UNIVERSITA DEGLI STUDI DI NAPOLI
“FEDERICO I11”

Scuola Politecnica e delle Scienze di Base

Area Didattica di Scienze Matematiche Fisiche e Naturali

Dipartimento di Fisica “Ettore Pancini”

Laurea Magistrale in Data Science

NEURAL SEQUENCE ANALYSIS

TOOLBOX
Relatori: Candidato:
Prof. Giuseppe Longo Antonio Elia Pascarella
Dr. Tobias Hecking - Matr. P37000003

German Aerospace Center (DLR)

Anno Accademico 2020/2021

Abstract

Time series have always been of great interest in the financial sector but
today with the advent of sensors and the IoT they have received new at-
tention and their analysis is no longer carried out using linear methods of
classical statistics but deep learning is revealing a new paradigm with inter-
esting performances for tasks such as predicting time sequences over time or
looking for anomalous patterns that could represent failure of the industrial
apparatus. Strategies for time series preprocessing with splines and wavelets
are investigated with the present work. Methods such as error based meth-
ods and GANs for anomaly detection are also studied and models such as
sequence to sequence learning and attention mechanisms for forecasting are
taken into consideration. Experiments have been carried out to compare all
these methodologies using public data from NASA and airpollution dataset
(you can find the links in the experiments chapter). Regarding anomaly de-
tection, the most promising approach was that of GANs. The problem of
finding a number of timestamps on which to obtain reliable predictions was
also investigated and the problem was formulated in such a way that the
neural network itself in the training process can learn the length of the time
horizon on which to make predictions. A toolbox has been produced that
allows the user to preprocess multivariate time series and implement outlier
detection or forecasting applications with the above methodologies.

Dedication

A mia madre, mio padre e mio fratello.

A tutti coloro che mi vogliono bene.

Con animo aperto al nuovo e perché no anche a un po’ d’avventura!
A Picus.

Acknowledgements

Intendo ringraziare il corpo docenti di Data Science che ci ha messo il cuore

(e le giuste competenze) nel portare avanti questo nuovo progetto di laurea
magistrale. Ringrazio il DLR per avermi concesso ’occasione di un tirocinio
all’estero in un gruppo di lavoro di altissimo profilo tecnico-scientifico. Ringrazio
la mia famiglia senza la quale non avrei potuto mai fare nulla. Ringrazio i
”Lumi Viventi di Misericordia” con Padre Franco e Graziella che mi hanno
accompagnato sempre durante tutto il mio cammino.

Contents

(1__Introductionl 7
2 Preprocessing| 11
2.1 Introductionl 11
2.2 Standardization & Normalizationl 11
2.3 B-Splines| 12
24 Wavelets 13

[3 Outlier Detection and Forecasting] 19
(3.1 Introductionl 19
3.2 Frror Based Methodl 19
(3.2.1 Fncoder-Decoder|o 20

.22 Attention Modell 0L 23

£3.2.3 Temporal Attention Model (or Multi Modal Attention) 24

[3.2.4 Dynamic Thresholdingf 26

[3.2.5 Prunming 27

B3 _GANS 28
[3.4 Forecastingl 31
[3.4.1 Variable-Horizon Modell 32

[3.50 Hyperparameter optimization| 32
[3.50.1 Grid & Random Searchl. 33

[4 Experiments| 36
4.1 Introductionl L 36
4.2 OutlierDetection Experiments 36

4.3 Forecasting Experiments| 38

Conclusions| 44
[A_Software Documentationl 45
[A.1 Introduction|o 45
A2 Tnstalll 45

A Usage| 46
[A.3.1 Forecasting application| 46

[A.3.2 Outlier Detection application| 51

”Voi occidentali, avete l’ora ma
non avete mat il tempo.”

Gandhi

Chapter 1

Introduction

Time series are a particular kind of data made of variables that are ob-
served in different timestamps. Multivariate time series consists of more
than one variable at each timestamp; univariate time series means that at
each timestamp you observe only one variable. The focus of the work was
implementing models that predict variables along future timestamps or find-
ing not expected sequences in the series and label it as anomalies. Models
used try to learn correlation along the time dimension and among variables,
so they can learn hidden schemes from normal sequences and reproduce it
to forecast variables. An unsupervised method is then used to automatically
assess hundreds to thousands of diverse streams and determine whether re-
sulting prediction errors represent anomalies. Lastly, strategies for mitigat-
ing false positive anomalies are outlined and are a key element in developing
user trust and improving utility in a production system. Consider a time
series X = !, 22, ..., 2" where each step ' € R™ in the time series is an
m-dimensional vector z%, x5, ..., 2! whose elements correspond to input vari-
ables. A sequence length [, determines the number of points to input into
the model for prediction. A prediction length [, then determines the number
of steps ahead to predict, where the number of dimensions d being predicted
is 1 < d < m. Univariate time series correspond to d = 1, Multivariate
time series correspond to d > 1. Temporal data is common in data mining
applications. Typically, this is a result of continuously occurring processes in
which the data is collected by hardware or software monitoring devices. The
diversity of domains is quite significant and extends from the medical to the
financial domain. Some examples of such data are as follows:

e Sensor data: Sensor data is often collected by a wide variety of hard-
ware and other monitoring devices. Typically, this data contains con-
tinuous readings about the underlying data objects. For example, en-
vironmental data is commonly collected with different kinds of sensors
that measure temperature, pressure, humidity, and so on. Sensor data
is the most common form of time series data.

e Medical devices: Many medical devices such as electrocardiogram (ECGQG)
and electroencephalogram (EEG) produce continuous streams of time
series data. These represent measurements of the functioning of the
human body, such as the heart beat, pulse rate, blood pressure, etc.
Real-time data is also collected from patients in intensive care units
(ICU) to monitor their condition.

e Financial market data: Financial data, such as stock prices, is often
temporal. Other forms of temporal data include commodity prices,
industrial trends, and economic indicators.

The greater complexity of time series data enables a larger number of problem
definitions. Most of the models can be categorized into one of two types:

o Real-time analysis: In real-time analysis, the data points in one or more
series are analyzed in real time, to make predictions. Typically, a small
window of recent history is used over the different data streams for
the analysis. Examples of such analysis include forecasting, deviation
detection, or event detection. When multiple series are available, they
are typically analyzed in a temporally synchronized way. Even in cases
where data mining applications such as clustering are applied to these
problems, the analysis is typically performed in real time.

e Retrospective analysis: In retrospective analysis, the time series data is
already available, and subsequently analyzed. The analysis of different
time series within a database is sometimes not synchronized over time.
For example, in a time series database of ECG readings, the data may
have been recorded over different periods.

First of all it is important to explain what are the main components of a
time series.

e Long term trend is the overall general direction of the data, obtained
ignoring any short term effects such as seasonal variations or noise.

8

e Seasonalityrefers to periodic fluctuations that are repeated through-
out all the time series period.

e Stationarity is an important characteristic of time series. A time
series is said to be stationary if its mean, variance and covariance don’t
have significant changes over time. There are we many transformations
that can extract the stationary part of a non-stationary process.

e Noise refers to random fluctuations or variations due to uncontrolled
factors.

e Autocorrelation is the correlation between the time series and a
lagged version of itself, and is used to identify seasonality and trend in
time series data.

Given the growing availability of data and computing power in the recent
years, Deep Learning has become a fundamental part of the new genera-
tion of Time Series Forecasting models, obtaining excellent results. While
in classical statistical models - such as autoregressive models (AR) or ex-
ponential smoothing - feature engineering is performed manually and often
some parameters are optimized also considering the domain knowledge, Deep
Learning models learn features and dynamics only and directly from the data.
Thanks to this, they speed up the process of data preparation and are able
to learn more complex data patterns in a more complete way. Before speak-
ing about Deep Learning methods for Time Series Forecasting, it is useful
to recall that the most classical statistical models used to solve this problem
are ARIMA models and exponential smoothing. ARIMA stands for combi-
nation of Autoregressive (AR) and Moving Average (MA) approaches within
building a composite model of the time series. This model is very simple,
but might have good results. It includes parameters to account for season-
ality, long term trend, autoregressive and moving average terms, in order to
handle the autocorrelation embedded in the data. In Exponential smoothing
forecasts are made on the basis of weighted averages like in ARIMA models,
but in this case different decreasing weights are assigned to each observa-
tions and less importance is given to observations as we move further from
the present. It is well known that these traditional statistical models have
many limitations:

e they are not able to recognize complex patterns in the data;

e they usually work well only in few-steps forecasts, not in long term
forecast.

Regarding deep learning models, the use of recurrent networks is known in
scientific literature, in particular the Istm represent an evolution of them
that solves gradient vanishing problems. More advanced architectures fol-
lowed one another such as encoder-decoders that it could be considered as
a block box that maps an input sequence to an output sequence, atten-
tion mechanisms that consider which input data affect the outputs the most
and transformers that are well suited to sequential data. A very famous
task accomplished in time series problems concerns forecasting. Time se-
ries forecasting involves taking models fit on historical data (the training
set) and using them to predict future observations (the test set). At the
first step past observations are collected and analyzed to develop a suitable
mathematical model which captures the underlying data generating process
for the series. In the second step the future events are predicted using the
model. This approach is particularly useful when there is a lack of a sat-
isfactory explanatory model. Making predictions about the future is called
extrapolation in the classical statistical handling of time series data. More
modern fields focus on the topic and refer to it as time series forecasting.
The skill of a time series forecasting model is determined by its future pre-
diction performance. Time series forecasting has important applications in
various fields. Over the past several decades many efforts have been made
by researchers for the development and improvement of suitable time series
forecasting models. This is often at the expense of being able to explain
why a specific prediction was made, confidence intervals and even better un-
derstanding the underlying causes behind the problem. An other important
task accomplished with time series data concerns the outlier detection that
consists of finding anomaly patterns in the sequence that can represent fault
events. The goal of the following work is to describe the Neural Sequence
Analysis Toolbox that allows the user to treat multivariate time series, by
pre-processing them and searching anomaly patterns in the sequences using
Deep learning methodologies. It is possible also to forecast the variables in
the future timestamps.

10

Chapter 2

Preprocessing

2.1 Introduction

It is often beneficial to preprocess the data before feeding it to the models.
Think of variables with different scales, or even when they have the same
scale, small ranges of variables close to zero are beneficial for the optimization
processes of neural networks. Sometimes in data such as time series noise
can be found that should be removed. Hence the need to offer the user the
possibility to perform data preprocessing in our toolbox.

2.2 Standardization & Normalization

Normalizing a vector most often means dividing by a norm of the vector.
It also often refers to rescaling by the minimum and range of the vector,
to make all the elements lie between 0 and 1 thus bringing all the values
of numeric columns in the dataset to a common scale. The normalization
implemented in the toolbox is:

T — Tmin
Tmaz — Tmin

x — 1S the variable

Standardizing a vector most often means subtracting a measure of location
and dividing by a measure of scale. For example, if the vector contains
random values with a Gaussian distribution, you might subtract the mean

11

and divide by the standard deviation, thereby obtaining a “standard normal”
random variable with mean 0 and standard deviation 1. The mathematical
formulation of this operation is:
T—p
o

x — 15 the variable
1 — 1is the expected values of the variable
o — is the square root of the variance of the variable

2.3 B-Splines

Splines are a very useful tool for smoothing time series. In case there is some
noise in the series, smoothing the signals can be considered a good prepro-
cessing strategy. The idea of B-splines as explained in [7] is to construct
basis functions and rewrite the original signal as a sum of the basis functions
multiplied with suitable coefficients obtaining in this way an approximation
of the original signal.

n
approximation’s signal = Z Aifi
i
fi — is the i basis functions
Ai = is the i coef ficient
n — is the number of basis functions

The X coefficients are estimated with a linear regression using as predic-
tors the basis functions. In the following we describe in details the construc-
tion of the basis functions. Define an augmented knot sequence:

6 = (5—177 rery 507 57 gk’—i-la ceey €k+p+1)

p — is the degree of the spline
k — is the number of interior knots
fori=—p,.... K +p, let

0 otherwise

12

where by convention, B, o(z) = 0if § = &1

the i*" B-spline basis function of degree j, j = 1, . . ., p, is given by:
z—§& —T+ &y
Bij(x) = ——Bij1(x) + —+]HBz‘+1,j—1(I)
Sivi — & Sitir1 — Eit1

fori=—p,...k+p—7
In Figure you can see an example of basis functions of degree = 3.

B-spline basis functions of degree 3: df =7

Ba(x)

Figure 2.1: Basis functions.

2.4 Wavelets

We can use the Fourier Transform to transform a signal from its time-domain
to its frequency domain. The peaks in the frequency spectrum indicate the
most occurring frequencies in the signal. The larger and sharper a peak is,
the more prevalent a frequency is in a signal. The location (frequency-value)
and height (amplitude) of the peaks in the frequency spectrum then can
be used as input for Classifiers like Random Forest or Gradient Boosting.
The general rule is that this approach of using the Fourier Transform will

13

work very well when the frequency spectrum is stationary. That is, the
frequencies present in the signal are not time-dependent; if a signal contains
a frequency of x Hz this frequency should be present equally anywhere in the
signal. The more non-stationary/dynamic a signal is, the worse the results
will be. That’s too bad, since most of the signals we see in real life are
non-stationary in nature. Whether we are talking about ECG signals, the
stock market, equipment or sensor data, etc, etc, in real life problems start
to get interesting when we are dealing with dynamic systems. A much better
approach for analyzing dynamic signals is to use the Wavelet Transform
instead of the Fourier Transform. Fourier Transform works by multiplying
a signal with a series of sine-waves with different frequencies we are able
to determine which frequencies are present in a signal. If the dot-product
between our signal and a sine wave of a certain frequency results in a large
amplitude this means that there is a lot of overlap between the two signals,
and our signal contains this specific frequency. This is of course because
the dot product is a measure of how much two vectors / signals overlap.
The weak side of the Fourier Transform is that it has a high resolution in the
frequency-domain but zero resolution in the time-domain. This means that it
can tell us exactly which frequencies are present in a signal, but not at which
location in time these frequencies have occurred. In trying to overcome this
problem, scientists have come up with the Short-Time Fourier Transform. In
this approach the original signal is splitted into several parts of equal length
(which may or may not have an overlap) by using a sliding window before
applying the Fourier Transform. The idea is quite simple: if we split our
signal into 10 parts, and the Fourier Transform detects a specific frequency
in the second part, then we know for sure that this frequency has occurred
between %th and 1%th of our original signal. The main problem with this
approach is that you run into the theoretical limits of the Fourier Transform
known as the uncertainty principle. The smaller we make the size of the
window the more we will know about where a frequency has occurred in the
signal, but less about the frequency value itself. The larger we make the size
of the window the more we will know about the frequency value and less
about the time. A better approach for analyzing signals with a dynamical
frequency spectrum is the Wavelet Transform. The Wavelet Transform has a
high resolution in both the frequency- and the time-domain. It does not only
tell us which frequencies are present in a signal, but also at which time these
frequencies have occurred. This is accomplished by working with different
scales. First we look at the signal with a large scale/window and analyze

14

‘large’ features and then we look at the signal with smaller scales in order
to analyze smaller features. In Figure we can see the time and frequency

A Time Series A Fourier Transform
g
time ‘;_ time ;
A ShortTime FT A Wavelet Transform
2
Z z| P
' N7

Y
Y

time time

Figure 2.2: A schematic overview of the time and frequency resolutions of
the different transformations in comparison with the original time-series data.
The size and orientations of the block gives an indication of the resolution
size.

resolutions of the different transformations. The size and orientation of the
blocks indicate how small the features are that we can distinguish in the time
and frequency domain. The original time-series has a high resolution in the
time-domain and zero resolution in the frequency domain. This means that
we can distinguish very small features in the time-domain and no features in
the frequency domain. Opposite to that is the Fourier Transform, which has
a high resolution in the frequency domain and zero resolution in the time-
domain. The Short Time Fourier Transform has medium sized resolution in
both the frequency and time domain. The Wavelet Transform has:

e for small frequency values a high resolution in the frequency domain,
low resolution in the time- domain,

e for large frequency values a low resolution in the frequency domain,
high resolution in the time domain.

In other words, the Wavelet Transforms makes a trade-off; at scales in
which time-dependent features are interesting it has a high resolution in

15

the time-domain and at scales in which frequency-dependent features are
interesting it has a high resolution in the frequency domain. The Fourier
Transform uses a series of sine-waves with different frequencies to analyze a
signal. That is, a signal is represented through a linear combination of sine-
waves. The Wavelet Transform uses a series of functions called wavelets,
each with a different scale. The word wavelet means a small wave, and this
is exactly what a wavelet is. Since the Wavelet is localized in time, we can
multiply our signal with the wavelet at different locations in time. We start
with the beginning of our signal and slowly move the wavelet towards the
end of the signal. This procedure is also known as a convolution. After we
have done this for the original (mother) wavelet, we can scale it such that
it becomes larger and repeat the process. So what is this dimension called
scale? Since the term frequency is reserved for the Fourier Transform, the
wavelet transform is usually expressed in scales instead. We can see that a
higher scale-factor (longer wavelet) corresponds with a smaller frequency, so
by scaling the wavelet in the time-domain we will analyze smaller frequencies
(achieve a higher resolution) in the frequency domain. And vice versa, by
using a smaller scale we have more detail in the time-domain. So scales
are basically the inverse of the frequency. Another difference between the
Fourier Transform and the Wavelet Transform is that there are many different
families (types) of wavelets also called mother wavelets.

X (a,b) = ‘a’10.5 /OO s

00 a

where 1(t) is the continuous mother wavelet which gets scaled by a factor of
a and translated by a factor of b. The values of the scaling and translation
factors are continuous, which means that there can be an infinite amount
of wavelets. You can scale the mother wavelet with a factor of 1.3, or 1.31,
and 1.311, and 1.3111 etc. When we are talking about the Discrete Wavelet
Transform, the main difference is that the DW'T uses discrete values for the
scale and translation factor. The scale factor increases in powers of two, so a
=1, 2, 4, .. and the translation factor increases integer values (b =1, 2, 3 ..
). PS: The DWT is only discrete in the scale and translation domain, not in
the time-domain. To be able to work with digital and discrete signals we also
need to discretize our wavelet transforms in the time-domain. These forms of
the wavelet transform are called the Discrete-Time Wavelet Transform and
the Discrete-Time Continuous Wavelet Transform. In practice, the DWT is
always implemented as a filter-bank. This means that it is implemented as

16

a cascade of high-pass and low-pass filters. This is because filter banks are a
very efficient way of splitting a signal of into several frequency sub-bands. To
apply the DWT on a signal, we start with the smallest scale. As we have seen
before, small scales correspond with high frequencies. This means that we
first analyze high frequency behavior. At the second stage, the scale increases
with a factor of two (the frequency decreases with a factor of two), and we
are analyzing behavior around half of the maximum frequency. At the third
stage, the scale factor is four and we are analyzing frequency behavior around
a quarter of the maximum frequency. And this goes on and on, until we have
reached the maximum decomposition level. What do we mean with maximum
decomposition level? To understand this we should also know that at each
subsequent stage the number of samples in the signal is reduced with a factor
of two. At lower frequency values, you will need less samples to satisfy the
Nyquist rate so there is no need to keep the higher number of samples in the
signal; it will only cause the transform to be computationally expensive. Due
to this downsampling, at some stage in the process the number of samples
in our signal will become smaller than the length of the wavelet filter and we
will have reached the maximum decomposition level. To give an example,
suppose we have a signal with frequencies up to 1000 Hz. In the first stage
we split our signal into a low-frequency part and a high-frequency part, i.e.
0-500 Hz and 500-1000 Hz. At the second stage we take the low-frequency
part and again split it into two parts: 0-250 Hz and 250-500 Hz. At the
third stage we split the 0-250 Hz part into a 0-125 Hz part and a 125-250 Hz
part. This goes on until we have reached the level of refinement we need or
until we run out of samples. We can easily visualize in Figure [2.3] when we
apply the DWT on a chirp signal. A chirp signal is a signal with a dynamic
frequency spectrum; the frequency spectrum increases with time. The start
of the signal contains low frequency values and the end of the signal contains
the high frequencies. This makes it easy for us to visualize which part of
the frequency spectrum is filtered out by simply looking at the time-axis. In
our work in the preprocessing phase wavelets are used to remove noise from
signal simply removing high frequencies from the original signal setting to 0
detail coefficients related to high frequencies.

17

Chirp Signal

o =

-1

o 250 500 750 1000 1250 1500 1750 2000

Approximation coefficients Detail coefficients

|

Level 1

o

250 500 750 1000

Level 2

Level 3

Level 4

Level 5

0 100 200
0 0 100
o 2 & o

Figure 2.3: he approximation and detail coefficients of the sym5 wavelet
(level 1 to 5) applied on a chirp signal, from level 1 to 5. On the left we can
see a schematic representation of the high pass and low pass filters applied
on the signal at each level.

Chapter 3

Outlier Detection and Forecasting

3.1 Introduction

Possible applications of time series analysis are outlier detection and fore-
casting. By outlier detection we mean the search for anomalous pattern in
the data. It is useful to consider three categories of anomalies: point, con-
textual, and collective. Point anomalies are single values that fall within
low-density regions of values, collective anomalies indicate that a sequence
of values is anomalous rather than any single value by itself, and contextual
anomalies are single values that do not fall within low-density regions yet
are anomalous with regard to local values. The strategy used in this work
to accomplish this tasks are Error Based Method and GANs. By forecasting
we mean the ability of the model to learn the behavior of the sequence in the
past and predict its behavior in the future, repeating patterns seen. Neural
networks are capable of grasping correlations along the temporal direction
and reproposing them in subsequent timestamps.

3.2 Error Based Method

By Error Based Method we mean a class of algorithm that accomplish out-
lier detection for time series performing predictions in future timesteps and
evaluating the differences among forecasting and true values. After choosing
a threshold all points whose errors overcome this threshold are considered
anomalies. In the present work the unsupervised method ” Dynamic Thresh-

19

olding” that is explained in [4] is used to automatize the research of the
threshold avoiding statistical assumptions on the differences among true val-
ues and predicted values. An other effort was accomplished to mitigate false
positive using ”Pruning” procedure explained in ; it is important to de-
velop reliable systems. Te following models are deep neural networks that
perform forecasting.

3.2.1 Encoder-Decoder

Introduced for the first time in 2014 by Google with the paper , a sequence
to sequence model aims to map a fixed-length input with a fixed-length out-
put where the length of the input and output may differ.

Encoder

1008/, J8poou]y

Decoder

X1
Encoder-decoder sequence to sequence model

Figure 3.1: Sequence to sequence learnig.

As you can see the model consists of 3 parts:

e Encoder: A stack of several recurrent units (LSTM or GRU cells for
better performance) where each accepts a single element of the input
sequence, collects information for that element and propagates it for-
ward.

20

e Encoder Vector: This vector aims to encapsulate the information for all
input elements in order to help the decoder make accurate predictions.

e Decoder: A stack of several recurrent units where each predicts an
output y; at a time step t.

The core of the Encoder and Decoder is the LSTM network. LSTM stands
for Long Short Term Memory [5]. LSTM can be used to solve problems faced
by the RNN model. So, it can be used to solve:

e Long term dependency problem in RNNs.
e Vanishing Gradient Exploding Gradient.
The heart of a LSTM network is it’s cell or say cell state which provides a

bit of memory to the LSTM so it can remember the past. In LSTM we will

Y:

+
L,

/

@

hy.q | —> > h,

Figure 3.2: Long Short Term Memory.

have 3 gates:
e Input Gate.

e Forget Gate.

21

e Output Gate.

Input Gate tells us that what new information we’re going to store in the cell
state. Forget gate tells the information to throw away from the cell state.
Output gate is used to provide the activation to the final output of the lstm
block at timestamp ‘t’. The following are the equations that describe the
behavior of the input, forget and output gates:

it = a(wi [htfl, il?'t] -+ bl)

fo = o(wglhy—1, 2] + by)
0y = o(wolhy—1,z¢] + b,)

1y — inputgate

fi — forgetgate

0 — ouputgate

w, — weight of the respective gate(x)
hi_1 — output of the previous lstm block
xy — nput at current timestamp

b, — biases of respective gate(x)

The following equations describe the cell state, the candidate cell state and

the final output:
¢y = tanh(welhi_1, T¢] + b,)

= fexco1 + i x G

hy = o x tanh(c;)

¢y — cellstate (memory) at timestamp t
¢ — represents candidate for cellstate at timestamp t

Now, from the above equation we can see that at any timestamp, our cell
state knows that what it needs to forget from the previous statef; x ¢;_; and
what it needs to consider from the current timestamp i; * ¢&. note: * repre-
sents the element wise multiplication of the vectors. Lastly, we filter the cell

22

state and then it is passed through the activation function which predicts
what portion should appear as the output of current lstm unit at timestamp
t. We can pass this h; the output from current Istm block through a dense
layer to get the predicted output g, from the current block.

3.2.2 Attention Model

In the paper Neural Machine Translation by jointly learning to align and
translate, it was conjectured that the use of a fixed-length vector is a bottle-
neck in improving the performance of this basic encoder—decoder architec-
ture, and it was proposed to extend this by allowing a model to automatically
(soft-)search for parts of a source sequence that are relevant to predicting a
particular future timestamp, without having to form these parts as a hard
segment explicitly. A potential issue with the encoder—decoder approach is
that a neural network needs to be able to compress all the necessary in-
formation of a source sentence into a fixed-length vector. This may make
it difficult for the neural network to cope with long sequences resulting in
degrading predictions. To overcome this obstacle with attention mechanism
the decoder decides parts of the source sequence to pay attention to. The

Figure 3.3: Attention Mechanism.

context vector ¢; showed in Figure [3.3]is computed as below:

Ty
C; = E Oél'jhj
j=1

23

hj — is the hidden state of the encoder . In Figure 1sreferred as a
The weight «;; is computed by:

exp(e;;)

g == ——————
T X exple)

where
eij = a(si, hy)

s; — is the hidden state of the decoder

The alignment model directly computes a soft alignment, which allows the
gradient of the cost function to be backpropagated through. This gradient
can be used to train the alignment model as well as the whole model jointly.
As you notice in Figure the encoder consists of a Bidirectional LSTM.
The usual RNN, reads an input sequence x in order starting from the first
symbol z; to the last one x7,. A BiRNN consists of forward and backward
RNN’s. The forward RNN ?readsthez'nputsequenceasz’tisordered(fromay
to xp,) and calculates a sequence of forward hidden states z,,th. The
backward RNN f readsthesequenceinthereverseorder(fromxr, to x1), re-

sulting in a sequence of backward hidden states ﬁl,, 1, We obtain an
annotation for each timestamp z; by concatenating the forward hidden state
fgandthebackwardoneﬁj, i.e.,h; = [E;T, ET]T. This sequence is used by the
decoder and the alignment model later to compute the context vector.

3.2.3 Temporal Attention Model (or Multi Modal At-
tention)

Hori et al. in ”Attention-based multimodal fusion for video description” pro-
posed to handle multimodal data by fusing features of different modalities
such as texts, audios and videos together with softly assigned weights of each
modality. Fan et al. in "Multi Horizon Time Series Forecasting with Tem-
poral Attention Learning” treat different periods of the history as different
modalities and they combine them by learning relative importance of each
period for predicting current time step. The idea is to divide the input se-
quence in multiple periods , apply attention mechanism for each period and
reapply attention mechanism in a hierarchical way on the result of the prece-
dent step. The Figure below will clarify the concept: The following are

24

Figure 3.4: Temporal Attention

the equations that describe the model:

Attention .
dt = Z Gfijhj
j=1
hj — is the hidden state of the encoder . In Figurez’s referred as a
The weight «;; is computed by:

exp(e;;)

O = —————
Y Zfil exp(eix)

where
€ij = alsi, hy)

25

s; — is the hidden state of the decoder

Multimodal Fusion

As shown in Fig[3.4] we apply temporal attention mechanism on M periods of
historical data (M=2 in Fig 3), and fuse them with the multimodal attention
weights ¢+ obtained by interacting the previous hidden state s;_; with the
transformed content vectors d;*:

M

m Jm

C = § oy dy
m=1

o — exp(€e¢m)
' leyzl exp(e)
ef’ = a(sy, d}")

It is important to outline that in the toolbox implemented the architec-
ture is a 2 modal attention model (M = 2) and in the configuration file
input_configuration \inputOutDet to set the input window and the length of
one period you have to use iwindow and first_period i.e: 1window=200 and
first_period=100 means input sequence equal to 200 with 2 periods each of
length 100.

3.2.4 Dynamic Thresholding

It is required a fast, general, and unsupervised approach for determining if
predicted values are anomalous. One common approach is to make Gaus-
sian assumptions about the distributions of errors. However, this approach
often becomes problematic when parametric assumptions are violated and in
the paper ”Detecting Spacecraft Anomalies Using LSTM and Nonparametric
Dynamic Thresholding” it is proposed an approach that efficiently identifies
extreme values without making such assumptions. Once a predicted value 3
is generated for each step t, the prediction error is calculated as e, = y* — ¢
where 3! is the true value and g is the predicted value. Each e, is appended
to a one-dimensional vector of errors: e, = el ... el™! ¢! where h is the
number of historical error values used to evaluate current errors. In our
toolbox h is equal to the number of points of test data. The set of errors
e are then smoothed to dampen spikes in errors that frequently occur with
LSTM-based predictions — abrupt changes in values are often not perfectly

predicted and result in sharp spikes in error values even when this behavior

26

is normal. It is possible using the configuration parameters smooth that you
find in the file input_configuration \inputOutDet. To evaluate whether values
are nominal, it is set a threshold for prediction errors — values corresponding
to errors above the threshold are classified as anomalies. It is proposed an
unsupervised method that achieves high performance with low overhead and
without the use of labeled data or statistical assumptions about errors. With
a threshold € selected from the set:

€ = p(es) +zo(e;)
Where € is determined by maximzing the following quantity:

Ap(es)/ples) + Ao(es)/a(es)
lea| + |Eseq|2

Such that:
Aples) = ples) — plesles <e)
Ao (es)

o(es) — o(esles <€)
e, = {esles > €}
Eseq = continuos sequences of e,

Values evaluated for € are determined using z where z is an ordered set of
positive values representing the number of standard deviations above p(ey).
Values for z depend on context, and you can set it in our toolbox using
the configuration parameters z_min and z_maz in the file input_configuration
\inputOutDet. In simple terms, a threshold is found that, if all values above
are removed, would cause the greatest percent decrease in the mean and
standard deviation of the smoothed errors e,. The function also penalizes
for having larger numbers of anomalous values |e,| and sequences |Eg.,| to
prevent overly greedy behavior.

3.2.5 Pruning

The precision of prediction-based anomaly detection approaches heavily de-
pends on the amount of historical data h used to set thresholds and make
judgments about current prediction errors. At large scales it becomes ex-
pensive to query and process historical data in real-time scenarios and a
lack of history can lead to false positives that are only deemed anomalous

27

because of the narrow context in which they are evaluated. Additionally,
when extremely high volumes of data are being processed a low false positive
rate can still overwhelm human reviewers charged with evaluating potentially
anomalous events. To mitigate false positives and limit memory and com-
pute cost, in the paper ”Detecting Spacecraft Anomalies Using LSTM and
Nonparametric Dynamic Thresholding” it is introduced a pruning procedure
in which a new set, €, , is created containing max(E;.,) for all sequences
sorted in descending order. It is also added the maximum error that isn’t
anomalous. The sequence is then stepped through incrementally and the

271 —_ ’L . . .
percent decrease “mez—rmez [f at some step 1 a minimum percentage decrease

max

p is exceeded by d;, all €/ |(j < i) and their corresponding anomaly se-
quences remain anomalies. If the minimum decrease p is not met by d; and
for all subsequent errors, those error sequences are reclassified as nominal.
This pruning helps ensures anomalous sequences are not the result of regular
noise within a stream, and it is enabled through the initial identification of
sequences of anomalous values via thresholding. The Figure clarifies in
a visual way the concept. In the file input_configuration \inputOutDet the

pruning procedure can be controlled using the p parameter.

3.3 GANs

An alternative method to accomplish outlier detection in addition to error
based is to use the GANs in which the model learns to reproduce the distri-
bution of points and is able to understand when a point is not part of the un-
derlying distribution and is therefore an anomaly. In the paper ” Generative
adversarial Nets” it was proposed a new framework for estimating genera-
tive models via an adversarial process, in which the authors simultaneously
train two models: a generative model G that captures the data distribution,
and a discriminative model D that estimates the probability that a sample
came from the training data rather than G. The training procedure for G is
to maximize the probability of D making a mistake. This framework corre-
sponds to a minimax two-player game. In the space of arbitrary functions G
and D, a unique solution exists, with G recovering the training data distribu-
tion and D equal to 1/2 everywhere. In the adversarial nets framework, the
generative model is pitted against an adversary: a discriminative model that
learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to

28

Anomaly 1 Anomaly 2
0.01396

reclassify as nominal keep

] j Thmﬁhold IQ_QJUTZ

N ﬂ“”"*"“
m |l A ﬂ #\l 'fﬂ‘ [k
Mo

Smoothed Error

Figure 3.5: Pruning procedure

This example demonstrates the anomaly pruning process. In this scenario
€maz = [0.01396,0.01072,0.00994] and the minimum percent decrease p =
0.1. The decrease from Anomaly 2 to Anomaly 1 d; = 0.23 > p and this
sequence retains its classification as anomalous. From Anomaly 1 to the
next highest smoothed error (e = 0.0099) dy = .07 < p so this sequence is
reclassified as nominal.

a team of counterfeiters, trying to produce fake currency and use it without
detection, while the discriminative model is analogous to the police, trying
to detect the counterfeit currency. Competition in this game drives both
teams to improve their methods until the counterfeits are indistiguishable.
To learn the generator’s distribution p, over data x, it is defined a prior on
input noise variables p,(z) (latent space), then represent a mapping to data
space as G(z;0,), where G is a differentiable function represented in this tool-
box by a convolutional neural network with parameters ¢,. It is also defined
a second convolution neural network D(z;6,) that outputs a single scalar.
D(x) represents the probability that x came from the data rather than p,.
We train D to maximize the probability of assigning the correct label to both
training examples and samples from G. We simultaneously train G to mini-
mize 1g(1-D(G(z))): In other words, D and G play the following two-player

29

minimax game with value function V(G, D):
mingmazpV (D, G) = By 12 D()] + Bavpo la(1-D(G(2))].

We alternate between k steps of optimizing D and one step of optimizing G.
The Figure shows the training process. After the training process the

[4] 4]
AR A . A fn'i
SRYRTATE VA VA ST\ \
- "}"o \\ l."n \' L - f
.- llll:'.", \\ » .)'II

/| //////H AN N

El C

Figure 3.6: Generative adversarial nets are trained by simultaneously updat-
ing the discriminative distribution (D, blue, dashed line) so that it discrimi-
nates between samples from the data generating distribution (black, dotted
line) p, from those of the generative distribution p,(G) (green, solid line).
The lower horizontal line is the domain from which z is sampled, in this case
uniformly. The horizontal line above is part of the domain of x. The upward
arrows show how the mapping x = G(z) imposes the non-uniform distribu-
tion p, on transformed samples. G contracts in regions of high density and
expands in regions of low density of p,. (a)(b) Consider an adversarial pair
near convergence: p, is similar to pgw, and D is a partially accurate clas-
sifier. (c) After an update to G, gradient of D has guided G(z) to flow to
regions that are more likely to be classified as data. (d) After several steps of
training, if G and D have enough capacity, they will reach a point at which
both cannot improve because p;, = pgate- The discriminator is unable to
differentiate between the two distributions, i.e. D(x) =1/2

discriminator is able to recognize points that come from real distribution or
not (anomalies). Consider that the core network of the GANs used in this
toolbox is a convolutional neural network. The multivariate time series in-
put is converted in a frequence-time domain (Scaleogram) using wavelet and

30

Input Feature maps
- -
*.. Output
A,'

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 3.7: Each 2D image is the application of a DWT to each univariate
time series that result in a scaleogram. We collect the scaleograms binding
them on the third direction. After we apply the convolutional neural network
that is the core of the generator and of the discriminator.

become the input of the model as showed in Figure [3.7] The scaleogram can
not only be used to better understand the dynamical behavior of a system,
but it can also be used to distinguish different types of signals produced by
a system from each other. The strategy used is to place the scaleograms of
each signal on top of each other and create one single image with different
channels. In the file input_configuration \inputOutDet you can control the
dimension of the latent space using latent_dim and also the number of filters
of the convolutional block using n_filter_discriminator and n_filter_generator.

3.4 Forecasting

Time series forecasting problem is to study how to predict the future accu-
rately based on the historical observations. Increasing forecasting accuracy is
beneficial to operational efficiency in many aspects of society. For example,
data-driven demand forecasting techniques enable online retailers to gain a
better understanding of market demands, thus improving supply chain opera-
tion efficiency such as delivery speed and product in-stock rate. In the above
sections are already described Encoder-Decoder, Attention and Temporal-
Attention that allow forecasting and can be used for anomaly detection also
thanks to the Error-Based-Method. In the following section it will be de-
scribed a model that is not known in literature that automatically decide
how many future predictions can be considered reliable and the timestamps
over are set to 0. This new model is based on a mask that leaves unaltered

31

predictions considered reliable and sets unreliable ones to 0 and can be in-
tegrated with previous models simply by adding the mask that will depend
on a parameter that will be learned in the backpropagation phase. This
model cannot be used for anomaly detection purpose but only for forecasting
application.

3.4.1 Variable-Horizon Model

As already said above, it is important to make long-term forecasts, however
one wonders how reliable the forecasts are. An original idea developed in
the following work is to introduce a mask that set to 0 the predictions not
considered reliable and the number of reliable predictions is learned from
the data. We have to set a maz_horizon that is a int number that specify
the maximum horizon in the future that we would hope to predict. With m
we refer to the number of reliable timestamps in the future, as decimal of
maz_horizon, that the model will predict. The simple idea is to introduce
a mask in the loss function, as you can observe in Figure [3.8] that depend
to a parameter that has to be learned in the training phase. In this way
the length of the mask and as a consequence the length of the predictions is
learned from data.

L = E(vq,vp) * frnask(m)
Fnask = 0.5 % (1 4 tanh((m % hypag — h)/€))

m — number of reliable points as decimal of the maximum horizon

h — (1,2, ..., hypae) with homax mazimum horizon

It is important to outline that m is a number among 0 and 1 and it is useful
for the training phase: optimize parameter in this range is easier.

3.5 Hyperparameter optimization

In machine learning, hyperparameter optimization or tuning is the problem
of choosing a set of optimal hyperparameters for a learning algorithm. A
hyperparameter is a parameter whose value is used to control the learning
process. By contrast, the values of other parameters (typically node weights)
are learned. The same kind of machine learning model can require different
constraints, weights or learning rates to generalize different data patterns.
These measures are called hyperparameters, and have to be tuned so that the

32

{_mask

brree_ppscanl

Figure 3.8: As you can observe the initial points are not masked meanwhile
the points that are not considered reliable are set to 0.

model can optimally solve the machine learning problem. Hyperparameter
optimization finds a tuple of hyperparameters that yields an optimal model
which minimizes a predefined loss function on given independent data.The
objective function takes a tuple of hyperparameters and returns the associ-
ated loss.

3.5.1 Grid & Random Search

Grid Search is a search technique that has been widely used in many ma-
chine learning researches when it comes to hyperparameter optimization.
Among other approaches to explore a search space, an interesting alternative
is to rely on randomness by using the Random Search technique. The ideal
problem that machine learning researchers would like to work on is the one
admitting a convex objective function with no hyperparameters needed nor
relaxations, yet powerful enough to provide the tiniest error on unseen data.
However, hyperparameters are a necessary. An example of hyperparameter
that you might have heard of is the learning rate in neural networks. Diving
a little bit deeper, take regularized linear models as an example. A regular-
ization term is incorporated into the objective function in order to enforce a
determined penalty. Two well-known approaches are the imposition of the
[1-norm and [,-norm on the parameter vectors to perform feature selection
(Lasso) and control the complexity of the model (Ridge), respectively. How-
ever,penalities need to be optimized with a controlled parameter, which is

33

1 2 3
20 (20,1) (20,2) (20,3)
60 (60,1) (60,2) (60,3)
80 (60,1) (80,2) (80,3)

Table 3.1: « is on the horizontal and 8 on the vertical columns.

called hyperparameter since it needs to be set before the training process.
And for the mentioned examples, only one hyperparameter is necessary; usu-
ally, you would have to deal with more than one of them. Besides manually
searching for good candidate values for hyperparameters, the most basic and
straightforward approach for optimizing hyperparameters is the Grid Search
(GS) technique. Basically, a list of candidate values for each hyperparameter
is defined and evaluated. The name “grid” comes to the fact that all possible
candidates within all needed hyperparameters are combined in a sort of grid.
The combination yielding the best performance, preferably evaluated in a
validation set, is then selected. As an example, suppose that o and [are hy-
perparameters that will be optimized using GS. Based on some hypothetical
knowledge, we can guess that the candidates could be [1, 2, 3] and [20, 60,
80] for v and 3, respectively. Thus, we can set up a grid of the values and
their combinations in Table From the grid we have just built, each com-
bination is evaluated and the one yielding the best performance is selected.
After this process, perhaps we could find out that (3, 60) was the best option
for our problem. On the other hand, the global minimum could be located
at (2.57, 58). This task, however, starts to become very time-consuming if
there are many hyperparameters and the search space is huge. As an alterna-
tive to GS, one could rely on randomness through the Random Search (RS)
technique. It means that among the all combinations of hyperprameters a
random selection is performed to collect a subset of hyperparameters as it
clarified in Figure [3.90 In our toolbox the random search algorithm is im-
plemented and he parameter percentage_to_eliminate in input_configuration
\inputOutDet controls this random selection; percentage_to_eliminate equals
to 0 corresponds to the grid search algorithm.

34

Unimportant parameter

Grid Layout Random Layout

5
(7]
E
L]
H]
t
g
™ o ° £
=
Important parameter Important parameter

Figure 3.9: Search algorithms

35

Chapter

Experiments

4.1 Introduction

The experiments conducted to verify the performance of the models for out-
lier detection and forecasting applications are reported. The outlier detection
experiments are conducted on public data of NASA and are compared the er-
ror based strategy and GANs to discover anomaly patterns in the sequences.
The forecasting for each model will show the performances of the models
with and without the variable horizon option on air pollution dataset.

4.2 QOutlierDetection Experiments

Regarding the Error Based Strategy, models are trained to learn normal
system behaviors using encoded command information and prior telemetry
values. Predictions are generated at each time step and the errors in predic-
tions represent deviations from expected behavior. It is then used a nonpara-
metric, unsupervised approach for thresholding these errors and identifying
anomalous sequences of errors. Concerning the GANs strategy, this frame-
work is trained on normal data where the discriminator learns to distinguish
data that come from normal or an anomaly distribution and after is used on
test data. The raw data represent real spacecraft telemetry data and anoma-
lies from the Soil Moisture Active Passive satellite (SMAP) and the Curiosity
Rover on Mars (MSL). All data has been anonymized with regard to time and
all telemetry values are pre-scaled between (-1,1) according to the min/max in

36

the test set. Channel IDs are also anonymized, but the first letter gives indi-
cates the type of channel (P = power, R = radiation, etc.). Model input data
also includes one-hot encoded information about commands that were sent
or received by specific spacecraft modules in a given time window. No iden-
tifying information related to the timing or nature of commands is included
in the data. Figure[d.I]shows the dataset used for experiments. You can find

t = {[106], [107], [108], [109], [110], [111]}

Cmd sent to Module A (T/F)) 1 [0 F 0 0] 0]
Cmd received by Module A (T /F)) 0 1 0 0 0
Cmd sent to Module B (T /F) >
X = 0 0 0 0 1 0
Telemetry Value —+#1.40] [1.40] [1.40] |1.45] [1.45] [1.40]

v ={[1.39].1.39],[1.36],[1.48] , [1.46], [1.41]}

e = {[0.01],[0.01], [0.04] ,[0.03], [0.01], [0.01]}

Figure 4.1: Multivariate time series. At the bottom you can see predictions
and errors.

the data at the following link https://github.com/khundman/telemanom.
Among the different channels available we performed experiments only on id
channel ”E-1" that presents contextual anomalies. For each model we report
in Table precision, recall and fscore. To remember the meaning of these
metrics we report their mathematical formulation:

tp
ty + I
tp
ty + fn

2 x precision x recall

precision =

recall =

fscore = —
precision + recall

t, — model labels as anomaly when it is a true anomaly
fp — model labels as anomaly when it is not a true anomaly
fn — model labels as normal when it is a true anomaly

37

https://github.com/khundman/telemanom

precision recall fscore

Encoder-Decoder 0.57 0.81 0.67

Attention 0.41 0.84 0.55
Temporal-Attention 0.52 0.84 0.65
GANs 0.95 0.73 0.82

Table 4.1: Comparison among models

In the statistical analysis of binary classification, the F-1 score (also known
as F-score or F-measure , literally ”F measure”) is a measure of the accuracy
of a test . The measurement takes into account precision and recall of the
test, where precision is the number of true positives divided by the number of
all positive results so it takes in account the problem of false positive, while
recall is the number of true positives divided by the number of all tests that
should have been positive (i.e. true positives plus false negatives) so it takes
in account all that situations in which the model doesn’t see anomalies. The
F 1 is calculated using the harmonic mean of precision and recall. It can
assume values between 0 and 1. It assumes a value of 0 only if at least one
of the two is equal to 0, while it assumes a value of 1 if both precision and
recall are equal to 1.

As you can observe in Table encoder decoder, attention and temporal
attention are affected by the problem of false positives. Despite the pruning
carried out to mitigate this phenomenon, the problem of false alarms remains.
It is interesting to note that the GANs are not affected at all by this effect
and even if they show a slightly lower recall than the models used with the
error based strategy, they are the model with the highest performance if
we look at the f-score index which it takes into account both the ability of
GANSs to detect anomalies and the problem of false positives. In Tab.
you can find the chosen hyperparameters. Notice that in erro based strategy
the output window is equal to 1.

An aspect of the toolbox to improve is to consider the possibility of up-
dating the model as new data is provided and to give alarms in real time.

4.3 Forecasting Experiments

Time series forecasting problem is to study how to predict the future ac-
curately based on the historical observations. Models are trained on train

38

inputwindow neurons epochs
Encoder-Decoder 250 80 35
Attention 125 100 35
Temporal-Attention 250 150 35
GANs 200 128* 1

Table 4.2: Hyperparameters obtained with Random Search Algorithm. *The
neurons in GANs have to be thought as number of filters for convolution
operation.

data and predictions are performed along timestamps of test data to ac-
complish a comparison among forecasted values and true values in order
to compute performance metrics. The dataset contains 9360 instances of
hourly averaged responses from an array of 5 metal oxide chemical sensors
embedded in an Air Quality Chemical Multisensor Device. The device was
located on the field in a significantly polluted area, at road level,within an
[talian city. Data were recorded from March 2004 to February 2005 (one
year)representing the longest freely available recordings of on field deployed
air quality chemical sensor devices responses. Ground Truth hourly averaged
concentrations for CO, Non Metanic Hydrocarbons (NMHC), Total Nitrogen
Oxides (NOx), Nitrogen Dioxide (NO2) and indium oxide and were provided
by a co-located reference certified analyzer. Carbon monoxide (CO) is of
particular importance among the pollutants produced by combustion. It is
a toxic, colorless, odorless, tasteless and non-irritating gas which, without
adequate ventilation, can reach high concentrations. It is produced by in-
complete combustion of any material organic, in the presence of low oxygen
content in the environment. High concentrations reached in the body can
be lethal. NMHC can be of natural and anthropogenic origin, are among
the main pollutants emitted by petrochemical plants and refineries and can
also be released during the drilling and extraction of crude oil. The acronym
(NOx) generically identifies the nitrogen oxides that are produced as by-
products during a combustion that takes place using air. Nitrogen oxides,
especially nitrogen dioxide are pollutants of the atmosphere and aggravate
the conditions of the sick of asthma, children and those suffering from chronic
respiratory disease or heart disease. Nitrogen dioxide (NO 2) is a red-brown,
poisonous, pungent gas that smells similar to chlorine. Nitrogen dioxide has
been produced on a large scale since 1908 and used for the production of

39

nitric acid . Nitrogen dioxide is produced in traces from oxygen and nitro-
gen as the two main components of the atmosphere during natural processes
such as B. Indium(III) oxide (In203) is a chemical compound, an ampho-
teric oxide of indium. Since use as input all multivariate dataset resulted in
worst performance we decided to consider uni-variate time series and we ac-
complished experiments with NMHC. You can find the data at the following
link https://archive.ics.uci.edu/ml/datasets/air+quality. For each
model the idea was to use the option of variable horizon using a maximum
horizon equal to 100 and searching for the optimal future horizon. For each
model (respectively Encoder-Decoder, Attention Mechanism, Temporal At-
tention) a grid from 10 to 100 has been built with 10 steps of different output
windows on which to test the models without the ”variable horizon” option.
The idea is to check whether the optimal output time window predicted by
the respective model with the variable horizon option actually matches the
optimal window of the model used without using the above option. It is
computed the mean absolute error (mae) on test data. The formulation of
the mae is:

n_variables Ntime | J
1 y; — |
MAE = E
st Nyariables i—1 Ttime

yf — 1§ the prediction at timestamp i of variable j
ajf — s the observation at timestamp i of variable j
n_time — 1s the number of timestamps

n_variables — is the number of variables

As you can see in Table the experiments carried out with Encoder-
Decoder show that the variable horizon option is very useful for finding the
reliable time window on which to make predictions but due to the fact that
the model has to learn this time window it results in more smoothed fore-
casts. The idea is to use variable horizon as a strategy to find an optimal
output window and then run the original model on the found reliable future
timestamps. As you can see in Table and the experiments carried out
with Attention Mechanisms and Temporal Attention Mechanisms in con-
junction with variable horizon option work very bad; instead of predicting
an outputwindow of 60 and 10 respectively it predicts completely different
outputwindows failing in its goal of finding the number of reliable predictions.
We can observe from these experiments that the idea of Variable horizon of
searching for the number of reliable predictions works quite good only for

40

https://archive.ics.uci.edu/ml/datasets/air+quality

horizon | MAE
Encoder-Decoder 10 114
20 153
30 94
40 102
50 90
60 120
70 127
80 115
90 118
100 91
Encoder-Decoder VH 42 237

Table 4.3: Performance of Encoder-Decoder on a grid of different output
windows. The last row is the learned horizon of Encoder-Decoder variable
horizon, as you can see it is in a region of a low MAE for Encoder-Decoder.

horizon | MAE

Attention Mechanisms 10 114
20 126

30 125

40 126

50 109

60 84

70 235

80 323

90 244

100 232

Attention Mechanisms VH 100 241

Table 4.4: Performance of Attention Mechanisms on a grid of different output
windows. The last row is the learned horizon of Attention Mechanisms vari-
able horizon, as you can see it works quite bad predicting an output window

equal to 100 instead of 60 that is the optimal outputwindow.

41

horizon | MAE

Temporal Attent. Mech. 10 82
20 83

30 120

40 104

50 178

60 165

70 239

80 243

90 268

100 232

Temporal Attent. Mech. VH 58 222

Table 4.5: Performance of Temporal Attention Mechanisms on a grid of
different output windows. The last row is the learned horizon of Attention
Mechanisms variable horizon, as you can see it works quite bad predicting an
output window equal to 58 that does not match the optimal outputwindow
of 10.

Encoder-Decoder model. It seems that in the training process it is not able
to learn in a proper way the number of reliable predictions simultaneously
with the attention scores. The experiments were conducted on 25 epochs, 2
layers, 100 neurons, input window of 100, learning rate of 0.001 for models
without the variable horizon option and 0.01 in the other circumstance.The
initial value of the starting mask for variable horizon is 1.

42

Conclusions

The purpose of the following work was to explore time series methodologies
starting from the first pre-processing pipelines that concern the possibility of
bringing the different variables of the dataset to the same scale using stan-
dardization or normalization methods, up to the possibility of removing noise
from data with smoothing techniques such as basis splines or removal of high
frequencies thanks to wavelets. It is therefore essential to remove the noise
from the data and have variables with comparable scales before feeding them
to neural network algorithms. After this initial phase we explored different
methodologies to accomplish anomaly detection tasks and forecasting tasks.
By anomaly detection tasks we mean the capability to search pattern in the
sequence that differ from the normal scheme of the sequence, meanwhile with
forecasting task we mean the prediction of the behavior of the signal in the
future timestamps. Regarding outlier detection, we compared two types of
strategies: one called Error Based Method and the other based on GANSs.
The first is to make predictions of the sequence into the future and evaluate
how far it is from the observed behavior. Since the predictions should give
an idea of the normal behavior of the series since the model learns on data
that does not have anomalies, if the difference between predictions and ob-
served values exceeds a certain threshold implies the presence of an anomaly,
otherwise it does not. The second strategy instead uses the capability of the
discriminator of GANs to label sequences as anomaly or normal. We have
observed from the experiments conducted on NASA public data (which are
appropriately anonymized) that the models used with the logic of the er-
ror based method suffer from the problem of false positives despite strategies
such as pruning have been applied to try to contain this phenomenon. GANS,

43

on the other hand, despite losing a little in the ability to detect anomalies,
gain a lot in the problem of false positives and if you look at the f-score in-
dex as a metric, they turn out to be the best strategy for finding anomalies.
Regarding forecasting, the experiments conducted with or without the vari-
able horizon strategy (which allows to find the number of timestamps in the
future on which the prediction is considered reliable) show that the attention
mechanisms work very badly with the variable horizon strategy meanwhile
this idea used in conjunction with the encoder-decoder model seems to lead
to a solution for the output window which does not correspond to the global
minimum but to a local minimum not far from the optimal solution. This
means that you can use Encoder-Decoder plus Variable Horizon option to
search a reliable number of future timestamps on which to forecast and af-
ter finding a reliable output window, you can retrain the Encoder-Decoder
without Variable Horizon option using as output the number of timestamps
that you found previously. With this work, a software has been produced
that implements all the proposed solutions accompanied by a yaml configu-
ration file on which all the parameters and the choices to be made for the
processing of the time series can be set. In the appendix you will find the
documentation. Regarding the software, there is more work to be done on
cleaning the code, it is necessary to implement an optimization procedure of
the hyperparameters also for the GANs (it is currently possible to use the
random search only for encoder-decoder, attention and temporal attention).
It must also be adapted for real time analysis and it needs a graphical inter-
face too. Regarding the methodological perspective one limit of this work is
that it is not implemented any procedure to construct confidence intervals
and to deal with missing values. As future perspectives the purpose is to fill
this gap and try to investigate graph neural networks too that seem to be a
new frontier of research for time series.

44

Chapter A

Software Documentation

A.1 Introduction

This document is a reference to install and use the Neural Sequence Anal-
ysis Toolbox, a software that allows the user to develop complex studies on
time series data including forecasting and outlier detection. Imagine having
a dataset with different variables on the columns and with different measure-
ments over time on the rows, for example having a set of data that has on the
columns pressure and temperature and on the rows the different measures of
them over time. Forecasting means taking selected variables as input for a
certain number of timestamps and predicting their behavior (or the behavior
of a subset of them) over a time window of a certain number of future times-
tamps. By outlier detection we mean the possibility of finding anomalous
patterns, not expected, within the sequence of points. The network in the
training phase learns to recognize only the sequences without anomalies and
in the testing phase it will be presented with data in which there may be
anomalies and being patterns that the network has never seen, so it will be
able to recognize them as outliers.

A.2 Install

The following packages are required to run the code:
jupyter==1.0.0
numpy==1.19.5

45

pandas==1.2.4
Keras==2.4.3
tensorflow==2.4.1
matplotlib==3.4.1
seaborn==0.11.1
scikit-learn==0.24.2
PyYAML==5.4.1
scipy==1.6.3
PyWavelets==1.1.1
scikit-image==0.18.1
Python-version==3.7.10

A.3 Usage

To use the software it has to be launched "main.ipynb” from the root folder;
before launching the software it is important to set well the input configura-
tion. From the root folder it is possible to access to the ”input_configuration”.
It is possible to choose among ”inputForecast.yml” and ”inputOutDet.yml”.
The first is the configuration file concerning the forecasting application, the
second is related to the anomaly detection application. From the root you
will find "results” folder where you will find forecasted values for forecasting
application or anomaly labels(1 is anomaly, 0 is normal point) for outlier
detection purpose. A detailed explanation of the software is given below.
N.B: the input files should be .npy files with variables along columns and
timesteps along rows.

A.3.1 Forecasting application

As told in the introduction paragraph imagine having a dataset with differ-
ent variables on the columns and with different measurements over time on
the rows, forecasting means taking selected variables as input for a certain
number of timestamps and predicting their behavior (or the behavior of a
subset of them) over a time window of a certain number of future times-
tamps. It is important to configure parameters like number of input times-
tamps, number of output timestamps, variables to get in inputs, variables
to forecast and other hyperparameters that define the neural models. It
is possible thanks to the "inputForecast.yml” file that you find in the path

46

"root\input_configuration”. The following is the description of the settings of
the "inputForecast.yml”. First of all it is important to set Forecasting equal
to True and verify that QutlierDetection and QutlierDetectionGANs in ”in-
putOutDet.yml” are settled to False. is_variable_horizon is a boolean, true
if the choosen model is the variable horizon one. architecture is a string and
can have the following values: Encoder-Decoder, Attention, MultiModalAt-
tention, VariableHorizon. To know the details of the algorithms use the
algorithm’s documentation that you find in the root folder. Just a note on
the variable horizon: it is not a standard model known in literature but it is
a model that learns automatically how many timesteps for future prediction
are reliable. The hyperparameter layers is an integer (not a list of integers,
only one value is allowed!) and makes sense only for Encoder-Decoder. This
is the number of encoder layers that is equal to the number of decoder layers.
For the next settings of the architecture it is allowed to choose a list of values
for each hyperparameter. An algorithm called Random Search will find the
best configuration among all the possible configurations(cartesian product of
all the values listed). Below it is showed an example:

epochs:

- 20

- 50

iwindow: (input timestamps)

- 20

- 50

learning rate:

- 0.001

neurons:

- 80

owindow:(output timestamps)

- 10

- 20

The example above means that all possible combinations among the listed
value will be evaluated and the one with the lowest validation loss will be
chosen(for example one possible configuration can be 20 epochs, 20 input
window, 0.001 of learning rate, 80 neurons and 10 output window and an
other configuration could be 50 epochs, 50 input window, 0.001 of learn-
ing rate, 80 neurons and 10 output window; the one with the lowest vali-
dation loss will be chosen among all the possible candidates). first_period
makes sense only if you choose MultiModalAttention like architecture. To

47

understand the meaning of this hyperparameter refer to the paper Multi-
Horizon Time Series Forecasting with Temporal Attention Learning or the
algorithms’documentation in the root folder. Consider that the implementa-
tion allows only a 2-modal attention mechanism. starting-mask makes sense
only for variable horizon model; it is the starting value of the percentual of
the output window that will be predicted. It is an integer between 0 and 1.
The tip is to choice 0.2 when the output window is too long and 0.8 when
the output window is short. The variable horizon model will start from this
value to mask the output and will learn the best percentual of output window
to predict. For example starting_mask equal to 0.1 and owindow equal to 10
means that only one timestep in the future will be predicted and the other
9 will be setted to 0 because considered not reliable. After the training the
correct percentual of predictions will be estimated. Returning to the random
search algorithm,in the case that a lot of different values will be settled for
each hyperparameter the set of all possible configurations will result too high.
To avoid long time computations it is possible to eliminate randomly subsets
of configurations among all possible ones; This is the meaning of the percent-
age_to_eliminate. To allow the computation on all possible configurations the
letter has to be set to 0.

Preprocessing

Figure A.1: When it is chosen a subset of columns the new column indexes are
counted considering the new columns. The same is true when are obtained
the forecasted columns.

Choose_columns allows to choose a subset of columns that become the
input data of the model (the subset of variables of the multivariate time se-
ries). From this moment the index of columns is computed considering these
chosen columns. With input_columns is possible to set the index of columns
chosen if choose_columns is True. If standardize and isallstd are true all
columns will be transformed into variables with 0 mean and 1 std. There is
the possibility to not standardize all columns but only a subset of them using
columns_to_standardize and setting isallstd to False. If normalize is true your
data will be transformed into variables between 0 and 1 using the same proce-
dure of standardize. Similarly it is possible to denoise variables with wavelets
using exactly the same logic; the only difference is that is possible to choose

48

the mother wavelet using wavelet_family. To know all the possible wavelet’s
family use the link https://scikit-image.org/docs/0.18.x/ Finally you
can decide to smooth variables using B-splines, the procedure to use is very
similar to that already explored. With smoothness_preprocessing you can
regulate the amount of smoothness: 0 is interpolation, high number is a very
smoothed curve. It is important to highlights that dataset are numpay arrays
with timestamps on rows and variables on columns. Below it is reported an
example where the columns 2, 3 and 4 are chosen like input from a dataset
and (considering the new column index computed on these columns) the first
column will be normalized and the third one will be denoised with wavelets
(indexes start from 0):

choose_columns: true

input_columns:

-2

-3

-4

standardize: false

columns_to_standardize:

-1

isallstd: true

normalize: true

columns_to_normalize:

-0

isallnorm: false

denoising: true

columns_to_denoise:

-2

isall: false

wavelet_family: dbl

smoothing: false

columns_to_smooth:

-0

isallsmooth: false

smoothness_preprocessing: 20

Note that when standardize is False the columns to standardize and usall-
std are ignored, but when the first option is set to True is important to choose
isallstd to False if you want standardize only a subset of columns(the same
it is true for normalizing, denoising...)

49

https://scikit-image.org/docs/0.18.x/

General Settings

With forecasted_columns you can choose output variables. Remember that
the index to use is that one computed based on the chosen columns among
all the columns. To continue the above example we choosed the columns
2,3,4 which new indexes are reset to 0,1,2; among these columns if you want
to forecast the last 2 columns it should be taken the list of indexes: 1,2.
Fill path_train and path_test with a path of a numpy array with timestamps
on rows and variables on columns. With stream it is possible to attribute a
name to the forecast. When train is true the model will be trained. If it is
false it means that the model is already trained and should be only imported.

Plotting Input Data

Variable_to_plotis a list that defines the indexes of variables from the dataset
of chosen columns to plot. Reusing the above example, we had columns 2,3,4.
To plot the first of these you have to set Variable_to_plot to 0. (Remember
always that the index is reset). is_train is a boolean, true means that will
be plotted only data train, false means that will be plotted only data test.
input_wind_plot is the length of each plot window in the subplot of input
data. For example with a time series of 720 timestamps it could be possible
to choose input_wind_plot equal to 350 and the plot results in two windows;
the last 20 timestamps won’t be plotted. It is important to highlight that
it is not possible to plot all the timestamps (720 in this case) in only one
window of a length of 720 because of a bug that should be correct in future.
In ”PlotInputs” folder visible in the root folder will be placed the plots.

Plotting Forecasting

forecasted_variable_to_plot is a list of indexes of forecasted variables to plot.
Using the example above of two forecasted variables, to plot both of them,
you should set:

forecasted _variable_to_plot:

-0

-1
In ”Plotresults” folder visible in the root folder will be placed the plots.

50

A.3.2 Outlier Detection application

As told in the above paragraphs imagine having a dataset with different vari-
ables on the columns and with different measurements over time on the rows,
by outlier detection we mean the possibility of finding anomalous patterns,
not expected, of the variables along the time. The network in the training
phase learns to recognize only the sequences without anomalies and in the
testing phase it will be presented with data in which there may be anomalies
and being patterns that the network has never seen, so it will be able to rec-
ognize them as outliers. One way to accomplish this analysis is Error Based
Method which is used to forecast the behavior of variables on future times-
tamps and to make a comparison among forecasted values and true values;
using algorithms that are inspired on papers that are referenced in the end
of the documentation it is possible to label points as normal or anomalies.
To know all the details of algorithms used you can check on the ”algorithms’
documentation” that you find in the root folder. As an alternative it is possi-
ble to use the Discriminator of GANs: the Generative Adversarial Networks
(GANSs) learn the distribution of true data and in particular the discrimi-
nator is able to decide if the data come from the true distribution or not (
in this case we have anomalies). It is important to notice that before pass
the time sequence to the GANs the spectrogram is computed using wavelets
so a 2-dimensional input is passed to the model that contain time-frequency
information. To use the Error Based Methods it is important to configure
parameters like number of input timestamps, number of output timestamps,
variables to get in inputs, variables to forecast and other hyperparameters
that define the neural models. It is possible thanks to the ”inputOutDet.yml”
file that you find in the path "root\input_configuration”. The following is
the description of the settings of the ”inputOutDet.yml”. First of all, to
use the Error Based Method it is important to set OQutlierDetection(in ”in-
putOutDet.yml”) equal to True and verify that QutlierDetectionGANs(in
"inputOutDet.yml”) and Forecasting (in ”inputForecast.yml”) are settled to
False. architecture can have input like: Encoder-Decoder, Attention, Mul-
tiModalAttention. To know the details of the algorithms you can check in
algorithms’ documentation placed in the root folder. The hyperparameter
layers is an integer (not a list of integers, only one value is allowed!) and
makes sense only for Encoder-Decoder. This is the number of encoder lay-
ers that is equal to the number of decoder layers. For the next settings of
the architecture it is allowed to choose a list of values for each hyperparam-

51

eter. An algorithm called Random Search will find the best configuration
(the one with the lowest validation loss) among all the possible configu-
rations(cartesian product of all the listed values). Below it is showed an
example:

epochs:

- 20

- 50

iwindow: (input timestamps)

- 20

- 50

learning_rate:

- 0.001

neurons:

- 80

owindow:(output timestamps)

- 10

- 20

The example above means that all possible combinations among the listed
value will be evaluated and the one with the lowest validation loss will be
chosen(for example one can be 20 epochs, 20 input window, 0.001 of learning
rate, 80 neurons and 10 output window and an other configuration could be
50 epochs, 50 input window, 0.001 of learning rate, 80 neurons and 10 output
window; the one with the lowest validation loss is chosen). first_period makes
sense only if you choose MultiModalAttention like architecture. To under-
stand the meaning of this hyperparameter refer to the paper Multi-Horizon
Time Series Forecasting with Temporal Attention Learning or algorithm’ doc-
umentation in the root folder. Consider that the implementation allows only
a 2-modal attention mechanism. In the case that a lot of different values
will be settled for each hyperparameter the set of all possible configurations
will result too high. To avoid long time computations it is possible to elimi-
nate randomly subsets of configurations among all possible ones; This is the
meaninig of the percentage_to_eliminate. To allow the computation on all
possible configuration the letter has to be set to 0. z min and z max are
used to set the threshold to identify anomalies. Similar to other parameters
to study the details of the methodologies refer to algorithms’ documenta-
tion. As alternative to the Error Based Method there is the GANs model.
To use it set OutlierDetection and Forecasting (in ”inputForecast.yml”) to
False and QutlierDetectionGANs to True and architecture equal to GANS.

52

The hyperparameters useful for the Generative Networks are: epochs, iwin-
dow, latent_dim, n_filter_generator, n_filter_discriminator. These are all inte-
gers (NOT list of parameters! The Random Search is not performed on the
GANGs!). Pay attention on the fact that swindow has to be a multiple of 4
because of the implementation of the model. The generator and the discrim-
inator have number of filters parameters because the core of the network is a
convolutional neural network. The latent_dim is the dimension of the space
that the generator maps in the space of the real distribution. As the Error
Based Method the generative nets allow multivariate time series analysis; the
interested variables are chosen in the preprocessing phase.

Preprocessing

Figure A.2: When it is chosen a subset of columns the new columns indexes
are counted considering the new columns. The same is true when are obtained
the forecasted columns.

Choose_columns allows to choose a subset of columns that become the
input data of the model. From this moment the index of columns is com-
puted considering these chosen columns. With input_columns is possible
to set the indexes of columns that you want to select if choose_columns is
True. If standardize and isallstd are true all columns will be transformed
into variables with 0 mean and 1 std. There is the possibility to not stan-
dardize all columns but only a subset of them using columns_to_standardize
and setting sallstd to False. If normalize is true your data will be trans-
formed into variables between 0 and 1 using a similar logic as standard-
ize. Similarly it is possible to denoise variables with wavelets using exactly
the same logic; the only difference is that is possible to choose the mother
wavelet using wavelet_family. To know all the possible wavelet’s family use
the link https://scikit-image.org/docs/0.18.x/ Finally you can decide
to smooth variables using B-splines, the procedure to use is alike the ones al-
ready explored. With smoothness_preprocessing you can regulate the amount
of smoothness: 0 is interpolation, an high number is a very smoothed curve.
Below it is reported an example where the columns 2, 3 and 4 are chosen like
input and considering the new column index computed on these columns the
first will be normalized and the third will be denoised with wavelets:

choose_columns: true

53

https://scikit-image.org/docs/0.18.x/

input_columns:

-2

-3

-4

standardize: false

columns_to_standardize:

-1

isallstd: true

normalize: true

columns_to_normalize:

-0

isallnorm: false

denoising: true

columns_to_denoise:

-2

isall: false

wavelet_family: dbl

smoothing: false

columns_to_smooth:

-0

isallsmooth: false

smoothness_preprocessing: 20
Note that when standardize is False the columns to standardize and isallstd
are ignored, but when the first option is set to True is important to choose
isallstd to False if you want standardize only a subset of columns(the same
it is true for normalizing, denoising...)

General Settings

With forecasted_columns you can choose output variables. Remember that
the index to use it that one computed based on the chosen columns among
all the columns. To continue the above example we choosed the columns
2,3,4 which new indexes are reset to 0,1,2; among these to forecast the last
2 columns it should be taken the list of indexes: 1,2. Now the indexes of
columns of the forecasted series are reset to 0,1. outlier_detection_column is
the index (considering the dataset made of forecasted columns) that you want
to monitor for outlier detection purpose. To continue the above example
there are available 2 forecasted columns with reset column indexes 0 and

o4

1; to perform outlier detection on the first variable outlier_detection_column
should be equal to 0. In path_test you should insert the path of data on which
analyze possible anomalies. Instead fill path_train with the path of train data
with a numpy array without anomalies. The model learns normal sequences
during train and the different behavior of anomalies in test data is labeled
as anomaly. Remember that the inputs are numpy array with timesteps
on rows and variables on columns. With stream it is possible to attribute
a name to the variables monitored. smooth allows smoothing for the error
among predicted and actual values. A value equal to 0 is not smoothing, an
high value smooths a lot the error. When train is true the model will be
trained. If it is false it means that the model is already trained and should
be only imported.

Plotting Input Data

Variable_to_plot defines the indexes of variables from the dataset of chosen
columns to plot. Reusing the above example, we had columns 2,3,4. To plot
the first of these you have to set Variable_to_plot to 0. (Remember always
that the index is reset). In order to plot training data is_train has to be equal
to True, to plot test data it should be False. input_wind_plot is the length
of each plot window in the subplot of input data. For example with a time
series of 720 timestamps it could be possible to choose input_wind_plot equal
to 350 and the plot results in two windows; the last 20 timestamps won’t
be plotted. It is important to highlight that it is not possible to plot all the
timestamps (720 in this case) in only one window of a length of 720 because
of a bug that should be correct in future. In ”"PlotInputs” folder visible in
the root folder will be placed the plots.

Plotting Outlier Detection

wind_plot is the length of each plot window in the subplot. For example with
a time series of 720 timestamps it could be possible to choose input_wind_plot
equal to 350 and the plot result in two windows; the last 20 timestamps won’t
be plotted. It is important to highlight that it is not possible to plot all the
timestamps (720 in this case) in only one window of a length of 720 because
of a bug that should be correct in future. monitored_variable_to_plot is the
variable to monitor in order to perform outlier detection. To plot this variable
you should consider the indexes of chosen columns. Using the example above

95

where we chose columns: 2,3,4 with reset indexes: 0,1,2, to monitor the last
one you should set:

monitored_variable_to_plot:

-2
In "Plotresults” folder visible in the root folder will be placed the plots.

56

Baibliography

Chenyou Fan et al. “Forecasting with Temporal Attention Learning”.
In: The 25th ACM SIGKDD Conference on Knowledge Discovery Data
Mining (KDD’19) (2019).

Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: stat. ML
(2014).
Ilya Sutskever et al. “Sequence to Sequence Learning with Neural Net-

works”. In: Advances in neural information (2014).

Kyle Hundman et al. “Detecting Spacecraft Anomalies Using LSTMs
and Nonparametric Dynamic Thresholding”. In: The 24th ACM SIGKDD
International Conference on Knowledge Discovery Data Mining (2018).

Sepp Hochreiter et al. “Long Short Term Memory”. In: Neural Compu-
tation (1997).

Dzmitry Bahdanau. “Neural Machine Translation by Jointly Learning
to Align and Translate”. In: ICLR (2015).

Carl De Boor. “On Calculating with B-Splines”. In: journal of approxi-
mation theory (1970).

o7

	Introduction
	Preprocessing
	Introduction
	Standardization & Normalization
	B-Splines
	Wavelets

	Outlier Detection and Forecasting
	Introduction
	Error Based Method
	Encoder-Decoder
	Attention Model
	Temporal Attention Model (or Multi Modal Attention)
	Dynamic Thresholding
	Pruning

	GANs
	Forecasting
	Variable-Horizon Model

	Hyperparameter optimization
	Grid & Random Search

	Experiments
	Introduction
	OutlierDetection Experiments
	Forecasting Experiments

	Conclusions
	Software Documentation
	Introduction
	Install
	Usage
	Forecasting application
	Outlier Detection application

