
This is an author produced version of :

Article:

DEL: Dynamic Symbolic Execution-based Lifter for
Enhanced Low-Level Intermediate Representation

Hany Abdelmaksoud†,Zain A. H. Hammadeh†, Goerschwin Fey‡, Daniel Lüdtke†
† German Aerospace Center (DLR), Braunschweig, Germany ‡ TU Hamburg, Hamburg, Germany

Email: hany.abdelmaksoud@dlr.de, zain.hajhammadeh@dlr.de, goerschwin.fey@tuhh.de, daniel.luedtke@dlr.de

Abstract—This work develops an approach that lifts binaries
into an enhanced LLVM Intermediate Representation (IR) includ-
ing indirect jumps. The proposed lifter combines both static and
dynamic methods and strives to fully recover the Control-Flow
Graph (CFG) of a program. Using Satisfiability Modulo Theories
(SMT) supported by memory and register models, our lifter
dynamically symbolically executes IR instructions after translating
them into SMT expressions.

I. INTRODUCTION

Many tools has been developed to analyze the Intermediate
Representation (IR) of a program and not the source code to
make the analysis independent of the programming language
and to make analyses possible if only the binary is available.
One type of analysis tools lifts a binary to an IR as an
intermediate step, e.g., S2E [1]. However, some tools are
dedicated to lifting binaries to different IRs and are known
as binary lifters, e.g., McSema1. Our work presents a lifter that
outputs an IR that can be useful for applying different types of
analyses, especially timing analyses [2].

Lifting approaches are classified as either static or dynamic.
Indirect jumps present a huge challenge for static lifters when
it comes to fully recovering the Control-Flow Graph (CFG). On
the other hand, for dynamic lifters, full code coverage becomes
an issue as they lift only the executable code for a given input
set. Listing 1 shows a C++ program that follows the inversion
control programming paradigm used by software frameworks to
develop embedded software. The class Task has a pure virtual
method, namely execute in Line 5. Static lifting approaches
used by, e.g., RetDec2 and Angr [3] cannot resolve the indirect
jump caused by the execute function call in Line 12.

In this work, we develop a lifter that combines both static
lifting and Dynamic Symbolic Execution (DSE) to generate
enhanced IR modules. Hence, we call our lifter DEL (Dynamic
symbolic Execution Lifter). Our lifter takes a binary file and
lifts it into an LLVM IR module. Figure 1 shows the detailed
structure of our lifter. DEL guarantees full coverage of the
code under analysis, unlike purely dynamic lifters. Also, DEL
resolves indirect jumps in the program guaranteeing a full
control flow recovery. Leveraging the DSE engine and the static
lifting, DEL can resolve the indirect jump presented in Listing 1
with 100% code coverage.

1https://github.com/lifting-bits/mcsema
2https://github.com/avast/retdec

Binary
file

Static Component

Extracting data &
jump tables

Static disassembling

CFG re-construction

Static translation

- Jump tables
- Data

LLVM module

Initialize
memory

Dynamic Component

Translate to SMT Formula

Check SAT

Update

Memory Model

Register Model

DSE Engine

LLVM moduleLLVM module LLVM module

Input sets

Fig. 1: The structure of DEL

Listing 1: C++ example of indirect jumps
1\\ f ramework . hpp
2c l a s s Task{
3p u b l i c : e x p l i c i t Task (i n t wcet) : wcet {wcet}{}
4v i r t u a l ˜ Task () ;
5v i r t u a l vo id e x e c u t e (void) = 0 ;
6p r i v a t e : i n t wcet {};};
7c l a s s S c h e d u l e r {
8p u b l i c : void pe r fo rm (Task& t a s k) ;} ;
9
10\\ f ramework . cpp
11# i n c l u d e ” framework . hpp ”
12void S c h e d u l e r : : pe r fo rm (Task& t a s k) { t a s k . e x e c u t e () ;}
13Task : : ˜ Task () {}
14
15\\ App . cpp
16# i n c l u d e ” framework . hpp ”
17c l a s s T1 : p u b l i c Task{
18p u b l i c : T1 (i n t wcet) : Task (wcet) {};
19void e x e c u t e (void) o v e r r i d e ;} ;
20c l a s s T2 : p u b l i c Task{
21p u b l i c : T2 (i n t wcet) : Task (wcet) {};
22void e x e c u t e (void) o v e r r i d e ;} ;
23void T1 : : e x e c u t e (void){ i n t x = 6 ; x++;}
24void T2 : : e x e c u t e (void){ i n t y = 8 ; y−−;}
25i n t main (i n t argc , char ** a rgv){
26T1 f i r s t T a s k (9) ;
27T2 secondTask (4) ;
28S c h e d u l e r sched ;
29i f (a r g c < 2){sched . pe r fo rm (f i r s t T a s k) ;}
30e l s e{sched . pe r fo rm (secondTask) ;}
31re turn 0;}

II. DEL: DSE-BASED LIFTING

The lifting process proposed in this paper combines static
and dynamic approaches. Specifically, this combination en-
ables DEL to produce a more accurate CFG than previous
approaches. DEL consists of a static component and a dynamic
component. DEL’s dynamic component takes as input the
output provided by its static component. DEL generates one
basic LLVM IR module and multiple enhanced LLVM IR
modules. The basic LLVM module is generated from the static
component. This module has a full coverage of the input
code. However, it might have an incomplete CFG missing
indirect jumps. The enhanced LLVM IR modules are generated
using the DSE from the dynamic component. Each enhanced
LLVM IR module resolves indirect jumps and covers only the
executable code for a given (set of) input(s).

A. Static component
The static component carries out the following steps:

TABLE I: Example of translating assembly into LLVM.

ARMv7-M instruction LLVM instructions

add r3, #4
%55 = load i32, i32* %R3, align 4
%56 = add i32 %55, 4
store i32 %56, i32* %R3, align 4

1) Static disassembling: We use the objdump3 static disas-
sembler to disassemble an input binary into ARM assembly.

2) Extracting data and jump tables: The static component
extracts the data and the jump tables from the binaries. The
extracted data and jump table information are used to initialize
DEL’s memory model.

3) CFG re-construction: The static component iterates
through the input assembly code and identifies the basic blocks.
Once basic blocks have been identified, DEL reconstructs a
preliminary CFG illustrating the predecessor and successor
relationships between the different basic blocks. Here, the
indirect jumps (bx and blx) are detected but not resolved. We
link the jump tables extracted from the previous step to the
indirect jump instructions. Each indirect jump instruction now
has a range of potential addresses that it can resolve to.

4) Static translation: DEL once more iterates through the
assembly instructions and translates each assembly instruction
into a set of LLVM IRs. For each assembly instruction in the
ARMv7-M ISA, DEL implements a C++ API that translates it
into its equivalent set of LLVM IR instructions. Each assembly
instruction in the ARMv7-M ISA is translated into an average
of three to five LLVM instructions. The flag checking and
updating functionalities of a lifted assembly instruction are also
broken down into their own set of LLVM instructions during
lifting. For the example in Listing 1, the static component
generates an IR module that comprises 734 instructions, 3 of
which are indirect jumps.

Table I shows how to lift the add ARMv7-M instruction into
LLVM instructions.

B. Dynamic component

Abaza et al. proposed in [2] a DSE engine using an SMT
solver, namely Z3. They proposed establishing a memory and
register model using the Z3 vector array, translating each IR
instruction into a Z3 expression, checking the satisfiability
of the generated Z3 expression, and updating the memory
and register model accordingly. The dynamic component is
inspired by the DSE engine presented in [2]. Hence, we have
memory and register models, translation to SMT expressions,
and dynamic symbolic execution. Also, we use Z3 as an SMT
solver.

1) Memory and register models: We used Z3 bit vectors
to build a memory model and a register model. The memory
model (register model) is a map where the key is the memory
address (register name) and the value is a Z3 bit vector. In the
DSE, each LLVM instruction could either update the memory
model or the register model.

3https://sourceware.org/binutils/docs/binutils/objdump

2) Translation to SMT expressions: Static Single Assign-
ment (SSA) facilitates using Z3 for the DSE of IR instruc-
tions [2]. IR instructions are translated into formulas that imply
the mathematical effect of the IR instruction on the engine
state. Using the array and bit vector theories of Z3 enables
direct mapping of the SSA form of the Low Level Intermediate
Representation (LLIR) to a Z3 expression. Equation 1 shows
the translation of an LLVM IR add instruction into a Z3
expression.

[%r1 = add i32 %r0, 1] ⇒
BitV ec(r1, c) = BitV ec(r0, c) +BitV ec(1, c) (1)

We translate each LLVM instruction that we encounter during
the DSE into a Z3 expression.

3) Execution: The DSE is input based, which means differ-
ent input sets to the program might result in different execution
paths explored during the DSE. An input set is used in the DSE
to discover the execution paths and resolve the encountered
indirect jumps to concrete jump targets. The LLVM instruc-
tions are dynamically symbolically executed by evaluating the
equivalent Z3 expressions by the Z3 solver and updating the
memory or the register models. The state of the memory
and register models after execution of the IR instruction are
logged and attached to the instruction. The execution ends once
DEL reaches the exit block of the program. At the end, an
enhanced LLVM IR module is generated. The module has no
non-resolved indirect jumps and covers only the executed paths
for the considered input set. Ideally, using comprehensive input
sets would result in all indirect jumps being resolved and all
potential jump targets being visited during the DSE.

III. CONCLUSION

In this paper, we presented a new approach to lifting binaries
into LLVM IR modules that aims to fully recover the CFG
while providing a full code coverage using static lifting and
DSE. The presented lifter seamlessly combines the static lifter
with the DSE engine, unlike other tools that loosely chain
components for disassembling, CFG recovery, and translation to
IR with the need for many interfaces between the components.

REFERENCES

[1] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo
multi-path analysis of software systems,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS XVI. New York, NY, USA:
Association for Computing Machinery, 2011, p. 265–278.

[2] H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke, “DELOOP: Automatic
flow facts computation using dynamic symbolic execution,” in 20th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET 2022),
ser. Open Access Series in Informatics (OASIcs), C. Ballabriga, Ed., vol.
103. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 3:1–
3:12.

[3] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state of) the art of
war: Offensive techniques in binary analysis,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 138–157.

	Paper title: DEL: Dynamic Symbolic Execution-based Lifter forEnhanced Low-Level Intermediate Representation
	Article reference: H. Abdelmaksoud, Z. A. H. Hammadeh, G. Fey and D. Lüdtke, "DEL: Dynamic Symbolic Execution-based Lifter for Enhanced Low-Level Intermediate Representation," 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-2.
	DOI: 10.23919/DATE56975.2023.10137253
	Copyright notice: ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

