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ABSTRACT
The resolution requirements of modern radar applications
are increasing rapidly and cannot be fulfilled by the limited
number of wide-band radar systems. Many approaches have
been explored to solve this problem under the topic of super-
resolution. In this paper, we propose a hybrid algorithm
for resolution improvement, where we aim to combine the
adaptability of deep neural networks with the reliability and
expertise of traditional domain-specific SAR processing.

Index Terms— ISTA, Learned ISTA, Approximated Ob-
servation, SAR Super-resolution,High resolution radar, Algo-
rithm Unrolling, Hybrid Approaches to Super-resolution

1. INTRODUCTION

Compressed Sensing (CS) theory allows the reconstruction
of signals sampled much below the Nyquist rate, if the sig-
nal is sparse in a certain domain. The sparse representation
of a signal can thus be viewed as a map between the low-
resolution and high-resolution representations. If this unique
sparse representation for a signal can be estimated correctly,
compressed sensing techniques can be used to improve the
resolution of images obtained from optical and radar systems.

However, the application of CS algorithms to real-world
problems is not trivial. Many CS algorithms require well
tuned parameters specific to the signal and also suffer from
large memory requirements due to the size of the sensing ma-
trices. In order to alleviate some of these issues, deep-learning
based CS methods have been developed to learn such param-
eters adaptively ( [1], [2] ). But most of the existing research
in this direction focuses only on optical images. Another big
issue with such deep-learning based approaches is the ’black-
box’ effect and lack of reproducibility of results. Researchers
have been working towards solving this problem by using a
hybrid approach where deep-learning networks are combined
with domain-specific algorithms. Recent research on ’Physics
aware neural networks’ and ’Algorithm Unrolling’ ( [3], [4],
[5] ) are steps in this direction.

This work aims to combine the advantages of deep-
learning, compressed sensing and domain-specific SAR pro-
cessing. Inspired by the recent efforts in hybrid approaches, a
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deep-learning based CS method is combined with traditional
SAR processing for super-resolution. Many recent works
have discussed deep learning for SAR ([6], [7]), but such
a hybrid approach for SAR super-resolution has not been
widely explored. This algorithm is applicable to real scenes
as long as the sparsity constraints are obeyed corresponding
to the number of measurements [8]. In this paper, the term
’Physics-aware’ specifically points to the SAR processor
steps used in Section 3 and 4.

The paper is organized as follows: Section 2 discusses
a deep-learning based Iterative Soft Thresholding Algorithm
(ISTA) applied to a low resolution SAR image (SAR-ISTA-
Net), Section 3 presents an ’Approximated Observation’ (AO)
algorithm developed for SAR, Section 4 discusses the hy-
brid approach and presents SAR-ISTA-Net combined with
’Approximated Observation’ (SAR-LISTA-AO) for adaptive
super-resolution. The paper ends with the conclusion in Sec-
tion 5.

2. LEARNED ISTA FOR SAR IMAGE
SUPER-RESOLUTION

In this section, we try to analyse and apply the results of the
network developed for an optical image [9] to a SAR image.
Let us consider that a narrow band radar is used to detect a
scene, thereby giving a low resolution image. Let y represent
the measurements obtained from this radar. x denotes the
sparse vector of scene reflectivities that has to be estimated.
A denotes the sensing matrix and n represents the noise.The
CS equation is:

y = Ax+ n (1)

A popular compressed sensing algorithm called Iterative
Soft-Thresholding Algorithm (ISTA) [10] can be used to esti-
mate x in this framework. The two main update steps of ISTA
are expressed as follows:

r(it) = x(it−1) − ρ(it)AH(Ax(it−1) − y) (2)

x(it) = argmin
x

1

2
∥x− r(it)∥

2

2 + λ∥ψx∥1 (3)

Here, ψ is the sparsifying basis, ρ is the step-size, r represents
the residual obtained from the previous iteration. Eqn. (3)
denotes the proximal-mapping of the residual r and λ is the
associated threshold.
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Fig. 1: SAR-ISTA-Net Algorithm

In [9], the sparsifying transform ψ is replaced by F(.)
which consists of 2 convolution operators and a ReLU opera-
tor. Based on Theorem 1 of [9], the eqn. (3) becomes

x(it) = argmin
x

1

2
∥F(x)−F(r(it))∥+ θ∥F(x)∥ (4)

The conventional ISTA algorithm is unrolled into a deep
network where each block corresponds to an iteration of the
ISTA. The SAR-ISTA-Net architecture is shown in Fig.1. ψ,
ρ, and shrinkage threshold θ are all learned as parameters of
the network.

In this paper, the SAR-ISTA-Net is applied to TerraSAR-
X data in spotlight mode acquired from Delhi, India. In gen-
eral, the resolution of a SAR image cannot be improved with-
out additional information. However, in most practical cases,
the scene reflectivity can be assumed to be sparse. Using such
a sparsity assumption, CS methods can be applied to obtain
significant resolution improvement.

2.1. Pre-processing of TerraSAR-X scene

A low resolution version of the TerraSAR-X data—as shown
in Fig 2— is obtained by sub-aperture processing and this im-
age is used to test the super-resoluton capabilities of the ISTA-
Net. A range-azimuth frequency spectrum is first obtained
from the complex data. The 2D-spectrum is then divided by
the hamming window and one-fourth of the frequency spec-
trum is cropped from the center. The image obtained from this
cropped spectrum has a significant missing frequency compo-
nent, and therefore, a much lower resolution.

2.2. Network Parameters

The network was trained with image pairs of size 33x33. The
Adam optimizer was used with a learning rate of 0.001. 9 lay-
ers were used and a batch size of 16 was used for the current
implementation.

Fig 3 shows the image obtained from the SAR-ISTA-Net.
There is a noticable enhancement of the scatterers with re-
spect to the background as compared to the low resolution
image.
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Fig. 2: (a) Low Resolution Image. (b) Ground truth.

3. APPROXIMATED OBSERVATION FOR SAR

In this section, we discuss an approach to SAR image super-
resolution using an ISTA-based compressed sensing algo-
rithm called ’Approximated Observation’.

In [11], this idea was presented for a SAR stripmap mode
with undersampled data. Here, we apply it to the super-
resolution problem. The SAR Approximated Observation
workflow is presented in Fig 4, 5. In terms of eqn.(2), AH

is the traditional ’SAR processor’ and A is the measurement
simulator or ’Inverse-SAR-Processor’.

The algorithm is briefly described as follows: We start
with a low resolution SAR image x̂ from a narrow band
radar. This image goes through the soft thresholding step
of the ISTA algorithm and is then sent to the ’Inverse-SAR-
Processor’. The inverse SAR processor consists of a series
of steps which produces the interpolated SAR measurement
ŷ from the low resolution image. The difference between the
original and interpolated SAR measurements then goes to the
SAR processor. The SAR processor returns an image with
improved resolution shown in Fig 6. The interpolation step
in the workflow along with the ISTA step are responsible for
the resolution improvement of the original image.

This algorithm combines the traditional SAR processing
steps with a popular compressed sensing algorithm to achieve
super-resolution. However, the parameters of the ISTA step
such as the threshold and step-size are very important for the
success of this approach. These parameters can be adjusted
through trial and error by studying the reconstructed SAR im-
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Fig. 3: Result from SAR-ISTA-NET

Fig. 4: Approximated Observation Algorithm

ages, but this is non-optimal and non-adaptive.
In order to make this algorithm more adaptive, we propose

to use a learned ISTA in combination with the ’Approximated
Observation’ approach. This is the main contribution of the
paper and is discussed in the following section.

4. LEARNED ISTA WITH APPROXIMATED
OBSERVATION

In Section 2, convolutional operators were used to adaptively
determine the sparsifying transform ψ, but the sensing matrix
A was kept fixed. In Section 3, the sensing matrix is more
adaptive to the image generation process but the parameters
of of the ISTA-step are difficult to tune.

Now, we combine the two methods and Fig 7 shows the
proposed algorithm. The ISTA-step is replaced by SAR-
ISTA-Net and the residual connects the two parts. Fig 8 is
obtained after one iteration of the hybrid algorithm.

Table 1 shows the mean-squared-error (MSE), peak-
signal-to-noise-ratio (PSNR), and the structural-similarity-
index (SSIM) between the ground truth and the results ob-
tained from the three algorithms. Fig 9 shows the range

Fig. 5: Approximated Observation -SAR and Inverse SAR
Processor
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Fig. 6: Result from Approximated Observation

profile of an image segment for all three algorithms. The
Approximated Observation algorithm performs much better
than the others but this comes at the cost of adaptibility. The
SAR-LISTA-AO algorithm performs better than the SAR-
ISTA-Net for all the three metrics. This shows that the hybrid
approach can provide the necessary trade-off between reliable
performance and adaptibility.

5. CONCLUSION

In this paper we explore a novel hybrid-approach for the
super-resolution of SAR images. A hybrid CS algorithm
combining the advantages of a deep-learning network and a

Table 1: Performance Parameter

MSE PSNR SSIM
SAR-ISTA-Net 0.057 12.466 0.301

AO 0.009 20.017 0.648
SAR-LISTA-AO 0.048 13.181 0.386

54

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 14,2023 at 20:59:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Learned ISTA based Approximated Observation for
SAR-basic block
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Fig. 8: Result from Learned ISTA based Approximated Ob-
servation Algorithm

traditional SAR processor is implemented.
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