ac.) and precision (Pr.) of the classification for Scenario 2 (Boston),
evaluated only on the nodes which are not in M. Three levels of supervision are considered
- i.e., number of nodes of V which are in M as well.

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%
S 0.67 0.97 0.67 0.98 0.67 0.98

E+I 0.75 0.14 0.78 0.14 0.80 0.15
R+D 0.78 0.79 0.79 0.79 0.80 0.80
All 0.72 - 0.72 - 0.73 -

We test the effectiveness of the proposed approach by collecting a testing354

set made of 10 realizations. Each realization is an evolution of the epidemic355

on a different and randomly generated social network (following the same356

statistical characteristics of the testing set). As for scenario 1, also here we357

test the case of size of M (i.e. tested subjects) being 5%, 10%, or 20% of the358

total population. Results are shown in Tab. 4.2 and Fig. 7. Although lower359

in the easier scenario 1, the accuracy is consistently good across classes and360

conditions. Yet, the accuracy of S is a bit lower than before, and the precision361

of E + I is very low. This is because the neural architecture tends to wrongly362

label a number of nodes which are susceptible as infected. Yet, it is important363

to underlie here that the neural network is working with a quite small amount364

of information on the spreading of infected subjects. Indeed, at its pick E+I is365

less than the 10% of the population, which with 10% of measures means that366

the algorithm can rely on the knowledge of 102 infected nodes. This behavior is367

also evident in Fig. 7, where the total number of susceptible subjects is higher368

than estimated, and vice versa the infected subjects are lower than the neural369

network thinks. It is again important to stress that the proposed algorithm is370

optimized to estimate the distribution of subjects rather than the total size of371

each class, which should therefore be regarded as a secondary index. It is also372

interesting that the algorithm rarely does the opposite error, i.e. classifying373

S as E + I. The precision of S is indeed above 97%. Although not explicitly374

forced in training phase, this behavior makes very much sense in the practice375

since it is better to isolate healthy subjects than not to act on infected ones.376

5 Discussion and Conclusions377

With this work we investigated the use of Graph Neural Networks to de-378

velop state observes for epidemics evolving on social networks. The results are379

promising. The neural architecture can approximate the overall state with an380

accuracy which is always above the 70%, even when the sample space is as381

small as 5% of the total population.382

Nonetheless, there are several directions towards which our results may383

be improved which we aim at investigating in the future. First, future work384

will be devoted to adding explicit dynamic reasoning withing the neural net-385

work, for example by introducing recurrent layers (Liang et al., 2016). This386

should help boost the capability of the neural network of discerning between387
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Fig. 7 Evolution of overall statistics associated to the epidemics, when evolving on a toy
model inspired by the Boston and Cambridge (MA,USA) areas. We show the amount of
number of susceptibles in Panels (a,d), the infected and exposed in Panels (b,e), the recovered
or dead in Panels (c,f). Actual evolutions are in red, while estimations are in green. The solid
lines represent the mean, while the translucent areas the variance. Training and testing sets
are made of realizations produced by simulating the epidemic spreading on random social
networks of 500 subjects. In Panels (a-c) only 5% of subjects is tested at any time, while in
Panels (d-f) this number reaches 20%.

exposed and infected, and between infected and recovered (or dead). Indeed,388

these transitions are essentially time dependent and can be extracted from389

associating an internal dynamics to the initial recognition that a node entered390

in the exposed state. Yet, it is worth mentioning that stacking LSTMs layers391

in between the GNNs did not produce a statistically relevant increasing of the392

network performance and as such has not been included in the present work.393

Similarly the use of attention mechanisms (Veličković et al., 2017) have been394

tested but not included due to the negligible increment of performance that395

they resulted into. Finally, we believe that a very important assumption to396

be relaxed is the full knowledge of the social network (see Sec. 3.1). Several397

algorithms are being proposed that can extract the social structure from GPS398

localization and other mobility information provided by contact tracing apps399

(Ferretti et al., 2020; Cheng et al., 2020). Data driven methods can then pos-400

sibly be used to infer the graph topology itself (Segarra et al., 2017; Giannakis401

et al., 2018).402
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N, Colizza V, Vespignani A (2012) Real-time numerical forecast of global523

epidemic spreading: case study of 2009 a/h1n1pdm. BMC medicine 10(1):1–524

31525

Valle JAM (2020) Predicting the number of total covid-19 cases and deaths in526

brazil by the gompertz model. Nonlinear Dynamics 102(4):2951–2957527

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017)528

Graph attention networks. arXiv preprint arXiv:171010903529

Wang W, Liu QH, Liang J, Hu Y, Zhou T (2019) Coevolution spreading in530

complex networks. Physics Reports 820:1–51531

Wang Z, Ho DW, Liu X (2005) State estimation for delayed neural networks.532

IEEE Transactions on Neural Networks 16(1):279–284533

Weinberger K, Dasgupta A, Langford J, Smola A, Attenberg J (2009) Feature534

hashing for large scale multitask learning. In: Proceedings of the 26th annual535

international conference on machine learning, pp 1113–1120536

Xu Y, Lu R, Shi P, Tao J, Xie S (2017) Robust estimation for neural networks537

with randomly occurring distributed delays and markovian jump coupling.538



18 Abhishek Tomy∗ et al.

IEEE Transactions on Neural Networks and Learning Systems 29(4):845–539

855540

Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, Liu P, Cao X, Gao Z,541

Mai Z, et al. (2020) Modified seir and ai prediction of the epidemics trend542

of covid-19 in china under public health interventions. Journal of thoracic543

disease 12(3):165544

Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018)545

Graph convolutional neural networks for web-scale recommender systems.546

In: Proceedings of the 24th ACM SIGKDD International Conference on547

Knowledge Discovery & Data Mining, pp 974–983548

Zhang D, Wang QG, Srinivasan D, Li H, Yu L (2017) Asynchronous state549

estimation for discrete-time switched complex networks with communication550

constraints. IEEE transactions on neural networks and learning systems551

29(5):1732–1746552

Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018) Graph553

neural networks: A review of methods and applications. arXiv preprint554

arXiv:181208434555


