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Abstract

Modern industrial applications require reliable and accurate aerodynamic data for de-
sign and optimization. This data is generally produced using CFD simulations and wind
tunnel testing. Although these approaches offer significant individual benefits, they also
have certain limitations. CFD fails to yield accurate solutions towards the edge of the
envelope, whereas the wind tunnel experimental data offers data only at specific sensor
locations. Data fusion techniques combine the individual strengths of these data sources
to deliver accurate and reliable data. POD-based data fusion techniques like Gappy POD
and regularizedGappyPOD are well-established andwidely used in various studies. These
techniques compute the data fusion result via a least-square fit in the POD subspace. Re-
cently shallow artificial neural networks have also been used in data fusion techniques to
reconstruct the flow solution. This thesis proposes an alternative data fusion approach
called Gappy ANN and compares it with Gappy POD. The idea of Gappy ANN is to replace
the POD subspace with a solution space generated via a shallow artificial neural network.
The advantage of this approach is that knowledge of the sensor positions can be directly
considered when creating the solution space. This thesis demonstrates the performance
and robustness of Gappy POD and Gappy ANN on an aerodynamic test case fusing high-
quality experimental and numerical data. Gappy POD performs better in reconstructing
the flow solution than Gappy ANN, showing only minimal errors. To improve their pre-
diction accuracy, DEIM-based sensor placement strategies are applied to the POD reduced
space and ANN solution space to obtain the new optimal sensor locations. Gappy POD
and GappyANN solutions are recomputed using these new locations. The results for both
experimental andDEIM-based indices are analyzed to demonstrate the significance of the
DEIM-based algorithm for the Gappy approaches in improving prediction accuracy.
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Nomenclature

Latin Symbols

H Measurement matrix
M Mach number
N Size of the computational grid
P Mask matrix
Re Reynolds number
S Vector of sensor measurements
U, V Orthonormal matrices
Y Set of Snapshots
W i Weight matrix in the respective ANN hidden layers
Cp Pressure coefficients
b Bias
d Size of the feature space
f Nonlinear activation function
r Rank of the snapshot matrix
s Size of S
x X coordinates
li
j Input at the neurons in their respective ANN hidden layer

n1 Size of the first hidden layer
n2 Size of the second hidden layer
ui POD basis vectors
wi

j ANN basis vectors at the neurons in their respective ANN hidden layer
yi Each sample with d feature space
â POD basis coefficients / ANN basis coefficients
ŷ Approximated full flow solution

Greek Symbols

Σ Diagonal matrix containing singular values
λ Penalization parameter
γ Slope in the kernel function
σi Entries in the Diagonal matrix Σ
ξ Location of the dominant POD mode / ANN basis coefficient
α Angle of attack

Abbreviations

ANN Artificial Neural Network
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1 Introduction

An aircraft’s development entails acquiring aerodynamic data for different flight con-
ditions. Essential parameters like lift coefficients or the pressure distribution across the
Aircraft’s surface are used in the multidisciplinary analysis, such as structural, perfor-
mance, and load evaluations. Modern industrial applications typically generate this data
through Computational Fluid Dynamics (CFD) [9] simulations. Nevertheless, due to their
computational complicatedness in handling large-scale dynamical and control systems,
modern mathematical models dealing with real-life industrial problems constantly pose
challenges in applying numerical simulations. In some flight conditions, CFD data is
supplemented by the wind tunnel testing results because CFD, as a standalone, cannot
provide accurate results. However, this raises a discrepancy between the computational
and experimental data as wind tunnel testing results cannot provide the data at each grid
point of the discretized Aircraft due to the limited designated sensor locations compared
to the CFD solution, which records the results at each grid location.
Given the high cost of CFD, the critical importance of research today is to uncover ways

to lower computational time while retaining the high fidelity of the analysis. Higher-
fidelity data typically comprise more detailed physics and are computationally expensive
to evaluate than lower-fidelity data. Lower-fidelity data sources are generally more af-
fordable, but the solution produced using these data neglects significant physical effects
present within the higher-fidelity data. Hence Data fusion techniques combine the indi-
vidual strengths of different data sources to provide consistent, accurate, helpful infor-
mation and reliable data sets. Variable-fidelity surrogate models (VFM) are a popular data
fusion strategy for scalar-valued quantities. VFM, also known as multi-fidelity modeling,
refers to the exploitation of two or more data layers of variable fidelity to create an in-
expensive emulator of a given high-order numerical model. The most popular method
employed for VFM is a correction-based method. The correction is called the “bridge
function.” The high-fidelity data is then approximated by a surrogate model for the low-
fidelity data via an additive, multiplicative, or hybrid correction [22].
In a study, [27], data from two computer codes of different fidelity were combined using

a simple “additive bridge function” with the Kriging method. Gaussian process regres-
sion, also known as Kriging, is a method of interpolation based on the Gaussian process
governed by prior covariances with an assumption that the given sample points are re-
alizations of correlated random variables. It can handle highly nonlinear responses and
features fast evaluation times, making it a famousmethod in various fields, likely to design
and analyze computer experiments [37, 43], machine learning [35], and surrogate modeling
[18]. Other well-known VFM techniques, such as Cokriging [23] and Hierarchiel Kriging
[21], have also been successfully used to model scalar-valued quantities of interest in var-
ious engineering fields. These techniques are applied in aerodynamic applications for
variable-fidelitymodeling based on numerous sources of computational data [18, 24, 8], ex-
perimental data, and numerical data [29]. These two techniques directly extend Gaussian
process regression towards a variable fidelity framework. This study also demonstrated
a non-hierarchial approach for the fusion of scalar-value quantities in which a gaussian
process model is built for every data source individually.



2 1 Introduction

The surrogate modeling of vector-valued quantities based on the variable fidelity
methodology was shown in [4, 7]. The surrogate model for high-fidelity data was built
with the aerodynamic data from various computer simulations of different accuracy on
the same computational grid. A common orthonormal basis was computed using the di-
mensionality reduction technique Proper Orthogonal Decomposition (POD) [34, 3]. Using
a variable-fidelity surrogatemodel like Cokriging orHierarchial Kriging, the scalar-valued
basis coefficients of this POD basis are interpolated. In a recently proposed data fusion
strategy for vector-valued quantities [36], experimental and numerical data to the same
aerodynamic flow conditions and spatial grid were combined via a weighted sum in a
Bayesian setting. However, introducing low and high-fidelity data on the same computa-
tional grid may result in disfavor as it prevents their application for the fusion of sparse
experimental sensor data and high-dimensional numerical data. This disadvantage was
overcome by the Gappy POD method, which combines POD with a least-square prob-
lem to reconstruct not completely known data. The key concept is that in a least-square
sense within the subspace spanned by the POD modes, a solution can be found which
minimizes the differences to reference data at a few discrete locations. Gappy POD was
first proposed to reconstruct images, such as human faces, from partial data [17]. Later
the Gappy POD technique was extended to aerodynamic applications in reconstructing
incomplete aerodynamic data [10]. This study has shown that Gappy POD is an effective
technique for reconstructing complete flow solutions from limited surfacemeasurements
for the case of steady aerodynamic flow around an airfoil. Subsequently, a regularized
Gappy POD approach was introduced to avoid overfitting [19]. The authors fused CFD
and experimental surface pressure data from a steady aerodynamic flow around the flap
of a transport aircraft using their regularized Gappy POD approach. This methodology
was later extended such that the fused aerodynamic surface data sums up the overall in-
tegral coefficients as measured by the wind tunnel balance in the study [32]. However, the
Gappy POD approach is impacted by an assumption of linearity within the POD model
and the consecutive least-squares problem. In addition, such data-driven approaches of-
ten have the least acceptance rate because it is hard to estimate the uncertainty in the
predicted data. This issue was addressed in the study [6], where the authors proposed a
Bayesian extension for Gappy POD. This proposal aims to solve the Gappy POD problem
by employing Gaussian process regression considering nonlinear covariance functions.

In the study, [42] Gappy PODmethod is used to handle the unsteady flow reconstruction
problems. Based on this procedure, a systematic approach for optimal sensor placement is
developed. Study [40] used a heuristic technique to decide the sensor locations by placing
them at spatial maxima and minima of each POD mode in the investigation of “feedback
flow control on the wake of a circular cylinder.” The study [44] used the Gappy POD to
find efficient sensor placement in the adaptive sampling for regional ocean forecasting.
DEIM (Discrete Empirical Interpolation Method) [12] is an extension of POD that aims
to reconstruct the high-dimensional state with a low-dimensional data set representation
by selecting interpolation points in the POD reduced space. Although it was initially de-
veloped as a variant of the dimensionality reduction technique, it is used extensively in
DEIM-based sensor placement strategies in [30, 26, 13, 14, 15].

This thesis work aims to investigate the standard POD-based data fusion techniques
and proposes a new approach called Gappy ANN, in which the POD-based solution space
is replaced with a space generated via a shallow artificial neural network (ANN) and com-
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putes a data fusion result via a least-squares fit in this space. The proposed and standard
methods’ performance and robustness are exemplified by investigating a test case fus-
ing high-quality experimental and numerical data. The investigation is then extended to
the optimal sensor placement strategy based on the DEIM algorithm. Alternative to the
POD-based DEIM, a new method is proposed by replacing the POD solution space with
the solution space generated byANN.The new locations obtained through the POD-based
DEIM and ANN-based DEIM algorithms are used again in their respective Gappy data fu-
sion approaches to check for any potential improvements in their predictions.

This thesis is structured as follows. A theoretical introduction to POD and the stan-
dard methods based on the POD, likely ordinary and regularized Gappy POD is provided
in sections 2.1 and 2.2 followed by kernel-based regression methods to solve the Gappy
least-square problem in section 2.3. An introduction to Shallow artificial neural networks
and their application in flow reconstruction is discussed in section 2.4, followed by a the-
oretical introduction to the proposed Gappy ANN in section 2.5. The details of the DEIM-
based algorithm are discussed in section 2.6. The results for the discussed data fusion
approaches and their respective DEIM methods are then discussed in chapter 3. This
thesis is closed by giving a conclusion and future scope in chapter 4.





2 Theoretical Foundations

Figure 2.1: Workflow of data fusion approaches

Proper Orthogonal Decomposition (POD) is a linear dimensionality reduction tech-
nique based on Singular Value Decomposition (SVD) [41], often used to generate a low-
rank, orthogonal basis that optimally represents a set of data. Instead of computing the
desired quantity within the high-dimensional full-order space, it is determined within a
low-dimensional subspace known as “Principal Subspace,” spanned by the so-called POD
basis, which is constructed using a finite number of sample values of the quantity of in-
terest. The POD technique is summarized below.
Let us consider a set of N snapshots s.t. Y = {yi|i = 1, ..., N} with each sample yi

having d features i.e. yi = (yi,j)j=1,...,d. The samples are assumed to be centered around
the mean without loss of generality. The resulting outcomes are stored in the snapshot
matrix Y ∈ RN×d. An SVD is performed on the snapshot matrix Y, which yields,

Y = UΣVT, (2.1)

where U = [u1, ..., uN ] ∈ RN×N and V = [v1, ..., vd] ∈ Rd×d are orthonormal matrices s.t.
UTU = UUT = IN and VTV = VVT = Id. Σ is a diagonal matrix containing the singular
values in descending order, i.e., σ1 ≥, ...,≥ σd ≥ 0. Considering r as the snapshot matrix
rank, it can be inferred that only the first r ≤ d singular values are non-zero. The POD
basis, i.e., {u1, ..., ur}, is then constituted by considering the r left singular vectors, which
are also the first r columns of thematrixU. The data fusion technique Gappy PODutilizes
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these POD basis to compute the data fusion results via a least-squares fit as illustrated in
Figure 2.1.

2.1 Gappy POD

A high-dimensional solution representation from a limited number of sensor measure-
ments is possible if the dataset exhibit a low-dimensional structure. This attribute has
been controlled for state estimation using either a tailored basis, such as POD or a gen-
eral basis in which the signal is sparse. Both approaches are influenced by the fact that
there exists a basis in which a high-dimensional state vector has a compressible or sparse
representation [16].

Given a vector of experimental data S ∈ Rs with s < N experimental sensors, a key idea
of the Gappy POD is to interpret S as a vector y ∈ RN from which only the components
yj1 , ..., yjs where j1, ..., js ∈ {1, ..., N} are known. This can be accomplished by considering
the relationship,

S =

s1
...

ss

 =

yj1
...

yjs

 = PTy, (2.2)

where P ∈ RN×s is a mask matrix. Assuming that y can be approximated using the POD
subspace, let us find the first r POD basis coefficients â = (â1, ..., âr)T with the help of the
matrix of POD basis vectors Ur = [u1, ...ur] ∈ RN×r such that

y ≈ ŷ =
r

∑
j=1

âjuj = Ur â. (2.3)

A standard way of approximating the solution is simply solving the least-square prob-
lem. The least-square problem defines the smallest L2 error regarding the observed en-
tries of the vector y from the basis coefficient vector â ∈ Rr as

â = arg min
a

∥∥∥PTUra− S
∥∥∥2

2
(2.4)

Usually, X = PTUr ∈ Rs×r has a complete column rank, so equation (2.4) has a unique
solution as

â = (XTX)−1XTS. (2.5)

Therefore the ordinaryGappyPOD solution of the vector ŷ can be obtained by substituting
the basis coefficient â in equation (2.3).

2.2 Regularized Gappy POD

The ordinary Gappy PODmethod has a few shortcomings. Firstly, the least-squares prob-
lem formulated in equation (2.4) can be inaccurate due to the influence of vectors corre-
sponding to small singular values. Hence it is favorable to impose some penalty on the
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basis coefficients â to reduce the variance by employing regularization terms. This will
also help avoid overfitting, which is often necessary when dealing with data from differ-
ent sources. Thus by scaling the basis vectors with their corresponding singular values,
the influence of the less critical POD modes can be restricted.
Ridge regularization, also calledTikhonov regularization, is themost popular technique

to reduce variance. The idea of this approach is to impose an L2 penalty on the basis
coefficient vector a. From this technique, the corresponding Gappy POD problem reads,

âr = arg min
a

∥∥∥PTUra− S
∥∥∥2

2
+ λ

∥∥∥a
∥∥∥2

2
, (2.6)

where λ > 0 is the penalization parameter, which controls the regularization strength.
The larger the value of λ, the higher the shrinkage towards 0. As seen in equation (2.3), if
X = PTUr has full column rank, the solution of the Gappy POD is unique. i.e.

âr = (XTX + λI)−1XTS. (2.7)

So, substituting the value of âr in the equation (2.3), the regularized Gappy POD approxi-
mation of the vector ŷ is obtained as,

ŷ =
r

∑
j=1

âjuj = Ur âr. (2.8)

2.3 Kernel based regression techniques to solve Gappy problem

As seen in section 2.1, approximating the solution of the Gappy POD involves solving a
least-square problem. In this sense, one can understand the least-square problem of the
Gappy POD as a standard regression problem that fits data by introducing a feature space.
One way of solving this regression problem is by employing Kernel Ridge Regression
(KRR). KRR combines ridge regression and linear least squares with L2-norm regulariza-
tion with the famous Kernel Trick [33]. The kernel trick enables samples to operate in a
high-dimensional, implicit feature space without ever entering one and calculating the
coordinates of the data in that space by simply computing the inner product of all data
pairs to reduce the computational complexities. The criteria to choose the kernel function
k(yi, yj) is given in the Mercer theorem [31]. From Mercer’s theorem, k(yi, yj), yi, yj ∈ Y
must be continuous, symmetric, and must have a positive semi-definite Grammatrix. Ac-
cordingly, the KRR learns a linear function in a feature space generated by the respective
kernel function and the data. Another method to solve the linear regression problem
is using Support Vector Regression (SVR) [11]. It is a supervised learning algorithm and
non-parametric approach because it depends on kernel functions.
The accuracy of the data fusion technique also depends on the adequate selection of

the kernel function k(yi, yj) and their hyperparameters. Below is a list of kernel functions
available from the literature [38]:

1. Linear Kernel: The linear kernel is the most straightforward function with the Eu-
clidean inner product of yT · y. The linear kernel function is given as

k(yi, yj) = yT
i yj, where yi, yj ∈ Rd. (2.9)



8

2. Polynomial Kernel: The Polynomial kernel function is given as

k(yi, yj) = (γ · yT
i yj + c)D (2.10)

where the hyper-parameters γ is the slope, c is the constant term, and D is the poly-
nomial degree D ∈N = {1, 2, ...}. If c = 0, the kernel is called homogeneous.

3. Radial Basis Kernel: The RBF kernel function is given as

k(yi, yj) = exp
(
−γ ·

∥∥∥yi − yj

∥∥∥2
)

. (2.11)

The parameter γ influences the outcome of the kernel and hence should be care-
fully chosen. If overestimated, the exponential will behave almost linearly, and the
higher-dimensional projection will lose its non-linear power. On the other hand, if
underestimated, the function will lack regularization [1].

4. Sigmoid Kernel: The Hyperbolic Tangent Kernel is known as the Sigmoid Kernel
or the Multilayer Perceptron (MLP) kernel. The equation to compute the sigmoid
kernel is given as

k(yi, yj) = tanh
(

γ · yT
i yj + c

)
, (2.12)

where γ is the slope, and c is the constant intercept term.

2.4 Shallow Neural Network in the application of flow reconstruction

Besides the standard POD-based data fusion methods, shallow learning techniques are
also widely used [16]. An ANN may contain many hidden layers, but Shallow Neural Net-
work (SNN) may consist of only 1 or 2, or none. The benefit of the SNN is that it allows
faster training, less tuning, and more straightforward interpretation than deep networks.
The linear last layer of the SNN delivers a supervised joint learning framework for the
low dimensional approximation space of the flow field. Also, it maps the sensor measure-
ments to this low-dimensional space. Consequently, this allows the approximation basis
to be tailored to the associated measurements [16].

To construct such an SNN, first, a Fully Connected Neural Network (FCNN) is defined.
For FCNN, every layer connects fully to the other layer, meaning every neuron in one
layer connects to every neuron in the subsequent layer, as shown in Figure 2.2. The nodes
in FCNN are commonly referred to as neurons, as FCNN will generally be referred to as
neural networks. Given an input, it gives the output and delivers that output as an input
to the following layer. Another significant benefit of FCNN is that they are “structure
agnostic,” i.e., no particular assumptions need to be made about the input if it consists of
videos or images.

To represent the FCNN with l layers mathematically, let us consider the set of samples
Y s.t. Y = [y1, ..., ys] ∈ Rs having data only at the s sensor locations. The output of the
FCNN is defined as Ŷ such that Ŷ = [ŷ1, ..., ŷN ] ∈ RN , where N represents the number of
grid points in the computational grid. Generally the full output Ŷ is computed as

Ŷ = f (W l f (W l−1... f (W1Y))), (2.13)
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Figure 2.2: Architecture of the FCNN

where f is a coordinate-wise nonlinear activation function and W is a weight matrix, a
learnable parameter.
The paradigm of simplicity guides architecture design. Indeed, the architecture should

facilitate fast training and little tuning and present an intuitive interpretation. The chosen
architecture in this thesis has only twohidden layers, which describe themapping between
the input sensor data S and the corresponding full surface solution as shown in Figure
2.2. The number of neurons at the input layer is selected per the number of features of

Figure 2.3: A Neuron in FCNN

the input sensor data Rs. The
size of the last hidden layer is cho-
sen based on the POD model, i.e.,
the number of POD modes Rn2 , al-
though generally, the architecture of
the network can have flexibility in
the size of the neurons in the hid-
den layers. Based on the num-
ber of grid points in the full CFD
solution RN , the same number of
neurons are defined for the output
layer.

The first and second hidden layers can be mathematically represented as
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l1 = f (W1y + b1) (2.14)

l2 = f (W2l1 + b2), (2.15)

where W denotes the dense weight matrix, b is a bias term and f an activation function
to introduce non-linearity as illustrated in Figure 2.3. Thus the final linear output layer
gets the form as

Ŷ = W2l2 + b2, (2.16)

where W2 = [w2
1, ..., w2

n2
] ∈ RN×n2 is weight matrix at the last hidden layer. The non-

linearity to the hidden layer is introduced by employing an activation function Rectified
Linear Unit (ReLU) [25] and a linear function to the output layer. It is among the most
popular choice considering its advantageous properties. Notably, it is suitable for Sparse
activation, better gradient propagation, efficient in computation, and scale-invariant [20].
The ReLU activation is defined as,

f (y) = y+ = max(0, y), (2.17)

where y is the input to neurons.

2.4.1 Optimizer and Loss function

The best way to train the network is to select the optimizer combined with the loss func-
tion and update themodel parameter based on the response of the output of the loss func-
tion. This algorithm is called Backpropagation. The optimizer helps to build the model
into its most accurate achievable form by updating the weights. The loss function acts as
a navigator telling the optimizer when it is proceeding in the right or wrong direction.

Among the available optimizers in the literature, the SNN is trained using the Adamax
optimizer [28], an extension to theAdaptiveMovement Estimation (Adam) optimizer based
on the gradient descent optimization algorithm. Adamax updates the weights inversely
proportional to past gradients’ scaled L2 norm (squared). Hence it is based on the infinity
norm (max) of past gradients. It is sometimes superior to adam optimizer, especially in
models with embeddings. To understand how well the network has learned the feature
data set, employing the loss function for the regression is essential. In other words, loss
functions are a measurement of how good our model is in terms of predicting the desired
outcome. In this thesis, the SNN model incorporates the most common loss function,
Mean squared error (MSE). The loss is defined as the mean squared differences between
target and predicted values or can be represented mathematically as,

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (2.18)

where ŷi is the predicted value of the model and yi is the target value.
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2.5 Gappy ANN

The core idea of the Gappy ANN is the same as that of the Gappy POD. However, unlike
Gappy POD, the Gappy ANN uses the space generated by the SNN instead of the POD-
based reduced space. The mathematical representation of the Gappy ANN is given below.
Let us consider a vector of sensor measurements S ∈ Rs with themissing snapshots for

the full flow solution, implying s < N, only with the limited measurements on particular
grid locations. Hence to interpret S as a full flow solution vector y ∈ RN from which only
the components yj1 , ..., yjs where j1, ..., js ∈ {1, ..., N} are known, then the relation can be
shown as

S =

s1
...

ss

 =

yj1
...

yjs

 = PTy (2.19)

where P ∈ RN×s is a maskmatrix. Given that a well-trained weightmatrix W2 ∈ RN×n2

from the final hidden layer of the SNN is available, the solution ŷ can be approximated as
below

ŷ = W2 â, (2.20)

where â in this sense is considered as ANN basis coefficients. Solving a least-square
problem will be a standard way of approximating the solution. The least-square problem
defines the smallest L2 error regarding the observed entries of the vector y from the basis
coefficient vector â ∈ Rn2 as

â = arg min
a

∥∥∥PTW2a− S
∥∥∥2

2
. (2.21)

Therefore as seen in the Gappy POD approach, the solution of the vector ŷ from the
Gappy ANN approach can be approximated by solving the lease-square problem in equa-
tion (2.21).

2.6 DEIM based optimal sensor placement strategies

2.6.1 POD-based DEIM

DEIM utilizes greedy algorithms based on pivoted factorizations of the dominant POD
modes to efficiently select a nearly optimal collection of interpolation points. The stan-
dard PODmethods are combined with their DEIM-based reduced ordermodels to deliver
a DEIM-based optimal sensor placement strategy. Using the DEIM interpolation points,
the low-dimensional representation of high-dimensional data is given as

ŷr = Hy, (2.22)

where H ∈ Rr×N is the measurement matrix carrying the location information of the
dominantmodes and ŷr is the low-dimensional representation of the data y. To update H
with the location information, consider the POD basis matrix U retaining r left singular
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vector such that Ur = [u1, ...ur] ∈ RN×r. The first index is computed as an initial step by
capturing the dominant mode in the first POD basis vector.

[ρ, ξ] = max(u1), (2.23)

where [ρ, ξ] denotes the dominant mode’s value and location, respectively. Once the
measurement matrix H is updated with this information, the DEIM algorithm iterates
across the remaining basis vectors to find the location of the subsequent dominantmodes
as shown in algorithm 1.

Algorithm 1 POD-based DEIM algorithm

Require: H, Ur, [u1, ..., ur]
Initialise OptIndices1 = ξ
for i← 2 to r do

Ci ← HT
i ui+1(HT

i ui)−1 . Projection of next location to see the measurement
Resi+1 ← ui+1 − uiCi . Find error (Residual)
[ρ, ξi]← max(Resi+1) . Check for dominant POD mode
Hi+1 ← [Hiξi] . Update the H matrix
OptIndicesi ← ξi . Append the index location

end for

The index list in the OptIndices will be in the decreasing order of the locations of the
dominantmodes, meaning the full-flow solution can be easily approximated with the help
of the first few indices, irrespective of the dimension r. This algorithm ismore effective in
the optimal sensor placement strategy as one can calculate the complete flow information
with the limited sensors placed in the prescribed grid location. Gappy POD predictions
are taken again using the new optimal locations to analyze the performance of Gappy POD
for POD-based DEIM locations.

2.6.2 ANN-based DEIM

Another objective of this thesis is to extend the algorithm of DEIM based on ANN ba-
sis to introduce a new optimal sensor placement strategy. This proposed method will
replace the POD reduced space Ur with ANN solution space W2 to get the new optimal
sensor locations. Based on this notion, the data projection from high-dimensional to
low-dimensional space is calculated as

ŷn2 = Hy, (2.24)

where H ∈ Rn2×N is the measurement matrix and ŷn2 is the low-dimensional repre-
sentation of the data y. The measurement matrix H will be updated using the ANN-based
DEIM algorithm.

Let us consider again that a well-trained weight matrix W2 ∈ RN×n2 from the last hid-
den layer with n2 ANN basis vectors, i.e., [w2

1, w2
2, ..., w2

n2
] is available. As an initial step,

the first index is found by capturing the dominant ANN basis coefficient in the first basis
vector as

[ρ, ξ] = max(w2
1), (2.25)
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where [ρ, ξ] denotes the value and location of the dominant ANN basis coefficient, re-
spectively. The measurement matrix H will be updated with this information. Once the
initial step is complete, iteration will start to update the H for all the remainingANN basis
vectors, as illustrated in algorithm 2.

Algorithm 2 ANN-based DEIM algorithm

Require: H, W2, [w2
2, ..., w2

n2
]

Initialise OptIndices1 = ξ
for i← 2 to n2 do

Ci ← HT
i w2

i+1(HT
i w2

i )
−1 . Projection of next location to see the measurement

Resi+1 ← w2
i+1 − w2

i Ci . Find error (Residual)
[ρ, ξi]← max(Resi+1) . Check for dominant ANN basis coefficient
Hi+1 ← [Hiξi] . Update the H matrix
OptIndicesi ← ξi . Append the index location

end for

Once the ANN-based DEIM algorithm ends, OptIndices provides the complete list of
optimal sensor locations with which the predictions of the GappyANN are obtained again,
similar to the case of Gappy POD for POD-based DEIM. The results are investigated for
any improvements in the predictions, as depicted in Figure 2.4.

Figure 2.4: Workflow of data fusion approaches based on DEIM algorithm





3 Results and Observations

As part of testing the Gappy POD and Gappy ANN approaches, CFD simulations and
wind tunnel test data are collected for the RAE2822 airfoil. The airfoil geometry is shown
in Figure 3.1a. The RAE2822 is a transonic airfoil equipped with a thicker trailing edge.
The airfoil was tested to cross-check results with legacy data and extend the range of the
operating conditions with different combinations of Reynolds numbers (Re), Mach num-
bers (M), and angle of attack (α).

(a) The RAE2822 airfoil (b) Parameter combination for which CFD data (blue)
and wind tunnel data (red) are available

Figure 3.1: Test case and parameter combination for the sample generation in CFD andWind tun-
nel testing

Pressure coefficients inWind tunnel testing were recorded with 36 pressure taps located
at the surface of the airfoil, as shown in Figure 3.1a. A total of 11466 RANS-CFD simulation
results are gathered for similar flow conditions on a computational grid of 531 points using
the DLR flow solver TAU with the SST turbulence model. TheTAU Code is widely used in
the European aerospace sector, and validations of the code are available in the literature
[39]. The parameter combination in Figure 3.1b shows the different flow conditions used
to generate theWind tunnel testing and CFD simulation results.

3.1 Issues in Training

Unlike POD, SNN needs input and target data pairs to train the model. This thesis also
deals with wind tunnel experiment data for which the complete surface solution is un-
available. As this target information unavailable, the following training configurations
can be considered:

1. Wind tunnel sensor and CFD data: The idea is that the full surface solution for
the wind tunnel sensor data can be generated for the same flow condition in which
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the sensor measurements are generated using the CFD simulation. The available
sensor measurement can be used as the input and the CFD solution as the target
while training the network. Following this configurationmight result in a drawback
as one may have to consider the generated CFD data as an absolute truth, which is
undesirable in this case.

2. CFD data only: The input data is created from the existing CFD solution based on
the information at the nearest neighbor of the sensor locations in the CFD mesh.
The network will be trained using these input data against the full CFD solution as
the target. As in the first configuration, this setup also has a drawback. The SNN
model will only be trained on the CFD data, and existing sensor measurement data
will never be used. However, the objective of this thesis is to investigate the different
data fusion methods; this configuration is preferable as it is also closely related to
the Gappy POD setup.

Based on the above-decided configuration, the sampling management is done as fol-
lows. Around 70% of the CFD, data is used for training, 20% for validation, and 10% for
testing. The SNN is built using PyTorch, whereas the gappy POD model has been im-
ported from the fusion capability of the SMARTy [2], which is the DLR’s Python-based
Surrogate Modeling for AeRodata Toolbox. The Gappy PODmodel is created with a POD
subspace of 40 modes with a relative information content (RIC) of 99.9947% using the
training and validation dataset. Based on the number of modes selected while creating a
Gappy POD basis, the same number of neurons l2 =40 are chosen to compare the results
effectively. Other parameters, namely the learning rate and activation function, are chosen
based on the study [5], which determined these hyperparameters using the hyperparame-
ter optimization framework Optuna. The list of all other essential parameters can be seen
in Table 3.1. The SNN model is trained for 7800 epochs with a batch size of 64 samples.
The MSE loss function has been used throughout for validation and training purposes.

Parameter Value
Size of the input Layer s 36

Size of the first hidden layer l1 110
Size of the second hidden layer l2 40

Size of the output layer N 531
Learning rate 0.00248

Activation function ReLU
Loss function MSE

Optimization function Adamax

Table 3.1: Hyperparameters of the SNN and their corresponding values

3.2 Results of the Gappy methods

3.2.1 Prediction of CFD data

Once the training step is finished, the weight matrix is obtained from the final hidden
layer of the SNN model. This weight matrix is later used in the Gappy ANN approach.
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To understand which methods in the literature are best suited to solve the least-square
problem, the result of GappyANNandGappyPOD for a flowcondition of Re = 12000000.0,
M = 0.78 and α = 3.3◦ is analysed.

The results of the analysis are shown in Figures 3.2. The target information for this
flow condition is obtained from the CFD solutions and shown in a black dashed line. The
Gappy ANN results are in blue, and the Gappy POD is in red. The experimental sensor lo-
cations are given as black dots. Figure 3.2a shows the result of the Bayesian ridge method.
The Gappy POD works very well with this method as it fits nicely with the target informa-
tion by capturing the pressure peak, shock wave location, and strength compared to the
Gappy ANN result, which suffers from fluctuations at the airfoil’s upper surface. Figure
3.2b shows the results obtained for the Gaussian process regression (GPR) method. Like
the first case, the Gappy POD accurately predicts the pressure peak, location, and strength
of the shock. In the case of the Gappy ANN approach, the fluctuations continue to occur
at the airfoil’s upper and lower surface in its prediction. A slight wiggling effect can also
be seen in the solution of the Gappy ANN near the trailing edge, which causes a little
discrepancy in its prediction. The next method tested is Tikhonov, with a regularization
of 0.05, and the results can be seen in Figure 3.2c. The Gappy POD solution fit smoothly
to the target with a slight overshoot of pressure peak at the beginning of the shock wave
compared to the solution of the Gappy ANN, which suffers from the high unphysical wig-
gling effect. Due to this, a significant data difference exists between the prediction and
target, proving that this method does not suit well. Figure 3.2d displays the results for the
ridge regression method. The prediction result of the Gappy ANN is almost similar to
that of Bayesian ridge regression but with more difference at the shock wave’s start and
end locations. Although the Gappy POD accurately captures the shock wave’s strength,
it overshoots the pressure peak before the shock. The last method investigated is SVR;
the result can be seen in Figure 3.2e. The Gappy POD accurately predicts the pressure
peak but fails to capture the location and strength of the shock wave. Though Gappy ANN
can accurately predict the pressure peak, location, and strength of the shock wave, the
solution suffers from an unphysical wiggling effect at the upper and lower surface of the
airfoil. These observations illustrate that SVR is unsuitable for both approaches. TheMSE
information is also taken for the complete test sample set for all the methods to compare
the results quantitatively. From the MSE analysis, as shown in Figure 3.2f, the Bayesian
ridge regression, Ridge regression, and GPR seem to work better for both approaches, out
of which the Bayesian ridge regression fuses the solution for both the approaches with
minimal error. Based on this finding, the results of further analysis are recorded using
the Bayesian ridge method.

Once the method of solving the Gappy problem has been determined, both the Gappy
approaches are analyzed for different flow conditions. The results can be seen in Figure
3.3. The first condition investigated is with Re = 2700000.0 and M = 0.1 and α = -0.2◦
as shown in Figure 3.3a. The Gappy POD can give the best prediction accuracy with a
smooth fit to the target. In contrast, although Gappy ANN captures the right physical
trend, the solution suffers from fluctuations at the upper and lower surface of the airfoil.
In the following case, a flow condition of Re = 6500000.0 and M = 0.72 and α = -2.2◦ is
investigated, and the result can be seen in Figure 3.3b. Both the Gappy ANN and Gappy
POD fail to capture the correct pressure peak near the wake of the shock wave. In addition,
both approaches fail to capture the shock wave’s location and strength accurately. Like in



18

(a) Method: Bayesian Ridge (b) Method: GPR

(c) Method: Tikhonov (d) Method: Ridge Regression

(e) Method: SVR (f ) MSE for all the test samples for all the methods

Figure 3.2: Results of Gappy ANN and Gappy POD for different methods at flow condition Re =
12000000.0, M = 0.78 and α = 3.3◦
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the first case, the unphysical fluctuations can be seen in the solution of the Gappy ANN.
The next investigated case is of Re = 6500000.0 and M = 0.725 and α = -2.4◦. As shown in
Figure 3.3c, the fused solution of the Gappy POD could not accurately predict the shock
wave’s pressure peak, location, and strength. In contrast, the prediction of Gappy ANN
almost gets the location of the shock wave but overshoots its ending. The fused solution of
Gappy ANN suffers from wiggling at the lower surface of the airfoil, which is undesirable.
Figure 3.3d shows the result of the last case with a flow condition of Re = 12000000.0 and
M = 0.2 and α = 5.0◦. Both approaches can accurately predict the suction pressure peak,
especially Gappy POD, which provides accurate results with an excellent fit. In contrast,
the Gappy ANN gives the real physical trend, but accuracy is impacted due to the wiggling
effect at the airfoil’s upper surface. Overall, the solution obtained through the Gappy POD
approach fits more accurately to the CFD target data from all the investigated cases than
Gappy ANN predictions.

(a) Re : 2700000.0, M : 0.1 and α : −0.2◦ (b) Re : 6500000.0, M : 0.72 and α : −2.2◦

(c) Re : 6500000.0, M : 0.725 and α : −2.4◦ (d) Re : 12000000.0, M : 0.2 and α : 5.0◦

Figure 3.3: Results of Gappy ANN and Gappy POD for different flow conditions for CFD target data
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3.2.2 Prediction of Wind Tunnel data

The investigation has extended to test these Gappy approaches based on the wind tunnel
experimental data (WTT). Considering the issues associated with the training configu-
ration (section 3.1), WTT data sets were neither part of the SNN training data sets nor
used while creating the POD model. The WTT and CFD data will have different mecha-
nisms and strategies to follow. For example, the solution in CFD simulation is captured
over high-resolution computational grid points, whereasWTT uses a few discrete points.
Hence testing the Gappy approaches on theWTT data will help to understand their sen-
sitivities towards wind tunnel effects. Therefore four test samples are selected from the
WTT ranging from high to low Re, and the results can be seen in Figure 3.4.

(a) Re : 6458290.0, M : 0.6024 and α : 5.0231◦ (b) Re : 6513100.0, M : 0.7151 and α : 1.2548◦

(c) Re : 9699360.0, M : 0.3945 and α : 1.9833◦ (d) Re : 2866200.0, M : 0.1941 and α : 7.7892◦

Figure 3.4: Results of Gappy ANN and Gappy POD for different flow conditions - Wind Tunnel
experimental data

The target information is unavailable forWTT samples for a qualitative comparison of
the result, as mentioned previously. However, the effectiveness of these approaches for
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the WTT samples is analyzed based on the result’s trend corresponding to experimental
sensor locations. In Fig 3.4a, the result obtained for Gappy ANN and Gappy POD for a
flow condition of Re = 6458290.0 and M = 0.6024 and α = 5.0231◦ is given. The Gappy POD
fits the sensor location more accurately than the Gappy ANN. The trend of the Gappy
POD solution is smooth compared to the wiggling and fluctuation in the Gappy ANN
result. In the following Figure 3.4b, the result for the flow condition Re = 6513100and M =
0.7151 and α = 1.2548◦ is shown. The Gappy POD again works better than Gappy ANN for
this case, with a smooth fit across all the experimental sensor locations. In contrast, the
solution of the Gappy ANN suffers from strong unphysical fluctuations while predicting
the pressure plateau near the shock location. A slight wiggling effect can also be seen
between some sensors, especially near the trailing edge. The subsequent Figure 3.4c shows
the result for a flow condition Re = 9699360.0 and M = 0.3945 and α = 1.9833◦. A smooth
trend with a better fit is obtained from the Gappy POD solution, which accuratelymatches
theWTT data. The Gappy ANN gives a slightly improved prediction with a small wiggling
effect between the sensors at both the upper and lower surface of the airfoil. The last
case investigated is a flow condition Re = 2866200.0 and M = 0.19414 and α = 7.7892◦ as
displayed in Figure 3.4d. The Gappy POD performs better by accurately matching the
WTT data. Although the Gappy ANN solution looks slightly improved with less wiggling
effect, strong fluctuations continue to occur at the airfoil’s upper surface, which hampers
its accuracy. From the above observations, it is noticeable that Gappy POD works better
for theWTT data set with an accurate fit. In all the above-investigated cases, it accurately
predicted the location and strength of the shock and pressure peaks with a smooth trend.
GappyANN is not effectively capturing the details like shock locations and pressure peaks
due to the wiggling effect and strong fluctuations.

3.3 Results of DEIM-based optimal sensor placement strategy

Figure 3.5: Experimental Vs. DEIM indices

The investigation of the data fusion techniques is extended to find the optimal sensor
placement strategy based on the POD-reduced space and the space generated by the ANN
using the DEIM algorithm. At first, an already created POD model with 40 modes is con-
sidered for this strategy. The DEIM algorithm iterates over all the POD basis vectors to
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find the indices of the dominant POD modes to give the optimal sensor locations. Only
the first 36 indices are considered from the list of DEIM interpolation points to compute
the Gappy POD solution. Afterward, the POD-reduced space is replaced with the existing
ANNweightmatrix. Once again, the DEIM algorithm is applied to theANN solution space
to get the optimal sensor locations. The calculated indices are used in the Gappy ANN ap-
proach to check for improvements in its prediction. The calculated POD DEIM and ANN
DEIM indices are illustrated in Figure 3.5, and their respective solutions are discussed in
detail below.

3.3.1 Results of Gappy POD based on POD-based DEIM approach

(a) Re : 6500000.0, M : 0.725 and α : −2.4◦ (b) Re : 12000000.0, M : 0.78 and α : 3.3◦

(c) Re : 12000000.0, M : 0.2 and α : 5.0◦ (d) MSE information of Gappy POD for experimental
Vs. POD DEIM indices

Figure 3.6: Results of Gappy POD based on the POD DEIM indices for CFD target data
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The effectiveness of the POD DEIM indices on the Gappy POD approach is analyzed by
predicting the solution for three cases, and the results are illustrated in Figure 3.6. The
target information is shown in black dashed lines, and the experimental sensor informa-
tion is in black circles. The indices obtained from PODDEIM are displayed in red circles,
and the corresponding solution is given as a red line. For comparison, the result of Gappy
POD for experimental indices is given in red dash-dot line. The first analyzed case in Fig-
ure 3.6a is of flow condition Re: 6500000.0, M: 0.725, and α: -2.4◦. With the POD DEIM
indices, the Gappy POD can accurately predict the pressure peaks, strength, and location
of the shock wave, which were improper in the prediction using the experimental indices.
Despite this improvement in the solution, the Gappy POD cannot accurately capture the
pressure plateau near the shock’s beginning, which was recorded accurately with the ex-
perimental indices. The next case considered is of flow condition Re: 12000000.0, M:
0.78 and α: 3.3◦ as displayed in Figure 3.6b. The Gappy POD has given an excellent fit us-
ing the POD DEIM indices removing all the slight discrepancies near the shock location,
which were present in the solution for experimental indices. The last case investigated
is Re: 12000000.0, M: 0.2 and α: 5.0◦ as depicted in Figure 3.6c. The Gappy POD retains
accuracy in its result from experimental and POD DEIM indices without any discrepancy
between both solutions. The MSE information is also calculated for the complete test
samples for quantitative comparison, and the result can be seen in Figure 3.6d. The MSE
information shows that the performance of the Gappy POD approach increased with a
reduced error for the POD DEIM indices.

3.3.2 Results of Gappy ANN based on ANN-based DEIM approach

The results of the Gappy ANN approach based on ANN DEIM indices are also analyzed
for any possible improvements, as done for the Gappy POD approach. In Figure 3.7, the
target information is given in black dashed lines, and the experimental sensor informa-
tion is in black circles. The PODDEIM is displayed in blue circles, and the corresponding
solution obtained is illustrated in the blue line. For comparison, the result of Gappy ANN
for experimental indices is given in blue dash-dot line. The case Re: 6500000.0, M: 0.725,
and α: -2.4◦ is analyzed first. As shown in Figure 3.7a, the Gappy ANN prediction suffers
from a strong wiggling effect. Along with this effect, discrepancies exist at the airfoil’s
upper surface before the shock and near the trailing edge. The solution of ANN DEIM
shows no significant improvement compared to the one obtained using the experimen-
tal indices for this case. The case Re: 12000000.0, M: 0.78, and α: 3.3◦ is analyzed next.
As shown in Figure 3.7b, the Gappy ANN prediction for the ANN DEIM indices gives an
improved fit with a better prediction of the pressure peaks, strength, and location of the
shock wave compared to the fused solution obtained using the experimental indices. A
slight discrepancy exists at the airfoil’s upper surface and near the trailing edge due to the
absence of ANNDEIM indices in those areas. The last case investigated is Re: 12000000.0,
M: 0.2 and α: 5.0◦ and the result can be seen in Figure 3.7c. For this particular test case, a
wiggling effect can be seen in all the areas of the airfoil. In addition, the solution of the
Gappy ANN fails to predict the suction pressure peak, which was captured accurately us-
ing the experimental indices. Nevertheless, to understand the performance of the Gappy
ANN approach for ANN DEIM, MSE information is computed for complete test samples.
The MSE information, as shown in Figure 3.7d, indicates that the Gappy ANN has shown
significantly improved performance compared to the experimental indices.
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(a) Re : 6500000.0, M : 0.725 and α : −2.4◦ (b) Re : 12000000.0, M : 0.78 and α : 3.3◦

(c) Re : 12000000.0, M : 0.2 and α : 5.0◦ (d) MSE information of Gappy ANN for experimental
Vs. ANN DEIM indices

Figure 3.7: Results of Gappy ANN based on the ANN DEIM indices for CFD target data

3.3.3 DEIM algorithm analysis for various POD modes

TheDEIM algorithm uses the POD subspace to find the location of the optimal indices. It
is interesting to analyze the behavior of the DEIM algorithm based on different numbers

Figure 3.8: Experimental Vs. DEIM indices for 250 POD modes

of POD modes. For
this purpose, three different
PODmode cases are consid-
ered. A POD-reduced space
is generated with 250 POD
modes in the first case. The
DEIM algorithm is applied
to this reduced space to
compute the optimal sensor
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(a) Re : 12000000.0, M : 0.78 and α : 3.3◦ (b) Re : 6500000.0, M : 0.725 and α : −2.4◦

Figure 3.9: Results of Gappy POD for POD DEIM indices (POD modes = 250)

locations. The first 36 locations are selected from the complete result list. As shown in
Figure 3.8, the new locations recommended by the DEIM algorithm concentrate mainly
on the leading edge without covering the entire airfoil area. In the next step, these new
locations are used in the Gappy POD approach to predict the flow solution, and the results
are displayed in Figure 3.9. The computed Gappy POD solutions lose their accuracy at all
regions except the leading edge. The reason may be due to singularity in the POD basis
matrix, which weekly contributes while finding the dominant modes.

Figure 3.10: Experimental Vs. DEIM indices for 100 PODmodes

In the subsequent case
POD model is created with
only 100 modes. After ap-
plying the DEIM algorithm,
as illustrated in Figure 3.10,
the newly computed POD
DEIM indices are plotted
against the experimental in-
dices to check their effec-
tiveness in covering key ar-
eas. As seen in case one,
most of the new recom-
mended locations concen-

trate at the leading edge, with few assigned at the trailing edge missing all other areas.
Hence, the respective Gappy POD solutions for these indices do not significantly improve
their prediction, as shown in Figure 3.11.
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(a) Re : 12000000.0, M : 0.78 and α : 3.3◦ (b) Re : 6500000.0, M : 0.725 and α : −2.4◦

Figure 3.11: Results of Gappy POD for POD DEIM indices (POD modes = 100)

As a solution, the POD model is created with only 50 modes to refine the POD sub-
space in the last case. Figure 3.12 shows that the new recommended locations obtained

Figure 3.12: Experimental Vs. DEIM indices for 50 POD modes

from the DEIM offer ade-
quate improvements as they
spread across the airfoil,
covering the critical areas.
The Gappy POD solutions
obtained for these new rec-
ommendations also confirm
the improvements in their
prediction with better accu-
racy, as displayed in Figure
3.13.

The MSE is also calculated for the complete test set for all the above cases. Figure 3.13c
displays that the MSE loss reduces concerning the fewer modes chosen when creating the
POD model. Hence this analysis demonstrates the effectiveness of the DEIM algorithm
for various POD modes cases and the performance of Gappy POD for these cases.
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(a) Re : 12000000.0, M : 0.78 and α : 3.3◦ (b) Re : 6500000.0, M : 0.725 and α : −2.4◦

(c) MSE information of Gappy POD based on POD
DEIM for various POD modes

Figure 3.13: Results of Gappy POD for PODDEIM indices (PODmodes = 50) andMSE information
for different modes





4 Conclusion and Outlook

4.1 Conclusion

This thesis investigated the POD-based and a newly proposedANN-basedGappy approach.
The proposedGappyANN alters the Gappy PODby replacing the POD solution space with
the ANN space defined through the weight matrix from the final hidden layer. This effec-
tively alters the solution within which the flow solutions are fused. The performance of
Gappy POD and Gappy ANN was tested on a test case with high-quality data comprising
wind tunnel experimental data and the CFD simulation data. The DEIM algorithm is em-
ployed on the POD subspace and ANN solution space to find the optimal sensor location
by computing the indices of the dominant modes. These algorithms are referred to as
POD DEIM and ANN DEIM. Based on the requirement, the first 36 locations are selected
from the DEIM interpolation points and used in the respective Gappy approaches instead
of the experimental indices to investigate potential improvements in the fused solutions.
From the analysis, the Gappy POD approach provided better results than the proposed

Gappy ANN approach. Gappy POD fused the solution more accurately for the CFD and
WTT measurement datasets with an excellent fit and a smooth trend. In contrast, the
accuracy of the Gappy ANN solutions is degraded due to unphysical fluctuations and wig-
gling effects. These effects were strong, especially for the WTT dataset, reducing their
accuracy even further. The DEIM algorithm is applied on top of the POD and ANN so-
lution space to find the optimal locations, potentially yielding more accurate flow recon-
structions. The new indices from DEIM are used in their respective Gappy approaches to
investigate potential improvements. The result of the Gappy POD shows some discrep-
ancy for new indices compared to the experimental. Nevertheless, the MSE information
calculated for the entire test set confirms improvements in the Gappy POD prediction.
The Gappy ANN for ANN DEIM also improved its prediction, but the wiggling effects
continued to appear strongly in the fused solutions. Overall, in both CFD andWTT data
prediction, the Gappy POD approach has performed better than the Gappy ANN.

4.2 Outlook

Although an extensive analysis for selecting the correct hyperparameters is done while
implementing the Gappy POD and Gappy ANN models, depending on the test data, one
may have to address this problem in every analysis. Especially for the Gappy ANN model,
the number of neurons in the hidden layers and other training parameters like epochs,
learning rate, and the optimizer play a substantial role. The accuracy of the solution varies
for every combination of the said hyperparameters; standardizing the selection of these
can be of interest in future studies. Obtaining the weight matrix from the final hidden
layer is of utmost interest to increase the prediction accuracy of the GappyANN by remov-
ing the fluctuation andwiggling effect. One can incorporatemethods likeAdaptive weight
initialization or Xavier weight initialization to initialize weights. Even though first-time
weights are assigned randomly, sometimes ANNmay converge in local minima, leading to
errors. Hence, supplying optimal initial weights may reduce this risk. The other possible
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measures are applying a dropout ratio, regularizing weight penalties, and employing early
stopping, which may enhance the training process.

Choosing the correct technique to solve the Gappy least-square problem may improve
the solution accuracy. As discussed, one can treat this Gappyproblem as a regression prob-
lem, and many techniques are available in the literature to solve this regression problem.
Selecting the proper hyperparameters like kernel function and regularization concerning
these regression techniques certainly influences the accuracy of the solution. There is still
potential for combining various other regression techniques with the Gappy ANN to test
its performance in future studies.

Moreover, further work needs to be done regarding integrating known uncertainties
like measurement uncertainties due to sensor inaccuracy in the wind tunnel and errors
in the computational data due to modeling or convergence. These uncertainties can be
quantified by, e.g., data analysis or expert knowledge.
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