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Abstract
Mixtures of ultracold quantum gases are at the heart of high-precision quantum tests of the weak
equivalence principle, where extremely low expansion rates have to be reached with matter-wave
lensing techniques. We propose to simplify this challenging atom-source preparation by employing
magic laser wavelengths for the optical lensing potentials, which guarantee that all atomic species
follow identical trajectories and experience common expansion dynamics. In this way, the relative
shape of the mixture is conserved during the entire evolution while cutting in half the number of
required lensing pulses compared to standard approaches.

1. Introduction

Mixtures of ultracold quantum gases are unique systems to study a plethora of phenomena including
molecule formation [1, 2] and many-body physics [3] with different isotopes and elements, the realization of
shell-shaped quantum gases [4] based on interspecies repulsion [5, 6], as well as testing the universality of free
fall (UFF) [7–9], where the gravitational acceleration of two different atomic species is compared by means
of atom interferometric techniques [10]. Nowadays different types of atomic mixtures are studied ranging
from laser-cooled thermal clouds [11, 12], Bose–Einstein condensates (BECs) [13–15], and degenerate Fermi
gases [16–18] to combinations of ultracold bosons and fermions [19–21]. Despite their obvious differences,
all these systems share similar experimental challenges due to the nature of a quantum gas mixture.

For instance, on Earth the gravitational sag typically leads to asymmetric states [13, 22, 23] due to
different central trajectories of the individual species, as shown in the first column of figure 1 for the
particular case of a 41K-87Rb BEC mixture. This differential sag limits the efficiency of sympathetic cooling as
well as the precision of UFF tests [24–26] and prevents the formation of shell-structures for mixtures on
ground [5].

A possible way of circumventing unwanted effects due to gravitational sag is the operation on
microgravity platforms such as drop towers [27, 28], Einstein elevators [29], zero-g planes [30] or in
space [25, 26, 31–33]. However, even then the free expansion rates of the different species do not match for
the trap configurations being considered in standard setups; see middle column of figure 1. As a
consequence, the relative density distributions of the mixture are deformed by the expansion dynamics,
spoiling symmetric shell structures and degrading the accuracy of interferometric measurements due to
relative wave-front distortions.

There are methods to engineer the expansion rates of the mixture by switching on for a short time, and
after the clouds have expanded, a trapping potential that acts as a matter-wave lens. This delta-kick
collimation technique [27, 28, 34–40] reduces the kinetic energy of the system and enables very low
expansion rates, which are mandatory for high-precision interferometry in microgravity. However, in order
to control the expansion rates of a mixture in all spatial dimensions, one lens per independent direction is
required for each species, rendering a full 3D implementation rather impractical and error prone.

In this article we propose to overcome these challenges by taking advantage of optical dipole traps
employing specialmagic wavelengths such that the ratio of the optical potentials for two different species j
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Figure 1. Integrated 2D density distributions in the comoving x-z-plane of an interacting 41K-87Rb BEC mixture displaying the
ground state (a)–(c) and the state after 50ms of free expansion (d)–(f) for three combinations of laser wavelengths and
gravitational environments. The side panels depict the integrated 1D density along z. On Earth and in the standard case of a
non-magic wavelength λlaser = 1064 nm the gravitational acceleration gE = 9.81ms−2 leads to a relative displacement between
the two condensates, potentially preventing any overlap for the ground state (a) and resulting in asymmetric and deformed
densities after some time of flight (d). In microgravity the ground state is symmetric (b) but its relative shape changes after release
from the trap (e) as a consequence of the different trap frequencies for both species (ωRb = 0.733ωK). In contrast, for the magic
wavelength λmagic = 808.24 nm, which yields ωK = ωRb, the ground state is symmetric (c) and in addition fully conserves its
relative shape during free expansion (f). The parameters for these exact numerical simulations are the trap frequency
ωK = 2π · 100 Hz, the number of particles NK = NRb = 105, and the s-wave scattering lengths aKK = 60a0, aRbRb = 100a0, and
aKRb = 20a0.

and k is given by the ratio of their masses: Vj/Vk =mj/mk
1. In this case, the classical equations of motion for

the center-of-mass dynamics are identical for all species, which results in a vanishing differential gravitational
sag [6, 42] and perfect co-location of the species involved even in an Earth-based laboratory; see figure 1(c).

Most importantly, as we will show here, optical dipole traps with such a magic laser wavelength guarantee
that the relative shape of the mixture is conserved during the entire dynamics even for time-dependent
potentials; see last column of figure 1. This property has far-reaching consequences and enables an efficient
collimation of mixtures of ultracold atoms, so that very low expansion rates can be reached with fewer
lensing pulses than standard approaches.

Hence, employing the magic wavelengths proposed here will drastically improve the control over the
dynamics of mixture experiments, allowing new applications in ground-based setups, but also boosting
long-time dual-species interferometry in space by simplifying the source preparation and at the same time
minimizing spurious phase shifts due to wave-front distortions that would otherwise undermine the
accuracy of the measurements.

As discussed in appendices A and B the proposed method applies to several types of mixtures, namely
BECs, cold thermal clouds, and non-interacting ultracold Fermi gases, but not to Bose-Fermi mixtures. As a
specific example, we will focus here on the particularly interesting case of a multi-species BEC.

2. Common dynamics for quantum gas mixtures

As long as the trapping potentials of the different atomic species fulfill the condition Vj/Vk =mj/mk, which
can be achieved by employing a magic laser wavelength and also holds for gravitational and inertial forces,
the classical equations of motion for the center-of-mass are identical for all species and we can describe the
mixture with a comoving coordinate system that follows the classical trajectory as shown in appendix A. In
this comoving frame and for locally harmonic potentials V j (i.e. well approximated by a harmonic potential

1 Note that for different internal states of the same atomic isotope the masses mj and mk are identical and one recovers the usual notion
of ‘magic wavelength’ employed in optical atomic clocks [41].
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over the size of the atomic cloud 2), the expansion dynamics is therefore governed by potentials of the form

Vj(x, t)

mj
=

1

2
xTΩ2(t)x (1)

wheremj is the atomic mass of species j and Ω2(t) is a 3× 3 matrix containing the trap frequencies.
Since the local trap frequencies of potentials given by equation (1) are equal for all species, we can

describe the time evolution of the mixture with a common scaling that conserves the relative shape of the
density distributions analogously to the single-species case [43–45]. Indeed, starting with the well-known
nonlinear Gross–Pitaevskii equation (GPE), the transformation

ψj(x, t) =
eiΦj(ξ,t)

√
detΛ

ψΛ,j (ξ, t) (2)

of the wave function to the adapted coordinates ξ = Λ−1(t)x with the quadratic phase Φj(ξ, t) leads to a
transformed GPE with nearly vanishing time evolution for the wave function ψΛ,j(ξ, t) as discussed in
appendix A.

The reason for this nearly frozen dynamics in the adapted coordinates is the fact that the
position-dependent quadratic phase Φj(ξ, t) already contains the entire dynamics as long as the
time-dependent Thomas–Fermi approximation is valid and locally harmonic potentials are considered. In
this case, the relative shape of the wave function does not change and the time evolution in the comoving
frame is fully determined by the transformation in equation (2) and the scaling matrix Λ = Λ(t), which is a
time-dependent 3× 3 matrix that fulfills the differential equation

d2Λ

dt2
+Ω2(t)Λ =

(
Λ−1

)T
Ω2(0)

detΛ
(3)

with the initial conditions Λ(0) = 1 and Λ̇(0) = 0.
We emphasize that for potentials satisfying equation (1) a constant, non-vanishing interspecies

interaction does not change the relative shape of the mixture during the dynamics because the effect of the
interaction has already been taken into account for the initial ground state of the mixture, which is simply
rescaled by the expansion dynamics as shown in the right column of figure 1.

3. Efficient atomic lensing for mixtures

Since our method works for time-dependent potentials which are locally harmonic, it can also be exploited
for matter-wave lensing of the ultracold atomic mixture with delta-kick collimation techniques [27, 28,
34–40]. In general, achieving 3D collimation requires one lensing pulse for each independent direction,
which for a single quantum gas in a cylindrically symmetric trap implies two pulses and four for a
dual-species mixture.

By employing magic wavelengths for crossed optical dipole traps, which lead to local potentials given by
equation (1) with a diagonal matrix Ω2(t) = ω2(t)diag(1,1,2), the required number of pulses for a
dual-species mixture can be reduced to just two because the relative shape of the mixture is conserved by the
time evolution and both species respond equally to the lensing potential.

As an especially relevant example, in figure 2 we compare the performance of a double-lens sequence
acting on a 41K-87Rb BEC mixture for the cases of standard and magic laser wavelengths, where the results
are obtained by numerically solving the GPE. During the free expansion of the mixture a first lensing pulse is
applied 35ms after release from the trap, followed by a second lensing pulse at t= 600ms such that very low
expansion rates are achieved for 41K in all spatial directions. In addition, by means of a Feshbach
resonance [46] the interspecies scattering length is tuned to the constant value aKRb = 20a0, where a0 is the
Bohr radius, which results in a large spatial overlap of the ground state densities of the two species. All
chosen parameters are realistic for operation in microgravity and in line with the requirements of future
space missions for precision measurements [26].

As shown in figure 2(b), for the magic laser wavelength an almost perfect collimation can be achieved
and the size of the clouds along all three spatial directions remain below 400µm for an expansion time of

2 In Earth-based experiments the combination of finite Gaussian beam size and gravitational sag may lead to non-negligible local anhar-
monicities, but they can be suppressed by employing larger beam waists and higher laser power.
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Figure 2. Time evolution of the density distributions (top) and standard deviations σ(t) (bottom) of an interacting 41K-87Rb BEC
mixture for a sequence of two atomic-lensing pulses. During free expansion the trapping potential is switched on again for a first
(second) lens pulse 35 (600)ms after release from the trap for a duration of 1.85 (2.40)ms with frequencies scaled by a factor of
1 (1/4). For the standard laser wavelength λlaser = 1064 nm (a) the lenses act differently on both species (ωRb = 0.733ωK)
resulting in an almost uncollimated expansion of the rubidium cloud (red) along the x- and y-axis and deforming the whole
mixture due to interspecies interactions. On the other hand, for the magic wavelength λmagic = 808.24 nm (b) simultaneous
collimation for both species in all directions is naturally accomplished (ωRb = ωK), the relative shape of the mixture is conserved
during the entire evolution and cloud sizes below 400µm for up to 10 s are attained (see inset), which corresponds to 3D
expansion energies of 3.4 and 4.3 pK. The cylindrically symmetric setup for this numerical simulation is defined by the radial trap
frequency ωK = 2π · 15 Hz, the number of particles NK = NRb = 105, and the s-wave scattering lengths aKK = 60a0,
aRbRb = 100a0, and aKRb = 20a0.

10 s, which corresponds to theoretically achievable 3D expansion energies of 3.4 and 4.3 pK for 41K and 87Rb,
respectively. Moreover, when employing a magic laser wavelength the relative shape is fully conserved during
the entire evolution and irrespective of the constant interspecies scattering length.

In contrast, in the case of a standard laser wavelength, displayed in figure 2(a), the initially inner species
(87Rb) expands much faster after the lensing pulses (see inset for long times), which leads to strong
deformations of the density distribution of both species that are enhanced by the interspecies interaction.
Such behavior can lead to spurious interferometric phases that can severely compromise the measurement
accuracy. Furthermore, since good collimation in all directions is only achieved for 41K, the rather large
expansion rate along x and y for 87Rb would ultimately limit the time that the atom cloud can be potentially
observed. The relatively slow expansion of 87Rb in the z-direction is due to a fortunate coincidence because
the frequency in this direction is very close to the one of 41K in x and y, which is due to the mass ratio and
polarizability of the two species.

In summary, the common translation and expansion dynamics for mixtures of ultracold atoms afforded
by magic laser wavelengths is a very natural way of improving the efficiency of atomic lensing protocols,
which are essential ingredients for precision UFF tests. Moreover, other applications such as studying the
dynamics of quantum bubbles based on mixtures [5, 6] will particularly benefit from this approach since it
enables the preparation of slowly expanding mixtures that freely evolve for a long time while preserving the
shell structure. In this respect the lensing of shell mixtures is complementary to the lensing of rf-dressed
shells [47].

4. Magic laser wavelengths

For the typical example of a crossed optical dipole trap [48] discussed above, the square of the radial trap
frequency is given by

ω2
j =

4PLRe
[
αj,L

]
π cϵ0w4

Lmj
(4)

where PL is the laser power, wL the beam waist and αj,L the polarizability, which includes the contributions
from all relevant atomic transitions.
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Figure 3. Polarizability α divided by the atomic massm as a function of the laser wavelength λL for all stable alkaline elements.
Line crossings indicate magic laser wavelengths yielding a common dynamics for the two species involved. The resonant D1- and
D2-transition lines are marked by vertical dashed lines with the same color code as the polarizabilities.

From equation (4) we see that the ratio between the polarizability and the mass contains the entire
species dependence of the trap frequency. In figure 3 this ratio is plotted as a function of the laser wavelength
λL for all alkali metals. Similar calculations for the polarizability have been done before in references [49, 50].
As clearly seen in figure 3, there are several crossing points for different pairs of elements, which correspond
to magic wavelengths leading to the common dynamics for both species as discussed in the present paper.
The precise values of the magic wavelengths and the corresponding scattering rates for different isotope
combinations can be found in appendix C.

In particular, binary combinations of 23Na, 87Rb, and 133Cs feature crossing points far away from their
transition frequencies and are therefore excellent candidates for implementing our proposed scheme. Of
special interest is also the crossing of 41K and 87Rb at λL = 808.24 nm because this mixture is considered a
prime candidate for future space-based tests of UFF [26]. In fact, a similar wavelength has been used in
reference [42] to avoid the differential gravitational sag of a 40K-87Rb mixture. However, for such a
Bose–Fermi mixture there is no common expansion dynamics.

5. Discussion

In order to assess the practical feasibility of magic laser wavelengths, the required laser power and atom losses
due to spontaneous emission need to be considered. For the particular lensing sequence of a 41K-87Rb BEC
mixture with the magic laser wavelength λL = 808.24nm discussed in this paper (see figure 2 (b)) a beam
waist of 100 (600)µm and a laser power of 2.61 (212)mW are required for the first (second) lens pulse,
respectively. These parameters constitute a reduction by a factor of 5 in laser power compared with a setup
based on the standard laser wavelength λL = 1064 nm. Hence, for currently planned high-precision UFF tests
in space our approach can substantially relax the requirements on the needed laser power in addition to
making the lensing process much more efficient as discussed above. The required laser light can be generated
with standard diode lasers at 808 nm, which are already available for ground operations and can be further
qualified for space missions. Moreover, atom losses due to off-resonant photon scattering are negligible
during the rather short lensing pulses, where peak scattering rates of 7.77(17.5)× 10−3 1/s for 41K and
35.0(78.7)× 10−3 1/s for 87Rb for the first (second) lens occur for λL = 808.24 nm. For these scattering rates,
performing the final evaporation in the optical trap seems feasible as well.

When comparing our approach to another recent proposal for atomic lensing of BEC mixtures [38], we
identify three key improvements that result from using a magic wavelength: (a) the common dynamics
enabled by the magic laser wavelength allows a reduction of the required number of lens pulses by up to a
factor of 2, (b) less laser power is needed due to working with a smaller detuning, and (c) the interspecies
interaction does not need to be switched to zero during the lens sequence in order to avoid deformations of
the clouds, so that the scattering length can instead remain constant with a non-vanishing value during the
whole process. For the 41K-87Rb mixture discussed in detail above, adjusting the interspecies interaction
through a Feshbach resonance [46] is nevertheless required in order to obtain a miscible initial state. The
large magnetic field that is applied to address the Feshbach resonance needs to be switched off after the entire
lens sequence since it would disturb the interferometric measurement. By optimizing the timings of the
sequence, the impact of this late change of the interspecies interaction on the expansion dynamics can be
made negligible. Alternatively, by considering mixtures with a naturally low interspecies scattering length
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and a miscible ground state, such as 84Sr-86Sr [51] or 87Rb-168Yb/170Yb [52], there would be no need for a
Feshbach field at all. In the case of rubidium and ytterbium there is no single magic wavelength, however,
and thus a bichromatic optical trap is required to achieve identical trap frequencies.

Besides these crucial advantages for matter-wave lensing of ultracold atomic mixtures, there are also
other applications that will benefit from magic optical wavelengths such as the generation in ground-based
laboratories of shell-shaped BEC mixtures, which can be exploited to investigate curved 2D-geometries in 3D
space, or the study of molecule formation on ground due to an improved overlap of the two different species
involved. Lastly, our study of magic wavelengths (figure 3) has also revealed the possibility of a three-species
mixture of 7Li, 41K, and 87Rb with large spatial overlap in Earth-bound experiments that could open up new
avenues in many-body physics.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
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Appendix A. Evolution of BECmixtures in optical potentials formagic laser wavelengths

In this appendix we show that in the case of magic laser wavelengths and for locally harmonic potentials the
central trajectories of all atomic species are identical for quantum gas mixtures and that the evolution of the
centered wave packets can be described by a single scaling in the case of BEC mixtures.

A.1. Classical equations of motion
From the classical equation of motionm ẍ=−∇V it is clear that when the ratio Vj/mj is the same for
different atomic species (labeled here with the subindex j), both the equations and the corresponding
solutions will be the same for all species. Furthermore, given any external potentials with this property, such
as the optical potentials for magic laser wavelengths considered in this article, the same conclusions will also
apply in the presence of a gravitational field, as can be immediately seen from the equation of motion in that
case:

mjẍ=−∇
(
Vj(x, t)+mjU(x, t)

)
, (A.1)

where U(x, t) is the gravitational potential. In addition, the result can be straightforwardly generalized to
include the effects of inertial forces as well (for example, due to accelerations and rotations of the
experimental setup) and it leads in all cases to identical trajectories for the different atomic species.

In particular, this implies that the gravitational sag for a trap potential, which can be determined by
taking ẍ= 0 on the left-hand side of equation (A.1), will be the same for all species. Moreover, the frequency
matrix (Ω2)ab = (1/mj)∂

2Vj/∂xa∂xb at the trap minimum will be common for all atomic species and, more
generally, this will also hold for the local frequency matrix obtained by evaluating the second derivatives of
the potential at any other position. As a simple example, if we consider a harmonic external potential in a
uniform gravitational field, corresponding to U(x) = U0 − g · x, and with one of its principal axis aligned
with the gravitational acceleration g, the resulting gravitational sag is∆z=−g/ω2

z . Here ω
2
z is the eigenvalue

of the matrix Ω2, which in this case is spatially independent, along the direction of the gravitational field. For
non-uniform gravitational fields gravity gradients lead to non-vanishing second derivatives of the
gravitational potential U, whose contribution can be included in the frequency matrix Ω2. In practice,
however, such contributions are much smaller than those from the external potential V j and can typically be
neglected.

A.2. Propagation of matter wave packets
Interestingly, the above conclusions for the classical case can be naturally extended to the quantum dynamics
of matter wave packets and atomic clouds. In order to show this point, it is particularly useful to consider a
description of matter wave propagation in terms of central trajectories and centered wave packets [24, 45, 53,
54] which is applicable to a very broad range of situations, including a relativistic description of matter wave
propagation in curved spacetime [55]. Further details can be found in the quoted references, but the key
result is that the wave-packet evolution can be expressed as follows:

ψj(x, t) = eiSj/ℏ eiP(t)·(x−X(t))/ℏψ
(c)
j (x−X(t), t) , (A.2)
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where X(t) and P(t) =mjẊ(t) correspond to the central trajectory and satisfy the classical equations of

motion, ψ(c)
j is the centered wave function, and the phase Sj is given by the classical action

Sj =

ˆ t

t0

dt ′
(
1

2
mjẊ

2 −Vj(X, t
′)−mjU(X, t

′)

)
. (A.3)

More importantly for our considerations in the present paper, the evolution of the centered wave packet is
governed by the following Schrödinger equation:

iℏ
∂

∂t
ψ
(c)
j (x ′, t) =

[
− ℏ2

2mj
∇2

x ′ +Vj(x
′, t)

]
ψ
(c)
j (x ′, t), (A.4)

where we have introduced the comoving coordinate x ′ = x−X and Vj(x ′, t)≡ Vj(X+ x ′, t)−Vj(X, t)−
x ′ ·∇Vj(X, t), which reduces to the purely quadratic part when V j is a harmonic potential. For non-uniform
fields the gravitational potential U gives rise to a contribution analogous to Vj, but it is typically much
smaller and has been omitted here. Note also that in the main text, e.g. in equations (1) and (2) and figures 1
and 2, we have used x instead of x ′ for the comoving coordinates in order to ease the notation.

For BECs and BEC mixtures, one needs to add the mean-field interaction term and obtains then the GPE
for the centered wave functions describing the multispecies condensate in the mean-field approximation:

iℏ
∂

∂t
ψ
(c)
j (x ′, t) =

[
− ℏ2

2mj
∇2

x ′ +Vj(x
′, t)+

∑
k

gjk
∣∣∣ψ(c)

k (x ′, t)
∣∣∣2]ψ(c)

j (x ′, t), (A.5)

where the subindex j labels the atomic species and we have taken into account that for the potentials being
considered the central trajectory X(t) is the same for all species. If in addition the potential can be regarded
as locally harmonic (i.e. well approximated by a harmonic potential over the size of the atomic cloud), in
equation (A.5) one can simply take

Vj(x
′, t) =

mj

2
x ′TΩ2(t)x ′, (A.6)

with a common frequency matrix Ω2(t) for all species and corresponding to the second derivatives of the
potential evaluated at the central trajectory: (Ω2)ab(t) = (1/mj) ∂

2Vj/∂xa∂xb
∣∣
x=X(t)

.

The initial ground state of the mixture is in this case determined by the time-independent GPE

µ ′
j ψ

(c)
j (x ′,0) =

[
mj

2
x ′TΩ2(0)x ′ +

∑
k

gjk
∣∣∣ψ(c)

k (x ′,0)
∣∣∣2] ψ(c)

j (x ′,0) (A.7)

where µ ′
j is the chemical potential of species j. The chemical potential µ ′

j is defined here with respect to the
potential Vj. Strictly speaking, in general one may need to add x ′-independent terms analogous to those in
equation (A.3), which can be important when the condensate mixture interacts with an external particle
reservoir, but are not relevant for our considerations.

A.3. Scaling approach and time-dependent Thomas–Fermi approximation
In the case of identical central trajectories and locally harmonic potentials described above, the (quantum)
dynamics of the centered wave packets, which includes the size evolution of the BEC mixture, can be
determined quite efficiently without having to solve the coupled system of nonlinear partial differential
equation (A.5) explicitly. In fact, for potentials given by equation (A.6) the relative shape of the initial density
distribution of the mixture is conserved during the time evolution, so that for constant interaction strengths
the time-dependent wave functions are governed by a single scaling law analogous to the scaling solution for
single-species BECs [43–45].

To prove this statement, we introduce the rescaled coordinates

ξ = Λ−1(t)x ′, (A.8)

with the time-dependent 3× 3 scaling matrix Λ(t), and perform a transformation of the centered wave
functions

ψ
(c)
j (x ′, t) =

eiΦj(ξ,t)√
detΛ(t)

ψΛ,j (ξ, t) , (A.9)

7
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with

Φj(ξ, t) =−
βj(t)

ℏ
+

mj

2ℏ
(Λξ)T

dΛ

dt
ξ, (A.10)

and

βj(t) =

tˆ

t0

dt ′
µ ′
j

detΛ(t ′)
. (A.11)

By applying this transformation to equation (A.5) and arranging the terms appropriately, we obtain the
rescaled differential equation

iℏ
∂

∂t
ψΛ,j(ξ, t) =

[
H(1)

j (ξ, t)+H(2)
j (ξ, t)

]
ψΛ,j(ξ, t), (A.12)

for the centered wave packets and with the position- and time-dependent terms

H(1)
j (ξ, t) =− ℏ2

2mj
∇T

ξΛ
−1

(
Λ−1

)T ∇ξ, (A.13)

and

H(2)
j (ξ, t) =

1

detΛ

[
mj

2
ξTΩ2(0)ξ+

∑
k

gjk |ψΛ,k(ξ, t)|2 −µ ′
j

]
. (A.14)

Up to this point the rescaled GPE (A.12) is exact as long as the scaling matrix Λ = Λ(t) fulfills the ordinary
differential equation

d2Λ

dt2
+Ω2(t)Λ =

(
Λ−1

)T
Ω2(0)

detΛ
, (A.15)

with the initial conditions

Λ(0) = 1 and
dΛ

dt

∣∣∣∣
t=0

= 0 . (A.16)

Clearly, the above transformation requires identical central trajectories and a common frequency matrix
Ω2(t) for all species, so that a single scaling matrix Λ(t) is sufficient to capture the evolution of the entire
mixture. In the usual case of different trap frequencies for the atomic species, different scalings are necessary
for the individual species, which leads to approximate solutions for the mixture dynamics as discussed in
reference [38]. In particular, the miscible and immiscible regions of the mixture would expand differently for
unequal trap frequencies and give rise to shape deformations, whereas in the case of a common frequency
matrix the whole mixture evolves uniformly.

Indeed, as we will show in the following, there is nearly no dynamics of the centered wave packets in the
rescaled coordinates and the time evolution is almost entirely determined by the transformation (A.9). First,

the contribution of the kinetic term H(1)
j , defined in equation (A.13), can be neglected based on the

well-known time-dependent Thomas–Fermi approximation [15] which is valid as long as the density
distributions only undergo spatial changes on length scales larger then the healing length. For the parameters
of typical experiments discussed here this assumption is already fulfilled for the ground state of the mixture
and stays valid during the time evolution since most of the dynamics is included in the quadratic
phase (A.10).

Next, one can show that the remaining differential equation, governed by the term H(2)
j defined in

equation (A.14), conserves the density |ψΛ,j(ξ, t)|2 over time because H(2)
j is real and acts only on position

space. Thus, we obtain

|ψΛ,j(ξ, t)|2 ≈ |ψΛ,j(ξ,0)|2 (A.17)

and the rescaled GPE (A.12) can be written as

iℏ
∂

∂t
ψΛ,j(ξ, t)≈

1

detΛ

[
mj

2
ξTΩ2(0)ξ+

∑
k

gjk |ψΛ,k(ξ,0)|2 −µ ′
j

]
ψΛ,j(ξ, t). (A.18)
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Since due to the initial conditions (A.16) we obtain the relation |ψ(c)
j (x ′,0)|2 = |ψΛ,j (ξ,0) |2, we can

make use of the time-independent GPE (A.7) to show that the right hand side of the differential
equation (A.18) vanishes:

iℏ
∂

∂t
ψΛ,j(ξ, t)≈ 0. (A.19)

Hence, the dynamics in the adapted coordinates is practically frozen: ψΛ,j(ξ, t)≈ ψΛ,j(ξ,0)≈ ψ
(c)
j (x ′,0).

Therefore, the dynamics in the comoving frame is given by the initial density profile ψ(c)
j (x ′,0) and the

transformation (A.9) which is governed by the time-dependent scaling matrix Λ(t) determined by
equation (A.15).

The scaling approach enables an efficient description of the dynamics of BEC mixtures since it only
requires the solution of the ordinary differential equation (A.15). The resulting solutions are valid as long as
the time-dependent Thomas–Fermi approximation holds, which is the case in many practical
implementations and setups.

Moreover, the scaling matrix Λ(t) and the transformation (A.9) can also be used to accelerate the exact
numerical integration of the GPE. Since most of the dynamics is absorbed in the transformation (A.9) a
numerical simulation based on the rescaled coordinates (A.8) can be very efficient because only the
remaining dynamics of the transformed GPE (A.12) needs to be computed which is far less demanding than
a simulation of the full GPE (A.5) in the lab coordinates.

The numerical results shown in this paper were obtained by solving the transformed GPE (A.12) with an
embedded Runge–Kutta method. In case of different frequency matrices Ω2(t) for the species involved, an
average scaling can still be used to reduce the computational costs of the numerical simulation.

Appendix B. Quantum-degenerate Fermi gases and thermal clouds

Besides BEC mixtures there are several other cases where magic-wavelength optical potentials can lead to a
common expansion dynamics.

(a) Non-interacting fermions: Let us consider the ground state of a quantum-degenerate gas of
non-interacting identical fermions (e.g. spin-polarized atoms) in a harmonic trap with frequency
matrix Ω2(0). At time t= 0 the quantum gas is released from the trap or, more generally, one has a
time-dependent harmonic potential with frequency matrix Ω2(t) for t> 0. In this case, the expansion
dynamics can also be described in terms of a time-dependent rescaling ξ = Λ−1

F (t)x ′ provided that the
principal directions of the frequency matrix remain constant in time. Indeed, in that case it can be
shown [56] that the time evolution of the one-particle phase-space distribution is entirely captured by a
rescaling matrix ΛF(t) satisfying the following ordinary differential equation with initial conditions
given by equation (A.16):

d2ΛF

dt2
+Ω2(t)ΛF =

(
Λ−1
F

)T
Ω2(0)Λ−1

F

(
Λ−1
F

)T
, (B.1)

and the dynamics of the scaling factor along each principal direction actually decouples from the rest.
The ordinary particle density distribution can be straightforwardly obtained from the phase-space
distribution by integrating over the momentum and one gets n(x ′, t) = n

(
Λ−1
F (t)x ′,0

)
.

For a mixture of non-interacting fermionic species the previous result will separately hold for each
one of the atomic species. Hence, since the time evolution of the scaling matrix is entirely determined by
the frequency matrix, magic-wavelength optical potentials will lead to a common matrix ΛF(t) for all
species.

(b) Bose–Fermi mixtures: From equations (A.15) and (B.1) we see that the scaling matrices for BECs and
Fermi gases satisfy different differential equations, which lead in general to inequivalent expansion
dynamics even for a common frequency matrix Ω2(t) and vanishing interspecies interaction. It is
therefore not possible to have a common expansion dynamics for Bose–Fermi mixtures even when
employing a magic wavelength for the optical potential.

(c) Thermal clouds: In fact, one can show that the scaling associated with the matrix ΛF(t) satisfying
equation (B.1) can describe the expansion dynamics of any non-interacting quantum gas (either
bosonic or fermionic) provided that they are initially in a stationary state of the trap potential [57] with
frequency matrix Ω2(0). Such stationary states include energy eigenstates but also mixed states such as
thermal states. Therefore, magic-wavelength optical potentials will also give rise to a common expansion
dynamics of the different atomic species in sufficiently dilute thermal clouds where interatomic
interactions can be neglected.

9
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Appendix C. Optical dipole potentials

C.1. General relations for optical dipole traps
Neutral atoms can be trapped by the dipole force generated with off-resonant laser fields [48]. The
corresponding optical dipole potential Vj(x, t) for atoms of species j is then given by

Vj(x, t) =− 1

2ε0c
Re

[
αj,L

]
IL(x, t) , (C.1)

where IL(x, t) is the laser intensity and

Re
[
αj,L

]
= πc3ε0

∑
k

fk
ω3
k

(
Γk

ωk −ωL
+

Γk

ωk +ωL

)
(C.2)

is the real part of the polarizability, which contains contributions from all relevant atomic transition lines
labeled by the index k. Here ωL is the laser frequency, ωk the transition frequency, Γk the natural line width,
and fk = (2Jk + 1)/(2J0 + 1) the degeneracy factor with J0 and Jk corresponding to the quantum number of
the total electron angular momentum of the ground and excited state, respectively. For the D1 and D2
transition lines of alkaline elements we obtain fD1 = 1 and fD2 = 2. We emphasize that equation (C.2) is valid
far away from the resonances, i.e. |ωk −ωL| ≫ Γk, which is fulfilled for all the laser frequencies considered in
this paper. In addition, we consider linearly polarized light parallel to the quantization axis (typically
determined by an external bias magnetic field) for the optical dipole lasers. This choice ensures the
degeneracy of the magnetic sublevels of the ground state manifold and thus equal energy shifts [48]. For
circularly polarized light this degeneracy is lifted and trapping all magnetic sublevels in a potential with equal
trap frequencies would be more involved.

For the typical case of a red-detuned crossed optical dipole trap the combined intensity of the two
Gaussian beams in the harmonic approximation is given by the relation

IL(x, t) =
4PL(t)

πw4
L

(
w2
L − x2 − y2 − 2z2

)
, (C.3)

where PL(t) is the laser power and wL the beam waist. The resulting optical dipole potential has the
cylindrical symmetric form Vj(x, t) =mjω

2
j (x

2 + y2 + 2z2)/2 and is determined by the radial trap frequency

ω2
j =

4PLRe
[
αj,L

]
π cϵ0w4

Lmj
. (C.4)

Hence, equal trap frequencies and therefore common dynamics for an atomic mixture can be achieved if the
ratio Re

[
αj,L

]
/mj is identical for all the species involved.

Even though the laser frequency is chosen to be far from the transition lines there are still atom losses
from the optical trap due to off-resonant photon scattering. The scattering rate is given by

Γj,L(x, t) =
ω3
L |αj,L|2

6πℏc4ε20
IL(x, t) , (C.5)

where for large detunings the square of the absolute value of the polarizability can be approximated by its
real part |αj,L|2 ≈ (Re

[
αj,L

]
)2. The peak scattering rate occurs for the maximum laser intensity at the center

of the crossed optical dipole trap and can thus be written as

Γpeak,j,L(t) =
2ω3

LPL(t) |αj,L|2

3π2ℏc4ε20w2
L

. (C.6)

The lifetime of the atoms in the trap can be estimated by the inverse of the peak scattering rate.

C.2. Magic optical wavelengths for atomic mixtures
There is a large variety of possible isotope combinations that can benefit from using a magic wavelength to
circumvent the differential gravitational sag for the mixture and to achieve a common expansion dynamics.
Table C1 gives an overview of all possible binary mixtures between stable bosonic alkaline elements and their
corresponding magic laser wavelength. These wavelengths were calculated based on equations (C.2)
and (C.4) by taking into account the D1 and D2 transition lines for each isotope.

In order to avoid severe atom losses due to off-resonant photon scattering, only magic wavelengths
red-detuned with respect to all atomic transition lines are considered and not those located between the
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Table C1.Magic laser wavelengths and relative photon scattering rates for dual-species mixtures of different alkaline isotopes. The
relative scattering rates are calculated in comparison to a reference case with laser wavelength λL0 = 1064nm and the laser power is
chosen so that the trap frequencies, given by equation (C.4), are identical for the different laser wavelengths. Only magic laser
wavelengths below 2µm are considered.

isotopes j, k λmagic nm
−1

Γj,magic

Γj,L0

Γk,magic

Γk,L0

Li7, Na23 — — —
Li7, K39 808.92 4.4 11.0
Li7, K41 806.13 4.5 11.9
Li7, Rb87 807.48 4.4 21.8
Li7, Cs133 907.71 2.1 9.4
Na23, K39 — — —
Na23, K41 — — —
Na23, Rb87 946.00 1.6 2.1
Na23, Cs133 1022.05 1.2 1.4
K39, Rb87 806.77 11.7 22.8
K41, Rb87 808.24 11.2 20.9
K39, Cs133 937.09 2.1 3.7
K41, Cs133 941.60 2.1 3.4
Rb87, Cs133 1164.08 0.64 0.57

transition lines of one of the two species. Moreover, to better assess the feasibility for the individual
combinations, the scattering rate for each species caused by the magic wavelength is compared to the
scattering rate for the reference laser wavelength λL0 = 1064nm. For certain combinations, this comparison
is quite favorable, so that we expect a broad application of magic wavelengths for mixtures of ultracold atoms
in the future.

For mixtures including non-alkaline elements the corresponding magic wavelengths can be calculated in
the same way. However, for some particular interesting combinations of rubidium with either strontium or
ytterbium there is no single magic wavelength available due to the rather different electronic structure of the
atoms and therefore widely separated transition lines. This case requires bichromatic optical dipole traps,
which enable the adjustment of the trap frequency ratio through the laser powers [50, 58]. For instance a
combination of laser light at 532 nm and 1064 nm, which could be generated by frequency-doubling, would
be suitable for a mixture of 87Rb-168Yb/170Yb.
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