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ABSTRACT

Existing domain adaptation (DA) approaches are usually not
well suited for practical DA scenarios of remote sensing im-
age classification, since these methods (such as unsupervised
DA) rely on rich prior knowledge about the relationship be-
tween label sets of source and target domains, and source da-
ta are usually not accessible in many cases due to the priva-
cy or confidentiality issues. To this end, we propose a nov-
el source data generation-based universal domain adaptation
(SDG-UniDA) model, which includes two parts, i.e., the stage
of source data generation and the stage of model adaptation.
The first stage is to estimate the conditional distribution of
source data from the pre-trained model using the knowledge
of class-separability in the source domain and then to synthe-
size the source data. With this synthetic source data in hand, it
becomes a universal DA task that requires no prior knowledge
on the label sets. A novel transferable weight is proposed to
distinguish the shared and private label sets to each domain,
thereby promoting the adaptation in the automatically discov-
ered shared label set and recognizing the “unknown” sam-
ples successfully. Empirical results show that SDG-UniDA is
effective and practical in this challenging setting for remote
sensing image scene classification.

Index Terms— Source data generation, universal domain
adaptation, remote sensing image classification

1. INTRODUCTION

Domain Adaptation (DA) aims to leverage a source domain to
learn a model that performs well on a different but related tar-
get domain. Most existing DA approaches for remote sensing
image [1] are proposed to tackle the domain gap between dif-
ferent domains by learning a domain invariant feature repre-
sentation. However, these DA approaches require the knowl-
edge of the relationship between the source and target label
space (category-gap). For example, the adversarial learning-
based DA methods for remote sensing images [1] assume a
shared label set between the source and target domains.

Recently, universal domain adaptation (UniDA) has at-
tracted extensive attentions, which removes all constraints

meanwhile includes all the above adaptation settings [2]. T-
wo challenges are exposed in UniDA setting: 1) large domain
gaps, and 2) category gaps. Most recently, the source-free
domain adaptation is under continuous exploration [3]. How-
ever, existing UniDA methods have not been explored on
remote sensing datasets, and usually assume that the source
dataset is available when building the source classifier plat-
form. In real application scenarios of remote sensing im-
age classification, developing a universal domain adaptation
method without source data has a high practical value and
is thus highly desired. In such cases, pre-trained models
can be available, which not only serve as baselines for the
original remote sensing dataset, but also contain knowledge
of the original dataset. Therefore, how to generate synthetic
source domain data from the pre-trained model is the first
problem to be solved. In this paper, we propose the UniDA
without source data in order to firstly introduce the UniDA
setting into remote sensing datasets. In this case, we merely
have access to the pre-trained model from the source domain.
UniDA without source data poses two major technical chal-
lenges for designing the corresponding models in the wild. 1)
Distilling the knowledge of source data from the pre-trained
model. The knowledge is consistent with the source in the
data distribution. 2) Domain adaptation should be applied to
align distributions of the synthetic source and target data in
the presence of domain gaps and category gaps. To address
these two challenges, our proposed source data generation-
based universal domain adaptation (SDG-UniDA) consists of
a source data generation stage and a model adaptation stage.
In the source data generation stage, we reformulate the goal
as to estimate the conditional distribution of source data in-
stead of the data distribution. After obtaining the conditional
distribution of source data, in order to further separate the
target samples from the shared label set and those from the
private label, a novel transferable weight is defined by con-
sidering the confidence and domain similarity. In a nutshell,
our contributions are listed as follows.
• We introduce a more practical and challenging UniDA set-

ting for remote sensing image scene classification.

• We propose a new SDG-UniDA model composed of a
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source data generation stage and a model adaptation stage.

• In order to generate reliable source domain samples, a nov-
el conditional probability recovery method of the source
domain is designed to distill the category knowledge.

• A novel transferable weight is utilized to distinguish the
shared label sets and the private label sets to each domain.

• Experimental results on three UniDA settings for remote
sensing image scene classification demonstrate that the
proposed model is effective.

2. METHODOLOGY

In this section, we elaborate the problem of UniDA without
source data and address it by a novel SDG-UniDA method.

2.1. Problem setting
For the UniDA without source data, we merely have access to
the pre-trained model M from the source domain, including
feature extractor F and classifier C. We have no informa-
tion about the source data distribution p(x) that was used to
train M . Considering the domain adaptation in the second
stage, our goal is to synthesize the source data xf from the
pre-trained model M , which follows the source data distri-
bution p(x). The distribution is consistent with the source in
the category distribution (including the shared label set and
the private label set), and is as close as possible to the tar-
get in style. However, it is impracticable to estimate p(x)
directly since the source data space is exponential with the
dimensionality of data. Thus, we generate the set by model-
ing a conditional probability of x given two random vectors
y and z. y (y ∼ py(y)) is a probability vector that repre-
sents a label, where py(y) is an estimation of the true labeled
distribution p(ys) of the source domain. z (z ∼ pz(z)) is
a low-dimensional noise, where pz(z) is a random distribu-
tion describing the source data points. Thus, we reformulate
the goal as to estimate the conditional distribution of source
data p(x | y, z) instead of the distribution p(x). After ob-
taining the conditional distribution of source data p(x | y, z)
from the source data generation stage, it becomes a tradition-
al UniDA task but now with synthetic source domain. A
synthetic source domain and a target domain are represent-

ed by Df =
{(
xif , y

i
f

)
∼ p
}nf

i=1
sampled from distribution

p(x | y, z) and Dt =
{(
xit
)
∼ q
}nt

i=1
sampled from distribu-

tion q, respectively. We denote by Yf (Yt) the label set of the
fake source (target) domain. The shared label set is denoted
by Y = Yf ∩ Yt. The private label sets of the source and tar-
get domain are represented by Yf = Yf\Y and Yt = Yt\Y ,
respectively.

2.2. Source data generation
In order to generate a reliable source domain for UniDA, the
generated data xf must meet two conditions: 1) in data con-
tent, all category distributions in the pre-trained modelM can

Fig. 1. Overview of the proposed UDA without source data.
The model consists of a source data generation stage and a
model adaptation stage.

be restored, including source-share and source-private cate-
gory distributions, and 2) in data style, the generated data can
remain similar to the target domain style distribution. Digging
further, these two conditions are to ensure the data diversity
of the generated source domain.

First, in order to recover the category distributions from
the pre-trained model M , As shown in the ‘Source Data Gen-
eration’ module in Fig. 1, a classifier loss is designed. Specif-
ically, given a sampled class vector y and a sampled noise
vector z as inputs, G is trained to produce a synthetic source
domain sample that M is likely to classify as ŷ. The clas-
sifier loss can force the generated data to follow the similar
class distribution from model M , by minimizing the distance
between y and ŷ, which can be formulated as follows:

`cls(y, ŷ) = −
∑
i∈Yf

yi logM(G(y, z))i. (1)

Notably, y and ŷ are not scalars but probability vectors of
length Yf . Thus, the cross-entropy between two probability
distributions is utilized to measure the distance between y and
ŷ.

However, the classifier loss `cls easily leads to generate
similar data points for each class in the synthetic source do-
main. Furthermore, it is necessary for domain adaptation to
transfer synthetic source images to the target style. A style
loss is presented to measure differences in style between a
synthetic source image xf and a target image xt. Concrete-
ly, we make use of a 16-layer VGG network pretrained on
the ImageNet to measure multi-scale feature style differences
between images, which can be described as:

`style(xf , xt) =

4∑
j=1

∥∥∥Gφj (xf )−Gφj (xt)
∥∥∥2
F
, (2)

Gφj (x) =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)c,h,wφ
T
j (x)c,h,w, (3)

where φj(x) is the activation at the jth layer of the style loss
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network, which is a feature map of shape Cj × Hj × Wj .
Gφj (x) denotes Gram matrix, which is equal to the average
value of the product between the feature and the transposition
of the feature. The Gram matrix can grasp the general style of
the entire image. The style loss `style(xf , xt) is the squared
Frobenius norm of the difference between the Gram matrices
of synthetic source image xf and target image xt. In addi-
tion, different layers have different feature style in the VGG
network. Therefore, we sum the Gram matrices difference of
four activation layers in the VGG-16.

Finally, we train generator G by minimizing,

`(θg) = min
θg

(`cls(y,M(xf )) + `style(xf , xt)). (4)

2.3. Model adaptation
The objective of model adaptation is to update the pre-trained
model M that distinguishes samples from the target shared
label set Y and those in the target privated label set Yt. One
important challenge for UniDA is detecting transferable sam-
ples. In order to address this challenge, the sample trans-
ferable weight wf (xf ) or wt(xt) is utilized to estimate the
confidence that xf or xt is from the shared label set during
the training stage. Furthermore, during testing stage, we use
the transferable weight as a decision threshold w0 to decide
whether we should predict a class or mark the sample as “Un-
known” that represents all labels unseen during training. This
is

y(xt) =

{
Class wt(xt) > w0

Unknown otherwise (5)

The transferable weight is derived from uncertainty and do-
main similarity. Similar to [2], the domain similarity d(x)
is obtained by the non-adversarial domain discriminator D′.
d(x) can be seen as the quantification for the similarity of tar-
get domain samples to the synthetic source domain samples.
Namely, a smaller d(xf ) for a synthetic source sample and a
larger d(xt) for a target sample mean that they are more likely
to be in the shared label set.

On the other hand, we adopt the assumption that the tar-
get data in Y have a lower uncertainty than target data in
Yt. Thus, in order to further separate between target samples
from the shared label set and those from the private label,
a well-defined criterion can be used to distinguish differen-
t degrees of uncertainty. However, the uncertainty is usually
measured by entropy [2], which lacks discriminability for un-
certain when the categorical distribution are relatively unifor-
m. The confidence of predicted probabilities ȳ(x) is a better
measure when the generated categories of source samples are
relatively uniform. Thus, the sample-level transferable weight
for synthetic source data points and target data points can be
respectively defined as,

wf (x) = −d(x)−max ȳ(x), (6)
wt(x) = d(x) + max ȳ(x). (7)

Note that d(x) ∈ [0, 1] and max ȳ(x) ∈ [0, 1]. The weights
are also normalized into interval [0, 1] during training.

Domain adaptation aims to move the target samples with
higher transferable weight towards positive source categories
Y . To achieve this, as shown in Fig. 1, input x from ei-
ther domain is fed into the feature extractor F . The extract-
ed features F (x) is forwarded into the label classifier C and
the non-adversarial domain discriminator D′, to obtain the
transferable weights wf and wt. The extracted features F (x)
is forwarded into the adversarial domain discriminator D to
adversarially align the feature distributions of the generated
source and target data falling in the shared label set. Thus,
the adversarial loss function for adaptation is defined as,

`adv =− Ex∼pwf (x) logD(F (x))

− Ex∼qwt(x) log(1−D(F (x))).
(8)

The feature extractor F strives to confuse D. Thus, domain-
invariant features in the shared label set are obtained. In order
to train the classifier C on the synthetic source domain with
labels, the cross-entropy loss is the following,

`ce = E(xf ,yf )∼pL(yf , C(F (xf ))), (9)

where L is the standard cross-entropy loss. Furthermore, to
better reflect domain similarity, we predict samples from syn-
thetic source domain as 1 and samples from target domain
as 0. Thus a binary cross-entropy loss is used to train non-
adversarial domain discriminator D′.

`simi =− E(xf ,yf )∼pL(1, D′(F (xf )))

− E(xt,yt)∼qL(0, D′(F (xt))).
(10)

Thus, the training of model adaptation stage can be written as
a minimax game,

`(θd, θf , θc) = max
θd

min
θf ,θc

(`fce − `adv), (11)

`(d′) = min
θd′

(`simi). (12)

3. EXPERIMENTS

3.1. Experimental setup
Datasets. To verify our algorithm, we select the UC Merced,
AID, and RSSCN7 to build the cross-domain remote sensing
image scene datasets. The UC Merced dataset is a widely
used dataset for remote sensing image scene classification. It
consists of 2100 remote sensing images from 21 scene class-
es. Each scene class contains 100 RGB images with an image
size of 256×256 pixels. The AID dataset is a large scale
aerial image data set and acquired from Google Earth. It con-
tains 10,000 images with a size of 600×600 pixels, which are
divided into 30 classes. The RSSCN7 dataset contains 2800
remote sensing scene images, which are from seven typical
scene categories. There are 400 images in each scene type,
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Fig. 2. Sample images from five public categories.

and each image has a size of 400×400 pixels. Two UniDA
tasks for remote sensing scene classification are established.
The first one is from RSSCN7 to UC Merced. We use the
five public categories as the shared label set (Fig. 2), namely
farmland, forests, dense residential areas, rivers, and parking
lot, the remaining two as the private source label set and the
remaining sixteen of UC Merced as the private target label
set. The other is from RSSCN7 to AID. We use the six public
categories as the shared label set (adding industries), the re-
maining one as the private source label set and the rest of AID
as the private target label set. Notably, the model is tested on-
ly on samples from the target domain and all the target-private
classes are grouped into a single “Unknown” class.
Implementation details We use the standard normal vectors
z of length 10 in all experiments. The generator G consists
of two fully connected layers followed by seven transposed
convolutional layers. The size of the generated image xf is
3 × 256 × 256. Adam with a learning rate of 0.001 is used
for the generator. A ResNet-50 model is used as the backbone
of the feature extractor F . The classifier network C is a ful-
ly connected network with a single layer. The discriminators
D and D′ consist of three fully connected layers with Re-
LU between the first two. During testing stage, the decision
threshold w0 = 0.8.

3.2. Discussion of classification results

Table 1. Average class accuracy (%) on RSSCN7 → UC
Merced and RSSCN7→ AID.

RSSCN7→ UC Merced
Stage Mehod Farmland Forests Dense residential Rivers Parking Unknown Avg

UniDA
Pretrained model-only 77.00 13.00 55.00 69.00 77.00 0.44 48.57

SDG-UniDA 92.00 64.00 63.00 76.00 93.00 17.13 67.52
UniDA with source data 85.00 98.00 74.00 79.00 100.00 14.63 75.10

SDG
GAN-based Method 91.00 1.00 1.00 9.00 87.00 15.31 34.05

Decoder Loss 31.00 12.00 21.00 82.00 72.00 23.13 40.19
Our Diversity Loss 92.00 64.00 63.00 76.00 93.00 17.13 67.52

RSSCN7→ AID
Stage Method Farmland Forests Dense residential Rivers Parking Industries Unknown Avg

UniDA
Pretrained model-only 91.89 16.00 55.37 73.41 56.67 59.49 0.36 50.46

SDG-UniDA 97.84 69.20 78.78 37.32 96.92 62.05 17.93 65.72
UniDA with source data 92.70 100.00 94.63 58.78 94.36 70.51 13.48 74.92

We present the UniDA setting results from the RSSC-
N7 dataset to the UC Merced dataset and from the RSSCN7
dataset to AID dataset in Table 1. The baseline method is a
Pretrained model-only, which only uses the pretrained model
from source data for training and tests on the target domain,
achieving an overall accuracy of 48.57% on RSSCN7→ UC
Merced and 50.46% on RSSCN7→ AID. On the contrary, U-

niDA with source data is the case of traditional UniDA and its
performance can be considered as an upper bound for the Uni-
DA performance. We observe that SDG-UniDA significantly
outperforms the Pretrained model-only method by +18.95%
and +15.26% on RSSCN7 → UC Merced and RSSCN7 →
AID, respectively. It is obvious that SDG-UniDA is effective
and practical in UniDA of remote sensing images, although
the real source data is unavailable during the entire training
process. Notably, compared with the upper bound (UniDA
with source data), our SDG-UniDA maintains a more promi-
nent performance in “Unknown” class. It has been demon-
strated that data points generated by the SDG-UniDA effec-
tively covers the distribution of the source data.

In addition, since data diversity is the key, we analyse the
data diversity in the SDG stage in Table 1. It can be seen
that the generating ability of our proposed diversity loss is
significantly better than that of the GAN-based method [4]
and the decoder loss [5], in terms of solving the problem of
source domain generation in UDA without source data.

4. CONCLUSIONS
We have introduced a novel UniDA without source data
framework for remote sensing image scene classification,
which consists of the source data generation stage and the
model adaptation stage. This work can be served as a s-
tart point in a challenging UniDA setting for remote sensing
images.
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