Synthetic Fuels in Transport, Aviation, and Shipping – Opportunities and Challenges

Sandra Richter^{1*}, Samuel Hasselwander², Ines Österle², Marina Braun-Unkhoff¹, Juliane Prause¹, Manfred Aigner¹

German Aerospace Center (DLR)

¹ Institute of Combustion Technology

² Institute of Vehicle Concepts

*German Aerospace Center (DLR) Institute of Combustion Technology | Department Chemical Kinetics and Analytics | Pfaffenwaldring 38-40 | 70569 Stuttgart | Germany Sandra.Richter@dlr.de

Begleitforschung Energiewende im Verkeh

for Economic Affairs and Climate Action

ederal Minist

Supported by:

on the basis of a decision by the German Bundestag

Knowledge for Tomorrow

Motivation

Reducing global warming below 2 °C (better: 1.5 °C) and effects of climate change

Reducing emission of greenhouse gases – goals:

- European Union (EU):
 - \circ Reduction of CO₂ to 55% by 2030 compared to 1990
 - Net zero greenhouse gas emission by 2050
- Germany:
 - \circ Reduction of CO₂ to 65% by 2030
 - Climate neutrality by 2045

Reducing emission of greenhouse gases – How?

- European 2030 Climate Target Plan: Increasing share of renewable energy in transport sector to 24%
- Renewable Energy Directive (RED III): 2.6% RFNBO in 2030
- ReFuelEU Aviation \rightarrow aspired minimum shares:
 - o 2% SAF in 2025 (in Germany: 0.5% PtL in 2026)
 - o 5% SAF in 2030 with 0.7% PtL (in Germany: 2%)
 - $\circ~$ 63% SAF in 2050 with 28% PtL
- Shipping: Efforts in EU to define shares for PtL fuels

 $\Longrightarrow \begin{array}{l} \label{eq:Plans to increase these shares} \\ \mbox{(possibly up to 100% SAF in 2050)} \end{array}$

RFNBO – Renewable liquid and gaseous transport Fuels of Non-Biological Origin **SAF** – Sustainable Aviation Fuels

Synthetic Fuels from renewable energy

- Synthetic Fuels in Road Transport
- Synthetic diesel and gasoline
- Oxygenated fuels
- Gaseous fuels

Sustainable Aviation Fuels

- Fischer-Tropsch (FT) kerosene
- Methanol-to-Jet (MtJ)

Synthetic Maritime Fuels

- Synthetic diesel and LNG
- Oxygenated fuels (methanol and oxymethylene ether)
- Ammonia and hydrogen

Summary and Conclusions

Synthetic Fuels from renewable energy

- Synthetic Fuels in Road Transport
- Synthetic diesel and gasoline
- Oxygenated fuels
- Gaseous fuels
- Sustainable Aviation Fuels
 - Fischer-Tropsch (FT) kerosene
 - Methanol-to-Jet (MtJ)
- Synthetic Maritime Fuels
 - Synthetic diesel and LNG
 - Oxygenated fuels (methanol and oxymethylene ether)
 - Ammonia and hydrogen
 - Summary and Conclusions

Synthetic Fuels from renewable energy

Synthetic Fuels from renewable energy

 \square

BEniVer ("Begleitforschung Energiewende im Verkehr")

Research project accompanying the funding initiative "Energy transition in transport" of the German Federal Ministry of Economic Affairs and Climate Action (BMWK)

- Funding initiative comprises 17 research projects focusing on the production and usage of synthetic fuels made via the Power-to-Liquid process
- Projects cover the different transport sectors of road transport, aviation, and shipping as well as power generation
- BeniVer: Started in June 2018, runs until March 2023

Aims of BEniVer

- Comparison and evaluation of project results
- Development of road map for further research, production, and market launch of synthetic fuels
- Networking and communication within funding initiative
 - \rightarrow Status conference from 30 June to 01 July in Berlin
 - Presentation of project results
 - If interests write to <u>beniver@dlr.de</u>

Supported by:

on the basis of a decision by the German Bundestag

-> Motivation

Synthetic Fuels from renewable energy

- Synthetic Fuels in Road Transport
- Synthetic diesel and gasoline
- Oxygenated fuels
- Gaseous fuels
- **Sustainable Aviation Fuels**
- Fischer-Tropsch (FT) kerosene
- Methanol-to-Jet (MtJ)
- Synthetic Maritime Fuels
 - Synthetic diesel and LNG
 - Oxygenated fuels (methanol and oxymethylene ether)
 - Ammonia and hydrogen

Synthetic diesel and gasoline

Synthetic Diesel

- Produced from FT process
- Paraffinic hydrocarbons, mainly linear and/or slightly branched
 - Standard EN 15940, but usage only in dedicated vehicles possible
 - Properties similar to fossil diesel (EN 590), besides density:

	Fossil diesel	FT diesel		
CN	≥ 51	≥ 51		
ρ (kg/m³) _{15°C}	820 to 845	765 to 810		
CFPP (°C)	-20 to +5	-20 to +5		
<i>Т</i> _{b,95%} (°С)	360	360		

 Blends with FT diesel conform to EN 590 up to about 30 %(v/v)

Synthetic Gasoline

- Produced from FT process or as MtG (Methanolto-Gasoline)
 - → Paraffinic hydrocarbons (raw product)
- Isomerization and when needed aromatization necessary to meet standard EN 228
 - \rightarrow Easier to achieve within MtG process

- Compatibility with existing standards
- Full compatibility with current engine technology
- Use as neat fuel possible

 CH_2

Ether

H₃C

 CH_3

Alcohols

- $n = 0 \rightarrow DME$
- $n \ge 1 \rightarrow OME$ (often n = 3-5)
- No C-C bonds
 - \rightarrow High potential to reduce soot emissions
- · New emissions: Aldehydes and ketones

DMC / MeFo

Oxygenated fuels

<u>Ether</u>

	Diesel	Diesel DME Oxymethylene ethe				OME _n)	
			OME ₁	OME ₂	OME ₃	OME ₄	OME ₅
<i>Т</i> _b (°С)	360 (FBP)	-24.8	42	105	156	201	242
<i>Τ</i> _f (°C)	-406	≈ -140	-105	-7065	-4341	-107	≈ 18.4
ρ (kg/m³) _{15°C}	820-845	Gas	850-867	961	1021	1059	1100
<i>v</i> (mm²/s)	2.0-4.5	Gas	0.32-0.33	0.64	1.05	1.75	2.63
FP (°C)	≥ 55	-42.2	-32	12	54	88	115
CN	≥ 51	> 55	29-37.6	63	70-78	90	100
H _u (MJ/I)	≈ 35	18.44	19.30	19.53	19.54	19.47	19.64
<i>H</i> _u (MJ/kg)	≈ 43	27.60	22.44	20.32	19.14	18.38	17.86

	enated tu	Both blend gasoline o	ding compone or neat fuel po	ent for We ssible con	II known as blei nponent for gas	nding Blendi oline gasolir	ng component ne possible	t for Cons comp	idered as ble onent for die:	
Diesel		Gasoline	<u> </u>	4	Alcohols					
			Methanol	Ethanol	1-Butanol	2-Butanol	iso- Butanol	tert- Butanol	1-Octanol	
	$C_{14}H_{30}$	C_8H_{15}	CH₃OH	C ₂ H ₅ OH	nC ₄ H ₉ OH	sC ₄ H ₉ OH	iC ₄ H ₉ OH	tC ₄ H ₉ OH	nC ₈ H ₁₇ OH	
<i>Т</i> _b (°С)	360 (FBP)	210 (FBP)	65	78	117.7	99.5	108	83	195	
<i>Τ</i> _f (°C)	-406	-90.595.4	-98	-114	-89.5	-114.7	-108	26	-16	
ρ (kg/m³) _{15°C}	820-845	720-775	792	785	810	806.3	801.8	790 _(20 °C)	830 _(20 °C)	
<i>v</i> (mm²/s)	2.0-4.5		0.75	1.5	2.63-3.7					
FP (°C)	≥ 55	≤ -35	9	12	35	24	28	11	84	
CN	≥ 51		5	8	17-25					
RON		≥ 95	109	109	96-98	101-105	105-113	107	28	
MON		≥ 85	89	90	78-85	82-93	90-94	94	27	
H _u (MJ/I)	≈ 35	30-33	15.8	21.4	26.9	26.7	26.6	25.7	31.1	

Oxygenated fuels

• $n = 0 \rightarrow DME$

• $n \ge 1 \rightarrow OME$ (often n = 3-5)

• No C-C bonds

- → High potential to reduce soot emissions
- New emissions: aldehydes and ketones

<u>Alcohols</u>

- Methanol is considered as neat fuel in spark ignition engines
 - \rightarrow Used in China
 - \rightarrow In USA blends up to 85 %(v/v)
- Butanols as blending component for gasoline
- n-Octanol as blending component for diesel (not conform to EN 590)

DMC / MeFo

- _C___CH₃
- DMC = Dimethyl carbonate
- MeFo = Methyl formate
- No C-C bonds
 - \rightarrow High potential to reduce soot emissions
- ON = 102-115
 - → Better knock resistance than gasoline
- Considered as DMC+MeFo blend and blending components with gasoline and/or methanol

- Methanol as neat fuel possible
- DMC/MeFo blends for special applications (e.g. range extender)
- No standard for direct use as fuel (for OME_n under progress)
- Compatibility with current engine technology limited, esp. regarding materials
- Use as drop-in or near-drop-in depends on amount of admixture (oxygen content)

Gaseous fuels

- Synthetic natural gas
- Three types of application:

Synthetic LNG

Synthetic CNG

• For heavy duty vehicles

- For passenger vehicles
- Properties similar to fossil natural gas
- · Less emissions compared to diesel or gasoline
- Shorter range due to lower volumetric energy density:

- Compatibility with existing standard (EN 16723-2)
- Compatibility with current gas engine technology expected
- Use as neat fuel possible

Synthetic CNG + H_2

- For passenger vehicles
- H_2 content of about 30 %(v/v) considered
- Less CO₂ emissions than CNG
- Properties change with increasing amount of hydrogen (density, combustion temperature)
 - \rightarrow Material and technology being compatible with H₂ necessary

- 2 %(v/v) H₂ possible according to EN 16723-2
- Modifications necessary

Synthetic Fuels from renewable energy

- > Synthetic Fuels in Road Transport
 - Synthetic diesel and gasoline
 - Oxygenated fuels
 - Gaseous fuels

Sustainable Aviation Fuels

- Fischer-Tropsch (FT) kerosene
- Methanol-to-Jet (MtJ)

- Synthetic Maritime Fuels
 - Synthetic diesel and LNG
 - Oxygenated fuels (methanol and oxymethylene ether)
 - Ammonia and hydrogen

Sustainable Aviation Fuels (SAF)

Some general facts

- Have to comply with ASTM D7566
 - \rightarrow Within the annex, seven SAF defined being certified for the use in mixture with fossil kerosene
- Currently only blends with max. 50 %(v/v) allowed since SAF mainly paraffinic
- Application of 100% SAFs possible \rightarrow Stronger reduction of emission than with 50% blend
 - $\circ~$ Have to meet current jet fuel specification (required)
 - $\circ~$ Usability demonstrated in several test flights
- Oxygenated fuels not possible due to less stability than hydrocarbons
 - \rightarrow Less options than in road transport or shipping

SAF made from renewable energy

FT kerosene

Methanol-to-Jet (MtJ)

 Already approved for usage and listed in annex of ASTM D7566

Not yet approved, but similarity to Alcohol-to-Jet (AtJ)
 → Shortened approval process expected

SAF made from biomass feedstock already available

- HEFA kerosene (Neste, Finland; World Energy, CA/USA)
- AtJ-SPK (Gevo, TX/USA; LanzaJet, GA/USA)
- Currently < 0.1% SAF share of worldwide fuel consumption (pre-Covid (2019) about 287 million t/a*) */ATA

Synthetic Fuels from renewable energy

- > Synthetic Fuels in Road Transport
 - Synthetic diesel and gasoline
 - Oxygenated fuels
 - Gaseous fuels
- Sustainable Aviation Fuels
 - Fischer-Tropsch (FT) kerosene
 - Methanol-to-Jet (MtJ)

Synthetic Maritime Fuels

- Synthetic diesel and LNG
- Oxygenated fuels (methanol and oxymethylene ether)
- Ammonia and hydrogen

Summary and Conclusions

Synthetic Maritime Fuels

Synthetic diesel and LNG

- Both fuels expected to be used without modification of current engine technology
- Help toward the reduction of emissions from maritime sector (besides CO₂ also soot and SO_x)
- Synthetic LNG as replacement fossil LNG (ISO 20519)
- FT diesel can replace marine gas oil (MGO; ISO 8217)
 - \rightarrow If applicable optimization of fuel control system
 - \rightarrow FT shipping diesel should have higher C-number than paraffinic diesel for automobiles (EN 15940)

Methanol

- In shipping currently fuel with highest potential as alternative fuel
- Distinct reduction of emissions \rightarrow Possibility that no exhaust gas treatment is necessary
- Energy density close to LNG (MeOH: 16 MJ/I, LNG: 22 MJ/I)
- Already some single applications, expected to increase within next years
 - \rightarrow E.g. Maersk ordered 12 container vessels fuelled with methanol
- Existing global infrastructure since methanol is an important raw material in chemical industry
 → Need to be expanded to cover demand for ships
- No standard \rightarrow Single permission needed

Synthetic Maritime Fuels

Oxymethylene ether (OME_n)

- Considered as blending component to marine diesel
 - \rightarrow Enables distinct reduction of soot emissions
- Compatibility with material limited, modification of sealing materials required when larger amounts used (up to 30 %(v/v))

Ammonia (NH₃)

- Non-carbon fuel \rightarrow No CO₂ emissions
 - \rightarrow Increased emissions of NO_x and of N₂O in particular have to be avoided with appropriate exhaust gas treatment
- Only considered for bulk carriers due to toxicity
- Usage in direct combustion (only NH₃, dual or multi fuel) or in fuel cell under discussion
- Energy density of liquid ammonia (-33 °C): 15.6 MJ/I \rightarrow Similar to methanol and LNG

Hydrogen (H₂)

- Non-carbon fuel \rightarrow No CO₂ emissions \rightarrow Exhaust gas consists only of water vapor
- Single applications in fuel cell powered ferries
- For use in bulk carriers also direct combustion possible, in dual or multi fuel engines
- Low energy density:
 - Liquid hydrogen 9.1 MJ/I (-253 °C)
 - Compressed hydrogen 5.6 MJ/I (700 bar)

Synthetic Fuels from renewable energy

- > Synthetic Fuels in Road Transport
 - Synthetic diesel and gasoline
 - Oxygenated fuels
 - Gaseous fuels
- Sustainable Aviation Fuels
 - Fischer-Tropsch (FT) kerosene
 - Methanol-to-Jet (MtJ)
- Synthetic Maritime Fuels
 - Synthetic diesel and LNG
 - Oxygenated fuels (methanol and oxymethylene ether)
 - Ammonia and hydrogen

Summary and Conclusions

Summary and Conclusions

Emissions

- All synthetic fuels allow reduction of CO₂, CO, UHC, soot, SO_x
 - \rightarrow Reduction of NO_x depends on combustion behavior of fuel and conditions
- Use of ethers and methanol promises strongest reduction
- With NH_3 and H_2 , no C related emissions

Compatibility

Mostly given for paraffinic fuels from FT or methanol process as well as for synthetic CNG / LNG

Avoiding of new / more emission! (aldehydes/ketones / NO_x/N_2O / CH_4)

- Use of oxygenated fuels depends on amount of admixture
 - \rightarrow Often modifications, at least of material, necessary
 - \rightarrow Not allowed in aviation due to less stability and higher risk of water contamination
- Use of pure NH₃ and H₂ in shipping requires new technology (material / storage / power unit / ...)

Application

- Road transport: Synthetic fuels for existing vehicles → Transition towards electricity and fuel cells
 → Higher acceptance and focus of manufacturer (even in heavy transport)
- In aviation and shipping synthetic fuels needed
 - \rightarrow Use of electricity and $\rm H_2$ only for short distances

Synthetic Fuels in Transport, Aviation, and Shipping – Opportunities and Challenges

Sandra Richter¹, Samuel Hasselwander², Ines Österle², Marina Braun-Unkhoff¹, Juliane Prause¹, Manfred Aigner¹

German Aerospace Center (DLR) ¹ Institute of Combustion Technology ² Institute of Vehicle Concepts

Sandra.Richter@dlr.de

THANK YOU FOR YOUR ATTENTION

Begleitforschung Energiewende im Verkeh

for Economic Affairs and Climate Action

ederal Minist

Supported by:

on the basis of a decision by the German Bundestag

Knowledge for Tomorrow