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Abstract

Due to rapid urban expansion and city renewal, urban areas undergo significant changes
every year. There are many new buildings being constructed in the former non-urban
land, leading to adverse effects on the environment and ecology. An insight into urban
development can be gained from building footprint maps. Hence, building footprint maps
are essential for environmentally sustainable urbanization. Furthermore, well-established
building footprint maps facilitate a wide range of applications, such as urban planning
and monitoring, as well as disaster management. Remote sensing technologies with high-
resolution imaging sensors provide great potential for generating building footprint maps
in recent decades. The collection of high resolution (HR) and very high resolution (VHR)
optical imagery allows for spatial-temporal monitoring of buildings. Therefore, this dis-
sertation focuses on the task of building footprint generation using HR and VHR optical
imagery.
During the past few years, deep learning-based methods, such as convolutional neural

networks (CNNs) have contributed significantly to the task of building footprint genera-
tion. Deep learning-based methods have shown promising results for this task in terms of
accuracy and efficiency, but they have two inherent limitations. First, the extracted
buildings show blurred building boundaries and blob shapes. Second, deep
learning-based methods require a lot of annotated labels for network training.
This dissertation has developed several methods to address the above issues:

• To refine blurred building boundaries: To preserve sharp boundaries and fine-
grained segmentation, an end-to-end building footprint generation approach is de-
veloped, which integrates a convolution neural network (CNN) and graph model. A
novel network that learns an attraction field map is proposed, enhancing building
boundaries and suppressing the impact of background clutters.

• To compensate for the limited supervisory information: With the use of
a large amount of labeled data in other cities, a co-segmentation learning pipeline
is proposed to boost the performance of a model in the target cities. Based on
consistency training, a semi-supervised network is developed to leverage a large
amount of unlabeled data, improving the performance of a model.

Finally, the developed methods are implemented in practical applications
to demonstrate that they can provide building footprint maps for urban planning and
monitoring. Furthermore, sampling strategies for developed deep learning methods that
aim to reduce training data size are investigated.
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Zusammenfassung

Aufgrund der rasanten Stadterweiterung und Stadterneuerung unterliegen städtische Ge-
biete jedes Jahr erheblichen Veränderungen. Auf der ehemaligen unbewohnten Insel
werden viele neue Gebäude errichtet, die zu negativen Auswirkungen auf Umwelt und
Ökologie führen. Einen Einblick in die Stadtentwicklung können Gebäudegrundrisskarten
gewinnen. Daher sind Gebäudegrundrisskarten für eine umweltverträgliche Urban-
isierung unerlässlich. Darüber hinaus ermöglichen die etablierten Gebäudegrundrisskarten
eine Vielzahl von Anwendungen, wie z. B. Stadtplanung und -überwachung sowie
Katastrophenmanagement. Fernerkundungstechnologien mit hochauflösenden Bildsen-
soren bieten in den letzten Jahrzehnten ein großes Potenzial für die Erstellung
von Gebäudegrundrisskarten. Die Erfassung von hochauflösenden (HR) und sehr
hochauflösenden (VHR) optischen Bildern ermöglicht die räumlich-zeitliche Überwachung
von Gebäuden. Daher konzentriert sich diese Dissertation auf die Aufgabe der Erstellung
von Gebäudegrundrissen unter Verwendung optischer HR- und VHR-Bilder.

In den letzten Jahren haben auf Deep Learning basierende Methoden wie Convolutional
Neural Networks (CNNs) erheblich zur Aufgabe der Gebäude-Footprint-Generierung
beigetragen. Auf Deep Learning basierende Methoden haben für diese Aufgabe in
Bezug auf Genauigkeit und Effizienz vielversprechende Ergebnisse gezeigt, aber sie haben
zwei inhärente Einschränkungen. Erstens zeigen die extrahierten Gebäude
verschwommene Gebäudegrenzen. Zweitens erfordern auf Deep Learning
basierende Methoden viele gekennzeichneten Etiketten für das Netzwerktrain-
ing.

Diese Dissertation hat einige Methoden entwickelt, um die oben genannten Probleme
anzugehen:

• Um unscharfe Gebäudegrenzen zu verfeinern: Um scharfe Grenzen und
eine feinkörnige Segmentierung beizubehalten, wird ein End-to-End-Ansatz zur Er-
stellung von Gebäudegrundrissen entwickelt, der ein Convolution Neural Network
(CNN) und ein Graphenmodell integriert. Ein neuartiges Netzwerk, das eine At-
traktionsfeldkarte lernt, wird vorgeschlagen, um Gebäudegrenzen zu verbessern und
die Auswirkungen von Hintergrundstörungen zu unterdrücken.

• Um die begrenzten Überwachungsinformationen zu kompensieren: Unter
Verwendung einer großen Menge gekennzeichneter Daten in anderen Städten wird
eine Co-Segmentierungs-Lernpipeline vorgeschlagen, um die Leistung eines Modells
in den Zielstädten zu steigern. Basierend auf einem Konsistenztraining wird ein
halbüberwachtes Netzwerk entwickelt, um eine große Menge nicht gekennzeichneter
Daten zu nutzen und die Leistung eines Modells zu verbessern.

Schließlich werden die entwickelten Methoden in praktische Anwendungen im-
plementiert, um zu demonstrieren, dass sie Gebäudegrundrisskarten für die Stadtplanung
und -überwachung bereitstellen können. Darüber hinaus werden Sampling-Strategien für
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Zusammenfassung

entwickelte Deep-Learning-Methoden untersucht, die darauf abzielen, die Größe der Train-
ingsdaten zu reduzieren.
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1 Introduction

1.1 Motivations and Objectives

Although cities cover a small proportion of the earth’s land surface, they account for
60-80 % of energy consumption and 75 % of carbon emissions [1]. As the pace of ur-
ban expansion and city renewal continues to accelerate, significant changes occur in cities
annually [2]. These changes may result in adverse impacts on the environment and ecol-
ogy, such as resource depletion, greenhouse effect, and urban heat island [3] [4]. Building
footprint maps characterize the planar dimension of urban structure, offering insight into
urban development. For instance, the floor area is associated with energy consumption [5],
greenhouse gas emission [6], and population distribution [7]. Therefore, in-depth studies
of building footprint maps are the key to environmentally sustainable urbanization. More-
over, the established building footprint maps also facilitate many applications including
(1) emergency responses and rescue operations, (2) undocumented building detection, (3)
autonomous navigation of vehicles, (4) land use management, etc.

In the past decades, remote sensing technologies with high-resolution imaging sensors
have become a fundamental approach for building footprint generation. This is because it
allows collecting optical imagery on a large scale, enabling detailed analysis of buildings
and spatial-temporal monitoring of newly constructed and destructed buildings. There-
fore, high resolution (HR) and very high resolution (VHR) optical imagery is a reliable
data source for building footprint generation.

Early studies of automatic building footprint generation from HR and VHR optical im-
agery rely on heuristic procedures. For instance, these methods combine different spectral,
spatial, or auxiliary information to form building hypotheses. Multiple features need to
be engineered, making it difficult for these methods to achieve generic, robust, and scal-
able building footprint maps. Recently, the emergence of deep learning methods, which
are based on convolutional neural networks (CNNs), has made strong contributions to
the task of building footprint generation. CNNs are artificial neural networks based on
multiple processing layers. A major advantage of CNNs is their superior feature learning
capability from raw data. In this regard, prior information is not required and no hand-
crafted features need to be designed. As a result, deep learning methods are favorable
strategies in the remote sensing community for the task of building footprint generation.

Although deep learning-based methods show promising results in terms of accuracy and
efficiency, they have two inherent limitations. One issue is that detail degradation
exhibits in the extracted buildings (e.g., blurred boundaries and blob shapes),
which can be attributed to three factors. Firstly, the downsample process of the network
that compresses the input image as feature maps affect the precise boundary localization,
leading to the loss of detailed spatial information. Secondly, there is an imbalance be-
tween building content and boundary pixels, resulting in irregular building boundaries.
Thirdly, buildings are easily occluded by other objects such as shadows, trees, or other
objects, causing fragmented and incomplete boundaries. The other limitation is that

1



1 Introduction

training deep learning-based networks require a great amount of pixel-level an-
notations, which have several disadvantages. On the one hand, the acquisition of massive
pixel-wise labeled data is costly and time-consuming. On the other hand, remote sensing
imagery consists of complex scenes with various geographic objects, thus, annotating them
with dense labels demands expertise and even field work.

Motivated by the above-mentioned facts, this dissertation aims to develop innovative
deep learning algorithms for the task of building footprint generation from optical imagery.
Three important objectives of this dissertation are listed as follows:

• Development of deep learning algorithms that can refine blurred building
boundaries: this dissertation shall develop building extraction algorithms that are
able to preserve low-level spatial information (e.g., sharp boundaries and fine-grained
details).

• Development of deep learning algorithms that can compensate for the
limited supervisory information: this dissertation shall develop building extrac-
tion algorithms that are able to compensate for the limited supervisory information
resulting from scarce labeled samples. By doing so, the need for large amounts of
dense pixel-level labeled data can be largely alleviated.

• Demonstration of the developed deep learning algorithms in practical
applications: this dissertation shall demonstrate that building footprint maps pro-
duced by the proposed algorithms can provide useful geoinformation for urban plan-
ning and monitoring. Moreover, implementation details of developed methods in
practical applications should be discussed.

1.2 Dissertation Outline

This dissertation is organized as follows. Chapter 2 introduces basic knowledge for un-
derstanding this dissertation. Chapter 3 reviews related works on the task of building
footprint generation. Chapter 4 introduces the developed methodologies to refine blurred
building boundaries. The proposed methods for the compensation of limited supervisory
information are introduced in Chapter 5. The demonstration of developed methods in
practical applications is presented in Chapter 6. Finally, chapter 7 concludes this thesis
and provides outlooks on future works.

This is a cumulative dissertation based on four peer-reviewed journal papers. They are
attached in the appendix and summarized as follows:

• A. “Building Footprint Generation Through Convolutional Neural Net-
works With Attraction Field Representation”: To refine blurred building
boundaries, we propose a method by learning attraction field representation for
building boundaries. By doing so, an enhanced representation power can be pro-
vided by the model. Our method comprises two elemental modules: an Img2AFM
module and an AFM2Mask module. Img2AFM module learns an attraction field
representation conditioned on an input image, which can enhance building bound-
aries and suppress the background. Using the learned attraction field map, the
AFM2Mask module predicts segmentation masks of buildings. Experimental results
show that geometric shapes and sharp boundaries of buildings are well preserved by

2



1.2 Dissertation Outline

the proposed framework, which brings significant improvements over other competi-
tors.

• B. “CrossGeoNet: A Framework for Building Footprint Generation of
Label-Scarce Geographical Regions”: To compensate for limited supervisory
information due to insufficient training examples in target cities, we propose to
learn cross-geolocation attention maps in a co-segmentation network. By doing so,
the discriminability of buildings within the target city can be improved and a more
general building representation in different cities can be provided. Our method is
termed as CrossGeoNet and consists of three elemental modules: a Siamese encoder,
a cross-geolocation attention module, and a Siamese decoder. In the encoder, fea-
ture maps are learned using a pair of images from two different geo-locations. The
cross-location attention module learns similarity based on these two feature maps
and is capable of providing a global overview of common objects (e.g., buildings)
in various cities. In the decoder, segmentation masks of buildings are predicted
using the learned cross-location attention maps and the original convolved images.
From experimental results, we find that CrossGeoNet is able to detect buildings of
different sizes and alleviate false detections, which significantly outperforms other
competitors.

• C. “Semi-Supervised Building Footprint Generation with Feature and
Output Consistency Training”: A generic framework for semi-supervised se-
mantic segmentation is proposed, which integrates the consistency of both features
and outputs in the end-to-end network training of unlabeled samples. By doing so,
additional constraints can be imposed to compensate for the limited supervisory in-
formation. According to the spatial resolution of input remote sensing imagery and
the mean size of individual buildings in the study area, an instruction is proposed,
which assigns the perturbation to the intermediate feature representations within
the encoder. From experimental results, we find our approach is able to well extract
more complete building structures and alleviate omission errors.

• D. “Detection of Undocumented Building Constructions from Official
Geodata Using a Convolutional Neural Network”: A novel framework has
been proposed to detect undocumented building constructions. This method utilizes
a CNN model and official geodata, including VHR optical data and the normalized
digital surface model (nDSM). More specifically, undocumented buildings refer to
pixels predicted as “building” by CNN but do not belong to the buildings from the
official cadastral map. A temporal digital surface model (tDSM) is introduced in the
stage of decision fusion for the separation of the class of old or new undocumented
buildings. Undocumented storey construction refers to the pixels that are “building”
in both the official cadastral map and predicted results from CNN, but a height de-
viation is exhibited in the tDSM. Finally, a seamless map of undocumented building
constructions has been produced for one-quarter of the state of Bavaria, Germany at
a spatial resolution of 0.4 m. This indicated that the proposed framework is robust
in large-scale practical applications.

3





2 Basics

2.1 Building Footprint Generation

Although urban areas cover only a small proportion of the earth’s land surface, they
host 55.13 % of the world’s population according to a report from the united nations [1].
Buildings are the predominant objects that characterize the urban structure. Specifically,
building footprint maps characterize the planar dimension of urban structure and form.
The construction of building footprint maps in nowadays administrations of communities
allows to administrate, document, and monitor urban development. Especially in less
developed regions (e.g., Africa), significant changes occur in urban areas annually due to
rapid urban expansion and city renewal [2]. For instance, a great number of buildings
are newly constructed in the previous non-urban island, resulting in environmental and
ecological problems such as resource depletion, greenhouse effect, and urban heat island
[4]. Therefore, acquiring up-to-date building footprint maps is essential to urban-related
analysis.

Table 2.1 summarizes common ways to acquire building footprint maps. Currently, the
most reliable building footprint maps are obtained from field surveys and mapping[8], but
these surveys are time-consuming due to heavy workloads. In most cities, mapping agen-
cies already document basic building information. However, due to urban expansion and
city renewal, these official cadastral maps are usually out-of-date [9]. Building footprint
maps can also be acquired from open datasets provided by community-based organizations
or companies, including OpenStreetMap, Google, and Microsoft. However, these datasets
also suffer from two limitations. One limitation is incompleteness. Google and Microsoft
only produce building footprint maps for specific countries or continents. Even though
OpenStreetMap aims to provide a free building database for the entire world, stark data
inequalities exist among different geographic. For instance, regions with low and medium
human development are home to about half of the world’s population, but only account for
28% of the buildings on OpenStreetMap [10]. The other is incorrectness. For example, a
demolished building appears in the open building footprint maps, or a newly-built building
might be missing. In this regard, remote sensing techniques are more favorable, because
they are able to establish update-to-date building databases in a more cost-effective way.

Table 2.1: Common ways to acquire building footprint maps

Source Pros Cons

Field survey and mapping high geometrical accuracy and up-to-date time-consuming and heavy workloads

Official cadastral maps high geometrical accuracy out-of-date

Community-based organizations or companies free and large-scale out-of-date and data inequality

Remote sensing imagery up-to-date and cost-effective for large area coverage require expertise

5



2 Basics

2.2 Remote Sensing Data for Building Footprint Generation

Remote sensing is the process to acquire information about an object and an area from
satellites or aircraft without physical or intimate contact. Remote sensing data can be used
in building footprint generation, and they usually consist of three types (cf. Table 2.2): 1)
light detection and ranging (LiDAR) imagery, 2) synthetic aperture radar (SAR) imagery,
and 3) optical imagery. LiDAR is a method to image objects by determining ranges with a
laser, which measures the time for a reflected signal to return to the sensor. LiDAR is able
to capture the precise geometry of objects but has a high acquisition cost. SAR is a form
of imaging radar that transmits the successive pulses of microwaves to objects and records
the echo of each pulse. The advantage of SAR imagery is that it can penetrate clouds
and is insensitive to sun illumination and weather conditions. However, its side-looking
geometry induces high uncertainties in recorded signals. Moreover, the visible color of
objects can not be differentiated by SAR data. By contrast, optical imagery provides a
cost-effective way to capture spectral information essential to understanding geo-objects
at a large scale. Note that weather conditions will influence optical remote sensing, as
areas under clouds can not be observed.

Table 2.2: Types of remote sensing imagery to generate building footprint maps

Source Pros Cons

LiDAR imagery high geometrical accuracy high cost

SAR imagery insensitive to weather conditions and sun illumination high uncertainties and no visible color information

Optical imagery cost-effective for large area coverage sensitive to weather conditions

Optical remote sensing makes use of the sun as the source of illumination and measures
the reflected or emitted radiation from the object or scene. By doing so, optical imagery is
formed by imaging equipment that detects natural energy in the wavelength range across
the electromagnetic spectrum. Specifically, the wavelength ranges from 400 nm to 3000
nm, which includes visible light, near-infrared, and short-wavelength infrared. There are
two essential elements in optical imagery: 1) spectral resolution, and 2) spatial resolution.
Spectral resolution is the number of wavebands, depicting the width of the wavelength

range being imaged, such as red, or green. Various materials show differences in the
reflection and absorption at a great variety of wavelengths, facilitating the identification
of specific materials. Based on the spectral resolution, optical remote sensing imagery
is categorized into the following types [11]: panchromatic, multispectral, superspectral,
hyperspectral, and ultraspectral imagery.

• panchromatic imagery combines the information from full visible, and often partially
the near-infrared spectrum, and only returns a single intensity value for each pixel

• multispectral imagery has a few spectral bands (less than 10)

• superspectral imagery has more spectral bands (more than 10)

• hyperspectral imagery has the bandwidth narrower than or equal to 10 nm

• multispectral imagery has the bandwidth narrower than or equal to 1 nm

Spatial resolution is expressed as the ability to make discriminate between adjacent
objects in an image. The higher the spatial resolution of a sensor, the more easily the

6



2.2 Remote Sensing Data for Building Footprint Generation

(a)

(b) (c)

Figure 2.1: Buildings show differently on HR and VHR optical imagery with various spatial
resolutions. (a) Planet satellite imagery (3m/pixel). (b) Aerial imagery (1 m/pixel).
(c) Aerial imagery (0.3m/pixel).

objects in the image can be distinguished. According to [12], remote sensing imagery can
be classified into low resolution (LR), medium resolution (MR), HR, and VHR imagery,
in terms of spatial resolution.

• LR imagery has the spatial resolution lower than 100 m/pixel (e.g., the spatial
resolution of MODIS data is 500 m/pixel))

7



2 Basics

• MR imagery has the spatial resolution with range from 10 m/pixel to 100 m/pixel
(e.g., the spatial resolution of Landsat data is 30 m/pixel))

• HR and VHR imagery has the spatial resolution higher than 10 m/pixel (e.g., the
spatial resolution of Planet data is 3 m/pixel))

For LR and MR imagery. a common issue is mixed pixels where various objects are
involved in one pixel. HR and VHR imagery can alleviate this issue, as they can capture
a high level of detail, allowing more precise mapping of geo-objects. Moreover, valuable
spectral, texture, and geometric information can be acquired to distinguish buildings from
non-building objects. Therefore, HR and VHR imagery are suitable data sources for
large-scale building mapping tasks.
Crucially, there is a tradeoff between spectral resolution and spatial resolution. The

higher the spatial resolution, the lower the spectral resolution. In other words, although
HR and VHR imagery provide rich spatial details, they have a relatively low spectral
resolution and usually belong to multispectral imagery.
Nowadays, HR and VHR satellite imagery (e.g., IKONOS, QuickBird, WorldView,

Pleiades, ZiYuan, GaoFen, Planet), as well as aerial imagery provide great potential
for the task of building footprint generation at a very fine scale. Figure 2.1 illustrates
some examples of these images. It can be observed buildings show differently on HR and
VHR optical imagery with various spatial resolutions. In this regard, building extraction
methods effective on different datasets are more favored in the remote sensing community.
Furthermore, the HR and VHR satellite imagery availability is unbalanced across different
geographic regions. For instance, in developing or less developed regions, open source data
are more favored to retrieve building information due to restrictions of financial resources.
In this case, Planet satellite imagery is an ideal data source to generate building footprint
maps as it is partially open access to the research community. In contrast, other HR and
VHR satellite imagery or aerial imagery has a high cost.
Despite the high level of detail, HR and VHR optical imagery still bring several chal-

lenges for accurate building footprint generation. One important issue is intra-class vari-
ance. Due to differences in materials (e.g., stone, concrete, and clay), construction styles
(e.g., color, height, and size), and land use functions (e.g., residential, industrial, and com-
mercial), buildings show a variety of geometry and spectral properties. The other issue
is inter-class similarity, where buildings exhibit similar spectral and spatial characteristics
to other objects including pave road, bare land, rocks. Moreover, complicated background
interference and the loss of relevant sensor data (i.e.shooting angle, shadows, and illumi-
nation conditions) hamper the accurate extraction of buildings from HR and VHR optical
imagery.
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3.1 Early Efforts in Building Footprint Generation

Early efforts in building footprint generation can be categorized into four types: 1) geomet-
rical primitive-based, 2) index-based, 3) oversegmentation-based, and 4) classifier-based
methods.

3.1.1 Geometrical Primitive-based Methods

In geometrical primitive-based methods, geometric primitives (e.g., building edges and
corners) are first extracted and then grouped to form closed polygons for individual build-
ings.

Some algorithms generate building footprints based on the building corner that refers to
a point with its local neighborhoods in two varying line segment directions. Building corner
is invariant to translation, rotation, and illumination [13]. With the help of some point
feature operators (e.g., Harris corner detector [14] and scale-invariant feature transform
(SIFT) operator [15]), building corners can be extracted. A Harris corner detector is first
implemented for the detection of corner points of buildings. Afterward, these extracted
corner points are connected in the order of their polar angles with respect to building
central markers [16] [17], in order to construct representations of buildings. SIFT operator
is employed to detect corner points, and these corner points are taken as seed points for
estimating rectangular buildings with a region growing method [18].

Another commonly used geometric primitive to generate building footprints is building
boundary, which is usually extracted in two steps. Firstly, the line segments that are
strongly relevant to building boundaries, are detected. Secondly, closed boundaries for
individual buildings are formed by grouping the extracted lines. Hough transformation
[19] is a commonly used line detection algorithm, which finds straight lines in a param-
eter space based on a voting procedure. When compared with Hough transformation,
Burns algorithm [20] has a relatively lower computation cost since it only uses gradient
orientations. For instance, line segment sets are extracted with Hough transformation and
Burns algorithm, respectively [21] [22]. Afterward, a structural graph is built by employ-
ing intersection nodes of the two-line segment sets. Finally, a graph search algorithm is
implemented to identify building boundaries. Nevertheless, both the Hough transforma-
tion and Burns algorithm greatly rely on parameter settings, showing severe false alarms.
To avoid parameter tuning, EDLines [23] is proposed with a faster computation speed and
fewer false alarms. EDLines is exploited to automatically extract line segments that are
later grouped by different strategies [24] [25].

3.1.2 Index-based Methods

Index-based methods aim at discriminating buildings from other objects in an index form.
By doing so, buildings can be extracted with an empirical threshold. Considering that
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buildings and casting shadows show high local contrast, texture-derived built-up presence
index (PanTex) [26] exploits the gray-level co-occurrence matrix (GLCM) to measure
anisotropic rotation-invariant characteristics of buildings. Morphological building index
(MBI) [27] is a building index that describes the characteristics of buildings (e.g., con-
trast, brightness, size, directionality, and shape) with a set of morphological operators.
However, MBI has several disadvantages. On the one hand, it has a heavy computation
cost due to the multiscale and multidirectional morphological operations. On the other
hand, it neglects some spectral information because it selects a maximal gray value from
every spectral band. In this regard, multi-scale filtering building index (MFBI) [28] and
multiple channel multi-scale filtering building index (MMFBI) [28] are developed to over-
come these drawbacks, respectively. MBI and its core variants are designed for building
detection in urban areas, thus, their performance is unsatisfactory in non-urban areas
because morphological profiles of bare land and roads are similar to those of buildings.
Hence, the morphological attribute building index (MABI) is proposed to detect buildings.
MABI is based on an attribute profile (AP) that is able to fully exploit the spectral and
spatial characteristics of buildings. Given that utilizing textural or spectral information
is difficult to distinguish buildings in half-meter resolution data, geometric building in-
dex (GBI) [29] is proposed for automatic building detection. GBI derives the geometric
saliency of buildings based on junctions and is capable of depicting meaningful structures
of buildings.

3.1.3 Oversegmentation-based Methods

In oversegmentation-based methods, different segments, so-called superpixels, are obtained
from the partition of an image. In this way, building regions are identified. These ap-
proaches are commonly summarized into five types: 1) region-based, 2) clustering-based,
3) graph model-based, 4) active contour model-based, and 5) watershed segmentation
methods.

Region-based segmentation methods group adjacent pixels with similar attributes into
unique regions, which involve the process of region splitting, region growth, and region
merging. Given that the scale parameter is essential to the segmentation of buildings of
various sizes, different region merging algorithms have been proposed for the estimation of
the optimal scale parameter. For instance, a coarse segmentation is firstly applied, then,
structural and spatial contextual information is extracted to estimate scale parameters
[30]. A mathematical equation is proposed to model the relationship between the median
size of buildings and the optimal scale parameter [31].

Clustering-based methods aim at grouping a set of pixels in such a way that pixels in
the same class (e.g., “building”) are similar to each other. Different clustering methods
can be utilized to detect buildings, e.g., mean shift [32], K-means [33] [34], ISODATA [35]
[36], and ICA-based clustering methods [37] [38].

Graph model consists of vertices and edges, where vertices are the set of elements to
be segmented and edges correspond to pairs of neighboring vertices. In graph model-
based image segmentation methods, vertices refer to pixels and the weight of an edge
is a measure to describe the similarity (e.g., color and position) between the connected
two pixels. Markov random field (MRF) is a commonly used graph model to describe the
spatial relations of pixels, and its energy function prefers connected pixels having the same
label [39] [40] [41] [42] [43].
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Contours depict the boundaries that enclose the region of interest in an image. Work-
ing towards the approximation of contours, the active contour model is able to segment
images by energy forces and constraints, e.g., length and smoothness of contours. The
minimization is realized in both the shape energy and the image energy. Numerous stud-
ies exploited the active contour model to approximate the building regions from remote
sensing imagery [44] [45] [46] [47].

Watershed segmentation-based methods regard an image as a topographic landscape
with ridges and valleys between them. The gray values or gradient magnitudes of respec-
tive pixels represent the elevation values of the landscape. Afterward, an image is de-
composed into catchment basins, and watersheds delineate the boundaries between these
basins. Watershed segmentation aims at assigning each pixel either to a region or a wa-
tershed. In [48] [49], watershed segmentation is proposed to detect buildings from remote
sensing imagery.

3.1.4 Classifier-based Methods

Classifier-based methods mainly consist of two steps: hand-crafted feature extraction and
classification. Features of each pixel are first extracted and then taken as input for classi-
fiers that can determine its label. Compared to the other three types of methods, classifier-
based methods can provide stable and generalized results, becoming the most widely used
approach.

Classifiers are machine learning models that can distinguish buildings from non-building
objects. Related building extraction studies rely on support vector machine (SVM) [50],
random forest (RF) [51], decision tree, k-nearest neighbors (KNN) [52], Fisher’s linear dis-
criminant analysis, least-squares classifier (LSC), and Bayes classifier. The most popular
classifier for building extraction from remote sensing imagery is SVM. SVM is a supervised
technique for classification. The training samples collected for each class are viewed as
vectors. SVM is able to construct a hyperplane or set of hyperplanes in high-dimensional
spaces that are “pushed up against” among different classes. During SVM learning, the
margin between any two classes is maximized. By doing so, a good separation of various
categories can be achieved when the hyperplane has the largest distance to the neighbor-
ing samples of any two classes. In [53], a variety of geometric features are exploited to
characterize the geometric properties of buildings, and taken as input for SVM to dis-
criminate between buildings and other objects. A binary SVM classification strategy is
implemented to detect buildings [48], and NDVI is taken auxiliary features to improve
classification results. To extract the buildings that are not detected by SVM, a histogram
method is utilized, making use of the gray value distribution of building pixels that are
correctly detected by SVM [54]. A gallery of feature descriptors including color histograms
and local binary pattern (LBP) is implemented to distinguish buildings from non-building
objects using SVM [55]. Considering that results provided by the sole classifier are bi-
ased, a hierarchical architecture, namely fuzzy stacked generalization (FSG) is proposed
to combine the detected building results from multiple classifiers including SVM, KNN,
and LSC [56].
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3.2 Deep Learning Techniques for Building Footprint
Generation

Early efforts have several limitations in extracting buildings at scale. On the one hand,
they largely rely on handcrafted features that are significantly influenced by building type,
scene complexity, sensor quality, and observation scale. Hence, these methods often only
deal with specific data and specific building styles. On the other hand, early efforts define
manually designed rules, leading to much computational complexity and cost. Moreover,
with the increasing volume of remote sensing data, they are not able to generate building
footprint maps efficiently and effectively.

In recent years, deep learning-based methods have significantly outperformed traditional
methods on the task of building footprint generation. This is mainly contributed to
significant advances in CNNs, which can automatically and adaptively learn discriminative
features from raw images. The learned feature involves both low-level features and high-
level semantic features. The powerful “feature learning” capability of CNNs has alleviated
the heuristic feature design, promoting better generalizability. Furthermore, with the
available computing resources such as graphics processing units (GPUs), deep learning
methods are capable of automatically generating building footprints on large scale.

A significant number of methods have been proposed for the task of building footprint
generation from remote sensing imagery. According to used visual cues, they can be
categorized into three classes: corner, boundary, and semantic mask of the building.

3.2.1 Corner-based Methods

With the development of keypoint detection networks, several novel studies propose to
delineate building footprints by detecting corner points using CNNs. Aiming to accu-
rately delineate regularized building shapes, PolygonRNN [57] is a favorable architecture
that consists of a CNN and a recurrent neural network (RNN), where CNN extracts corner
points and RNN connects these points to realize closed polygon representations. PolyMap-
per [58] integrates the feature pyramid network (FPN) [59] based on PolygonRNN [57],
avoiding the need for bounding box annotations. In [60], the same pipeline as PolyMapper
[58] is utilized, and global context blocks and boundary refinement blocks are additionally
integrated to enhance the feature extraction modules. AGPA[61] is an adaptive polygon
generation algorithm that integrates local context features to yield a keypoint map indi-
cating the locations of building corners. Afterward, the position and orientation of the
building boundary are utilized to connect these keypoints to outline each building instance.

3.2.2 Boundary-based Methods

For the task of building footprint generation, some approaches are proposed to learn build-
ing boundaries in end-to-end CNNs. CLP-CNN [62] designs a concentric loop structure
with bidirectional pairing loss to adjust the extracted building boundary. In [63], a GCN-
based polygon prediction module is proposed for automatic building boundary extraction
with the oriented bounding box. PolygonCNN [64] consists of two parts: a building seg-
mentation network generates the initial building contour that is further improved by a
modified PointNet [65]. Two studies propose to learn regularized building boundaries
based on active contour models. One work is DSAC [66], which learns parameterizations
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with a CNN model. The other method is DARNet [67] which learns active contour mod-
els based on polar coordinates. RCF-building [68] directly detects building boundaries
using a richer convolutional features network [69]. Most studies prefer to simultaneously
learn both building masks and boundaries in a multi-task learning framework. BR-Net
[70] utilizes a shared backbone for both building segmentation and outline extraction. In
[71], a boundary enhancement module is proposed to share mutual information about the
boundary and segmentation masks. CycleNet [72] learns the structural information and
the semantic information on a cyclical architecture. In [73], spatial variation fusion is
introduced to build a link between building mask extraction and building boundary de-
lineation. EANet [74] uses an edge extraction branch to leverage the features from the
semantic segmentation network to learn more edge information about images. In [75], a
structurally constrained module is designed to learn building boundaries from the gradient
information. CGSANet [76] devises a contour-guided module to include low-level spatial
information at the encoder. E-D-Net [77] consists of two sub-networks: E-Net and D-Net,
where E-Net learns the edge and mask information of the images, and D-Net is followed
to refine the results of E-Net. EaNet [78] proposes an edge-aware loss function, which de-
ploys an image-level Dice loss to build an image-level association across all points. In [79],
a boundary-oriented loss function is designed to focus more on pixel values near bound-
aries during the optimization of trainable parameters. To improve the building boundary
quality, BAPANet [80] fuse three different loss functions including binary cross-entropy
(BCE), intersection over union (IoU), and structural similarity (SSIM).

3.2.3 Semantic Mask-based Methods

Most methods for building footprint generation involve learning semantic masks of build-
ings from remote sensing imagery, and their goal is to solve a pixel-level labeling problem.
In this regard, semantic segmentation networks are utilized to assign each pixel in the
image with a corresponding label (i.e., “ building” or “non-building”).
The commonly used semantic segmentation networks are fully convolutional networks

(FCNs) [81], encoder-decoder architectures (e.g., U-Net [82], SegNet [83] and FC-DenseNet
[84]), DeepLab v1 [85] /v2 [86] /v3 [87] /v3+ [88], and generative adversarial networks
(GANs) [89]. FCNs are a forerunner for semantic segmentation, which replaces the fully
connected layers with transposed convolutions to solve pixel labeling problems. U-Net,
SegNet, and FC-DenseNet are based on an encoder-decoder structure. In the encoder,
the spatial resolution of the input is downsampled to generate lower-resolution feature
mappings that are learned to be highly efficient at discriminating between classes. After-
ward, feature representations are upsampled into a full-resolution segmentation map in
the decoder. To expand receptive fields, DeepLab models introduce the concept of dilated
convolution (atrous convolution) for semantic segmentation, enabling the incorporation of
more context information from neighboring pixels. GANs consist of two neural networks:
a generator takes noise variables as input to generate new data instances while a discrimi-
nator decides whether each instance of data belongs to the actual training dataset or not.
Discriminator and generator play a two-player minimax game to optimize both of their
objective functions.
According to the addressed problems, semantic mask-based methods can also be catego-

rized into four types: 1) multi-scale information aggregation-based, 2) building boundary
refinement-based, 3) limited supervisory information compensation-based, and 4) compu-
tational complexity reduction-based approaches.
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3.2.3.1 Multi-scale Information Aggregation

Buildings have large intra-class variation, e.g., size, which arises problems for the task of
building footprint generation. This is because the performance of semantic segmentation
networks is limited when extracting buildings of very small or large sizes. Due to the
restricted receptive field, the extracted large buildings are always discontinuous and holey,
while many small buildings are missed. Many methods have been proposed to address the
problem of multi-scale building extraction.

Most studies focus on devising a multi-scale aggregation strategy to fuse multi-scale
features. In [90], a SVM-based fusion strategy is proposed to fuse deep features produced
by three different scales. SR-FCN [91] and MA-FCN [92] upsample all features from four
various scales to the original one and concatenate them. When concatenating multi-scale
feature maps, GMEDN [93] ignores the features of the first transposed convolutional layer
that has little semantic information. ScasNet [94] proposes a novel self-cascaded archi-
tecture to aggregate global-to-local contexts. MC–FCN [95] apply three extra multi-scale
constraints between three intermediate feature representations and their corresponding
ground truths. SNLRUX++ [96] utilizes a cascaded multi-scale feature fusion strategy
where the number of fusions depends on the scale. GRRNet [97] proposes a gated feature
labeling unit to fuse multi-scale features. MSST-Net [98] performs convolutions to fuse
feature information of different scales. SRI-Net [99] proposes a spatial residual incep-
tion module to aggregate multi-scale contexts. Web-Net [100] designs ultra-hierarchical
sampling blocks to fuse feature maps from different levels. MHA-Net [101] proposes a mul-
tipath hybrid dilated convolution framework to aggregate multi-scale contexts. DS-Net
[102] design a feature aggregation module to fuse the high-level features and the low-level
features. In [103], a multi-scale fusion module with summation is implemented to en-
sure the local details of the buildings are preserved. The spatial attention mechanism is
commonly used to take advantage of utilizing different level features [74] [104].

Some methods focus on multi-scale feature extraction. A multi-parallel dilated con-
volution module is often implemented to capture building features from multiple scales
[105] [106] [91]. EU-Net [107] proposes a dense spatial pyramid pooling (DSPP) structure
to acquire multi-scale features. MAP-Net [108] designs a parallel multipath network to
extract multi-scale features with spatial localization preserved.

Some methods design specific architectures to address this issue. SiU-Net [109] intro-
duces a Siamese network to solve the scale problem, which takes the original image tile and
its down-sampled counterpart as inputs. In [110], two separate semantic-segmentation net-
works are trained for building with different sizes. MTAPA-Net [111] designs a multitask
network for the task of both multi-label classification and building footprint generation,
aiming to extract buildings with varying sizes.

3.2.3.2 Building Boundary Refinement

Buildings usually have distinct characteristics, e.g., corners and straight lines when com-
pared to other geospatial objects. The shift and spatial characteristics of CNNs will lose
detailed information for precise localization, leading to irregular and inaccurate building
boundaries. Numerous approaches have been proposed to preserve sharp building bound-
aries and geometrical details and can be classified into three types in terms of exploited
strategies, including 1) adversarial training-based, 2) graph models-based, and 3) improved
output representation-based.
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Adversarial training-based methods make use of GANs, which consist of a generator
and a discriminator. Building-A-Net [112] implements an auto-encoder network for an
adversarial discriminator, ensuring the stable learning of high-order regularities of build-
ing shapes. ASLNet [113] designs a shape discriminator to explicitly model the shape
constraints of buildings. In [114] [115], GANs with the combination of three types of loss
functions (adversarial loss, regularized loss, and reconstruction loss) are proposed for the
automatic regularization of the building footprints obtained from an FCN.

Graph models that enable the capture of the interactions between pixels, can also be
utilized to enhance building boundaries. CRF is adopted as a post-processing strategy to
refine building boundaries. Some methods have proposed an end-to-end network learn-
ing strategy, where deep structured feature embedding (DSFE) is first extracted, and
then graph convolutional network (GCN) is introduced to aggregate the information from
neighboring pixels [116] [117] [118].

To improve network learning, some methods propose different types of output represen-
tation that can encode geometrical information about buildings. Signed-distance trans-
form (SDT) [119] is proposed to represent the distance from a pixel to its closest point
on a building boundary. This improved representation can capture information on both
building boundaries and semantic masks, and has been demonstrated to refine boundaries
of buildings in some studies [74] [120]. In [121], a network is designed to learn a frame
field output that assigns four vectors to each building corner point.

3.2.3.3 Limited Supervisory Information Compensation

Since the building is more difficult to identify and draw, the manual annotation of buildings
requires more effort than that for roads, water, bodies, and woodlands [122]. In this case,
some methods have been proposed to reduce the need for a large amount of pixel-level
annotations. These methods aim to compensate for the limited supervisory information,
which can be categorized into four types: 1) weakly-supervised training-based, 2) pseudo-
labeling-based, 3) consistency training-based, and 4) domain adaptation-based approaches.

Weakly-supervised training-based methods build models by learning with weak super-
vision. Apart from the limited pixel-level labels, these methods still require weaker labels
including image-level labels, bounding boxes, and point labels. Image-level labels assign
each patch with only one label, the patches occupying building pixels more than a certain
amount of the total pixels represent the “building”, while those without building pixels
correspond to “non-building”. In [123] and [124], a widely used two-stage framework is
utilized, where the pixel-level pseudo labels are first produced from image-level labels and
followed by a building extraction model trained by pixel-level pseudo labels. MSG-SR-
Net [125] firstly learns class activation maps (CAMs) using image-level labels, and trains a
building segmentation model with CAMs. In [126], bounding boxes are utilized to gener-
ate probabilistic masks for the training of weakly-supervised segmentation models. Point
labels (two points inside and outside each small building, respectively) are employed in
[127], which is a weakly-supervised segmentation network for small and large buildings.

Pseudo-labeling is studied in one study [122] that deals with the absence of massive
annotation datasets. Specifically, a small number of labeled samples is first used to train a
model that can generate pseudo-segmentation maps on the unlabeled images. Afterward,
pseudo labels are selected according to some criterion and are incorporated with original
training data to obtain the final fine-tuned segmentation model.
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Consistency training-based methods impose the consistency of the predictions when
various perturbations are applied. CR [128] applies color jitter and random noise to the raw
input and enforces the consistency between their outputs and original outputs. PiCoCo
[129] augments the input images randomly and imposes the consistency constraint between
the predictions of augmented images. Moreover, it also utilizes contrast learning on labeled
images to regularize the compactness of intra- and inter-class latent representation space.

Domain adaptation aims at transferring the knowledge from the source domain to the
target domain, which can address the domain shift problem. For the task of building foot-
print generation, the source domain dataset refers to the dataset with sufficient annotated
samples, while the target domain dataset refers to the dataset with no labeled samples. In
this regard, domain adaptation-based methods try to improve the performance of CNNs on
the target domain by using the source domain dataset and aligning the data distribution
between two domains. By doing so, the limited supervisory information in the target do-
main can be compensated. A two-stage method is utilized in [130] [131]. In the first stage,
image-level domain adaptation is implemented, and target images are transformed into
pseudo-source images. Afterward, segmentation networks trained on the source domain
are utilized to obtain building semantic masks for pseudo-source images. Other studies
have proposed an end-to-end framework for accomplishing tasks of both domain adapta-
tion and semantic segmentation. BiFDANet [132] optimizes the segmentation networks in
two directions including both the source-to-target direction and target-to-source direction.
In [133], a segmentation network is proposed based on a domain adaptive transfer attack
scheme that aims to obtain domain-adapted adversarial examples with the attack model.
JPRNet [134] has two GANs, where one GAN is implemented for pixel-level domain adap-
tation, while the other GAN aims at representation-level domain adaptation. In [135],
an adversarial entropy strategy is proposed for domain adaptation, which is capable of
decreasing the entropy and the prediction uncertainty for target images. FDANet [136] is
a full-level domain adaptation network for the task of building footprint generation, and
it is able to effectively utilize the information from image-, feature-, and output-level.

3.2.3.4 Computational Complexity Reduction

Rapidly and accurately generating building footprint maps is vital to disaster emergency
response, loss assessment, and military reconnaissance tasks. Some efficient models have
been developed to reduce computation complexity and memory usage. DE-Net [137]
designs a network architecture with a small number of parameters, which consists of four
modules: downsampling component, encoding component, compressing component, and
densely upsampling component. To improve the training speed, DR-Net [138] decreases
the number of convolution kernels in networks, reducing the training parameters. ESFNet
[139] proposes a separable factorized residual block, aiming at the compression of model
size. ARC-Net [140] exploits the residual blocks with asymmetric convolution, which can
reduce the computational complexity. RSR-Net [141] proposes a novel decoder with fewer
parameters and calculations.

According to the review of related works for building footprint generation, we have
defined the objective of this dissertation from two aspects. On the one hand, a lot of
multi-scale aggregation-based methods can already achieve satisfactory performance. On
the other hand, computational complexity reduction is at the cost of accuracy decrease,
which is not what we want. Therefore, we decide to focus on other two research directions:
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1) building boundary refinement and 2) limited supervisory information compensation,
which will be discussed in chapters 4 and 5, respectively.
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4 Deep Learning Methods to Refine
Blurred Building Boundaries

Although building footprint maps provided by existing CNNs seem to be impressive at a
large scale, it is observed that such results are not that perfect when we zoom in (see results
that are obtained from FC-DenseNet in Fig. 4.1). The extracted building footprints have
irregular shapes which are far from their exact geometry in the cadastral maps.

Figure 4.1: The building footprint maps generated by FC-DenseNet [84].

In this chapter, we have first proposed an end-to-end building footprint generation
approach that integrates CNNs and graph models to preserve sharp boundaries and fine-
grained segmentation. However, this method has not taken the geometric characteristics
of buildings into account, which may lead to the generated building shapes far from the
exact geometry. Therefore, we then propose a novel network that learns an attraction
field map that considers the building boundary as a visual cue. This method is able to
enhance building boundaries and suppress the impact of background clutters.

4.1 Feature Pairwise Conditional Random Field

4.1.1 Motivation

In order to refine the blurred building boundaries obtained by CNNs, graph model-based
methods adopt a graph model such as CRF to model interactions between pixels. However,
the CRF inference is usually implemented as a post-processing step and not integrated
with the training of the CNNs, which fails to provide replicable and stable results. In this
research, we propose an accurate and reliable building footprint generation framework,
which fully integrates the graph models with CNNs in an end-to-end training framework
[142]. Moreover, we propose to utilize feature pairwise conditional random field (FPCRF)
as the graph model in this end-to-end framework, as it is superior to other graph models
in terms of computation efficiency and completeness in feature learning.
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4.1.2 Methodology

The overall architecture of the proposed method is illustrated in Figure 4.2, and has two
major components including CNNs and FPCRF. The output of the CNNs is composed
of two parts. One is the segmentation probability map that is obtained from the last
softmax layer of CNNs, and will further be exploited as the unary potential. The other
is the extracted features from CNNs, where each pixel is encoded as a fixed-length vector
representation (i.e. embedding). This feature embedding is utilized for pairwise potential
calculation, encouraging the assignment of similar labels to pixels with similar properties.
We propose FPCRF as the graph model for the refinement of the results obtained from
CNNs. FPCRF takes the feature embedding and unary potential as input, enabling the
modeling of their spatial correlations. FPCRF then outputs the marginal distribution
of each pixel that represents the different class labels. Our method integrates CNNs
and FPCRF in an end-to-end framework, where the gradients are propagated through the
entire pipeline. By doing so, CNNs and FPCRF can co-adapt, which produces the optimal
output.

Figure 4.2: Flowchart of the proposed approach

In FPCRF, the pairwise potential ψp(xi, xj | I) is defined as below,

ψp(xi, xj | I) = µ(xi, xj)

M∑

m=1

w(m)k(m)(fi, fj)

︸ ︷︷ ︸
k(fi,fj)

,
(4.1)

where w(m) are learnable parameters, andM is the number of kernels, which is determined
by the selected kernels. The terms fi and fj are feature vectors for pixels i and j and may
depend on the input image I. The function µ(xi, xj) is the compatibility transformation,
capturing the compatibility between labels xi and xj .

However, only shallow features — the color and position of the pixel for kernels in
pairwise potential terms are used in former CRF variants. In this way, the complete
features extracted from CNNs have not been fully harnessed. In our research, FPCRF is
proposed as a graph model in the building footprint generation framework.
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4.2 Attraction Field Representation

In FPCRF, a pairwise potential term with localized constraints is designed, allowing
complete feature learning. The kernel utilized for pairwise potential in FPCRF is a Gaus-
sian kernel, which is defined by the feature vectors f1, ..., fB, where B is the number of
feature vector types. The kernel k(m) is defined as:

k(m)(fi, fj) = exp(−
B∑

b=1

|fb,i − fb,j |2
2θ2b

) , (4.2)

where θb is a learnable parameter.
The most probable label x can be yielded by the minimization of the Gibbs energy in

FPCRF. The calculation of the probability is very similar to the “many-body problem” in
physics, where determining the physical behavior of systems composed of several particles
is, in general, very hard. The reason is that the number of possible combinations of
states increases exponentially with the number of particles. In our case, if the conditional
distribution of one pixel has changed, the conditional distributions of other pixels which
are linked with this changed pixel will also change, which is difficult to solve. There
is a fact that the “many-body problem” is “analytically unsolvable”. This means that
there is no general solution that only uses algebraic expressions and integrals. In order to
solve the problem at a lower computational cost, the mean field inference will be utilized
where the effect of all the other individuals on any given individual is approximated by a
single averaged effect, thus reducing a many-body problem to a two-body problem. The
interaction between pixels is still taken into account and mean field inference makes the
problem simplified by the approximation. In this regard, many interactions of pixels are
replaced by one effective interaction, so if the pixel exhibits many random interactions in
the original graph, they tend to cancel each other out so the mean effective interaction
and mean field theory will be more accurate. This is true in cases of high dimensionality,
when the long-range pairs of pixels are included, as when the distance between pairs of
pixels is larger, the interactions are weaker which could be neglected.

4.2 Attraction Field Representation

4.2.1 Motivation

Buildings usually have distinct characteristics, e.g., corners and straight lines, which in-
spires us to exploit geometric primitives of buildings as the most distinguishable features
to extract buildings. Therefore, building boundaries are adopted as a primary visual cue
to achieve our task – building boundary refinement.
Recently, attraction field representation that finds the most attractive line segment for

each pixel, is used for the task of line segment detection in computer vision [143]. We have
observed that when the attraction field is exploited to represent building masks, building
boundaries can be greatly enhanced while background clutters (e.g., car, courtyard, and
road) are suppressed. Fig. 4.3 shows an example. Motivated by this observation, we want
a representation of buildings by leveraging the attraction field, which is helpful to the
precise delineation of building boundaries.

4.2.2 Methodology

As shown in Figure 4.4, the proposed method consists of two modules: Img2AFM and
AFM2Mask. To learn the attraction field representation, a U-Net architecture is exploited
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4 Deep Learning Methods to Refine Blurred Building Boundaries

(a) (b) (c)

Figure 4.3: (a) The satellite imagery, and the attraction field maps in both (b) x and (c) y
directions estimated by our method.
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Figure 4.4: Overview of the proposed framework. The Img2AFM module takes an image as input
and outputs two attraction field maps (AFMs) in x and y directions. Afterwards, the
output is then fed into the AFM2Mask module along with the input image to generate
a building mask. Notable that these two modules are trained in an end-to-end fashion.
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4.3 Summary

in the Img2AFM module. In this way, building boundaries can be enhanced, and back-
ground clutters can be suppressed. An image is taken as the input of the Img2AFM mod-
ule. Afterward, two attraction field maps (AFMs) in the x and y directions are generated
and fed into the AFM2Mask module along with the input image. The AFM2Mask module
aims to generate a building mask and is very flexible to utilize different semantic segmen-
tation networks. Note that both modules are optimized jointly, thus, the co-adaption of
these two modules can yield optimal output.
An end-to-end training pipeline is proposed for the supervised learning of our network.

Specifically, the AFM2Mask module is appended after the Img2AFM module, and the
two modules are jointly trained by minimizing a global loss function L that is defined as
follows:

L = LImg2AFM + λ · LAFM2Mask , (4.3)

where LImg2AFM and LAFM2Mask are two loss functions for optimizing the Img2AFM and
AFM2Mask modules, respectively. λ is a hyperparameter to introduce a weight on the
second loss and can model the relative importance of two modules.
An attraction field representation is a 2D feature map that represents attraction vectors

from each pixel to its projection point in x and y directions, which is feasible to be learned
by a semantic segmentation network architecture. U-Net is more favorable than semantic
segmentation networks for this task since multi-scale skip connections of U-Net can effec-
tively use low-level visual cues (e.g., object edges). Moreover, we found that when other
network architectures are utilized in the Img2AFM module, the learning of the attrac-
tion field map fails. Afterward, we need to remap the learned AFMs into building masks.
However, we found that, in our building footprint generation task, the recovered boundary
map from the heuristic algorithm [144] is not satisfactory since there is a relatively high
false alarm rate. Therefore, in this work, we propose to learn this process, i.e., recovering
building masks from the learned attraction field map, using a network. By doing so, the
whole process can be trained in an end-to-end manner, which makes it more efficient and
robust. In order to further explore how to well leverage attraction field representation, we
investigate different designs [145] [120] [146] to incorporate this useful representation in
network learning. From the experiment results, the recursive learning strategy has proven
to be optimal, which concatenates the input image and learned attraction field represen-
tation and inputs them to a semantic segmentation network to directly generate building
masks.

4.3 Summary

For the task of building footprint generation, one issue needs to be considered: detail
degradation exhibits in the extracted buildings (e.g., blurred boundaries and blob shapes).
The algorithms that are proposed in Appendix A and one related publication [142] for
solving this issue are summarized in this chapter.
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5 Deep Learning Methods to
Compensate for Limited Supervisory
Information

For the task of building footprint generation, CNNs can directly learn hierarchical contex-
tual features from the raw input and surpass conventional methods in terms of accuracy of
efficiency. However, there remains a challenge for generating building footprint maps on a
large scale — massive data need to be collected to promote the generalization performance
of CNNs. Besides, the manual annotation of reference data is a very time-consuming and
costly process.

In this chapter, we have first proposed a co-segmentation learning framework to make
use of a large amount of labeled data in other cities, boosting the performance of a model
in target cities where annotated data is scarce. Considering that data annotation is still
needed when using the co-segmentation pipeline, we have proposed a semi-supervised
network based on consistency training. By doing so, a large amount of unlabeled data can
be leveraged to improve the performance of a model.

5.1 Cross-geolocation Co-segmentation

5.1.1 Motivation

For target cities with scarce labeled samples, the performance of CNNs is usually restricted,
because CNNs require massive strong supervisory information. Therefore, a straightfor-
ward idea to solve this issue is to transfer the knowledge from the cities with massive
annotated data (hereafter called auxiliary set). However, several challenges arise due to
geographic peculiarities across different geolocations. Firstly, appearances of densely or
sparsely populated urban settlements are varied [120]. Secondly, buildings have large intra-
class variations, e.g., shapes and colors. Thirdly, varying radiometries of remote sensing
images are induced by differences in the data acquisition process (e.g., atmospheric effects
and illumination conditions) [147]. Several examples are shown in Figure 5.1, and we can
observe that the appearances of buildings come in a wide variety on different continents.
If a network trained on the auxiliary set is directly applied to target cities, we will get
unsatisfactory results from CNNs.

Co-segmentation aiming at jointly segmenting semantically similar objects in video
frames or multiple images, which has been utilized for the task of object segmentation
in computer vision [148] [149] [150] [151]. This is because the sequential or pair-wise re-
lations among consecutive frames to discover common objects can be fully harnessed by
co-segmentation, alleviating the dependency on strong supervisory information. Inspired
by that, we want to make use of the co-segmentation framework in our cross-city building
extraction task. In this paper, we propose an end-to-end trainable network–CrossGeoNet,
which is able to transfer the knowledge from the auxiliary set to target cities. Since cap-
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(a) (b) (c) (d)

Figure 5.1: Illustration of geographic peculiarities across different geolocations. The Planet satel-
lite images are collected from (a) Munich (Germany), (b) Yaounde (Cameroon), (c)
Lisbon (Portugal), and (d) Niamey (Niger), respectively. We can see that appearances
of buildings in different cities are noticeably different.

turing the relationship between the two inputs is the key element in our CrossGeoNet, we
propose a cross-geolocation attention module to effectively learn the underlying similarity
between different geolocations.

5.1.2 Methodology

Figure 5.2: Overview of the proposed CrossGeoNet framework.

To improve model performance, co-segmentation exploits the synergistic relationship
between video frames or multiple images to provide generic features of objects, which are
belonging to the same class but are varies in pose, shape, or color. CrossGeoNet makes use
of a co-segmentation pipeline to learn underlying similarities among various cities. By do-
ing so, more generic representations of buildings can be extracted and the generalizability
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5.2 Semi-supervised Training

of the model can be enhanced. As a consequence, not only building discriminability within
target cities is improved, but also generic features of buildings across different cities are
learned. This is helpful to compensate for the limited supervisory information in target
cities.

CrossGeoNet implements a Siamese encoder-decoder architecture (see Figure 5.2), where
the Siamese encoder learns high-level feature maps and the Siamese decoder predicts
segmentation masks using learned feature representations. Moreover, a cross-geolocation
attention module is proposed in our method, and it aims to enhance the latent features
by encoding relations between the target city and cities from the auxiliary set.

The Siamese encoder consists of two identical CNNs with shared weights. It takes as
input an image pair where one image It is from a target city and the other image Ia is
from the auxiliary set. Afterward, their feature representations Ft ∈ RC×W×H and Fa ∈
RC×W×H , are extracted by the Siamese encoder respectively. H andW are the height and
width, and C is the channel dimension. Instead of that high-level features being directly
decoded for inferring building masks, we propose a cross-geolocation attention module for
the enhancement of the learned feature maps. Specifically, two feature maps are taken as
input for this module, and two attention maps St→a and Sa→t are generated. Afterward,
we fuse them with the corresponding convolved images and feed the fused feature maps
into the decoder. The Siamese decoder is composed of a set of transposed convolutional
layers. It upsamples the convolved images to generate two building segmentation masks
Mt and Ma. Note that all modules are integrated into one framework and optimized in an
end-to-end manner. After sufficient training, the co-adaption of these modules is expected
to yield the optimal output.

We propose an end-to-end training pipeline for the supervised learning of CrossGeoNet.
More specifically, the Siamese network takes a pair of the images {It, Ia} as input, which
is randomly sampled from a target city and the auxiliary set, respectively. Afterward, the
corresponding segmentation masks {Mt,Ma} are produced by CrossGeoNet. The whole
network is trained by the following loss function:

L = Lt + λ · La , (5.1)

where Lt and La are two functions for measuring the difference between {Mt,Ma} and
their corresponding ground-truth masks {Qt,Qa}. λ is a hyperparameter to control the
importance of the second loss. In our task, Lt and La are measured using the cross entropy
loss function.

5.2 Semi-supervised Training

5.2.1 Motivation

Recently, several methodologies have taken advantage of semi-supervised learning to ad-
dress the issue encountered by insufficient labeled training data. Among them, consistency
training-based approaches not only are simple to implement but also require no additional
weakly labeled examples. Consistency training-based methods exploit the teacher-student
framework and encourage both the student model and teacher model to give consistent
outputs for unlabeled inputs that are perturbed in various ways. By doing so, the gener-
alization capability of the network can be improved.
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5 Deep Learning Methods to Compensate for Limited Supervisory Information

However, there is still a certain gap in performance between these two models when
the outputs are not completely correct during training. Inspired by [152] that more dis-
criminative contextual information can be captured by feature maps, we propose a new
consistency loss that measures the discrepancy between both feature maps and outputs of
the student model and those of the teacher model, offering a strong constraint to regularize
the learning of the network.

The cluster assumption where the classes must be separated by low-density regions de-
termines the effectiveness of consistency training-based approaches. For natural images, it
is observed that low-density regions are at the encoder’s output [153], and the perturba-
tion is applied at this position. Nevertheless, we have observed the presence of low-density
regions separating the classes within the intermediate feature representations at a certain
depth in the encoder when remote sensing imagery with low spatial resolution is utilized
at the input for the task of building footprint generation. Motivated by this observation,
we propose to enforce consistency over the perturbation applied to feature representations
at a certain depth within the encoder that depends on the spatial resolution of remote
sensing imagery and the mean size of individual buildings in the study area.

5.2.2 Methodology

Figure 5.3: Overview of the proposed approach.
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Inspired by the perceptual mechanism that leverages the extracted high-level feature
maps to improve the network performance, we propose to impose a more precise consis-
tency towards the underlying invariance of features and outputs, which can fully make
use of information in deep features and output predictions. By doing so, not only the
deep feature maps can be kept consistent, but also the loss of detailed information during
network training can be alleviated.
As shown in Fig. 5.3, the proposed framework is composed of a shared encoder E, a

main decoder D, and an auxiliary decoder G. The segmentation network F is constituted
as F = E ◦D and is trained on the labeled set in a fully supervised manner. The auxiliary
network A = E ◦G is trained on the unlabeled examples by enforcing the consistency of
both features and outputs between D and G. D takes as input the encoder’s output zout,
but G is fed with its perturbed version z̃out, in which the perturbation p is applied to the
output of E. By doing so, the representation learning of E can be further improved by
unlabeled examples, and subsequently, that of the segmentation network F .
In each iteration during training, a labeled input image xl and its label y as well as an

unlabeled image xu are sampled from the training dataset. xl and xu are passed through
E and D, respectively, and then two corresponding predictions ŷl and ŷu are obtained.
The supervised loss Ls is computed using y and ŷl. In order to avoid overfitting to labeled
samples, η is introduced into the supervised loss. In what follows, we discuss in detail how
η helps to avoid overfitting. In semi-supervised learning, labeled samples would work as
anchors [154]. The labels of these samples are known with certainty, forcing the model to
fit them with confidence. Therefore, the information extracted from labeled data can be
reliably propagated. Moreover, mini-batches are generally evenly split between labeled and
unlabeled samples. When the ratio of labeled vs unlabeled samples is very unbalanced,
the few labeled samples will be seen very frequently by the optimizer. As the training
process goes on, the model may become overly learned for labeled samples [155], and
will thus overfit them. Therefore, labeled samples will become easy to be discriminated
against, which means that the training losses for these samples will go down. At the same
time, the losses for unlabeled samples keep unchanged or even go up. In other words,
the model would overfit the few labeled data, ceasing to have an impact on the unlabeled
samples. This will prevent effective propagation, which leads to the model under fitted
to the unlabeled data. To tackle this difficulty, we only utilize a labeled example if the
model’s confidence in that example is lower than a predefined threshold η. Specifically,
if the model’s predicted probability for the correct category is higher than a threshold η,
we remove that example from the loss function. This threshold η serves as a ceiling to
prevent over-training on easy labeled examples.
The perturbation p is applied to zin that is feature representation within E for unlabeled

image xu, and z̃out is the output from E. Afterward, G generates an auxiliary prediction
ŷua from z̃out. The consistency loss Lcons is comprised of two parts Luf and Lup. Luf and
Lup are computed between the features and outputs of G and those of D, respectively.

Based on the observation and analysis, an instruction is proposed to apply the pertur-
bation at depth d within the encoder. d is derived according to the spatial resolution of
remote sensing imagery and the mean size of individual buildings in the study area:

d = ⌊log2(
lmin + lmax

2r
)⌋ , (5.2)

where r is the spatial resolution of the remote sensing imagery, lmin and lmax are mean
values of max and min length that are calculated from the ground reference of individual
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buildings in the study area. ⌊ ⌋ is the rounding down function, which gets the largest
integer that does not exceed the original value. Afterward, we sample a noise tensor
N ∼ µ(−0.3, 0.3) of the same size as the feature presentations zin, and this noise tensor is
regarded as the perturbation p. We first multiply it with zin to adjust its amplitude, and
then inject it into zin to derive perturbed feature maps z̃in:

z̃in = (zin ⊙N) + zin , (5.3)

where ⊙ denotes element-wise multiplication. z̃in will then be fed to the subsequent layers
in the encoder, and the perturbed intermediate representation z̃out of the unlabeled input
sample xu is generated.

5.3 Summary

For the task of building footprint generation, one issue needs to be considered: training
deep learning-based semantic segmentation networks requires a great amount of pixel-level
annotations. The algorithms that are proposed in Appendix B and C for solving this issue
are summarized in this chapter.
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6 Demonstration of Developed Deep
Learning Methods in Practical
Applications

The well-established building footprint maps can contribute to urban planning and mon-
itoring. Therefore, we want to investigate whether the building footprint maps provided
by our proposed approaches are capable of offering useful geoinformation for practical ap-
plications. Furthermore, we want to explore the implementation details of the proposed
methods in a real scenario, offering insights for similar large-scale building extraction tasks.

In this chapter, we have first proposed a framework based on CNNs and decision fusion,
which is able to detect undocumented building constructions. Afterward, our proposed
semi-supervised training-based method is implemented in this framework. Finally, sam-
pling strategies for this method to reduce training data size are investigated in detail.

6.1 Detection of Undocumented Building Constructions

6.1.1 Motivation

In most German cities, a basic two-dimensional (2D) building database that is known as
a digital cadastral map (DFK), is provided by the official authority. The geographic coor-
dinates of buildings documented in DFK are acquired through terrestrial surveys, which
provide accurate and comprehensive information for sustainable urban planning. Never-
theless, due to urban expansion and renewal, some building constructions are not recorded
via terrestrial surveying and are thus missing in the DFK. These building constructions
are named undocumented building constructions. Undocumented building constructions
have two types: undocumented buildings and undocumented storey construction. Undoc-
umented buildings represent the buildings shown in airborne survey data but are missing
in the cadastral map. Undocumented storey construction represents buildings that exist
in both airborne survey data and a cadastral map, but show a signal of height deviation in
the temporal digital surface model (tDSM) because of story buildup or demolition. There-
fore, monitoring undocumented building constructions is helpful to enhance land resource
management and guarantee sustainable urbanization.

Remote sensing technologies such as airborne imaging and laser scanning make it pos-
sible to identify these undocumented buildings, as they provide high-resolution data sets
for detailed analysis of buildings on a large scale. In the past, identifying undocumented
buildings relies on a visual comparison between aerial images with DFK. This requires
a great amount of workforce and time. To alleviate the workloads, some semi-automatic
strategies [156] [157] are developed for the detection of undocumented buildings. They
first extract buildings based on heuristic methods and then overlay the extracted building
maps on the DFK to detect undocumented buildings. However, the heuristic thresholds
utilized in these strategies can not guarantee a uniform and standardized processing man-
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ner, limiting their application on a large scale. Moreover, many false alarms show in
the results obtained from these two methods, where vegetation is often misclassified as
buildings.

Motivated by the above observation, we aim to propose an automatic and accurate
framework for the detection of undocumented building constructions on a large scale.

6.1.2 Methodology

In this study, we have proposed a framework for the detection of undocumented build-
ing constructions. Figure 6.1 illustrates an overview of the proposed framework, which
consists of three main tasks: (1) detection of undocumented buildings, (2) discrimination
between old and new undocumented buildings, and (3) detection of undocumented storey
construction.

In the proposed framework, TrueDOP (orthophotos)is utilized as the main data source
in building detection, because TrueDOP is able to provide spectral information on build-
ings. A CNN model takes TrueDOP as input and assigns each pixel with the class label
“building” or “non-building”. Note that this CNN model is a semantic segmentation net-
work, which aims at solving pixel-level labeling problems. Afterward, we can identify the
undocumented building pixels when we overlay the predicted results with DFK. The un-
documented pixels are those pixels belonging to the “non-building” class in the DFK but
are assigned the class label of “building” by the CNN model.

The temporal information is helpful to identify the time window of the constructions.
Therefore, we introduce tDSM, which is the difference between two digital surface models
(DSMs) acquired at two-time points. This information further facilitates the discrimi-
nation between different types of undocumented buildings. Here, an empiric value (1.8
m) is selected because a story or a building is usually higher than 1.8 meter. Afterward,
this threshold is applied to the tDSM to identify new constructions, indicating whether
a height deviation exists for this pixel within the period between two time points. New
undocumented buildings are identified when there is a height deviation. This indicates
that new undocumented buildings were constructed after time point 1. When there is
no height deviation, these undocumented building pixels are old undocumented buildings
that have been constructed before time point 1.

Undocumented story construction referring to story buildup or demolition on an existing
building can result in a height deviation in two DSMs. We first overlay the predicted
results from the CNN model with the DFK. If there is a height deviation in a pixel that
is belonging to the class “building” in both DFK and predicted results from CNNs, this
pixel is assigned the class label of undocumented storey construction.

6.2 Sampling Strategies for Developed Deep Learning
Methods to Reduce Training Data Size

6.2.1 Motivation

When deep learning-based methods are implemented for large-scale building extraction
tasks, the collection of training samples usually requires a large quantity of time and
manual work. Therefore, we want to investigate sampling strategies that are able to
reduce training data size in practical applications. In semi-supervised learning, training
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Figure 6.1: Overview of the framework of undocumented building detection.
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data consists of labeled and unlabeled sets. Labeled samples would work as anchors,
which are known with certainty and force the model to fit them with confidence. By doing
so, the information extracted from labeled data can be reliably propagated. Moreover,
additional structure about the input distribution can be learned from unlabeled data to
produce an estimate of the decision boundary, better separating samples into different
classes. Therefore, the investigation of sampling strategies for both labeled and unlabeled
sets is vital to our proposed semi-supervised training method.

6.2.2 Methodology

Our research aims to select highly representative training samples among a large pool
of patches for semi-supervised learning, which can achieve comparable performance as
the supervised method using a full set of labeled patches. Inspired by active learning
strategies that select informative samples to enlarge the training dataset, we propose
sampling strategies to select the most informative both labeled and unlabeled samples.
Specifically, we define selection criteria based on model predictions for both labeled and
unlabeled patches. In this way, valuable samples that are expected to maximally boost
the model performance are selected.

For the selection of the labeled set, we adopt the margin sampling strategy [158] [159],
which seeks the instance that has the smallest difference between the first and second
most probable label. In our case, we focus on the pixels that have the smallest difference
in prediction probability between “building” and “non-building”. The margin xM for the
pixel x in the patch I is denoted as:

xM = |P (ŷ2|x)− P (ŷ1|x)| , (6.1)

where P (ŷ2|x) and P (ŷ1|x) represent probabilities of x that is predicted as “building” and
“non-building”, respectively. In general, a smaller margin corresponds to more uncertainty.

xA =

{
1, if xM < β

0, otherwise
,

where β is a threshold to find the pixel that has a small margin. To measure the confidence
score of the trained model on each patch, we define an image-level metric for a target
labeled patch Il, which is termed as margin ratio R(Il),

R(Il) =

∑H
h=1

∑W
w=1 x

(h,w)
A

HW
, (6.2)

where H and W are the image height and width of the patch Il. This margin ratio
suggests how well the model performs on this patch, and a higher value means a lower
confidence score, indicating more pixels with low confidence are included in this patch. In
other words, the higher value, we can say that the model is less confident with this labeled
patch. Therefore, the inclusion of this patch into the training dataset is able to further
boost the model performance.

For the selection of the unlabeled set, we follow the core idea of consistency training-
based methods, which encourage the network to give consistent outputs for unlabeled
inputs that are perturbed in various. In our case, we focus on the discrepancy in the
outputs between the main decoder and the auxiliary decoder. To measure the confidence
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score for each patch, we define an image-level metric for a target unlabeled patch Iu, which
is termed as output consistency loss S(Iu), which is denoted as:

S(Iu) =

√∑H
h=1

∑W
w=1(P

(h,w)
d − P

(h,w)
g )2

HW
, (6.3)

where P
(h,w)
d and P

(h,w)
g are the probability of the pixel from the main decoder and aux-

iliary decoder, respectively. This output consistency loss indicates how well the model
performs on this patch. The unlabeled patch with larger output consistency loss has a
lower confidence score. In other words, the model has a lower confidence level on this
unlabeled patch. Hence, we can add this unlabeled patch into the training dataset, in
order to improve the model performance.

Before the sample selection, we need to randomly select samples from both labeled and
unlabeled sets which are taken as input for an initial training set for network learning.
Afterward, we input the remaining set into the trained model for prediction and compute
image-level uncertainty metrics for every target image. After the sort of these patches
using image-level criterion by descending order, we pick up the top γ portion as hard
samples. Finally, hard samples are combined with initial training samples for further
network learning. Note that γ is a hyperparameter.

In practice, we can first fix the number of the unlabeled set where pixel-level annotations
are removed. Afterward, we start to select labeled samples, where the initial sets are set
as different numbers. Then we train semi-supervised models with different initial sets and
follow the proposed sampling strategy to add more labeled samples. Once we find the
optimal labeled set, we explore the effects of the unlabeled set on the model performance.
For the initial unlabeled set selection, we first select the number of unlabeled patches as
the same as that of labeled patches. Afterward, we follow the proposed sampling strategy
to add more unlabeled samples.

6.2.3 Experiment

6.2.3.1 Dataset

All official geodata are preprocessed to collect training patches as input. DFK is provided
as shapefiles and first converted to the raster format at 0.4 m/pixel. In this way, it has
the same spatial resolution as TrueDOP. Then, all the tiles of TrueDOP and DFK as
corresponding ground references are clipped into patches with a size of 256 × 256 pixels.
Then, we collect the patches from 14 cities in the state of Bavaria, Germany, and we split
the collected patches into the train and validation subset for each city. Table 6.1 shows the
number of training and validation patches for the 14 selected cities. To evaluate building
extraction results, we choose the city of Bad Toelz as the test area, which covers 40 square
kilometers.

6.2.3.2 Experimental Setup

In order to provide an upper limit of accuracy metrics, we investigate the performance
of semantic segmentation networks under the fully supervised setting where all training
patches are labeled. Once we have found the optimal labeled and unlabeled sets with
the proposed sampling strategy, we can compare the model performance with supervised
learning methods.
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Table 6.1: The numbers of training and validation patches for the 14 selected cities.

City Number of Training Patches Number of Validation Patches

Ansbach 67,965 18,077

Wolfratshausen 14,982 3671

Kulmbach 24,998 5679

Kronach 19,987 5112

Landau 34,964 8733

Deggendorf 38,454 9763

Landshut 60,957 15,090

Muenchen 88,364 22,213

Regensburg 47,947 11,941

Hemau 9481 2243

Rosenheim 59,141 14,789

Wasserburg 14,150 3567

Schweinfurt 54,951 13,759

Weilheim 76,959 19,202

6.2.3.3 Training Details

Our experiments are conducted within a Pytorch framework on an NVIDIA Tesla with
16 GB of memory. For all methods, the optimizer is stochastic gradient descent (SGD)
with a learning rate of 0.1 and a momentum of 0.9, and the training batch size is set as 4.
Detailed configurations of all methods included in our experiments are listed as follows:

(1) Efficient-UNet [160]: EfficientNet[161] is adopted as the encoder to learn feature
maps. The decoder is comprised of five transposed convolutional layers that upsample the
convolved image to predict segmentation masks.

(2) FC-Densenet [84]: Both the encoder and decoder in FC-DenseNet are composed of
five dense blocks, and each dense block has five convolutional layers.

(3) MA-FCN [92]: This approach has proposed a feature fusion structure to aggregate
multi-scale feature maps. It utilizes a Feature Pyramid Network (FPN) [59] -based struc-
ture as the backbone where the encoder is a four-layer VGG-16 [162] architecture and a
corresponding decoder implements lateral connections between them.

(4) Proposed method: The hyperparameter α in the unsupervised loss weighting func-
tion λu is set as 0.6. The loss term weighting parameter of feature consistency ωu is
chosen as 0.2. The network architectures of F and A are the same as that of the semantic
segmentation network achieving the best performance.

6.2.3.4 Evaluation Metrics

The performance of models is evaluated by two metrics: F1 score and intersection over
union (IoU). They can be computed as follows.

F1 score =
2× precision× recall

precision + recall
, (6.4)

IoU =
TP

TP + FP + FN
, (6.5)

precision =
TP

TP + FP
, (6.6)
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recall =
TP

TP + FN
, (6.7)

where TP indicates the number of true positives, FN is the number of false negatives, and
FP is the number of false positives. F1 score realizes a harmonic mean between precision
and recall.

6.2.4 Results

6.2.4.1 Comparison among Different Methods

The comparisons among different semantic segmentation networks for supervised learning
are presented in this section. Their respective performance is evaluated according to
quantitative results in Table 6.2. The goal of this comparison is to select the best semantic
segmentation network as the backbone for our semi-supervised learning method in further
experiments. Among these semantic segmentation networks, Efficient-UNet [160] performs
the best. The superiority of Efficient-UNet [160] can be attributed to its capability of
systematically improving performance with all compound coefficients of the architecture
(width, depth, and image resolution) balanced [160]. Thus, we take Efficient-UNet [160]
as the backbone in both supervised learning and semi-supervised learning approaches for
further experiments.

Table 6.2: Accuracies of different semantic segmentation networks for supervised learning. (%)

Method F1 score IoU

Efficient-UNet [160] 85.00 74.24

FC-DenseNet [84] 84.82 73.96

MA-FCN [92] 84.80 73.58

6.2.4.2 Results of Sampling Strategy for Labeled set

We first investigate whether our proposed sampling strategy is also suitable for supervised
learning. Specifically, we set the labeled patches as 1400, 4200, 7000, 14000, 42000, 70000,
and 126000 as initial sets. The statistical metrics are shown in Table 6.3. In a supervised
setting, 70000 labeled patches (1/9 original labeled data) can show comparable results
as the full set of labeled patches. This suggests there is a redundancy of this full set
of labeled patches. Therefore, it is essential to select representative labeled samples for
network learning.

Table 6.3: Accuracies of different numbers of labeled sets for Efficient-UNet [160]. (%)

Labeled F1 score IoU

1400 75.41 60.53

4200 79.06 65.37

7000 80.26 67.02

14000 81.56 68.85

42000 83.22 71.26

70000 85.26 74.25

126000 85.24 74.23

Then we follow the proposed sampling strategy to add more labeled samples for the
models trained by initial sets of 1400, 4200, 7000, 14000, and 42000 labeled samples,
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Table 6.4: Accuracies of different initial labeled sets for Efficient-UNet [160] using the proposed
sampling strategies. (%)

Initial Labeled Newly added labeled F1 score IoU Margin ratio

1400 68600 83.69 71.95 0.005

4200 65800 85.01 73.92 0.007

7000 63000 85.41 74.48 0.008

14000 56000 85.29 74.29 0.009

42000 28000 85.09 73.99 0.013

respectively. The corresponding statistical metrics are illustrated in Table 6.4. For all
initial sets of labeled samples, we can see that increasing the number of selected labeled
samples to 70000 can boost network performance. However, for the initial set of 1400
labeled samples, even labeled samples are also added to 70000, but its F1 score and IoU
are lower than other initial sets. This is due to the fact that the performance of its base
trained model is unsatisfactory, leading to the selected labeled patches less representative.
Moreover. the initial set of 1400 labeled samples has a smaller margin ratio when compared
to other initial sets.
Afterward, we try to validate the proposed sampling strategy for the labeled set for

semi-supervised learning. Before we investigate the impact of different labeled sets on
model performance, the unlabeled set is first fixed as randomly selected 28000 patches.
Specifically, we set the labeled patches as 1400, 4200, 7000, 14000, and 18200 as initial
sets. The statistical metrics are shown in Table 6.5. The semi-supervised method achieves
the best performance when using 14000 labeled patches. With the same amount of labeled
sets, semi-supervised learning has largely improved the accuracy when compared to super-
vised learning, indicating the effectiveness of our semi-supervised method. Especially for
the labeled set of 1400 patches, the proposed semi-supervised approach reaches improve-
ments of above 7% in IoU. This is because the proposed method can make full use of the
information provided by unlabeled data.

Table 6.5: Accuracies of different numbers of labeled sets for our semi-supervised consistency
learning method. (%)

Labeled Unlabeled F1 score IoU

1400 28000 80.73 67.68

4200 28000 82.68 70.48

7000 28000 83.28 71.35

14000 28000 83.92 72.30

18200 28000 83.76 72.06

Then we follow the proposed sampling strategy to add more labeled samples for the
models trained by initial sets of 1400, 4200, and 7000 labeled samples. It can be seen from
the results in Table 6.5, the semi-supervised method can obtain the best performance
using 14000 labeled patches. Therefore, the final labeled patches for all models are added
to 14000. The corresponding results are illustrated in Table 6.6. For the initial sets
of 4200 and 7000 labeled samples, we can see that increasing the number of selected
labeled samples can boost network performance. However, for the initial set of 1400
labeled samples, even though many labeled samples are added, no improvement is shown
in accuracy metrics. The reason is that the accuracy of its base trained model is low. In this
way, the selected labeled patches according to the base trained model are not informative.
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It can also be observed that the margin ratio for the initial set of 1400 labeled samples
is smaller than that of other initial sets. Compared to the initial 4200 labeled patches,
the initial 7000 labeled patches deliver significantly better results when the final labeled
patches are added to 14000. From these results, it is clear that the informativeness of
patches selected by the sampling strategy is dependent on the model trained by initially
labeled sets. Hence, an accurate initial model is more desirable, facilitating the selection
of representative patches.

Table 6.6: Accuracies of different initial labeled sets for our semi-supervised consistency learning
method using the proposed sampling strategies. (%)

Initial Labeled Newly added labeled Unlabeled F1 score IoU Margin ratio

1400 12600 28000 80.68 67.61 0.005

4200 9800 28000 83.40 71.53 0.006

7000 7000 28000 84.82 73.64 0.01

In summary, for the sampling of labeled patches, we first need to select a relatively
large number for initial model training. Afterward, the margin ratio is used to measure
the informativeness of each remaining patch. The labeled patch with a large margin ratio
can be incorporated into the training set for further model network learning. By doing so,
the model performance can be improved.

6.2.4.3 Results of Sampling Strategy for Unlabeled set

As we have already found the optimal labeled set (14000 labeled patches), we investigate
the effects of unlabeled samples on the model performance. For the initial unlabeled set
selection, we first randomly select 14000 unlabeled patches and together with 14000 labeled
patches to train a base model. Afterward, we follow the proposed sampling strategy to add
more unlabeled samples. The quantitative results are illustrated in Table 6.7, IoU rises to
a high point of 74.64% when 14000 selected unlabeled patches are additionally included.
Moreover, it even obtains increments of 1% in IoU when compared to randomly selected
28000 unlabeled patches, which confirms the effectiveness of our sampling strategy for the
unlabeled set. Note that after implementing our sampling strategy, the proposed semi-
supervised method is able to achieve comparable performance as the supervised approach
using the full set of labeled data.

Table 6.7: Accuracies of different unlabeled sets for our semi-supervised consistency learning
method. (%)

Labeled Unlabeled F1 score IoU Output consistency loss

14000 14000 83.39 71.51 -

14000 21000 85.14 74.14 0.027

14000 28000 85.48 74.64 0.020

14000 35000 85.19 74.21 0.017

6.2.5 Discussion

In this section, we first investigate the impacts of initial and newly added labeled patches
on the final results, respectively. Afterward, we aim to explore the strategy for selecting
the optimal number of labeled patches.
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6.2.5.1 Impact of Initial Labeled Patches

We first plot a percentage histogram of different labeled datasets (cf. Figure 6.2). The
x-axis represents the distance between the class center of “building” and the class center
of “non-building” in each patch. Specifically, the pixels belonging to the same class in each
patch are taken into account, and the class center is defined as the average spectral values
of these pixels. It can be observed that when the number of labeled patches is larger than
7000, the line graph will be more similar and close to that of all labeled patches.
Afterward, we plot two percentage histograms of different labeled datasets (cf. Figures

6.3 and 6.4), which can be used to examine our sampling strategies of labeled sets for
supervised learning and semi-supervised consistency training, respectively. It is important
to highlight the fact that our sampling strategies aim to select patches that have a lower
confidence score. In other words, the selected patches are hard samples for the trained
model. The smaller distance between two class centers will lead to more difficulty for class
separation, which suggests the patch with a smaller distance can also be regarded as a
hard sample. Therefore, we can incorporate these hard samples in the newly added labeled
sets to improve network learning. It should be noted that the line graph (cf. Figure 6.4) of
the set (initial 1400 labeled patches and newly added 12600 labeled patches) still shows a
lower ratio of hard samples than the full labeled set. This indicates that when the number
of initial labeled patches is small, the trained model can not effectively select the hard
samples to improve network learning. This is consistent with results in Table 6.6, where
no improvement is shown in accuracy metrics after more labeled samples are added to the
initial 1400 labeled patches.

Figure 6.2: The percentage histogram of different labeled datasets.

6.2.5.2 Impact of Newly Added Labeled Patches

When the initial labeled set is fixed, we want to investigate the impacts of newly added
labeled datasets (cf. Figures 6.5 and 6.6), This is helpful to explore our sampling strategies
of labeled sets for supervised learning and semi-supervised learning. It is clearly seen that
implementing sampling strategies can enlarge the proportion of hard samples, which are
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Figure 6.3: The percentage histogram of different initial labeled and newly added labeled datasets
for supervised learning.

Figure 6.4: The percentage histogram of different initial labeled and newly added labeled datasets
for semi-supervised learning.

Table 6.8: Accuracies of different newly added labeled sets for Efficient-UNet [160] using the
proposed sampling strategies. (%)

Initial Labeled Newly added labeled F1 score IoU Margin ratio

7000 0 80.26 67.02 -

7000 35000 84.03 72.45 0.009

7000 63000 85.41 74.48 0.008
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Figure 6.5: The percentage histogram of different newly added labeled datasets for supervised
learning.

Table 6.9: Accuracies of different newly added labeled sets for our semi-supervised consistency
training method using the proposed sampling strategies. (%)

Initial Labeled Newly added labeled Unlabeled F1 score IoU Margin ratio

7000 0 28000 83.28 71.35 -

7000 4200 28000 84.56 72.98 0.011

7000 7000 28000 84.82 73.64 0.01

Figure 6.6: The percentage histogram of different newly added labeled datasets for semi-
supervised learning.
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patches with a smaller distance between two class centers. It can be observed that when
more labeled patches are added, more hard samples are introduced for network learning.
This is in line with the accuracy metrics presented in Tables 6.8 and 6.9, where the number
of newly added labeled patches should be increased to a certain number. By doing so, the
model can reach its maximum potential.

6.2.5.3 Selection of the Optimal Number of Labeled Patches

From the percentage histogram of different labeled datasets in Figure 6.2, we have observed
that when the labeled set has more patches, the more similar the line graph is to the full
labeled set. This inspires us that we can select the optimal number of the labeled patches
by examining the similarity of line graphs between different numbers of labeled sets and
the full labeled set.
To quantitatively measure the similarity, we calculate the Euclidean distance between

line graphs. Specifically, we set the labeled patches as 1400, 4200, 7000, 14000, 42000,
56000, 70000, and 126000 as initial sets. We first classify all patches within the selected
set into different categories and the value ranges in each category are set equal in size.
In other words, the entire range of distance values (max minus min) is divided equally
into the defined number of classes. Here, we set 100 categories and the data range of
each category is 3. Afterward, we calculate the frequency of each category. By doing so,
the Euclidean distance of frequencies in corresponding data ranges between two different
labeled datasets can be calculated and summed.
Figure 6.7 shows the percentage histogram of different labeled datasets. For a fair

comparison, each set is randomly 10 times selected from the full labeled set. The line
represents the mean values, and the shaded area indicates a boundary at the derived
standard deviation. It can be observed that when more labeled patches are included, the
line graph is more smooth and similar to the full labeled set. In other words, the labeled
set with more patches has a lower standard deviation. Moreover, the line representing the
mean values is more similar to the line of the full labeled set.
Table 6.10 shows the similarity of line graphs between different numbers of labeled sets

and the full labeled set. It can be observed that when more labeled patches are included,
the distance of the line graph to the full labeled set is smaller, and the similarity of the
line graph to the full labeled set is higher.
From Table 6.10, the line graph of 56000 labeled patches and 70000 labeled patches show

similar distances to that of the full labeled set. This indicates that both two datasets might
achieve comparable accuracy. Therefore, we further investigate the differences among
various numbers of labeled sets in terms of accuracy and distance of mean value to the
line graph of the full labeled set. Specifically, in 10 randomly selected sets for both 56000
labeled patches and 70000 labeled patches, we first find the datasets with the max and
min distance within each dataset. Afterward, we train Efficient-UNet [160] models on the
corresponding datasets. The statistical results are shown in Table 6.11. It can be observed
that when the distance of the line graph to the full labeled set is smaller, accuracy metrics
are higher. In this case, the distance of the line graph to the full labeled set offers an
informative cue to select the optimal number of patches. For instance, 56000 labeled
patches with a distance of 0.0030 show 1% improvement in IoU when compared to 70000
labeled patches with a distance of 0.0046. This again confirms that the distance of the
line graph to the full labeled set can be regarded as a metric to find the optimal number
of labeled patches.
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Figure 6.7: The percentage histogram of different labeled datasets. Each set is randomly 10 times
selected from the full labeled set.

Table 6.10: Similarity of line graphs between different numbers of labeled sets and the full labeled
set. Each set is randomly 10 times selected from the full labeled set.

Labeled Distance of mean value to the full labeled set

1400 0.0088

4200 0.0047

7000 0.0035

14000 0.0023

42000 0.0016

56000 0.0011

70000 0.0010

126000 0.0007

Table 6.11: Comparisons of different numbers of labeled sets for Efficient-UNet [160].

Labeled Distance of mean value to the full labeled set F1 score IoU

56000 0.0044 84.38 % 72.97 %

56000 0.0030 84.74 % 73.52 %

70000 0.0046 84.08 % 72.52 %

70000 0.0028 84.99 % 73.90 %
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6.3 Summary

The established building footprint maps are beneficial to a wide range of practical ap-
plications, e.g., the detection of undocumented building constructions. A framework to
detect undocumented building constructions is proposed in Appendix D. We have demon-
strated the proposed semi-supervised training-based method is effective in this practical
application. Moreover, sampling strategies of this approach are proposed.
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7.1 Conclusion

This dissertation explores and investigates modern deep learning techniques for the task of
building footprint generation with the potential for practical applications. Several specific
challenges induced by existing deep learning-based methods are pointed out in Chapter
1, e.g., blurred boundaries and blob shapes, and the scarcity of pixel-level annotations.
Accordingly, related works are summarized in Chapter 3. Finally, in Chapters 4, 5, and
6, this dissertation provides contributions to three aspects of the task of building foot-
print generation: development of deep learning algorithms that can refine blurred build-
ing boundaries, development of deep learning algorithms that can compensate for limited
supervisory information, and demonstration of the developed deep learning algorithms in
practical applications. The following conclusions are listed as follows:

• To preserve sharp boundaries and fine-grained segmentation, graph models enabling
the capture of fine local details can be integrated with CNNs in an end-to-end
framework. The proposed FPCRF utilizes a pairwise potential term with localized
constraints in CRF, allowing more complete feature learning and efficient message
passing operation than other graph models.

• The boundary-aware attraction field can be utilized to represent building footprints,
where building boundaries are enhanced and the impact of background clutters is
suppressed. The superiority of attraction field representation is due to the fact that
geometric properties of buildings can be encoded in 2-D (x- and y-directions), which
is more reliable and accurate than other output representations.

• Semi-supervised training-based methods are capable of leveraging a large amount
of unlabeled data, helping to compensate for limited supervisory information. The
proposed semi-supervised network integrates the consistency training of features
and outputs into a unified objective function and offers an instruction to apply
the perturbation. By doing so, our method gains significant improvements when
compared to other approaches.

• Co-segmentation learning is beneficial to the cross-city building extraction task,
as it can jointly utilize the data from different geolocations. The proposed cross-
geolocation attention module learns underlying similarities for extracting more
generic representations for buildings. In this way, the limited supervisory infor-
mation in target cities can be compensated.

• A framework is proposed to automatically detect undocumented building construc-
tions, providing information for urban planning and monitoring. In this framework,
our proposed semi-supervised learning network can be exploited for the task of build-
ing footprint generation, indicating that our method is robust for large-scale practical
applications.
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• When the proposed semi-supervised learning network is implemented in practical
application, we have proposed sampling strategies for both labeled and unlabeled
sets. Specifically, margin ratio and output consistency loss are utilized to select
informative labeled and unlabeled samples, respectively.

7.2 Outlook

According to the studies of building footprint generation in this dissertation, a few poten-
tial topics for future deep learning-based building mapping and related applications are
outlined in the following.

7.2.1 Building Footprint Generation Using Multi-modal Data

Multi-modal data refers to data from different sensors, and the joint leverage of multi-
modal data enables the network to obtain more detailed information. For instance, optical
sensors provide spectral and texture properties of buildings, LiDAR can acquire precise
geometrical information, and SAR is insensitive to weather conditions. The main issue
here is “how” and “where” to fusion multi-modal data for the task of building footprint
generation. The “how” means to design a fusion strategy for the full exploitation of
different data. The “ where” represents the fusion level, and it includes three types: data
level, feature level, and decision level. Data-level fusion means the concatenation of multi-
modal data in a single data cube for processing. Feature-level fusion aims at integrating
features from various data, which can learn cross-modal features. Decision-level fusion
combines the predictions that are obtained from a single modality.

7.2.2 Building Footprint Generation with Self-supervised Learning

With earth observation entering an era of big data, we are able to acquire a large amount
of remote sensing data. However, it is expensive and time-consuming to get pixel-level
annotation for these data due to the need for expertise. Therefore, self-supervised learning
methods are preferable as they are capable of actively exploiting massive unlabeled samples
and harnessing the intrinsic structure of data for training. Therefore, we can utilize
self-supervised learning methods to provide models pre-trained on large-scale unlabeled
remote sensing data, and then transfer the trained models for the task of building footprint
generation.

7.2.3 Leverage of Building Footprint Maps

The generated building footprint maps can offer important information for many practical
applications on both micro and macro scale. Several examples related to the leverage of
building footprint maps are given, e.g., 1) Environmental analysis, 2) hazard vulnerability
analysis, and 3) High-resolution population map generation.

• Environmental analysis: Urbanization refers to more buildings constructed in
former non-urban land. Rapid urbanization will result in adverse impacts on the
environment, such as the urban heat island effect, greenhouse effect, and resource
depletion. Therefore, we can first derive morphological parameters and landscape
metrics of buildings using the generated building footprint maps, and then carry out
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correlation analysis together with other environmental variables, e.g., carbon dioxide
emission, greenhouse gas emission, and waste production.

• Hazard vulnerability analysis: Hazard refers to environmental phenomena that
have the potential to affect humans and infrastructures negatively. There are dif-
ferent types of hazards leading to the damage of buildings, including extreme heat,
volcanic ash, flood, earthquake, drought, tsunami, and landslide. When a hazard
occurs, we can evaluate the vulnerability of buildings in a certain region. This in-
formation helps practitioners and stakeholders for a better decision-making process.

• High-resolution population map generation: Population data refers to popula-
tion distributions and dynamics, which provides information for various applications
such as estimating the population at risk, deriving health or development goals in-
dicators, and understanding human-environmental processes. However, population
data are regularly outdated and even unavailable in some areas. Considering that
population is highly correlated with buildings, the generated high-resolution building
footprint maps can be utilized to provide a fine-scale population map.

7.2.4 Building Height Retrieval from Optical Imagery

Building footprint maps only contain 2D information on buildings. Building height char-
acterizes the vertical structure of urban form, providing valuable information for a com-
prehensive investigation of the urban process. Therefore, three-dimensional (3D) building
models that link building heights and building footprints, facilitate a more wide range of
applications, such as emergency responses and rescue operations, facility management, and
urban monitoring. Remote sensing technologies hold great potential for building height
estimation on a large scale. Generally, commonly used remote sensing data consists of
two types: 1) LiDAR and 2) optical imagery. Although LiDAR allows highly accurate
scene geometry measurement, it has a high cost for data acquisition. For city-scale scene
analysis, optical imagery is more cost-effective to provide 3D building information with
high-resolution and large spatial coverage.
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Abstract— Building footprint generation is a vital task in a
wide range of applications, including, to name a few, land use
management, urban planning and monitoring, and geographical
database updating. Most existing approaches addressing this
problem fall back on convolutional neural networks (CNNs)
to learn semantic masks of buildings. However, one limitation
of their results is blurred building boundaries. To address
this, we propose to learn attraction field representation for
building boundaries, which is capable of providing an enhanced
representation power. Our method comprises two elemental
modules: an Img2AFM module and an AFM2Mask module.
More specifically, the former aims at learning an attraction
field representation conditioned on an input image, which is
capable of enhancing building boundaries and suppressing the
background. The latter module predicts segmentation masks of
buildings using the learned attraction field map. The proposed
method is evaluated on three datasets with different spatial
resolutions: the ISPRS dataset, the INRIA dataset, and the Planet
dataset. From experimental results, we find that the proposed
framework can well preserve geometric shapes and sharp bound-
aries of buildings, which brings significant improvements over
other competitors. The trained model and code are available at
https://github.com/lqycrystal/AFM_building.
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I. INTRODUCTION

AUTOMATIC building footprint generation from remote
sensing data has been of great interest in the community

for a range of applications, such as land use management,
urban planning and monitoring, and disaster management.
However, accurate and reliable building footprint generation
remains particularly challenging due to two reasons. On the
one hand, different materials and structures lead to large vari-
ations of buildings in terms of color, shape, size, and texture.
On the other hand, buildings and other man-made objects (e.g.,
roads and sidewalks) share similar spectral signatures, which
can result in a low between-class variability.

Early efforts have been gone into seeking out hand-crafted
features of being to effectively exploit spectral, structural,
and context information. For example, Huang et al. [1] pro-
pose a framework for automatic building extraction, which
utilizes spectral, geometrical, and contextual features extracted
from imagery. Nonetheless, these methods still fail to satisfy
accuracy requirements because they rely on a heuristic fea-
ture design procedure and usually have poor generalization
capabilities.

More recently, convolutional neural networks (CNNs)
have surpassed traditional methods in many remote sensing
tasks [2]–[10]. CNNs can directly learn feature representations
from the raw data; thus, they provide an end-to-end solution
to generate building footprints from remote sensing data. Most
of the studies in this field assign a label “building” or “non-
building” to every pixel in the image, thus yielding semantic
masks of buildings. The existing CNNs seem to be able to
deliver very promising segmentation results for the purpose
of building footprint generation at a large scale (cf. Fig. 1).
However, when we zoom in on some segmentation masks (see
results from U-Net [11] in Fig. 1), it can be clearly seen that
such results are not that perfect, and the boundaries of some
buildings are blurred.

We have observed that buildings usually have clear patterns
(e.g., corners and straight lines). Therefore, geometric primi-
tives of buildings can be exploited as the most distinguishable
features for extraction purposes. There have been several
works based on this idea [12]–[15]. In this work, we want to
exploit building boundaries as a primary visual cue to achieve
our task.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Building footprints generated by U-Net [11] and our proposed method
(U-Net with attraction field representation) at large scale and two zoomed in
areas.

Fig. 2. (a) Satellite imagery, and the AFMs in both (b) x- and (c) y-directions
estimated by our method.

Recently, attraction field representation is used for the task
of line segment detection in computer vision [16], which seeks
the most attractive line segment for each pixel. Our observation
is that, when building boundaries in remote sensing images
are represented by the attraction field, they can be greatly
enhanced, while background clutters (e.g., car, courtyard, and
road) are suppressed. Fig. 2 shows an example. Motivated by
this observation, in this work, we want to make use of the
attraction field to represent buildings and propose an end-to-
end trainable network for automatic building footprint gener-
ation. This network consists of two modules: Img2AFM and
AFM2Mask. The former takes as input an image and is respon-
sible for learning a corresponding attraction field map (AFM)
using a CNN. By doing so, fine-grained building boundaries
can be preserved, and the impact of background clutters can
be alleviated. The latter module learns another subnetwork to
obtain semantic masks of buildings from augmented building
edges in the learned AFM. Note that both these two modules
are jointly optimized. In addition, the AFM2Mask module
is flexible enough to use different semantic segmentation
network architectures.

This work’s contributions are threefold.
1) We propose to use the boundary-aware attraction field to

represent building footprints in remote sensing images.
This helps to enhance building boundaries while sup-
pressing the impact of background clutters. To the best
of our knowledge, it is the first work that utilizes
the attraction field for the task of building footprint
generation.

2) We propose a novel network that first learns an AFM
by a subnetwork, termed Img2AFM, and then uses
another subnetwork called AFM2Mask to reconstruct

segmentation masks of buildings. These two modules
are trained in an end-to-end fashion.

3) The proposed framework obtains satisfactory perfor-
mance on three datasets with different spatial resolu-
tions, including ISPRS, INRIA, and Planet datasets.
Compared with naive semantic segmentation networks
and networks with other visual cues (e.g., building
boundary maps), our method can significantly improve
accuracies in terms of both semantic mask and boundary.

The remainder of this article is organized as follows. Related
work is reviewed in Section II. Section III details the proposed
framework for building footprint generation. The experiments
are described in Section IV. Results and discussion are pro-
vided in Section V. Eventually, Section VI summarizes this
work.

II. RELATED WORK

There are a significant number of studies working on
building footprint generation from remote sensing imagery.
According to used visual cues, they can be categorized into
three classes: semantic mask, corner, and boundary of the
building.

A. Building Footprint Generation Based on the Semantic
Mask

Most methods for building footprint generation involve
learning semantic masks of buildings from remote sensing
imagery. Early efforts include segmentation-, classification-,
and index-based methods. The segmentation-based methods
extract buildings using image segmentation algorithms. For
example, based on a two-level graph theory, Ok [17] proposes
a segmentation approach to identify building regions. For
classification-based methods, building masks are extracted by
machine-learning classifiers which take spectral information
and/or spatial features as input to make a prediction for each
pixel. For instance, Turker and Koc-San [18] utilize a support
vector machine (SVM) to identify building regions based
on spectral bands and the normalized difference vegetation
index (NDVI). The objective of index-based approaches is
to design a feature index that can be directly applied to
obtain building regions without any classification or segmen-
tation process. Morphological building index (MBI) [19] is
a widely used one, and this index integrates multiscale and
multidirectional morphological operators. However, a general
limitation of these early works is the use of handcrafted fea-
tures and complex feature engineering, which leads to a poor
generalization.

Instead of the heuristic design of features, CNNs can
offer a better generalization capability. Driven by recent
advances in semantic segmentation networks, results of build-
ing footprint generation have been significantly improved.
These networks are usually fully convolutional network
(FCN) [20] and encoder–decoder architecture, such as
U-Net [11], SegNet [21], and FC-DenseNet [22]. In [23],
FCN has been demonstrated to be effective in processing
large amounts of remote sensing data and providing reliable
building segmentation results. SegNet is used in [24] to
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generate the first seamless building footprint map for the
United States. In order to improve the accuracy of segmenting
large buildings, a U-Net-based architecture is proposed in [25],
where original images and their downsampled counterparts are
taken as inputs of two branches sharing the same weights.
In [26], an adversarial training strategy is proposed for build-
ing extraction from remote sensing imagery, and FC-DenseNet
is exploited as a base semantic segmentation network to
generate accurate building footprints.

However, many experiments show that predicted semantic
masks of buildings from CNNs are still not that satisfactory,
where building boundaries are blurred. In this regard, signed-
distance transform (SDT) [27] is proposed to represent build-
ing footprints. The signed-distance function value is derived
as the distance from a pixel to its closest point on a building
boundary; positive values indicate the interior of a building
and negative values otherwise. Then, the learning problem of
the SDT representation can be regarded as a multiclass clas-
sification problem, which categorizes signed-distance values
into a certain number of classes [24]. Compared to the widely
used binary building mask, SDT can encode more fine-grained
information for network learning.

B. Building Footprint Generation Based on the Corner

Some algorithms generate building footprints based on
geometrical primitives, such as building corners. In these
methods, geometric primitives are first detected and then
grouped together to reconstruct individual building hypotheses.
A building corner refers to a point with its local neighborhoods
in two varying line segment directions and is invariant to trans-
lation, rotation, and illumination [28]. Early studies extract
building corners with the help of some point feature opera-
tors, such as Harris corner detector [29] and scale-invariant
feature transform (SIFT) operator [30]. Cote and Saeedi [12]
and Zangrandi et al. [31] employ a Harris corner detector to
extract corner points of buildings. Afterward, these detected
corner points are connected in the order of their polar angles
with respect to building central markers. By doing so, polyg-
onal representations of buildings can be constructed. In [32],
SIFT is exploited to extract corners that are regarded as seed
points to estimate rectangle shapes of buildings with a region
growing method.

With the development of keypoint detection networks,
several novel studies propose to delineate building footprints
by detecting corner points using CNNs. PolyMapper [33]
extracts corner points with a CNN in the first stage and
then connects them by a recurrent neural network (RNN)
to realize closed polygon representations of individual build-
ings. The other research [34] utilizes the same pipeline as
PolyMapper [33], and various blocks are integrated to enhance
the feature extraction and object detection modules. Another
method [13] also exploits a CNN to detect corners but adopts
a fully geometric-based grouping strategy without any deep
feature learning. Recently, Girard’s method [35] proposes to
learn a frame field output instead of building corners. The
frame field is regarded as a geometric feature that can help to
improve the segmentation of buildings.

C. Building Footprint Generation Based on the Boundary

Building boundary is another commonly used geometric
primitive and can be taken as a primary visual cue to generate
building footprints. Early works extract building boundaries
from remote sensing data in two steps. Given that lines
are strongly relevant to building boundaries, the first step is
to detect line segments. Afterward, the extracted lines are
grouped to form closed boundaries for individual buildings.
A commonly used line detection algorithm is the Hough
transformation [36] that utilizes a voting procedure to find
straight lines in parameter space. Compared with the Hough
transformation, the Burns algorithm [37] only uses gradient
orientations and, therefore, requires a relatively lower compu-
tation cost. In [14] and [38], line segment sets are extracted
with the Hough transformation and the Burns algorithm. Then,
intersection nodes of the two line segment sets are employed
to build a structural graph. Finally, building boundaries are
identified with a graph search algorithm. However, both Hough
transformation and Burns algorithm highly depend on para-
meter settings and have a very high false alarm rate. In this
regard, EDLines [39] are proposed to avoid parameter tuning.
Moreover, it has a faster computation speed and a lower false
alarm rate. In [40] and [41], EDLines are, therefore, adopted
for the automatic extraction of line segments, but they make
use of different strategies to group these line segments.

These early works still encounter issues when dealing with
more complex building shapes and large-scale applications.
Considering that, nowadays, CNNs are the de facto lead-
ing approach for building footprint generation tasks, two
novel works, [15] and [42], propose to learn building bound-
aries in their end-to-end CNNs. Marcos et al. [15] present
a method termed deep structured active contours (DSACs),
which learns active contour model (ACM) [43] parameteriza-
tions per instance using a CNN. Although DSAC improves
geometric correctness, results are still not that satisfactory,
e.g., there exist blob-like shapes and some self-intersections
of building. Besides, the representation of boundary points
in DSAC adopts Euclidean coordinates, which leads to extra
computational overheads during energy minimization. On this
point, another research [42] proposes to use polar coordinates,
as this can not only simplify the energy function but also
prevent self-intersection. However, these two methods still
have two limitations. On the one hand, the initialization of
them relies on external methods that are not included in an
end-to-end learning process. On the other hand, their results
are promising only in very high-resolution remote sensing
images where strong geometric priors exist.

III. METHODOLOGY

In this work, we explicitly take building boundaries as a
primary visual cue. By doing so, building footprint generation
tasks can be benefited from the precise delineation of building
boundaries. In this section, an overview of the proposed
approach is first presented. Then, two key modules, Img2AFM
and AFM2Mask, are introduced in detail, respectively. Finally,
the method of integrating and jointly optimizing the two
modules in an end-to-end architecture is described.
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Fig. 3. Overview of the proposed framework. The Img2AFM module takes an image as input and outputs two AFMs in x- and y-directions. Afterward,
the output is then fed into the AFM2Mask module along with the input image to generate a building mask. Notable that these two modules are trained in an
end-to-end fashion.

A. Overview

As shown in Fig. 3, the proposed method consists of two
modules. The Img2AFM module exploits a U-Net architec-
ture to learn the attraction field representation, which can
enhance building boundaries and suppress background clut-
ters. It takes an image as input and outputs two AFMs in
x- and y-directions. Afterward, the output is then fed into the
AFM2Mask module along with the input image to generate
a building mask. Moreover, the AFM2Mask module is very
flexible to utilize different semantic segmentation networks.
Note that these two modules can be integrated into an end-to-
end framework and optimized jointly. In this way, the optimal
output can be obtained by the coadaptation of these two
modules.

B. Img2AFM Module

1) Definition of Attraction Field Map: An image I can be
regarded a lattice. Let E = {e1, e2, . . . , en} be the set of
building line segments in the image lattice with n being the
number of building line segments. A building line segment
ei is represented by two end points pa

i and pb
i . For the sake

of simplicity, the set E is named boundary map in our case.
The boundary map characterizing all building boundaries in
the ground reference is shown in Fig. 4(c).

For each pixel, we try to find its most “attractive” building
line segment that is the closest to it. Following this criterion,
a region partition map R is formed by partitioning all pixels
into n regions and assigning each pixel x ∈ I to its closest
building line segment. Ri denotes a region for the building line
segment ei in E . Specifically, in order to derive the distance
between a pixel x and a building line segment ei , the pixel x
is first projected to the straight line passing through ei . If the
projection point is not on ei , the nearest endpoint is utilized as
the projection point. The definition of the projection point p� is

p� = pa
i + cx · (pb

i − pa
i

)
. (1)

When cx ∈ (0, 1), p� belongs to the original point-to-line
projection, and if cx = 0 or 1, p� is its nearest endpoint of ei .

Then, the distance d(x, ei) between x and ei can be defined
as the Euclidean distance between the pixel and the projection
point. Then, Ri in the image lattice for ei can be defined as

Ri = {
x | x ∈ I ; d(x, ei) < d

(
x, e j

)∀ j �= i, e j ∈ E
}
. (2)

It should be noted that Ri ∩ R j = ∅ and ∪n
i=1 Ri = R. Fig. 4

shows an example that, for the green building line segment,
its corresponding region partition map is highlighted in green.

Afterward, the geometric property of a building line seg-
ment can be characterized by a 2-D attraction of all individual
pixels in Ri . For instance, the attraction function of the pixel x
in Ri is defined as

ai(x) = p� − x. (3)

When cx ∈ (0, 1), the attraction vector is perpendicular to
the line segment. Fig. 4(d) shows the attraction vectors of the
green line segment.

Finally, by enumerating (3) over all pixels in I , the AFM A
with respect to E can be obtained as follows:

A = {a(x) | x ∈ I }. (4)

The superiority of AFM lies in two aspects compared with
the boundary map used in previous studies (see [15] and [42]).
One is that the geometry of boundaries can be depicted
more precisely by the AFM, while the boundary map is only
characterized by few pixels. Thus, directly learning boundary
maps can lead to a zig-zag effect that results from the extreme
imbalance between the number of boundary pixels and that
of nonboundary pixels. The other benefit is that the AFM
associates each line segment with a support region, which
avoids the blurring effect.

2) Learning Attraction Field Map: Each pixel in the
attraction field representation has two components (x- and
y-directions) that are represented by attraction vectors from
it to its projection point. In this respect, an attraction field
representation can be regarded as a 2-D feature map, which
is feasible to be learned by a network. Hence, in this article,
we view the learning of the AFM as a dense prediction prob-
lem and solve it using a semantic segmentation network archi-
tecture. Among all semantic segmentation networks, U-Net
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Fig. 4. (a) and (b) Semantic masks and boundaries of buildings in an image. (c) and (d) Region partition map and attraction vectors of the green building
line segmentaccording to the method in [16]. (e) Recovered boundary map obtained by the heuristic algorithm in [16].

is more favorable than others for this task. Because learning
the attraction field representation relies heavily on low-level
visual cues (e.g., object edges) that exist in lower layers, and
multiscale skip connections of U-Net are able to effectively use
such information. In fact, in our experiments, we found that
taking other network architectures as the Img2AFM module
fails.

C. AFM2Mask Module

By learning the AFM, a representation encoding build-
ing boundaries can be obtained. Then, we need to remap
the learned AFM into building masks. In [16], a heuristic
algorithm has been proposed to recover line segments from
the AFM. In this heuristic algorithm, attraction vectors are
rearranged mathematically to generate a proposal map of line
segments, and final line segments are then extracted with a
greedy grouping strategy. However, we found that, in our
building footprint generation task, the recovered boundary
map from this algorithm is not satisfactory [cf. Fig. 4(e)]
since there is a relatively high false alarm rate [see short line
segments in Fig. 4(e)]. The reason is that predicted attraction
vectors from CNNs are not mathematically precise enough.
In this case, some potential outliers have been included in
the following heuristic method, which leads to inaccurate
line segment detections. Another reason is that this heuristic
algorithm is not robust to imprecise estimates of the AFM.
Furthermore, it requires a set of heuristics and makes the

whole process inefficient. Therefore, in this work, we propose
to learn this process, i.e., recovering building masks from the
learned AFM, using a network. By doing so, the whole process
can be trained in an end-to-end manner, which makes it more
efficient and robust.

In the AFM2Mask module, the input image and learned
attraction field representation from the previous module are
concatenated as the input to this module. Afterward, the net-
work can directly generate building masks without using math
heuristics (that do not work well in our case). It is noteworthy
that different semantic segmentation network architectures are
quite flexible to be utilized in this module, which makes
full use of the power of state-of-the-art networks to generate
building footprint maps.

D. End-to-End Network Learning

We propose an end-to-end training pipeline for the
supervised learning of our network. More specifically,
the Img2AFM module is appended before the AFM2Mask
module, and the two modules are jointly trained by minimizing
a global loss function. The global loss function L is defined
as follows:

L = L Img2AFM + λ · LAFM2Mask (5)

where L Img2AFM and LAFM2Mask are two loss functions for opti-
mizing the Img2AFM and AFM2Mask modules, respectively.
λ is a hyperparameter to introduce a weight on the second loss
and can model the relative importance of two modules.
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For the first term, an L1 loss function is utilized, and it is
defined as follows:

L Img2AFM =
∑

x∈I

||â(x) − a(x)||1 (6)

where â(x) is the predicted AFM and a(x) is ground reference
AFM for the input image.

For the AFM2Mask module, we make use of a cross entropy
loss function to guide the learning. LAFM2Mask is defined as

LAFM2Mask =
∑

x∈I

{
−log( f (x)) if y = 1

−log(1 − f (x)) if y = 0
(7)

where y is the ground truth of pixel x , y = 1 denotes building,
and y = 0 represents non-building. f (x) ∈ [0, 1] is the output
probability value of x .

In the backward propagation, LAFM2Mask is first backprop-
agated through the AFM2Mask module and then together
with λ · L Img2AFM propagated backward through the Img2AFM
module.

IV. EXPERIMENTS

A. Dataset

We validate the proposed method on three datasets with
different spatial resolutions, i.e., the ISPRS dataset, the INRIA
dataset, and the Planet dataset.

1) ISPRS Dataset: The ISPRS dataset [44] is a benchmark
dataset consisting of 38 tiles of aerial imagery over the city of
Potsdam [cf. Fig. 5(a)]. Each aerial imagery includes 6000 ×
6000 pixels at a spatial resolution of 5 cm/pixel. The provided
ground reference has six land cover classes. In this work,
we only use RGB bands of aerial images, and for the ground
reference, the class of building is a positive class, while the
other five categories are viewed as the class of non-building.
Following the training/validation/test split in [45], 20 tiles
(tile id: 2-10, 2-12, 3-10, 3-11, 3-12, 4-11, 4-12, 5-10, 5-11,
6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 7-7, 7-9, 7-10, 7-11, and 7-12)
are used for training, four tiles (tile id: 7-8, 4-10, 2-11, and
5-11) are for validation, and the remaining 14 tiles are used
to test models.

2) INRIA Dataset: The INRIA dataset [46] is composed
of 360 large-scale aerial images that are collected over ten
different cities. The size of each imagery is 5000 × 5000,
and each image consists of three bands (RGB) at a spatial
resolution of 30 cm/pixel. A sample aerial image is showed
in Fig. 5(b). The ground reference data of this dataset provide
building masks but are only publicly available for five cities
(Austin, Chicago, Kitsap County, Western Tyrol, and Vienna).
In this article, data are split into training and test sets according
to the setup in [46] and [47]. For each city, images with ids 1–5
are used for validation, and the remaining 31 images are for
training. The statistics are derived from the validation set.

3) Planet Dataset: In addition to the aforementioned two
public datasets, we create a Planet dataset by collecting
PlanetScope satellite images and their corresponding building
footprints from OpenStreetMap. The PlanetScope satellite
images are gathered from eight European cities (Munich,
Berlin, Amsterdam, Paris, Cologne, Milan, Rome, and Zurich)

Fig. 5. (a) Aerial imagery in the ISPRS dataset (spatial resolu-
tion: 5 cm/pixel). (b) Aerial image in the INRIA dataset (spatial reso-
lution: 30 cm/pixel). (c) Satellite imagery in the Planet dataset (spatial
resolution: 3 m/pixel).

with three bands (RGB) at 3-m spatial resolution. Compared to
the former two datasets, the Planet dataset is more challenging
due to its coarser spatial resolution. Fig. 5(c) shows an
example of Munich. In our experiment, the image of Munich is
used as the test set to evaluate the performance of models. The
remaining seven cities are utilized as training and validation
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sets. Specifically, for each city, 80% of samples are used for
training, while 20% of samples are for validation purposes.

B. Experiment Setup

Our proposed model consists of two modules in an
end-to-end framework, where the Img2AFM module utilizes a
U-Net to learn the attraction field representation of an image
with respect to building edges, and the AFM2Mask module
can learn building masks from the representation using differ-
ent semantic segmentation networks. To explore the flexibility
of the AFM2Mask module, we select four state-of-the-art
semantic segmentation networks: FCN-8s [20], SegNet [21],
U-Net [11], and FC-DenseNet [22]. The attraction field rep-
resentation encodes the geometric relation between pixels and
building boundaries in an image, and it can be considered
as a variant of distance transform, such as SDT [27] that
measures the distance from the pixel to the boundary. Hence,
we compare our model with existing works [24], [27] learning
SDT representations of buildings. On the other hand, it is
clearly seen that the learned AFMs from the Img2AFM
module can well enhance building boundaries. In this aspect,
the function of the attraction field representation seems to
be similar to other visual cues, such as building boundaries
and SDT masks. Thus, we also compare our network with
two methods, SDT-recursive and boundary-recursive, where,
basically, we incorporate SDT/edge learning into the proposed
framework (cf. Fig. 3). Comparing the proposed approach
and the two models can verify whether the attraction field
representation is effective. Besides, the sensitivity of the hyper-
parameter λ, being the coefficient of loss of the AFM2Mask
module, is investigated.

C. Training Details

Our experiments are conducted within a Pytorch framework
on an NVIDIA Tesla P100 GPU with 16 GB of memory.
For the model training, remote sensing images and their
corresponding ground reference building masks are cropped
into small patches with a size of 256 × 256 pixels. After-
ward, the boundaries, SDT, and AFMs are generated from
the ground-truth building masks for further experiments as a
ground reference in the training set. All models are trained
for 100 epochs, and the optimizer is stochastic gradient
descent (SGD) with a learning rate of 0.00001. The training
batch size of all models is set as 4. The cross-entropy function
is used as the loss function for other competitors.

The configurations of competitors included in experiments
are listed as follows.

1) FCN-8s adopts a VGG16 architecture [48] as the back-
bone.

2) The encoder in SegNet is based on VGG16, and the
decoder utilizes a reversed VGG16 architecture.

3) U-Net is composed of five blocks in both the encoder
and the decoder. Each block in the encoder has two con-
volution layers, and in the decoder, it has one transposed
convolution layer.

4) Both the encoder and the decoder in FC-DenseNet
consist of five dense blocks, and each dense block has
five convolutional layers.

5) For the SDT-based network that directly learns the SDT
representations of buildings, they utilize the aforemen-
tioned four semantic segmentation networks and, finally,
convert the learned SDT representations of buildings to
semantic masks by definition [24], [27].

6) The SDT-recursive model or boundary-recursive model
first utilizes a U-Net to learn the SDT representation or
boundaries of buildings. Afterward, they also utilize the
aforementioned four semantic segmentation networks to
reconstruct semantic masks of building. It should be
noted that the whole method is trained in an end-to-end
fashion.

D. Evaluation Metrics

The performance of models is evaluated from two aspects.
Mask metrics are focused on building masks, while boundary
metrics are exploited to measure the quality of boundaries of
the predicted building masks.

1) Mask Metrics: In our experiments, F1 score and inter-
section over union (IoU) are selected as two mask metrics.
They can be computed as follows:

F1 score = 2 × precision × recall

precision + recall
(8)

IoU = TP

TP + FP + FN
(9)

precision = TP

TP + FP
(10)

recall = TP

TP + FN
(11)

where TP indicates the number of true positives, FN is the
number of false negatives, and FP is the number of false
positives. Notable that these metrics are calculated based on
building pixels rather than building objects. F1 score realizes
a harmonic between precision and recall.

2) Boundary Metrics: In order to assess building
boundaries, structural similarity index (SSIM) [49] and
F-measure [50] are exploited as two evaluation criteria.
SSIM is a measure to calculate the similarity between two
images, which can be used for the quality assessment of
boundaries [51]. Before the calculation of F-measure, building
boundaries are extracted first from predicted semantic masks
by the Sobel edge operator [52]. F-measure is used to score
the boundary and is defined as the geometric mean of the
precision and recall

precision� = TP�

TP� + FP� (12)

recall� = TP�

TP� + FN� (13)

F-measure = 2 × precision� × recall�

precision� + recall�
(14)

where TP� is the number of correctly identified boundary
pixels, FN� is the number of boundary pixels in the ground
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Fig. 6. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed FCN-8s-AFM,
(f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT, (m) U-Net-
SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive, (s) FC-
DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white, green,
and red, respectively. (u) and (v) Aerial imagery and ground reference from the ISPRS dataset (spatial resolution: 5 cm/pixel).

reference but being failed to be detected, and FP� is the number
of nonboundary pixels mislabeled as “boundary.”

V. RESULTS AND DISCUSSION

A. Comparison With Other Competitors

The comparisons among the proposed method, naive seman-
tic segmentation networks, SDT-based networks, SDT-learning

methods, and boundary-learning methods are presented in this
section. Their respective performance is evaluated according
to both quantitative (cf. Tables I–III) and qualitative results
(see Figs. 6–8) on three datasets.

Naive semantic segmentation networks that are regarded
as baseline methods are first compared with the proposed
framework. Specifically, we implement four baseline models,
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Fig. 7. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed
FCN-8s-AFM, (f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT,
(m) U-Net-SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive,
(s) FC-DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white,
green, and red, respectively. (u) and (v) Aerial imagery and ground reference from the INRIA dataset (spatial resolution: 30 cm/pixel).

i.e., FCN-8s, SegNet, U-Net, and FC-DenseNet. For a fair
comparison, the AFM2Mask module is instantiated with these
four networks separately. It can be seen from the statistics
of three datasets that the proposed approach significantly

boosts performance in both mask and boundary metrics com-
pared with baseline networks. This indicates that the inte-
gration of learning attraction field representation is effective,
and our framework can offer more robust results for the
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Fig. 8. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed
FCN-8s-AFM, (f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT,
(m) U-Net-SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive,
(s) FC-DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white,
green, and red, respectively. (u) and (v) Satellite imagery and ground reference from the Planet dataset (spatial resolution: 3 m/pixel).

task of building footprint generation. For the ISPRS dataset
(cf. Table I), our proposed FCN-8s-AFM obtains increments
of 6.65% and 10.1% in F1 score and IoU, respectively.
Moreover, the proposed U-Net-AFM reaches improvements

of 4.65% and 4.18% in SSIM and F-measure, respectively.
The increases in boundary metrics suggest that our method
can better preserve geometric details. The spatial resolution
and image quality of the Planet dataset are much lower
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TABLE I

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE ISPRS DATASET (SPATIAL RESOLUTION: 5 cm/pixel)

TABLE II

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE INRIA DATASET (SPATIAL RESOLUTION: 30 cm/pixel)

than the other two datasets, which may lead to a negative
effect on accurately extracting buildings. In this case, although
improvements in both mask and boundary metrics on the
Planet dataset are less significant than those on the other two
datasets, the nearly 1% gain is still not trivial.

From qualitative results, we can observe that building
boundaries obtained from naive semantic segmentation net-
works are blurred, which is also pointed out in [53]–[55].
The visual comparisons (cf. Figs. 6–8) demonstrate the effec-
tiveness of the proposed method. As illustrated in Fig. 7,
semantic masks provided by naive networks have blob-like
shapes. Even with skip connections that help compensate
spatial details in networks, U-Net and FC-DenseNet fail to

achieve accurate building boundaries. Moreover, this scene
is a residential area, and some consecutive buildings are
identified as a large building by most of the baseline models.
Note that building boundaries produced by our algorithm are
more rectilinear and precise. Even for buildings with complex
structures (cf. Fig. 6 and 8), building footprints generated from
our framework are more adherent to the ground reference.
These observations suggest that our model really benefits from
learning attraction field representation, enabling us to gain
more geometric details of buildings.

The attraction field representation can be considered as a
type of distance transform, which represents the relationship
between the pixel and the boundary. Therefore, we also
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TABLE III

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE PLANET DATASET (SPATIAL RESOLUTION: 3 m/pixel)

take another type of distance transform: SDT as competitors.
One competitor is an SDT-based network that utilizes variant
backbones to learn the SDT representation of buildings and
then convert this representation to semantic masks by defini-
tion [24], [27]. Compared to baseline networks, the SDT-based
network can contribute to the F-measure only on the ISPRS
dataset. However, there are even decreases in mask metrics.
This suggests that directly learning SDT labels as final output
have the potential for the improvement of geometric details
only in remote sensing data with very high resolution (e.g.,
5 cm/pixel). The other competitor is the SDT-recursive model,
which first learns the SDT representation of buildings with
a U-Net and then reconstructs semantic masks by different
backbones. Notable that the whole method is trained in an end-
to-end fashion. The SDT-recursive model that feeds the learned
SDT representations into semantic segmentation networks is
much superior to the SDT-based network, as we can see gains
in both mask and boundary metrics. This may be because the
SDT representation learned from the remote sensing imagery
carries useful information to capture the global semantic
context in semantic segmentation networks, which indicates
the potential of SDT in a recursive learning way for building
footprint generation. It is worthy to note that the performances
of both SDT-based network and SDT-recursive model are more
sensitive to the backbone semantic segmentation networks.
For the ISPRS dataset (see Table III), when the backbone is
FCN-8s, both SDT-based network and SDT-recursive model
can boost the performance. However, the performance of
SegNet-SDT and SegNet-SDT-recursive is worse than that of
SegNet.

The geometric property of building boundaries can be sig-
nificantly enhanced by AFMs (see Fig. 2). From Tables I–III,
it can be observed that our framework can improve results in
terms of both mask and boundary metrics, which confirms that

explicitly encoding geometric information is essential to build-
ing footprint generation tasks. In this regard, we investigate
another competitor, the boundary-recursive model, to further
validate the effectiveness of the attraction field representation.
This method first learns building boundaries from remote
sensing images with a U-Net and then uses them as auxiliary
information to extract building masks by variant semantic
segmentation networks. Notable that these two subnetworks
are jointly optimized. Experimental results show that this
model does not bring this task any benefits in terms of
building boundary quality, and we can see decreases in bound-
ary metrics and more blurred boundaries compared to the
naive semantic segmentation network. This may be because
building boundaries are characterized with very few pixels,
and this class imbalance leads to ambiguity in the network
learning.

By contrast, our method can always provide significant
gains, regardless of which semantic segmentation network
architecture is chosen as the AFM2Mask module, and the
proposed approach outperforms other competitors in most
of the statistical metrics for three datasets. This is due to
two facts. One is that the attraction field representation can
encode geometric properties in 2-D (x- and y-directions),
but SDT only relies on the Euclidean distance and, thus,
characterizes the information in 1-D. This indicates that the
use of the information in different dimensions is more reliable
and accurate. Fig. 9(a) and (b) presents the AFM learned by
the proposed U-Net-AFM, and Fig. 9(c) shows the SDT repre-
sentation learned by U-Net-SDT-recursive. It can be observed
that attraction field representation can better delineate sharp
building boundaries. The other factor is that the attraction
field representation takes the nonboundary pixels into account,
which have addressed the challenges of class imbalance in
boundary-learning methods.
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Fig. 9. (a) AFM (x-axis) and (b) AFM (y-axis) are learned by the proposed method (U-Net-AFM). (c) SDT representation learned by the U-Net-SDT-recursive.
(d) and (e) Aerial imagery and ground reference from the INRIA dataset (spatial resolution: 0.3 m/pixel).

TABLE IV

ACCURACIES (%) OF DIFFERENT COEFFICIENTS OF AFM2MASK LOSS

(λ) FOR BUILDING FOOTPRINT GENERATION IN THE INRIA

DATASET (SPATIAL RESOLUTION: 30 cm/pixel)

B. Analysis of Hyperparameter Tuning

As shown in the results on three datasets, taking U-Net
as the AFM2Mask module can deliver relatively satisfactory
results on all three datasets. Therefore, in this section, we use
U-Net-AFM for further studies. Moreover, the INRIA dataset
is selected as an example dataset to carry out the following
experiments.

In the proposed framework, the global loss function is
utilized to guide the end-to-end learning of building masks
from remote sensing data. This function is a sum of losses
from two separate modules, where the hyperparameter λ is
the coefficient of the AFM2Mask module. Here, λ is set as
three different numbers, i.e., 0.1, 1, and 10, to investigate its
impact on final results.

The statistical results with different values of λ are shown
in Table IV. We can see that our model is insensitive to this
parameter, and networks with all different λ values outperform
the naive U-Net. Furthermore, increasing the value of λ will
lead to a slight reduction in both mask and boundary metrics.
The best result is obtained when λ = 0.1. A small value of
λ indicates more significance of the Img2AFM module than
the AFM2Mask module, which places an emphasis on the
attraction field representation learning in the whole framework.
It can be clearly seen from the Fig. 10 that gradually lowering
λ can reduce false detections. This is mainly because the
attraction field representation can alleviate the impact of
background clutters.

C. Different Methods to Incorporate Attraction Field
Representation

It is worth noting that building boundaries leaned by the pro-
posed method are significantly improved due to the exploita-
tion of attraction field representation. In order to further
explore how to well leverage attraction field representation,

Fig. 10. Results obtained by the proposed method (U-Net-AFM) with
coefficient λ = (a) 0.1, (b) 1, and (c) 10. (d) Result obtained by the naive
U-Net. Pixel-based true positives, false positives, and false negatives are
marked in white, green, and red, respectively. (e) and (f) Corresponding aerial
imagery and ground reference from the INRIA dataset (spatial resolution:
30 cm/pixel).

we investigate another three designs to incorporate this useful
representation in network learning.

1) Srivastava et al. [56]: It uses a U-Net architecture
followed by two separate fully connected layers to



5609017 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE V

ACCURACIES (%) OF DIFFERENT DESIGNS FOR THE INCORPORATION OF

ATTRACTION FIELD REPRESENTATION IN THE INRIA DATASET

(SPATIAL RESOLUTION: 30 cm/pixel)

TABLE VI

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING

FOOTPRINT GENERATION IN THE ISPRS DATASET

(SPATIAL RESOLUTION: 5 cm/pixel)

learn semantic masks and attraction field representation,
respectively.

2) Bischke et al. [47]: It takes a U-Net as the backbone
and first adds one convolutional layer after the decoder
to learn the attraction field representation. Afterward,
this learned attraction field representation and feature
maps produced by the decoder are concatenated and fed
into another convolutional layer to learn final segmen-
tation masks.

3) Mou and Zhu [57]: It utilizes an encoder and two
separate decoders to jointly optimize two complemen-
tary tasks, namely, building semantic segmentation and
attraction field representation learning. Note that the
architecture of encoder and decoders in this design is
the same as those in U-Net.

The statistical and visual results are reported in Table V and
Fig. 11, respectively. From both mask and boundary metrics
in Table V, all methods have shown superior results than naive
U-Net, which again confirms the significance of attraction
field representation in our task. Among all design options,
the proposed framework has achieved the best performance.
In particular, the F-measure achieved by our approach is
increased by more than 3% when compared to the other
methods. Besides, it can be seen that the building boundaries
and corners learned by the proposed framework are more
accurate than its competitors. This suggests that our approach
is able to effectively leverage information of attraction field
representation, which is attributed to our recursive learning
strategy.

D. Comparison With State-of-the-Art Methods

To verify the superiority of our approach on datasets with
different spatial resolutions, we make a comparison with other

Fig. 11. Results obtained by (a) proposed U-Net-AFM,
(b) Srivastava et al. [56], (c) Bischke et al. [47], and (d) Mou and Zhu [57].
Pixel-based true positives, false positives, and false negatives are marked
in white, green, and red, respectively. (e) and (f) Corresponding aerial
imagery and ground reference from the INRIA dataset (spatial resolution:
30 cm/pixel).

state-of-the-art methods on the ISPRS, INRIA, and Planet
datasets. The statistical results of different algorithms on three
datasets are shown in Tables VI–VIII, respectively. On both
ISPRS and Planet datasets, the proposed method surpasses
all other models in both mask and boundary metrics. For
the INRIA dataset, our approach achieves the highest scores
in boundary metrics and comparative performance in mask
prediction. Compared to our methods, Girard’s method [35]
gains a marginal improvement in mask metrics at the cost
of additional ground-truth annotations (i.e., vector format of
building footprints). For an intuitive comparison, the visual
results of our method and Girard’s method [35] are illustrated
in Fig. 12. As we can see, Girard’s method [35] fails to recover
detailed structures of complicated buildings. On the contrary,
our approach can accurately capture more geometric details,
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TABLE VII

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING FOOTPRINT

GENERATION IN THE INRIA DATASET (SPATIAL

RESOLUTION: 30 cm/pixel)

TABLE VIII

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING FOOTPRINT

GENERATION IN THE PLANET DATASET (SPATIAL

RESOLUTION: 3 m/pixel)

Fig. 12. Results obtained by (a) proposed U-Net-AFM and
(b) Girard et al. [35]. Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively. (c) and
(d) Corresponding aerial imagery and ground reference from the INRIA
dataset (spatial resolution: 30 cm/pixel).

which again demonstrates the strength of the AFM for the task
of building footprint generation.

VI. CONCLUSION

Considering that building boundaries are easily blurred
when using semantic segmentation networks to directly

learn building footprints, a new end-to-end building footprint
generation method through learning the attraction field repre-
sentation is proposed in this article. The proposed model com-
prises two modules: an Img2AFM module and an AFM2Mask
module. More specifically, the former is designed to learn
the attraction field representation, which enables not only the
enhancement of building boundaries but also the suppression
of background clutters. Afterward, the latter exploits the input
remote sensing image and learned AFM to reconstruct building
masks. The performance of the proposed end-to-end network is
assessed on three datasets with different spatial resolutions: the
ISPRS dataset (5 cm/pixel), the INRIA dataset (30 cm/pixel),
and the Planet dataset (3 m/pixel). Experimental results sug-
gest that the incorporation of the attraction field representation
in our framework can offer more satisfactory building footprint
maps. On the one hand, sharp boundaries and geometric details
of buildings can be better preserved. On the other hand, non-
building objects that are wrongly detected as buildings can be
avoided to a large extent. Thus, we believe that our method
has the potential to be a robust solution for building footprint
generation at a large scale. Looking into the future, we intend
to investigate the potential of the attraction field representation
in other tasks, e.g., road extraction and vehicle detection.
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A B S T R A C T   

Building footprints are essential for understanding urban dynamics. Planet satellite imagery with daily repetition 
frequency and high resolution has opened new opportunities for building mapping at large scales. However, 
suitable building mapping methods are scarce for less developed regions, as these regions lack massive annotated 
samples to provide strong supervisory information. To address this problem, we propose to learn cross- 
geolocation attention maps in a co-segmentation network, which is able to improve the discriminability of 
buildings within the target city and provide a more general building representation in different cities. In this way, 
the limited supervisory information resulting from insufficient training examples in target cities can be 
compensated. Our method is termed as CrossGeoNet, and consists of three elemental modules: a Siamese 
encoder, a cross-geolocation attention module, and a Siamese decoder. More specifically, the encoder learns 
feature maps from a pair of images from two different geo-locations. The cross-location attention module aims at 
learning similarity based on these two feature maps and can provide a global overview of common objects (e.g., 
buildings) in different cities. The decoder predicts segmentation masks of buildings using the learned cross- 
location attention maps and the original convolved images. The proposed method is evaluated on two data
sets with different spatial resolutions, i.e., Planet dataset (3 m/pixel) and Inria dataset (0.3 m/pixel), which are 
collected from various locations around the world. Experimental results show that CrossGeoNet can well extract 
buildings of different sizes and alleviate false detections, which significantly outperforms other competitors.   

1. Introduction 

Building footprint maps offer insights for the comprehensive un
derstanding of urban development. In less developed regions (e.g., Af
rica), significant changes occur in urban areas annually due to rapid 
urban expansion and city renewal (Huang et al., 2020), resulting in 
environmental and ecological problems (Guo et al., 2021a). Therefore, 
acquiring up-to-date building footprint maps for these regions is essen
tial to the urban-related analysis. 

In recent decades, high spatial resolution satellite images are capable 
of deriving spatial details of individual buildings. However, there are 
some weaknesses in high-resolution commercial satellites, e.g., high cost 
and low revisit frequency. This limits the regional or global building 
footprint generation. Planet is a new micro-satellite constellation, which 
consists of more than 120 satellites in orbit and is able to collect meter- 

level spatial resolution imagery on a daily basis at low-cost (Houborg 
and McCabe, 2016). Its high revisit capability also helps to acquire low 
cloud cover observations for the regions with above-average cloud cover 
(Asner et al., 2017). To date, most high-resolution building footprint 
generation studies are limited to aerial imagery (Bischke et al., 2019, 
Bischke et al., 2019; Maggiori et al., 2017,Maggiori et al., 2017; Li et al., 
2020,Li et al., 2020) or WorldView satellite imagery (Pan et al., 2020b; 
Pan et al., 2020b; Tonbul and Kavzoglu, 2020; Tonbul and Kavzoglu, 
2020), and the investigation on Planet satellite imagery is lacking. 

Although some approaches (Ivanovsky et al., 2019,Ivanovsky et al., 
2019;Li et al., 2020, Li et al., 2020;Li et al., 2021, Li et al., 2021;Shi 
et al., 2020,Shi et al., 2020) are capable of delivering very promising 
results on Planet satellite imagery, they are mostly developed for 
Europe. To the best of our knowledge, few are dedicated to the cities in 
less developed regions represented by Africa, South America, and Asia, 

* Corresponding author. 
E-mail addresses: qingyu.li@tum.de (Q. Li), lichao.mou@dlr.de (L. Mou), yuansheng.hua@dlr.de (Y. Hua), yilei.shi@tum.de (Y. Shi), xiaoxiang.zhu@dlr.de 

(X.X. Zhu).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.102824 
Received 18 February 2022; Received in revised form 11 May 2022; Accepted 13 May 2022   



International Journal of Applied Earth Observation and Geoinformation 111 (2022) 102824

2

where buildings differ substantially in size and type from those in 
Europe. 

To generate building footprint maps from Planet satellite imagery, 
existing studies use convolutional neural networks (CNNs) that can 
effectively learn high-level features from raw data without heuristic 
feature design. Nevertheless, there remains a challenge for extracting 
building footprints on target cities — massive data need to be collected 
to promote the performance of CNNs. Considering that the manual 
annotation of reference data is a very time-consuming and costly pro
cess, OpenStreetMap (OSM) could be considered as a good source for 
acquiring manually annotated building footprints for training networks 
(Kaiser et al., 2017). By analyzing available building annotation data in 
OSM, we observe that they have an extremely uneven distribution across 
cities in different continents (see Fig. 1). For example, there are abun
dant labeled samples in European cities, while for cities in Africa, South 
America, and Asia, annotated data are quite limited. The lack of anno
tated data usually restricts the performance of existing methods in these 
regions, as they require a lot of strong supervisory information for 
network learning. 

In this paper, we aim to generate building footprint maps using 
Planet satellite imagery for target cities that suffer from data deficit of 
labeled samples. In order to improve the performance of a network 
trained on the target city with scarce labeled data, a straightforward idea 
is to take advantage of the cities with massive annotated data (hereafter 
called auxiliary set). Nonetheless, geographic peculiarities across 
different geolocations raise several challenges. As shown in Fig. 2, ap
pearances of buildings in different continents are noticeably different. 
This induces CNNs to produce unsatisfactory results when we directly 

apply a network trained on the auxiliary set to target cities. In this re
gard, some works (Maggiori et al., 2016) utilize transfer learning that 
fine-tunes a pre-trained model with a few labeled instances in target 
cities. Domain adaptation methods (Vu et al., 2019) aim to transfer the 
knowledge learned from a domain to improve performance on target 
cities. Other works (He et al., 2020) utilize a new learning strategy, 
where the model is first pre-trained with a large number of unlabeled 
images in a self-supervised way and then transferred to the task of se
mantic segmentation with very few labeled samples. 

Recently, co-segmentation is proposed for the object segmentation in 
computer vision, aiming at jointly segmenting semantically similar ob
jects in video frames (Papoutsakis et al., 2017; Papoutsakis et al., 2017; 
Wang et al., 2019; Wang et al., 2019) or multiple images (Li et al., 2018). 
The success of these works suggests that co-segmentation can fully 
harness the sequential or pair-wise relations among consecutive frames 
to discover common objects, which helps to alleviate the dependency of 
strong supervisory information. This gives us an incentive that the co- 
segmentation framework may benefit our cross-city building extrac
tion task. Therefore, we propose an end-to-end trainable network–
CrossGeoNet, which consists of three modules: a Siamese encoder, a 
cross-geolocation attention module, and a Siamese decoder. The 
encoder takes as input a pair of images from two different geolocations 
and is responsible for learning feature representations for both images. 
The cross-geolocation attention module learns to explicitly encode cor
relations between the features of the two images, enabling the network 
to attend more to common objects (i.e., building in our case). The 
decoder combines convolved images with the cross-geolocation atten
tion maps to generate segmentation masks through a series of 

Fig. 1. The annotated building footprints in OpenStreetMap (counted by continents), and four examples of cities in Europe, Africa, South America, and Asia. The 
base map about building densities on OpenStreetMap is obtained from OpenStreetMap Analytics (osm, 2021-08-24.). 

Fig. 2. Illustration of geographic peculiarities across different geolocations. The Planet satellite images are collected from (a) Munich (Germany), (b) Yaounde 
(Cameroon), (c) Lisbon (Portugal), and (d) Niamey (Niger), respectively. We can see that appearances of buildings in different cities are noticeably different. 
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deconvolutional layers. Note that the three components are jointly 
optimized in our method. This work’s contributions are threefold. 

(1) The proposed CrossGeoNet examines the potential of Planet sat
ellite imagery for building mapping in less developed regions (e. 
g., cities in Africa, South America, and Asia).  

(2) To tackle the problem of insufficient labeled samples in target 
cities, we propose to use a co-segmentation learning framework 
that can leverage a large amount of labeled data in other cities to 
improve the performance of a model in the target cities. To the 
best of our knowledge, our work is the first one that exploits co- 
segmentation learning to generate building footprint maps.  

(3) Since capturing the relationship between the two inputs is the key 
element in our CrossGeoNet, we propose a cross-geolocation 
attention module to effectively learn the underlying similarity 
between different geolocations, which is superior to other exist
ing methods (e.g. mutual correlation (Li et al., 2018) and Fourier 
domain correlation (Danelljan et al., 2014)). Compared with 
other competitors, our approach gains significantly better results. 
The codes of CrossGeoNet will be made publicly available in 
https://github.com/lqycrystal/coseg_building. 

This article is organized as follows. Section 2 presents the framework 
of CrossGeoNet for building footprint generation. The experiments are 
described in Section 3. Results are provided in Section 4. The perfor
mance of CrossGeoNet on another data source is investigated in Section 
5. Eventually, Section 6 summarizes this work. 

2. Methodology 

In this section, the co-segmentation pipeline of CrossGeoNet is first 
presented. Afterward, we present the proposed cross-geolocation 
attention module in detail. Finally, the end-to-end network learning 
procedure is described. 

2.1. Co-segmentation Pipeline 

When objects of the same class vary in pose, shape, or color, the idea 
of co-learning can exploit the synergistic relationship between video 
frames or multiple images to provide generic features, improving model 
performance. In this work, our motivation is that by jointly viewing 
common objects (i.e., building in our case) in different geolocations, 
networks can learn underlying similarities for extracting more generic 
representations for buildings. In this regard, we propose to integrate co- 

segmentation learning into the framework of building footprint gener
ation, which is capable of fully harnessing information from various 
locations and further enhancing the generalizability of the model. Spe
cifically, we propose a cross-geolocation attention module in the co- 
segmentation pipeline that learns to enhance latent features by encod
ing relations between the target city and cities from the auxiliary set. As 
a consequence, our co-segmentation network is able to not only improve 
building discriminability within target cities but also learn generic fea
tures of buildings across different cities. By doing so, the limited su
pervisory information in target cities can be compensated. 

As shown in Fig. 3, a Siamese encoder-decoder architecture is 
adopted in CrossGeoNet. The Siamese encoder is composed of two 
identical CNNs with shared weights for the purpose of feature extrac
tion. The input of the encoder is an image pair, where one image It is 
from a target city and the other image Ia is from the auxiliary set, and 
their feature representations are denoted as Ft ∈ RC×W×H and 
Fa ∈ RC×W×H, respectively. H and W represent the height and width, and 
C denotes the channel dimension. Unlike conventional semantic seg
mentation networks, where high-level features are directly decoded for 
inferring building masks, here we enhance the learned feature maps 
through the proposed cross-geolocation attention module. Specifically, 
this module takes two feature maps as input and outputs two attention 
maps St→a and Sa→t . Afterward, they are fused with the corresponding 
convolved images and fed into the decoder. The Siamese decoder is 
comprised of a set of transposed convolutional layers that upsample the 
convolved images to generate two building segmentation masks Mt and 
Ma. Note that all modules are integrated into one framework and opti
mized in an end-to-end manner. 

2.2. Cross-geolocation Attention 

The feature maps learned from the Siamese encoder contain abstract 
semantic information, and when the input images contain the common 
object (e.g., building), their features should also include similar infor
mation. The key component of co-segmentation learning is to find 
similarities in feature vectors among various images. In the literature, 
there have been several commonly used similarity measures, e.g., 
mutual correlation (Li et al., 2018) and Fourier domain correlation 
(Danelljan et al., 2014). 

Inspired by the success of self-attention (Hu et al., 2018) in capturing 
long-range interactions among input signals, we propose a cross- 
geolocation attention module that can adaptively learn the similarity 
between target cities and the auxiliary set. By doing so, semantic in
formation of the common object (e.g., building) can be enhanced. More 

Fig. 3. Overview of the proposed CrossGeoNet framework.  
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specifically, we calculate the cross-geolocation attention map St→a ∈

R(WH)×(WH) between Ft and Fa as: 

St→a = FT
a Wt→aFt, (1)  

where Wt→a ∈ RC×C is a weight matrix. Here Ft and Fa are flattened into 
vectors with the size of C × WH and can be represented as: 

Ft = [f 1
t , f 2

t ,…, f p
t ,…, f WH

t ], (2)  

Fa = [f 1
a, f

2
a,…, f q

a,…, f WH
a ], (3)  

where f p
t is a C-dimiensional feature vector at position p ∈ {1,2,…,WH}

in Ft, and f q
a is a C-dimiensional feature vector at position q ∈ {1,2,…,

WH} in Fa. Thus, the entry (q, p) of St→a reflects the similarity between 
f q

a and f p
t , and can be learned automatically. St→a is capable of capturing 

the dependencies between any two positions of feature maps without 
regard for their distance in the spatial dimension. Therefore, our cross- 
geolocation module can model rich contextual dependencies, which is 
superior to other similarity measures that only consider local features. 

Since the weight matrix Wt→a is a square matrix, the diagonalization 
of Wt→a can be represented as follows: 

Wt→a = P− 1
t→aDt→aPt→a, (4)  

where Pt→a is an invertible matrix and Dt→a is a diagonal matrix. Then, 
Eq. (1) can be rewritten as: 

St→a = FT
a P− 1

t→aDt→aPt→aFt. (5)  

According to Eq. (5), a learnable linear transformation is first applied to 
the feature representation of each image, and then the similarity be
tween these two feature representations is dynamically captured by the 
dot product. Similarly, the cross-geolocation attention map Sa→t be
tween Fa and Ft is computed as: 

Sa→t = FT
t P− 1

a→tDa→tPa→tFa, (6)  

where Pa→t is an invertible matrix, and Da→t is a diagonal matrix. 
Note that Sq

t→a is the q-th row of St→a, which is a vector with length 
WH and represents the similarity between each feature vector in Ft and 
f q

a. If the p-th element in Sq
t→a has a larger value than others, f p

t is more 
similar to fq

a than other feature vectors in Ft, which indicates a very high 
probability of having the common object in f p

t and f q
a. 

Afterward, we obtain the cross-geolocation attention-enhanced fea
tures Zt by allocating the learned cross-geolocation attention map to Ft , 
which is computed with the following equations: 

Zt = St→aFT
t . (7)  

And Za is calculated in the same manner: 

Za = Sa→tFT
a . (8)  

Finally, Zt and Za are reshaped into the size of C × H × W and fed into 

the Siamese decoder to produce final segmentation masks Mt and Ma, 
respectively. 

In what follows, we discuss in detail why the proposed approach can 
improve the performance of a model in target cities. It is well known that 
contextual information is able to offer important cues for semantic 
segmentation tasks. In conventional CNNs, convolutions are used to 
extract such information. However, the performance might be limited 
due to their local receptive fields. Also, inadequate samples affect the 
learning of CNNs. On the contrary, the proposed cross-geolocation 
module explores global contextual information by learning cross- 
geolocation attention maps. Specifically, for a pixel in a sample from 
the target city, the cross-geolocation attention map can effectively 
capture relations between it and not only all other pixels in the same 
sample but also all pixels in a sample from the auxiliary set. Afterward, 
CrossGeoNet selectively aggregates global contextual information to 
provide a global view of common objects (i.e., building), alleviating the 
influence of background. In other words, we leverage the auxiliary set to 
provide additional supervisory information to enhance the discrimina
bility of building, which improves building extraction results on the 
target city. 

2.3. Network Learning 

We propose an end-to-end training pipeline for the supervised 
learning of CrossGeoNet. The whole network is trained by the following 
loss function: 

L = Lt + λ⋅La, (9)  

where Lt and La are two cross-entropy loss functions for measuring the 
difference between segmentation masks and their corresponding 
ground-truth masks. λ is a hyperparameter to control the importance of 
the second loss. 

3. Experiments 

3.1. Dataset 

In this work, we collect Planet satellite images and their corre
sponding OSM building footprints from different cities all over the 
globe. Planet satellite images have 3 bands (i.e., red, green, blue), and 
their spatial resolution is 3 m/pixel. In the pre-processing step, all im
ages and ground-truth masks are cropped into small patches with the 
size of 256 × 256 pixels. To thoroughly investigate the performance of 
CrossGeoNet, we select three target cities from different continents: 
Yaounde (Cameroon), Porto Alegre (Brazil), and Kyoto (Japan). As to 
the auxiliary set, 6 European cities, Madrid (Spain), London (UK), Rome 
(Italy), Lisbon (Portugal), Munich (Germany), and Zurich (Switzerland), 
are selected due to their massive building footprint annotations. The 
numbers of patches collected from each city for network training, vali
dation, and test are reported in Table 1. 

3.2. Experimental Setup 

To verify the effectiveness of CrossGeoNet for building footprint 
generation, we compare it with several commonly-used network 
learning methods, i.e., Baseline-t, Baseline-a, Baseline-a+t, fine-tuning, 
ADVENT (Vu et al., 2019) IntraDA (Pan et al., 2020a), MetaCorrection 
(Guo et al., 2021b), MoCo (He et al., 2020), DenseCL (Wang et al., 
2021), U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net 
(Guo et al., 2021a), and CSGANet (Chen et al., 2021). Note that exper
iments are independently conducted in three target cities. That is to say, 
for the experiment in one target city, training samples consist of only 
patches from that target city and the auxiliary set. For the evaluation of 
our cross-geolocation attention module, we conduct comparisons with 
the aforementioned two similarity measures, i.e., mutual correlation (Li 

Table 1 
Statistics of the datasets utilized in this research.   

Continent Name The number of patches  
train validation test 

Target city Africa Yaounde 100 100 300 
South America Porto Alegre 100 100 300 
Asia Kyoto 100 100 300 

Auxiliary set Europe Madrid 2971 743 0 
London 2256 565 0 
Rome 2303 576 0 
Lisbon 2043 511 0 
Munich 2271 568 0 
Zurich 1849 463 0  
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et al., 2018) and Fourier domain correlation (Danelljan et al., 2014). 

3.3. Training Details 

CrossGeoNet is implemented on PyTorch framework and trained on 
an NVIDIA Quadro P4000 GPU with 8 GB memory. The training epochs 
of all models are set as 100 epochs, and stochastic gradient descent 
(SGD) with a learning rate of 0.001 is set as the optimizer. The size of the 
training batch for all models is 4. Detailed configurations of all methods 
in our experiments are presented as follows:  

(1) CrossGeoNet: Since our model is trained for each target city 
independently, we select It and Ia from one target city and the 
auxiliary set, respectively, in the training phase. To enlarge the 
number of training pairs, for each patch in the target city, we 
create 100 duplicates and pair them with 100 samples randomly 
selected from one city in the auxiliary set. In the inference stage, 
It and Ia are both selected from test patches of the target city. The 
loss term weighting parameter λ in Eq. (9) is set as 0.00001 
empirically.  

(2) Baseline-t : An Efficient-UNet is trained and tested with training 
and test sets of the target city.  

(3) Baseline-a: An Efficient-UNet is trained with samples collected 
from the auxiliary set and tested on test instances in the target 
city.  

(4) Baseline-a+t: An Efficient-UNet is trained using samples from 
training sets of the target city and the auxiliary set, and tested on 
test samples from the target city.  

(5) Fine-tuning: It consists of two steps. Firstly, all samples from the 
auxiliary set are used to pre-train an Efficient-UNet. Secondly, the 
pre-trained network is fine-tuned with the training set of the 
target city.  

(6) ADVENT (Vu et al., 2019), IntraDA (Pan et al., 2020a), and 
MetaCorrection (Guo et al., 2021b): They aim at addressing the 
task of domain adaptation in semantic segmentation. The auxil
iary set is regarded as the source domain, and the target city is the 
target domain.  

(7) MoCo (He et al., 2020) and DenseCL (Wang et al., 2021): They 
first learn knowledge from a large number of unlabeled images in 
a self-supervised way. Afterward, the weights are transferred to 

the task of semantic segmentation. In our research, MoCo (He 
et al., 2020) learns from the auxiliary set, while for DenseCL 
(Wang et al., 2021), we use its pre-trained weights (Deng et al., 
2009).  

(8) U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net 
(Guo et al., 2021a), and CSGANet (Chen et al., 2021): They are 
semantic segmentation networks for the task of building footprint 
generation. 

Note that for MoCo (He et al., 2020), DenseCL (Wang et al., 2021), U- 
Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net (Guo 
et al., 2021a), and CSGANet (Chen et al., 2021), we have separately 
organized the training set according to three experiment procedures (i. 
e., Baseline-t, Baseline-a+t, and Fine-tuning), and the best result among 
three cases is reported. 

We evaluate the performance of all models using two metrics: F1 
score and intersection over union (IoU). 

4. Results 

4.1. Comparison of Different Learning Methods 

This section presents the comparisons among CrossGeoNet, Baseline- 
t, Baseline-a, Baseline-a+t, fine-tuning, ADVENT (Vu et al., 2019), 
IntraDA (Pan et al., 2020a), MetaCorrection (Guo et al., 2021b), Moco 
(He et al., 2020), DenseCL (Wang et al., 2021), U-Net-AFM (Li et al., 
2021), CBRNet (Guo et al., 2022), EPU-Net (Guo et al., 2021a), and 
CSGANet (Chen et al., 2021). Their performance is evaluated from 
quantitative (cf. Tables 2) and and qualitative (see Figs. 4–6) perspec
tives in three target cities. 

Compared with Baseline-t, the proposed method has largely 
improved the accuracy. It can be seen from numerical results in three 
target cities that CrossGeoNet reaches improvements of above 3% in 
both F1 score and IoU. Especially for the target city of Kyoto, our method 
obtains increments of 5.48% in F1 score and 5.81% in IoU, respectively. 
As shown in Fig. 4, Baseline-t fails to recover complete masks of large 
buildings. This is due to the fact that limited training samples can not 
represent the true class distribution comprehensively (Hou et al., 2019). 
Although Baseline-a exploits massive annotated samples of the auxiliary 
set, it still performs worse than CrossGeoNet. For instance, in the target 
city of Yaounde (see Table 2), Baseline-a only achieves 1.90% in F1 score 
and 0.96% in IoU. Moreover, these results are worse than those of 
Baseline-t. This is caused by significant differences between the target 
cities and the auxiliary set, e.g., variant morphological appearance of 
human settlements and material available for building construction (Li 
et al., 2020). 

Afterward, we select another seven competitors (Baseline-a+t, fine- 
tuning, ADVENT (Vu et al., 2019), IntraDA (Pan et al., 2020a), Meta
Correction (Guo et al., 2021b), MoCo (He et al., 2020), and DenseCL 
(Wang et al., 2021)) to make a further comparison, as these methods also 
jointly utilize training samples of both the target city and the auxiliary 
set. Fine-tuning is a commonly used method to handle the issue of scarce 
training data in target datasets (Maggiori et al., 2016). Nevertheless, 
compared with Baseline-t, fine-tuning even leads to decreases in accu
racy metrics for Yaounde and Kyoto. A possible explanation is that the 
gap between target cities and auxiliary set is quite large, making it 
difficult to transfer the knowledge learned from the auxiliary set to 
target cities. Domain adaptation methods are also capable of trans
ferring the knowledge from the auxiliary set to the target city. From the 
results in Table 2, it can be seen that ADVENT (Vu et al., 2019), IntraDA 
(Pan et al., 2020a), and MetaCorrection (Guo et al., 2021b) perform 
worse than fine-tuning in knowledge transfer. One important reason is 
that the labels in the target domain are not utilized by domain adapta
tion methods. It can be observed from statistical results that MoCo (He 
et al., 2020) and DenseCL (Wang et al., 2021) are even inferior to 
Baseline-t on all three cities. This might be attributed to two factors. On 

Table 2 
Accuracies (%) of different learning methods for building footprint generation 
on tagert cities.  

Method Yaounde Porto Alegre Kyoto 
F1 
score 

IoU F1 
score 

IoU F1 
score 

IoU 

Baseline-t 63.85 46.90 58.57 41.41 59.80 42.65 
Baseline-a 1.90 0.96 27.41 15.88 36.35 22.21 
Baseline-a+t 64.95 48.10 60.44 43.31 62.76 45.72 
Fine-tuning 63.35 46.36 60.12 42.98 59.31 42.16 
ADVENT(Vu et al., 

2019) 
55.26 38.18 31.13 18.43 46.89 30.63 

IntraDA (Pan et al., 
2020a) 

56.59 39.46 40.86 25.67 53.05 36.10 

MetaCorrection (Guo 
et al., 2021b) 

55.44 38.35 51.68 34.84 49.27 32.69 

MoCo(He et al., 2020) 60.98 43.87 57.59 40.44 58.22 41.06 
DenseCL(Wang et al., 

2021) 
60.99 43.88 59.12 39.00 58.10 40.94 

U-Net-AFM (Li et al., 
2021) 

61.32 44.19 53.64 36.72 52.86 36.01 

CBRNet (Guo et al., 
2022) 

63.52 46.54 59.98 42.84 61.78 44.70 

EPU-Net (Guo et al., 
2021a) 

52.45 35.55 45.72 29.64 50.04 33.37 

CGSANet (Chen et al., 
2021) 

61.51 44.42 56.69 39.55 58.07 40.92 

CrossGeoNet 67.77 51.26 62.12 45.05 65.28 48.46  
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the one hand, the annotated information of the auxiliary set has not been 
leveraged in self-supervised learning. On the other hand, large differ
ences existing between the auxiliary set and target cities might impair 
the model performance when migrated to target cities. 

CrossGeoNet has achieved the highest accuracies among all methods, 
and it shows nearly 2% improvements of F1 score and IoU on all target 
cities compared to Baseline-a+t. From qualitative results, we can 

observe that Baseline-a+t fails to detect some small buildings (cf. Fig. 6). 
This can be explained by the imbalanced number of training samples 
collected from target cities and the auxiliary set. When training samples 
of the auxiliary set dominate the learning procedure, the network fails to 
guarantee accurate segmentation in target cities. On the contrary, our 
method is able to avoid these omission errors and reconstruct complete 
building structures to a large extent. These observations suggest that 

Fig. 4. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from 
Yaounde.   

Fig. 5. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from Porto 
Alegre.   
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Fig. 6. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from from 
Kyoto.   

Fig. 7. Building extraction results (in blue) obtained by CrossGeoNet from Djibouti and three zoomed in areas.  
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CrossGeoNet benefits from the learning of the cross-geolocation atten
tion module, enabling the leverage of rich relationships between target 
cities and the auxiliary set. 

We then compare CrossGeoNet with U-Net-AFM (Li et al., 2021), 
CBRNet (Guo et al., 2022), EPU-Net (Guo et al., 2021a), and CSGANet 
(Chen et al., 2021), which are four state-of-the-art methods for the task 
of building footprint generation. It can be observed from the statistical 

and visual results on three cities that our method surpasses all other 
building extraction methods. 

We further explore the generalizability of model trained by Cross
GeoNet and test it on unseen cities (which are neither from the target 
city nor from the auxiliary set). Note that we directly apply the trained 
model to the unseen cities. Specifically, we select two African cities, 
Djibouti (Republic of Djibouti) and Bafoussam (Cameroon). In the 
training phase, we select Yaounde as the target city due to its high 
similarity with Djibouti and Bafoussam. Figs. 7 and 8 illustrate visual 
results on these two cities. CrossGeoNet is promising to provide building 
footprint maps in other unseen geographic regions. 

4.2. Comparison With Different Similarity Measures 

Explicitly capturing similarities among various cities is essential for 

Fig. 8. Building extraction results (in blue) obtained by CrossGeoNet from Bafoussam and three zoomed in areas.  

Table 3 
Accuracies (%) of different similarity measures on Yaounde.  

Method F1 score IoU 

Mutual correlation (Li et al., 2018) 66.78 50.13 
Fourier domain correlation (Danelljan et al., 2014) 65.76 48.99 
Proposed cross-geolocation attention module 67.77 51.26  

Fig. 9. Examples of building extraction results obtained by different similarity measures. (a) Mutual correlation (Li et al., 2018). (b) Fourier domain correlation 
(Danelljan et al., 2014). (c) Proposed cross-geolocation attention module. (d) and (e) are Planet satellite imagery and ground reference from Yaounde. 
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co-segmentation methods. Therefore, we further investigate the afore
mentioned two similarity measures, i.e., mutual correlation (Li et al., 
2018) and Fourier domain correlation (Danelljan et al., 2014), to make a 
comparison with our cross-geolocation attention module. 

The statistical results on Yaounde are reported in Table 3. The pro
posed module outperforms the other two methods by over 1% in sta
tistical metrics. In Fig. 9, the building masks obtained by CrossGeoNet 
are much closer to ground-truth masks. However, the results provided 
by Fourier domain correlation show many omitted detection. One 
reason is that mutual correlation (Li et al., 2018) and Fourier domain 
correlation (Danelljan et al., 2014) operate on a local neighborhood, 
leading to the loss of global information. In contrast, our cross- 
geolocation attention module can capture long-range dependencies, 
enabling the leverage of useful information from more remote regions in 
the target image and those from the auxiliary set. This is beneficial to the 
reduction of semantic noise and the enhancement of semantic infor
mation of buildings. Another reason is that these two methods simply 
concatenate correlation maps with original convolved images to 
generate new features, while our module updates features by selectively 

aggregating contexts according to the learned attention maps. By doing 
so, mutual gains can be achieved through similar features, providing 
more representative features for building footprint generation. 

5. Performance Investigation on Another Data Source 

In this section, we further investigate the performance of Cross
GeoNet on another dataset, INRIA Aerial Image Labeling data (Maggiori 
et al., 2017), comprising images captured by airborne sensors. The 
INRIA dataset is a benchmark dataset, which consists of 360 tiles of 
aerial imagery. Each aerial image has 5000 × 5000 pixels at a spatial 
resolution of 30 cm/pixel. In this dataset, only ground reference data for 
five cities (Austin, Chicago, Kitsap County, Western Tyrol, and Vienna) 
are made publicly available, and hence we only conduct experiments on 
these cities. According to the setup in (Bischke et al., 2019), data are 
split into training and validation sets in our research. We observe that 
buildings in Vienna have very different structures and sizes in compar
ison with the other four cities. Therefore, we select Vienna as the target 
city and the other four cities as the auxiliary set. To verify the effec
tiveness of CrossGeoNet on INRIA dataset, we make a comparison of 
different learning methods, i.e., Baseline-t, Baseline-a, Baseline-a+t, 
fine-tuning, ADVENT (Vu et al., 2019) IntraDA (Pan et al., 2020a), 
MetaCorrection (Guo et al., 2021b), MoCo (He et al., 2020), DenseCL 
(Wang et al., 2021), U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 
2022), EPU-Net (Guo et al., 2021a), CSGANet (Chen et al., 2021), and 
CrossGeoNet. Note the statistics are computed from the validation set of 

Table 4 
Accuracies (%) of different learning methods for building footprint generation 
on Vienna.  

Method F1 score IoU 

Baseline-t 82.32 69.96 
Baseline-a 78.75 64.95 
Baseline-a+t 85.02 73.95 
Fine-tuning 85.38 74.49 
ADVENT(Vu et al., 2019) 81.07 68.17 
IntraDA (Pan et al., 2020a) 82.44 70.12 
MetaCorrection (Guo et al., 2021b) 83.93 72.31 
MoCo (He et al., 2020) 85.66 74.91 
DenseCL (Wang et al., 2021) 86.52 76.25 
U-Net-AFM (Li et al., 2021) 86.64 76.42 
CBRNet (Guo et al., 2022) 86.46 76.09 
EPU-Net (Guo et al., 2021a) 86.04 75.50 
CGSANet (Chen et al., 2021) 86.59 76.35 
CrossGeoNet 87.51 77.79  

Fig. 10. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are INRIA aerial im
agery and ground reference from Vienna.   

Table 5 
Accuracies (%) of different learning methods on Vienna. Auxiliary and target 
sets are chosen from Vienna for ensuring similar data distribution.  

Method F1 score IoU 

Baseline-t 78.93 65.19 
Baseline-a 81.27 68.45 
Baseline-a+t 82.32 69.96 
CrossGeoNet 86.38 76.03  
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Vienna. 
We first compare the proposed method against the Baseline-a. It is 

observed from the statistical results in Table 4, our network obtains 
increments of 12.84% in IoU. Moreover, CrossGeoNet surpasses 
Baseline-t by 7.83% in IoU. This indicates that the proposed approach is 
able to boost the network performance by the joint use of training 
samples from both the target city and the auxiliary set. From accuracy 
metrics in Table 4, the proposed method has achieved better perfor
mance than other learning methods that aim at transferring the 
knowledge learned from the auxiliary set to the target city. This dem
onstrates the effectiveness and robustness of the proposed method for 
this task, as cross-geolocation co-segmentation learning is able to 
improve the results on different data sources. When compared with 
state-of-the-art building extraction methods, CrossGeoNet shows above 
1.3% improvement in IoU. 

Fig. 10 presents a visual comparison among different learning 
methods on Vienna. The building footprints generated by CrossGeoNet 
are more accurate and reliable, as they coincide better with the ground 
reference when compared with the other methods. For instance, most 
methods detect only a part of the large building in the bottom left area. 
In contrast, the proposed approach is capable of accurately capturing a 
more complete roof outline. Furthermore, for buildings in complex 
shapes, buildings masks obtained by our network contain more detailed 
structures, which suggests that CrossGeoNet is still promising in such 
challenging situations. 

In order to investigate the performance of CrossGeoNet when target 
and auxiliary sets are similar, we have split the original training data of 
Vienna into two parts, i.e., auxiliary set and target set. Furthermore, we 
explore the performance of models trained by different learning 
methods. Specifically, we compare CrossGeoNet with three competitors 
(i.e., Baseline-t, Baseline-a, and Baseline-a+t) quantitatively and quali
tatively. The quantitative results are shown in Table 5. Baseline-t per
forms poorly than Baseline-a. This is because the number of training 
patches in the target set is smaller than that in the auxiliary set, which 
makes it difficult for Baseline-t to achieve good results. Baseline-a+t 
provides better results than both Baseline-a and Baseline-t, as all 
training patches are jointly utilized during network learning. It should 
be noted that CrossGeoNet significantly outperforms Baseline-a+t, with 
the IoU improved by 6.07%. This demonstrates that our cross- 
geolocation co-segmentation learning helps to improve model perfor
mance. Moreover, this improvement is more significant than that in the 
case where target and auxiliary sets are less similar. This is because the 
similarity between target and auxiliary contributes to extracting more 
generic representations for buildings. Fig. 11 illustrates visual compar
isons of different learning methods. Baseline-t and Baseline-a fail to 
detect some building footprints on the top area. On the contrary, 
CrossGeoNet is able to alleviate omission errors. 

6. Conclusion 

Planet satellite imagery holds potentials for generating high- 
resolution building footprint maps at a large scale. However, gener
ating building footprint maps from Planet satellite imagery is difficult 
for less developed regions because of the lack of massive annotated 

samples. Given these issues, we have proposed a novel end-to-end 
building mapping method, namely CrossGeoNet, aiming at exploring 
the use of Planet satellite images in detecting buildings on the target city 
with scarce labeled samples. CrossGeoNet comprises three modules: a 
Siamese encoder, a cross-geolocation attention module, and a Siamese 
decoder. More specifically, the encoder is designed to learn features 
from a pair of images from different geolocations. Afterward, the cross- 
geolocation attention module learns to encode similarities between 
them, enabling the capture of a more discriminative and generic rep
resentation of the common object (i.e., building in our case). Finally, the 
decoder exploits the original feature maps and the learned cross- 
geolocation attention maps to predict building masks. We investigate 
the proposed approach on two datasets with different spatial resolu
tions, i.e., Planet dataset (3 m/pixel) and Inria dataset (0.3 m/pixel), 
which are collected from diverse cities across the globe. Experimental 
results suggest that the incorporation of the proposed cross-geolocation 
attention module in co-segmentation learning can offer more satisfac
tory building footprints than other competitors. Thus, we believe that 
CrossGeoNet is a robust solution for the task of building footprint gen
eration when dealing with scarce training samples within target cities. 
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Abstract—Accurate and reliable building footprint maps are
vital to urban planning and monitoring, and most existing
approaches fall back on convolutional neural networks (CNNs)
for building footprint generation. However, one limitation of
these methods is that they require strong supervisory information
from massive annotated samples for network learning. State-
of-the-art semi-supervised semantic segmentation networks with
consistency training can help to deal with this issue by lever-
aging a large amount of unlabeled data, which encourages the
consistency of model output on data perturbation. Considering
that rich information is also encoded in feature maps, we propose
to integrate the consistency of both features and outputs in the
end-to-end network training of unlabeled samples, enabling to
impose additional constraints. Prior semi-supervised semantic
segmentation networks have established the cluster assumption,
in which the decision boundary should lie in the vicinity of
low sample density. In this work, we observe that for building
footprint generation, the low-density regions are more apparent
at the intermediate feature representations within the encoder
than the encoder’s input or output. Therefore, we propose
an instruction to assign the perturbation to the intermediate
feature representations within the encoder, which considers the
spatial resolution of input remote sensing imagery and the mean
size of individual buildings in the study area. The proposed
method is evaluated on three datasets with different resolutions:
Planet dataset (3 m/pixel), Massachusetts dataset (1 m/pixel),
and Inria dataset (0.3 m/pixel). Experimental results show that
the proposed approach can well extract more complete building
structures and alleviate omission errors.

Index Terms—building footprint, semantic segmentation, semi-
supervised, consistency training
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I. INTRODUCTION

Building footprint generation is a hot topic in the commu-
nity of remote sensing, which involves numerous applications
such as identifying undocumented buildings and assessing
building damage after natural disasters. Remote sensing im-
agery that offers potential for meaningful geospatial target
extraction on a large scale, becomes a fundamental data source
for building footprint generation. However, obtaining accurate
and reliable building footprint maps from remote sensing
imagery is still challenging due to several reasons. On the one
hand, the complex and heterogeneous appearance of buildings
leads to internal variability. On the other hand, the mixed
backgrounds and other objects with similar spectral signatures
further limit the class separability.

Nowadays, convolutional neural networks (CNNs) have
been widely used for remote sensing tasks [1] [2] [3] , as
they surpass conventional methods in terms of accuracy of
efficiency. CNNs are capable of directly learning hierarchical
contextual features from the original input, which have greater
generalization capabilities for the building footprint generation
from remote sensing imagery. Although the existing CNNs
are able to deliver very promising results [2] [4] [5] [6],
there remains a challenge for extracting building footprints
on a large scale. This challenge arises from that CNNs
require massive annotated data to obtain strong supervisory
information. However, manual annotation of reference data is
a time-consuming and costly process.

To address this issue, a straightforward idea is to utilize
semi-supervised learning, which can leverage a large amount
of unlabeled data and alleviate the need for labeled examples.
In general, semi-supervised semantic segmentation methods
are summarized into three types: weakly-supervised training-
based, adversarial training-based, and consistency training-
based. Nevertheless, weakly-supervised training-based meth-
ods need additional annotations, e.g. image-level labels or
region-level labels. Adversarial training-based methods are
able to make use of the unlabeled data but are difficult to
train. Consistency training-based approaches, while not only
are simple to implement, but also require no additional weakly
labeled examples. The core idea of consistency training-based
methods is to encourage the network to give consistent outputs
for unlabeled inputs that are perturbed in various ways, thus,
improving the generalization of the network [7].

The state-of-the-art consistency training-based methods ex-
ploit the teacher-student framework [8]. Specifically, a student
model is applied to the unlabeled sample, while a teacher
model is applied to a perturbed version of the same sample.
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Afterward, the consistency is imposed between the outputs
of two models to improve the performance of the student
model [8]. However, there is still a certain gap in performance
between these two models when the outputs are not completely
correct during training. Inspired by [9] that feature maps can
capture more discriminative contextual information, we further
improve the performance of consistency training by proposing
a new consistency loss that measures the discrepancy between
both feature maps and outputs of student model and those of
teacher model. By doing so, it can offer a strong constraint to
regularize the learning of the network.

The effectiveness of consistency training-based approaches
depends heavily on the behavior of the data distribution, i.e.,
the cluster assumption, where the classes must be separated
by low-density regions. However, the low-density regions
separating the classes are not within the inputs, which offers
an explanation for why semi-supervised is a challenging
problem for semantic segmentation [10]. [11] observes that
for natural images low-density regions separating the classes
are present at the encoder’s output, thus, proposing to assign
the perturbation at this position. However, for remote sensing
imagery with low spatial resolution, we observe the presence
of low-density regions separating the classes is within the
intermediate feature representations in the encoder rather than
the encoder’s input or output. Motivated by this observation,
in this work, we propose to enforce the consistency over
the perturbation applied to feature representations at a certain
depth within the encoder, where this depth should be in line
with the spatial resolution of remote sensing imagery and the
mean size of individual buildings in the study area.

Specifically, we consider a shared encoder and a main
decoder that are trained together using the labeled examples.
To leverage unlabeled data, we then consider an auxiliary
decoder whose inputs are perturbed versions of the shared
encoder’s output. The consistency is imposed between outputs
and feature maps of the main decoder and those of the auxil-
iary decoder. By doing so, the shared encoder’s representation
is enhanced by using the additional training signal extracted
from the unlabeled data.

This work’s contributions are threefold.
(1) We propose a semi-supervised network for building

footprint generation, which has not been adequately addressed
in the current literature. When the annotated samples are
insufficient, the proposed method can leverage a large amount
of unlabeled data to improve the performance of a model.

(2) Our proposed method integrates the consistency training
of features and outputs into a unified objective function, which
formulates an efficient end-to-end training framework. Com-
pared with other competitors, our approach gains significant
improvements.

(3) Observing that the low-density regions separating the
classes are within the intermediate feature representations in
the encoder, we propose an instruction, in which the pertur-
bation is applied on the feature representations at a certain
depth within the encoder according to the spatial resolution of
input remote sensing imagery and the mean size of individual
buildings in the study area.

The remainder of the paper is organized as follows. Related

work is reviewed in Section II. Section III details the proposed
network for building footprint generation. The experiments are
described in Section IV. Results and Discussions are provided
in Section V and VI, respectively. Eventually, Section VII
summarizes this work.

II. RELATED WORK

A. Building Footprint Generation

A tremendous amount of remote sensing imagery can be
collected with recent technological advances, providing huge
potential for mapping buildings. A variety of methods have
been proposed to generate building footprints from remote
sensing imagery.

Early studies can be categorized into four types: geomet-
rical primitive-based, index-based, segmentation-based, and
classification-based methods. The geometrical primitive-based
methods [12] first extract geometric primitives (e.g., building
edges and corners) and then group them to form building
hypotheses. In the index-based methods [13], an index is de-
signed to discriminate buildings from other objects. Afterward,
buildings are extracted by selecting an empirical threshold.
By utilizing over-segmentation algorithms, the segmentation-
based methods [14] aims at partitioning an image into different
segments, so-called superpixels, and identify those belonging
to buildings. In the classification-based methods [15], spectral
and/or spatial features of each pixel are taken as input of clas-
sifiers to differentiate building from other classes. Nonetheless,
a general limitation of these methods is that they rely heavily
on manually defined rules and handcrafted features, resulting
in a decrease in accuracy and efficiency.

In the past few years, deep learning-based methods have
shown remarkable performance on this task, as discriminative
features from raw images can be automatically and adaptively
learned. Early methods [16] [17] employ a patch-wise classifi-
cation framework, and assign the label to each pixel according
to the class of its enclosing patch. However, the large overlap
among patches leads to redundant operation and low efficiency.
Therefore, semantic segmentation networks that can efficiently
perform pixel-wise segmentation, becomes more popular in
the task of building footprint generation [18] [19] [20] [5] [6]
[21] [22] [23] [24] [25]. The commonly used network archi-
tectures involve fully convolutional networks (FCNs) [26] and
encoder-decoder based architectures (e.g., DeepLabv3+[27]
Efficient-UNet [28], FC-DenseNet [29]). In order to take the
characteristics of buildings in remote sensing imagery into
account, some methods (e.g., ESFNet [30], MA-FCN [31],
HA U-Net [32], and Multi-task [33]) have made some specific
adaptations to these network architectures, e.g., attention block
and multi-scale feature aggregation. More recently, instance
segmentation networks are exploited to delineate individual
building instances in several novel studies [34] [35]. Instance
segmentation networks can not only assign a semantic label
to each pixel with the class of its enclosing object but also
distinguish different instances. The commonly used instance
segmentation architecture for this task is Mask R-CNN [36].
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B. Semi-Supervised Semantic Segmentation

Deep learning methods require strong supervisory infor-
mation for network training, however, the collection of large
volumes of annotated data is time-consuming and costly. Espe-
cially for the task of semantic segmentation, the acquisition of
pixel-level labels is more expensive and laborious. Therefore,
semi-supervised learning is favored in this task, and it can
leverage a large amount of unlabeled data to compensate for
limited supervisory information. In general, semi-supervised
semantic segmentation methods are summarized into three
types: weakly-supervised training-based, adversarial training-
based, and consistency training-based.

Weakly-supervised training-based methods [37] [38] [39]
[40] integrate weakly-supervised learning in their approaches.
Apart from the limited pixel-level labels, they still require
weaker labels that can be regarded as supervisory information
for network training. For the application of building footprint
generation, weaker labels include image-level labels, bounding
boxes, and point labels. The image-level label has two classes,
where “building” refers to the images occupying building
pixels more than a certain amount of the total pixels, and
“non-building” corresponds to images without building pixels
[41] [42]. In [43], bounding box annotations are utilized to
generate probabilistic masks using bivariate Gaussian distri-
bution for every image. Point labels (two points inside and
outside each small building, respectively) are employed in
[44], which is helpful to detect small buildings. Nevertheless,
weakly-supervised training-based methods fail to take advan-
tage of massive unlabeled data. Adversarial training-based
methods [45] [46] are able to exploit unlabeled samples, which
adapt generative adversarial networks (GANs) [47] for semi-
supervised semantic segmentation. Both the generator and the
discriminator are first trained by labeled samples. Afterward,
the generator outputs the segmentation masks of unlabeled im-
ages, while the discriminator distinguishes trustworthy regions
in their predicted results to provide additional supervisory
signals. Considering that the adversarial training strategy may
be insufficient to guide network training, pseudo labels are
generated by selecting high-confident segmentation predictions
for unlabeled images [48]. Afterward, pseudo-building masks
are incorporated to expand the training data and the generator
is retrained. However, adversarial training-based methods are
very hard to train due to the instability of GANs [49]. By
contrast, consistency training-based methods not only can
leverage unlabeled images to improve the performance of the
segmentation network but also are simple and efficient to
implement. The goal of consistency training is to enforce the
consistency of the model’s predictions for unlabeled inputs that
are applied by small perturbations. By doing so, the robustness
of the learned model will be enhanced

Recently, several consistency training-based methods are
proposed for the task of semi-supervised semantic segmenta-
tion, e.g., CutMix [10] and CCT [11]. CutMix [10] applies the
perturbations to the raw input and uses MixUp [50] to enforce
the consistency between the mixed outputs and the outputs
from the mixed inputs. CCT [11] imposes an invariance
of the model’s outputs over small perturbations applied to

the encoder’s output. In the remote sensing community, two
consistency training-based methods have been proposed for
the application of building footprint generation, i.e., CR [51]
and PiCoCo [52]. Color jitter and random noise are chosen as
the perturbation for CR [51], and are applied to the raw input.
Then, the consistency of their outputs is enforced. PiCoCo
[52] is also an input perturbation method, which augment the
input images randomly and impose the consistency constraint
between the predictions of augmented images. In addition,
it implements contrast learning on labeled images, which
can regularize the compactness of intra- and interclass latent
representation space [52].

However, these consistency training-based methods still
have two limitations. On the one hand, these methods ignore
the rich information encoded in feature maps and generally
impose consistency only over the outputs of the models. On
the other hand, they add perturbations over the raw input
or encoder’s output for all types of data, failing to take
the characteristics of target objects into consideration when
selecting the optimal position to apply perturbations.

III. METHODOLOGY

In this section, consistency training-based methods are first
introduced. Afterward, the proposed framework in the end-
to-end network learning procedure is described. Finally, we
propose an instruction to assign perturbation for the task of
building footprint generation, which is based on our observa-
tion and analysis of cluster assumption.

A. Consistency Training-based Methods

Given a small set of n input-target pairs Sl =
{(xl1, y1), ..., (xln, yn)} sampled from an unknown joint dis-
tribution β(x, y), the goal of supervised learning is to derive a
prediction function fθ(x) parametrized by θ, and this predic-
tion function is able to assign the correct target y to an unseen
sample from β(x). In semi-supervised learning, a larger set
of m unlabeled examples Su = {xu1 , ..., xum} is additionally
provided. Semi-Supervised learning aims to derive a more
accurate prediction function than what is obtained by only
using Sl. For instance, additional structure about the input
distribution β(x) can be learned from Su to produce a estimate
of the decision boundary, which makes a better separation of
samples into different classes [53].

Consistency training-based methods follow an intuitive goal
to perform semi-supervised learning: when a perturbation is
assigned to the data points x ∈ Su as x̂, the output of fθ(x)
should not be significantly changed. Therefore, the objective
of consistency training-based methods is to minimize the
following loss function:

L = Ls + λu · Lcons , (1)

where Ls is a supervised loss on labeled data. λu is a
weighting function to control the importance of a consistency
loss term Lcons which is formalized as:

Lcons = T(fθ(x), fθ(x̂)) , (2)
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Fig. 1. Overview of the proposed semi-supervised building footprint generation network.

where T(., .) measures a discrepancy between the outputs of
the prediction functions. In this regard, the unlabeled data can
be leveraged to find a smooth manifold where the dataset lies
[54].

Different settings in assigning perturbation or minimizing
the Lcons lead to a wide variety of approaches for semi-
supervised classification, e.g., Virtual Adversarial Training
(VAT) [55] and Interpolation Consistency Training (ICT) [56],
and those from semi-supervised semantic segmentation, e.g.,
CutMix[10], CCT [11], CR [51], and PiCoCo [52]. These
methods are conducted in teacher-student frameworks, where
a teacher model is first constructed from data perturbation,
and then the output of the teacher model on unlabeled data is
utilized to supervise a student model [8]. However, they have
not fully leveraged the information of the teacher model. This
is because they fail to use intermediate feature maps of the
teacher model that can also be regarded as knowledge to guide
the learning of the student model. Therefore, a more precise
consistency towards the underlying invariance of features and
outputs between the student model and the teacher model is
preferable in our research.

B. Proposed Framework in End-to-End Network Learning

Recently, the perceptual mechanism has achieved promising
results for image reconstruction [9], and they make use of
the extracted high-level feature maps to improve the network
performance. Inspired by it, we propose to impose consistency
on both features and predictions for the training of unlabeled
data, which is capable of fully harnessing information in deep
features and output predictions. As a consequence, our net-
work can guarantee that the deep feature maps are consistent,
alleviating the loss of detailed information during network
training.

As shown in Fig. 1, the proposed framework is composed
of a shared encoder E, a main decoder D, and an auxiliary
decoder G. The segmentation network F is constituted as
F = E ◦ D and is trained on the labeled set in a fully
supervised manner. The auxiliary network A = E ◦ G is
trained on the unlabeled examples by enforcing the consistency
of both features and outputs between D and G. D takes
as input the encoder’s output zout, but G is fed with its
perturbed version z̃out, in which the perturbation p is applied
to feature representations zin at a certain depth within E.
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By doing so, the representation learning of E can be further
improved by unlabeled examples, and subsequently, that of the
segmentation network F .

For each iteration of training, a labeled input image xl and
its label y together are sampled together with an unlabeled
image xu. Both xl and xu are passed through E and D,
obtaining two main predictions ŷl and ŷu, respectively. The
supervised loss Ls is computed with y and ŷl. For xu, the
perturbation p is applied to zin with zin being its feature rep-
resentation within E and its output from E is z̃out. Afterward,
an auxiliary prediction ŷua is generated from G using the z̃out.
The consistency loss Lcons consists of two parts Luf and Lup,
where Luf is computed between the features of G and those
of D, and Lup is computed between the outputs of G and that
of D.

In the proposed approach, Sl and Su are jointly trained
by minimizing a global loss function L as Eq. 1. Following
[57], λu is set to ramp up starting from zero along a Gaussian
curve up to a fixed weight α, which can avoid the use of
the initial noisy output from the main encoder. The total loss
L is derived and back-propagated to train the segmentation
network F and the auxiliary network A. Note that Lcons is not
backpropagated through D, and D is trained only by labeled
examples. By doing so, D is only trained on original input
data. This is helpful from two aspects. On the one hand, it can
avoid collapsing solutions. If Lcons is backpropagated through
both main decoder D and auxiliary decoder G, main decoder
D will collapse since Lcons will be minimized if predictions
of both D and G are zeros. On the other hand, the method
can be better adapted to the test stage since no perturbation is
applied to test images.

For the labeled set, a supervised loss Ls is exploited to train
the segmentation network F . In order to avoid overfitting, an
annealed version of the bootstrapped Cross-Entropy loss [11]
is chosen to compute the supervised loss Ls, and it is denoted
as:

Ls =
1

|Sl|
∑

xl
i,yi∈Sl

{F (xli) < η}H(yi, F (xi)) , (3)

where F (xi) is the output probability from F for a labeled
example xi, yi is its ground reference label, and H(., .) is
the cross entropy-based loss. In semi-supervised learning, the
model is often overfitted to the limited amount of labeled
data while being under-fitted to the unlabeled data. To address
this issue, a labeled example is utilized only if the model’s
confidence in it is lower than a predefined threshold η. In other
words, Ls is computed only over the pixels with a probability
less than the threshold η that serves as a ceiling to prevent
over-training on easy labeled data [58]. Following [11], we
gradually increase η from 0.5 to 0.9 during the beginning of
training.

For an unlabeled example xui , zout is derived as the output
from the shared encoder E. One contribution in our approach
is to apply the perturbation to the feature representation zin for
xu within the encoder E according to our proposed instruction.
Afterward, the perturbed feature representations z̃in will be
fed to the subsequent layers in the encoder to generate the

perturbed encoder’s output z̃out. Finally, zout and z̃out are
taken as input for D and G, respectively.

The training objective of the unlabeled set is to minimize a
consistency loss Lcons, which is defined as:

Lcons = Lup + ωu · Luf , (4)

where Luf and Lup measure the discrepancy between the
features and outputs of D and those of G, respectively. ωu is
a hyperparameter to introduce a weight to model the relative
importance of two losses. More specifically, Lup is defined as:

Lup =
1

|Su|
∑

xu
i ∈Su

T(D(zout), G(z̃out)) , (5)

with T(., .) as mean squared error-based loss.
Note that a contribution of our approach is that a loss term

Luf is introduced into the proposed network by imposing
the consistency on features between the main decoder and
auxiliary decoder, which is able to harness the detailed infor-
mation in the feature maps. Let ϕj(q) be the activations of the
jth layer of the network ϕ when processing the input q. For
D and G, Dj(zout) and Gj(z̃out) will be the corresponding
feature maps at jth depth in the decoder. Here, j represents
the position where upsampling operations are applied in the
decoder. Then, Luf is denoted as:

Luf =
1

|Su|
∑

xu
i ∈Su

J∑

j=1

T(Dj(zout), Gj(z̃out)) , (6)

where J is the total number of depth in the decoder. In other
words, J represents how many upsampling operations are
applied in the decoder.

The proposed semi-supervised method can be summarized
by the following Algorithm 1:

C. An Instruction to Assign Perturbation for the Task of
Building Footprint Generation

The effectiveness of consistency training-based methods
relies on the cluster assumption, i.e., two samples belonging
to the same cluster in the input distribution are likely to
have the same label [59]. In this case, the decision boundary
should lie in the low-density regions [60]. In other words,
if a decision boundary crosses a high-density region, it will
divide a cluster into two different classes, which violates the
cluster assumption. From the formal analysis, the expected
value of Lcons is proportional to the squared magnitude of
the Jacobian of the network’s outputs with respect to its
inputs [7]. Therefore, minimizing Lcons indicates that the
decision function in the regions of unsupervised samples will
be flattened, and the decision boundary will be moved into the
vicinity of low sample density [10].

The cluster assumption has inspired many recent consis-
tency training-based methods for semi-supervised semantic
segmentation [10] [11] which propose to assign the pertur-
bation to the raw input or encoder’s output. However, they
are not suitable for the task of building footprint generation,
as the characteristics of both building objects and remote
sensing imagery haven’t been taken into account. Therefore,
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Algorithm 1 Algorithm for Feature and Output Consistency
Training
Input: Labeled image xl and pixel-level label y, as well as

unlabeled image xu

Require: Shared encoder E, main decoder D with the total
depth number J , and auxiliary decoder G

1: Forward xl through E and D: ŷl = D(E(xl))
2: Forward xu through E: zout = E(xu)
3: Generate the main decoder’s feature maps for zout:
4: for j = 1 to J do

Derive Dj(zout)
5: end for
6: Generate the main decoder’s output for zout:

Derive D(zout)
7: Forward xu through E and apply a noise perturbation N

to feature representations zin: z̃in = (zin ⊙N) + zin
8: Forward z̃in through the subsequent layers in E to gen-

erate the perturbed encoder’s output z̃out
9: Generate the auxiliary decoder’s feature maps for z̃out:

10: for j = 1 to J do
Derive Gj(z̃out)

11: end for
12: Generate the auxiliary decoder’s output for z̃out:

Derive G(z̃out)
13: Training the network.

Ls = {ŷl < η}H(y, ŷl)
Lup = T(D(zout), G(z̃out))

Luf =
∑J

j=1 T(Dj(zout), Gj(z̃out))
Update network by L = Ls + λu · (Lup + ωu · Luf )

we propose an instruction to assign perturbation for this task,
which is inspired by the observation and analysis of the clus-
ter assumption in building footprint generation from remote
sensing imagery. In order to examine the cluster assumption,
the local variations at an encoder depth d are measured
between the value of each pixel and its local neighbors, and
local variations with high values depict the presence of low-
density regions [10]. Here, d represents the position where how
many downsampling operations are applied in the encoder.
For instance, when d = 1, the spatial size (i.e., height and
width) of feature representation is half of that of the raw
input. Similarity, when d = 2, the spatial size (i.e., height and
width) of feature representation is 1/4 of that of the raw input.
Following [11], the average Euclidean distance at each spatial
location and its 8 intermediate neighbors is computed for the
encoder’s input (d = 0), and the feature representations of
both intermediate layer (d = 2) and encoder’s output (d = 5).
Both feature representations are first resampled to the input
size, and then the average distance between the neighboring
activations is calculated. Fig. 2 illustrates the example results
for Planet satellite imagery (3 m/pixel). The feature repre-
sentations from intermediate layer and encoder’s output are
24-dimensional and 1280-dimensional feature vectors learned
from Efficient-UNet [28], respectively. It can be observed
that the low-density regions are not aligned with the class
boundaries at the encoder’s input or encoder’s output, where

Fig. 2. The cluster assumption in consistency training-based methods for
building footprint generation. Examples from (a) Planet satellite imagery
(3m/pixel), (b) pixel-level labels, as well as local variations at (c) encoder’s
input, (d) intermediate layer in the encoder, and (e) encoder’s output. Bright
regions indicate large variation.

the cluster assumption is violated. By contrast, the cluster
assumption is maintained at the intermediate layer, given that
the class boundaries with high average distance coincide with
low-density regions. This observation may be related to the
receptive field of the network. The receptive field will be
enlarged when the depth increases within the encoder, but
when the receptive field exceeds a certain value that is much
beyond the size of target objects, it might introduce more noise
for network learning [61]. Furthermore, for remote sensing
imagery with varying resolutions, the receptive fields of the
network are various at the same depth within the encoder,
when the unit is meter.

Based on the above observation and analysis, we propose an
instruction to assign the perturbation. The perturbation should
be added to the feature presentations at depth d within the
encoder according to the spatial resolution of remote sensing
imagery and the mean size of individual buildings in the study
area. More specifically, d is computed as:
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Fig. 3. The satellite imagery of Lisbon in the Planet dataset (spatial resolution:
3m/pixel) and three zoomed in areas.

d = ⌊log2(
lmin + lmax

2r
)⌋ , (7)

where r is the spatial resolution of the remote sensing imagery,
lmin and lmax are mean values of max and min length that
are derived from the ground reference of individual buildings
in the study area. ⌊ ⌋ is the rounding down function, which
aims to get the largest integer that does not exceed the original
value.

A noise tensor N ∼ µ(−0.3, 0.3) of the same size as
the feature presentations zin is uniformly sampled as the
perturbation p. It is first multiplied with zin to adjust its
amplitude, and then injected into zin to get perturbed feature
maps z̃in:

z̃in = (zin ⊙N) + zin , (8)

where ⊙ denotes element-wise multiplication. Afterward, it
will be fed to the subsequent layers in the encoder to generate
the perturbed intermediate representation z̃out of the unlabeled
input sample xu.

IV. EXPERIMENT

A. Dataset

The effectiveness of the proposed method is validated on
three datasets with different spatial resolutions, i.e., Planet
dataset [62], Massachusetts dataset [16], and Inria dataset [18].

1) Planet dataset: In this research, PlanetScope satellite
imagery is collected from 8 European cities (Amsterdam,
Berlin, Lisbon, Madrid, London, Paris, Milan, and Zurich)
to create a Planet dataset. The PlanetScope satellite images
have three bands (i.e., red, green, blue) at a spatial resolution
of 3 m/pixel. The corresponding building footprints that are
stored as vector files are acquired from OpenStreetMap. Fig.
3 presents example imagery of Lisbon.

2) Massachusetts dataset: The Massachusetts dataset is
composed of 151 tiles of aerial imagery over the city of
Boston. Each aerial imagery has three bands (i.e., red, green,
blue) at a spatial resolution of 1 m/pixel, and its size is
1500 × 1500 pixels. A sample aerial image is illustrated in

Fig. 4. An aerial image in the Massachusetts dataset (spatial resolution: 1
m/pixel)and three zoomed in areas.

TABLE I
THE STATISTICS OF THE SELECTED DATASETS UTILIZED IN THIS

RESEARCH.

!
Dataset City The number of patches

train validation test

Planet dataset

Amsterdam

4800 1600 2400

Berlin
Lisbon
Madrid
London

Paris
Milan
Zurich

Massachusetts
dataset

Boston 3424 100 250

Inria dataset

Austin

39852 6044 6044
Chicago

Kitsap County
Western Tyrol

Vienna

Fig. 4. The corresponding ground reference building masks
are also included in this benchmark dataset.

3) Inria dataset: The Inria dataset is a benchmark dataset
consisting of 360 large-scale aerial images, in which each
image is of the size of 5000 × 5000 and has three bands
(i.e., red, green, blue) at a spatial resolution of 0.3 m/pixel. A
sample aerial image is showed in Fig. 5. The ground reference
building masks of this dataset are only publicly released for
five cities (Austin, Chicago, Kitsap County, Western Tyrol, and
Vienna).

For all three datasets, all remote sensing images and ground-
truth building masks are cut into small patches with the
size of 256 × 256 pixels. For the Planet dataset, we have
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TABLE II
THE SETTINGS OF ALL METHODS UTILIZED IN THIS RESEARCH. λu AND ωu REPRESENT THE WEIGHTS OF CONSISTENCY LOSS TERM AND FEATURE

CONSISTENCY LOSS TERM, RESPECTIVELY.

!
Method λu ωu The position of the assigned perturbation

Supervised Learning (SL) = 0 = 0 -
Supervised Learning + Data Augmentation (SL+DA) = 0 = 0 -

ICT [56] > 0 = 0 encoder’s input
VAT [55] > 0 = 0 encoder’s input

CutMix[10] > 0 = 0 encoder’s input
CCT [11] > 0 = 0 encoder’s output
CR [51] > 0 = 0 encoder’s input

PiCoCo [52] > 0 = 0 encoder’s input
Propose method > 0 > 0 encoder’s intermediate feature representations

Fig. 5. An aerial image in the Inria dataset (spatial resolution: 0.3 m/pixel)
and three zoomed in areas.

manually selected 1100 pairs of proper patches for each of
eight European cities. The selected pairs are then separated
into three parts, and the ratio of train, validation, and test set
is 6:2:3. Data split in the Inria dataset is according to the setup
in [18] [33]. More specifically, for each city, images with ids
1-5 are used for validation, and the remaining 31 images are
for training. The statistics are derived from the validation set.
The training/validation/test split of the Massachusetts dataset
follows [16], where 137 tiles are used for training, 4 tiles
are for validation, and the remaining 10 tiles are used to test
models. The numbers of patches collected from each dataset
for network training, validation, and test are reported in Table
I.

B. Experiment Setup

Since the semantic segmentation network is an essential part
of our approach, we first investigate which CNN model (i.e.,

Efficient-UNet [28], FC-DenseNet [29], DeepLabv3+ [27],
ESFNet [30], MA-FCN [31], HA U-Net [32], and Multi-
task [33]) has better performance for the task of building
footprint generation. The CNN model achieving the best
results under the fully supervised setting is selected as the
backbone. Afterward, for each dataset, we randomly split
the training data into two parts, which are labeled set and
unlabeled set, and the pixel-level annotations are excluded in
the unlabeled set. Under the semi-supervised setting, the ratios
of labeled data to unlabeled data are set as three different
ratios (e.g., 1:2, 1:5, 1:10). To validate the superiority of
the proposed method, we make a comparison with other
competitors, including Supervised Learning (SL), Supervised
Learning + Data Augmentation (SL+DA), ICT [56], VAT
[55], CutMix [10], CCT [11], CR [51] and PiCoCo [52].
The settings of λu, ωu being the weights of consistency
loss term and feature consistency loss term, and the position
of the assigned perturbation in different methods are shown
in Table II for a better understanding of their differences.
Furthermore, the effectiveness of our proposed feature and
output consistency, being imposed between the main decoder
and the auxiliary decoder, is analyzed. The position within the
encoder to apply perturbation is also carefully investigated for
different datasets. Finally, we explore whether the auxiliary
decoder is able to improve the performance of the proposed
method.

C. Training Details

Our experiments are conducted within a Pytorch framework
on an NVIDIA Tesla with 16 GB of memory. For all methods,
the optimizer is stochastic gradient descent (SGD) with a
learning rate of 0.1 and a momentum of 0.9, and the training
batch size is set as 4. Detailed configurations of all methods
included in our experiments are listed as follows:

(1) Efficient-UNet [28]: EfficientNet[63] is adopted as the
encoder to learn feature maps. The decoder is comprised
of five transposed convolutional layers that upsample the
convolved image to predict segmentation masks.

(2) DeepLabv3+ [27]: The feature extractor in DeepLabv3+
is the Xception model [64].

(3) FC-Densenet [29]: Both the encoder and decoder in FC-
DenseNet are composed of five dense blocks, and each dense
block has five convolutional layers.
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(4) ESFNet [30]: This method employs Separable Factorized
Residual Block (SFRB) as the core module. The encoder is
composed of 16 blocks, where 3 blocks are downsampling
blocks and 13 blocks are SFRB. The decoder consists of 7
blocks for transposed convolutions and SFRB.

(5) MA-FCN [31]: This approach has proposed a feature fu-
sion structure to aggregate multi-scale feature maps. It utilizes
a Feature Pyramid Network (FPN) [65] -based structure as
the backbone where the encoder is a four-layer VGG-16 [66]
architecture and a corresponding decoder implements lateral
connections between them.

(6) HA U-Net [32]: The encoder of this network adopts
ResNet34 [67]. The decoder is comprised of four modules that
include up-sampling module, attention module, overall nesting
module, and auxiliary loss module.

(7) Multi-task [33]: This method is based on SegNet [68].
It first adds one convolutional layer after the decoder to learn
the distance to the border of buildings. Afterward, this learned
distance mask and feature maps produced by the decoder are
concatenated and fed into another convolutional layer to learn
the final building masks.

(8) Proposed method: The hyperparameter α in the unsu-
pervised loss weighting function λu is set as 0.6. The loss
term weighting parameter of feature consistency ωu is chosen
as 0.2. The network architectures of F and A are the same as
that of the backbone.

(9) SL: The backbone is learned from labeled samples. Note
that unlabeled samples are not considered during training.

(10) SL+DA: Following [69], data augmentation is first
performed by randomly horizontally or vertically flipping,
or rotating the image patches before training. Afterward, the
backbone is trained on labeled samples.

(11) ICT [56] and VAT [55]: Following [10], we adapt
these two semi-supervised classification methods for the task
of semantic segmentation. The CNN model is the same as the
backbone in our proposed method.

(12) CutMix [10], CCT [11], CR [51] and PiCoCo [52]: For
a fair comparison, we replace the CNN model with the same
backbone in our proposed method.

D. Evaluation Metrics
The performance of models is evaluated by two metrics: F1

score and intersection over union (IoU). They can be computed
as follows.

F1 score =
2× precision × recall

precision + recall
, (9)

IoU =
TP

TP + FP + FN
, (10)

precision =
TP

TP + FP
, (11)

recall =
TP

TP + FN
, (12)

where TP indicates the number of true positives, FN is
the number of false negatives, and FP is the number of
false positives. F1 score realizes a harmonic mean between
precision and recall.

V. RESULTS

A. Results of Different Semantic Segmentation Networks for
Supervised Learning

The comparisons among different semantic segmentation
networks for supervised learning are presented in this section.
Their respective performance is evaluated according to both
quantitative (cf. Table III) and qualitative results (cf. Fig. 6,
7, and 8) on three datasets, respectively. The goal of this
comparison is to select the best semantic segmentation net-
work as the backbone for different learning methods in further
experiments. In this case, we can avoid potential impacts due
to convolutional layers and architectural differences.

Among these semantic segmentation networks, Efficient-
UNet [28] performs better than DeepLabv3+ [27], FC-
DenseNet [29], ESFNet [30], HA U-Net [32], and Multi-task
[33] on all three datasets. Especially for the Planet dataset
that has a relatively low spatial resolution, Efficient-UNet [28]
obtains increments of 13.04% and 12.01% in F1 score and IoU
when compared with DeepLabv3+ [27]. Although MA-FCN
[31] is superior to Efficient-UNet [28] on the Massachusetts
dataset, Efficient-UNet surpasses it by about 0.5% in IoU
on both Planet and Inria datasets. Fig. 8 presents a visual
comparison among different methods on three datasets. For
the Inria dataset with relatively high spatial resolution, some
non-building objects are wrongly identified as buildings by
other methods. On the contrary, Efficient-UNet [28] is able
to avoid such false alarms. The superiority of Efficient-UNet
[28] on different resolution data can be attributed to its
capability of systematically improving performance with all
compound coefficients of the architecture (width, depth, and
image resolution) balanced [28]. Thus, we take Efficient-UNet
[28] as the backbone in both supervised learning and semi-
supervised learning approaches for further comparisons.

B. Comparison with Other Competitors

Furthermore, we make comparisons among the proposed
method, SL, SL+DA, ICT [56], VAT [55], CutMix [10], CCT
[11], CR [51] and PiCoCo [52]. Here, the ratios of labeled
data to unlabeled data are designed as 1:2, 1:5, and 1:10,
respectively. SL is regarded as the baseline method that is
only trained with labeled data, while SL+DA is trained on
the labeled data that are already augmented. Labeled and
unlabeled data are jointly trained for the proposed method,
ICT [56], VAT [55], CutMix [10], CCT [11], CR [51] and
PiCoCo [52]. Their performance is evaluated from quantitative
(cf. Tables IV, V, and VI) perspectives. As an example,
experiments are carried out for five runs on the Massachusetts
dataset where the ratio of labeled data to unlabeled data is
1:2. This provides a fair comparison, and the corresponding
F1 score and IoU are shown as mean and variance. Fig. 9, 10,
and 11 illustrate visual results obtained by different methods
for the ratio 1:10.

It can be seen from the statistics of three datasets that
the proposed approach significantly boosts performance in
F1 score and IoU when compared with other methods. The
challenge induced by the ratio of 1:10 is the limited data
representation for buildings, however, we notice that the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3174636, IEEE
Transactions on Geoscience and Remote Sensing

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021 10

TABLE III
ACCURACIES OF DIFFERENT SEMANTIC SEGMENTATION NETWORKS FOR SUPERVISED LEARNING ON THREE DATASETS. (%)

Method
Planet dataset (3 m/pixel) Massachusetts dataset (1 m/pixel) INRIA dataset (0.3 m/pixel)

4800 labeled 3424 labeled 39852 labeled
F1 score IoU F1 score IoU F1 score IoU

Efficient-UNet [28] 59.03 41.87 68.70 52.32 85.34 74.42
DeepLabv3+ [27] 45.99 29.86 65.96 49.21 80.67 67.61
FC-DenseNet [29] 55.78 38.68 68.17 51.87 84.66 73.41

ESFNet [30] 56.55 39.42 67.37 50.80 83.65 71.90
MA-FCN [31] 58.40 41.35 68.95 52.62 85.03 74.27
HA U-Net [32] 53.70 36.70 64.87 48.00 84.28 72.82
Multi-task [33] 48.05 31.62 65.43 48.63 84.56 73.26

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multi-task [33]. (h) is satellite imagery from the Planet dataset (spatial resolution: 3 m/pixel). Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively.

TABLE IV
ACCURACIES OF DIFFERENT METHODS ON PLANET DATASET (3 M/PIXEL). (%)

Method
labeled:unlabeled ≈ 1 : 2 labeled:unlabeled ≈ 1 : 5 labeled:unlabeled ≈ 1 : 10

(1600 labeled, 3200 unlabeled) (800 labeled, 4000 unlabeled) (400 labeled, 4400 unlabeled)
F1 score IoU F1 score IoU F1 score IoU

Proposed method 59.35 42.20 56.19 39.07 53.78 36.78
SL 53.15 36.19 51.80 34.95 48.03 31.60

SL + DA 53.84 36.83 52.87 35.93 48.53 32.04
ICT [56] 54.23 37.20 52.20 35.32 49.87 33.22
VAT [55] 36.25 22.13 34.25 20.67 33.77 20.32

CutMix [10] 54.10 37.08 52.43 35.53 49.86 33.21
CCT [11] 56.09 38.97 53.10 36.15 50.81 34.06
CR [51] 47.17 30.86 44.60 28.77 41.38 26.08

PiCoCo [52] 54.12 37.10 52.43 35.54 46.94 30.67

proposed method still manages to perform better on three
datasets when compared to its competitors. Our method gains
improvements of 5.18%, 10.40%, 7.91% in IoU than SL for
the Planet, Massachusetts, and Inria datasets, respectively. In
particular, on the Massachusetts dataset, the IoU of the pro-
posed approach is improved by more than 7% when compared
to other methods. When the ratio of labeled data to unlabeled
data is 1:2, the number of labeled samples is already sufficient
for SL, but our method still provides advantages over it. Note

that the proposed approach performs even better than the other
semantic segmentation networks (cf. Table III) that are trained
on the full labeled sets. This proves that the effectiveness and
robustness of the proposed approach for the task of building
footprint generation.

The accuracy metric of IoU obtained by our method for
the ratio of 1:2 is higher than that for the ratio of 1:10. This
suggests that using more labeled samples increases the overall
performances (42.20% vs. 36.78% in the Planet dataset, 54.15
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multi-task [33]. (h) is satellite imagery from the Massachusetts dataset (spatial resolution: 1 m/pixel). Pixel-based true positives, false positives, and
false negatives are marked in white, green, and red, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multi-task [33]. (h) is satellite imagery from the Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively.

± 0.68 % vs. 51.16% in the Massachusetts dataset, 75.22%
vs. 72.03% in the Inria dataset). It should be mentioned that
the proposed approach is capable of reducing the gap between
the different ratios. For instance, Table V shows that the IoU
produced by our method, which is trained on the data of
ratio of 1:10, only drops 1% than that of ratio of 1:5. This
demonstrates that our method can obtain reliable segmentation
results even when there is only a small number of annotated
samples.

The visual results on the Planet dataset are illustrated in Fig.

9. There is a lot of missed detection in results provided by SL,
VAT [55], CCT [11], CR [51] and PiCoCo [52], as the number
of labeled samples is insufficient. On the contrary, our method
can extract more building structures. Fig. 11 presents results
on the Inria dataset. It can be clearly seen that our method
is able to avoid more false alarms than its competitors. This
suggests that the proposed method has a better capability of
utilizing unlabeled data to improve network performance.
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TABLE V
ACCURACIES OF DIFFERENT METHODS ON MASSACHUSETTS DATASET (1 M/PIXEL). (%)

Method
labeled:unlabeled ≈ 1 : 2 labeled:unlabeled ≈ 1 : 5 labeled:unlabeled ≈ 1 : 10

1100 labeled, 2324 unlabeled 560 labeled, 2864 unlabeled 300 labeled, 3124 unlabeled
F1 score IoU F1 score IoU F1 score IoU

Proposed method 70.26 ± 0.57 54.15 ± 0.68 68.59 52.20 67.69 51.16
SL 66.31 ± 0.40 49.65 ± 0.47 62.75 45.72 57.91 40.76

SL + DA 66.56 ± 0.44 49.85 ± 0.52 63.26 46.26 58.76 41.60
ICT [56] 67.03 ± 0.19 50.42 ± 0.23 63.33 46.34 60.19 43.05
VAT [55] 66.10 ± 0.70 49.40 ± 0.84 64.45 47.55 60.77 43.65

CutMix [10] 66.84 ± 0.32 50.22 ± 0.38 63.13 46.13 59.41 42.26
CCT [11] 67.79 ± 0.33 51.30 ± 0.39 64.54 47.64 60.70 43.58
CR [51] 65.83 ± 0.55 51.08 ± 0.66 63.91 46.96 60.68 43.56

PiCoCo [52] 68.76 ± 0.52 52.39 ± 0.62 65.73 48.96 64.76 47.88

TABLE VI
ACCURACIES OF DIFFERENT METHODS ON INRIA DATASET (0.3 M/PIXEL). (%)

Method
labeled:unlabeled ≈ 1 : 2 labeled:unlabeled ≈ 1 : 5 labeled:unlabeled ≈ 1 : 10

13000 labeled, 26852 unlabeled 6000 labeled, 33852 unlabeled 3600 labeled, 36252 unlabeled
F1 score IoU F1 score IoU F1 score IoU

Proposed method 85.86 75.22 84.65 73.39 83.74 72.03
SL 81.94 69.41 80.38 67.61 77.87 64.12

SL + DA 82.40 70.07 81.01 68.08 78.56 64.69
ICT [56] 82.53 70.26 81.10 68.21 78.60 64.75
VAT [55] 82.79 70.63 81.42 68.66 78.48 64.58

CutMix [10] 82.89 70.77 81.34 68.55 78.59 64.74
CCT [11] 85.21 74.23 83.74 72.02 83.00 70.93
CR [51] 82.38 70.04 81.00 68.05 78.27 64.30

PiCoCo [52] 84.59 73.29 83.65 71.90 80.91 67.94

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. Results obtained from (a) proposed method, (b) SL, (c) SL+DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and (i)
PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (400 labeled, 4400 unlabeled). (j) is satellite imagery from the Planet
dataset (spatial resolution: 3 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

TABLE VII
ABLATION STUDY OF THE IMPOSED CONSISTENCY ON THREE DATASETS. (%)

The type of the imposed consistency
Planet dataset (3 m/pixel) Massachusetts dataset (1 m/pixel) Inria dataset (0.3 m/pixel)

1600 labeled, 3200 unlabeled 1100 labeled, 2324 unlabeled 13000 labeled, 26852 unlabeled
F1 score IoU F1 score IoU F1 score IoU

Feature and output consistency 59.35 42.20 70.26 54.16 85.86 75.22
Output consistency 57.95 40.80 69.15 52.84 85.21 74.23
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10. Results obtained from (a) proposed method, (b) SL, (c) SL+DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and (i)
PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (300 labeled, 3124 unlabeled). (j) is aerial imagery from the Massachusetts
dataset (spatial resolution: 1 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Results obtained from (a) proposed method, (b) SL, (c) SL+DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and (i)
PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (3600 labeled, 36252 unlabeled). (j) is aerial imagery from the Inria dataset
(spatial resolution: 0.3 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

VI. DISCUSSION

As shown in the results on three datasets for a semi-
supervised setting, our proposed method with the ratio of 2:1
can deliver the best results. Therefore, in this section, we carry
out ablation studies of the proposed method under this data
split.

A. Ablation Study of the Imposed Consistency
One contribution of our approach worthy of being high-

lighted is that we introduce a novel objective function by

imposing consistency on both features and outputs between
the main decoder and the auxiliary decoder.

The statistical results of different types of the imposed
consistency are reported in Table VII. Experimental results
show that implementing feature and output consistency for this
task is helpful to improve the network performance, and we
can see nearly 1% gains in IoU on all datasets when compared
to solely output consistency. This may be because that more
abstract and invariant information are included in the feature
representations [70], and the network is able to learn more
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TABLE VIII
ABLATION STUDY OF THE ASSIGNED PERTURBATION ON THREE DATASETS. (%)

The position of the assigned perturbation
Planet dataset (3 m/pixel) Massachusetts dataset (1 m/pixel) Inria dataset (0.3 m/pixel)

1600 labeled, 3200 unlabeled 1100 labeled, 2324 unlabeled 13000 labeled, 26852 unlabeled
F1 score IoU F1 score IoU F1 score IoU

d=1 57.72 40.47 67.67 51.46 84.65 73.59
d=2 59.35 42.20 68.66 52.27 84.44 73.28
d=3 57.32 40.18 67.02 51.08 84.74 73.73
d=4 56.58 39.45 70.26 54.16 84.67 73.63
d=5 59.63 39.50 67.65 51.11 85.86 75.22

TABLE IX
ABLATION STUDY OF THE AUXILIARY DECODER ON THREE DATASETS. (%)

Method
Planet dataset (3 m/pixel) Massachusetts dataset (1 m/pixel) Inria dataset (0.3 m/pixel)

1600 labeled, 3200 unlabeled 1100 labeled, 2324 unlabeled 13000 labeled, 26852 unlabeled
F1 score IoU F1 score IoU F1 score IoU

With auxiliary decoder 59.35 42.20 70.26 54.16 85.86 75.22
Without auxiliary decoder 58.37 41.20 68.73 52.34 84.84 73.67

Fig. 12. Results obtained from different methods on (a) Planet dataset
(spatial resolution: 3 m/pixel),(b) Massachusetts dataset (spatial resolution:
1 m/pixel), and (c) Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based
true positives, false positives, and false negatives are marked in white, green,
and red, respectively.

knowledge when feature consistency is additionally imposed.

Fig. 12 illustrates a visual comparison between different
types of the imposed consistency. Some buildings are omitted
in the results provided by sole output consistency in the
example areas of the INRIA dataset. The reason is that the
sole output consistency ignores the rich information in feature
representations. On the contrary, building masks obtained by
the feature and output consistency are much closer to real
building shapes. This suggests that our method can capture
information in both feature representations and outputs, en-
abling the enhancement of semantic information of buildings.

B. Ablation Study of the Assigned Perturbation

For the perturbation being assigned to the feature repre-
sentations within the encoder, we propose an instruction to
select the optimal position: the encoder depth d. To verify this
instruction, we apply the perturbation to five different positions
within the encoder, respectively. Specifically, d is first set as
five numbers i.e., 1, 2, 3, 4, and 5, to investigate its impact
on final results. The spatial size of their corresponding feature
maps is 128× 128, 64× 64, 32× 32, 16× 16, 8× 8.

The statistical results of the perturbation applied to different
depths within the encoder are shown in Table VIII. We can
see that the best position to assign the perturbation is varied
across different datasets. Moreover, increasing the value of
the depth will promote the improvement of results on the
higher resolution dataset (Inria dataset). However, we note that
a large value of d will lead to a reduction in accuracy metrics
on the relatively low-resolution dataset (Planet dataset). The
best results are obtained when d = 2 for the Planet dataset,
d = 4 for the Massachusetts dataset, and d = 5 for the Inria
dataset. This coincides with our proposed instruction to apply
the perturbation.

Taking the spatial resolution of remote sensing imagery
into consideration, the respective field of these positions are
corresponding to 3×22 = 12m (Planet dataset), 1×24 = 16m
(Massachusetts dataset), 0.3×25 = 9.6m (Inria dataset), which
are close to the size of a building that usually has a length
within the range from 10 m to 20 m. Afterward, we calculate
the statistics of individual buildings of all three datasets, i.e.,
max length and min length (cf. Fig. 13). We found that the
mean values of the max length of individual buildings are 19
m for the Planet dataset, 17 m for the Massachusetts dataset,
16 m for the Inria dataset. Mean values of the min length of
individual buildings are 17 m for the Planet dataset, 14 m for
the Massachusetts dataset, 12 m for the Inria dataset. That is to
say, mean values of max length and min length of individual
buildings also range from 10 m to 20 m among all datasets.
This indicates the geometrical characteristics of the building
are related to the effective receptive field of the network, which
may place an emphasis on how to select the optimal position to
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(a) (b)

Fig. 13. Summarized statistics of (a) max length and (b) min length of individual buildings on three datasets.

Fig. 14. Results obtained from different methods on (a) Planet dataset
(spatial resolution: 3 m/pixel),(b) Massachusetts dataset (spatial resolution:
1 m/pixel), and (c) Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based
true positives, false positives, and false negatives are marked in white, green,
and red, respectively.

assign the perturbation in the whole framework. Therefore, we
infer that the perturbation should be assigned to the different
positions within the encoder according to the spatial resolution
of remote sensing imagery and the mean size of the individual
buildings in the study area.

C. Ablation Study of the Auxiliary Decoder

In our approach, an auxiliary decoder is employed to train
the unlabeled set, and additional training signals can be ex-
tracted by enforcing the consistency of features and predictions

between the main decoder and the auxiliary decoders. In
order to validate the effectiveness of the auxiliary decoder, we
perform an ablation study with another competitor, i.e., the
proposed method without auxiliary decoder. That is to say,
the auxiliary decoder is removed, and the main decoder takes
as input both an uncorrupted and perturbed version of the
encoder’s output to impose consistency on their features and
outputs.

The ablation study is carried out on Planet, Massachusetts,
and Inria datasets. Numerical results are shown in Tables IX.
As can be seen in statistical results on all three datasets,
an auxiliary decoder brings a nearly 1% improvement in
IoU, leading to a positive influence on the performance of
our network. Fig. 14 shows a visual comparison of seg-
mentation results, which demonstrates that the performance
of our approach can be boosted up by the leverage of an
auxiliary decoder. In Fig. 14 (e) and (h), the method without
auxiliary decoder wrongly identifies cars as buildings on both
Massachusetts and Inria datasets. This is because, the colors
of cars are similar to those of buildings, which leads to
a misjudgment. The use of an auxiliary decoder is able to
avoid such false alarms. The main reason is that supervision
from the same decoder might guide the network to better
approximate the features and outputs of the perturbed inputs,
making the network converges in the wrong direction. In
contrast, supervision by the features and predictions from the
other decoder is able to avoid over-fitting the wrong direction.

VII. CONCLUSION

Considering that the performance of semantic segmentation
networks is limited when the annotated training samples are
insufficient, a novel semi-supervised building footprint gen-
eration method with feature and output consistency training
is proposed in this paper. The proposed model comprises
three modules: a shared encoder, a main decoder, and an
auxiliary decoder. More specifically, the shared encoder and
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the main decoder are designed to learn from labeled data
in a fully supervised manner. Afterward, we assign the per-
turbation at the intermediate feature representations within
the encoder and aims to encourage the auxiliary decoder
to give consistent predictions for unlabeled inputs as the
main decoder. The consistency is imposed between outputs
and features of the main decoder and those of the auxiliary
decoder. The performance of the proposed end-to-end network
is assessed on three datasets with different resolutions: Planet
dataset (3 m/pixel), Massachusetts dataset (1 m/pixel), and
Inria dataset (0.3 m/pixel). Experimental results suggest that
the incorporation of both feature and output consistency in
our method can offer more satisfactory building footprints,
where omission errors can be alleviated to a large extent.
Therefore, We believe that our method is a robust solution
for building footprint generation when dealing with scarce
training samples. Furthermore, the best position to assign the
perturbation has been investigated that the perturbation should
be applied to the different depths within the encoder according
to the spatial resolution of input remote sensing imagery and
the mean size of the individual buildings in the study area.
This practical strategy is beneficial to other semi-supervised
building footprint generation works that use remote sensing
imagery. A subsequent study will intend to investigate the
potential of the feature and output consistency training in the
instance segmentation of buildings.
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Abstract: Undocumented building constructions are buildings or stories that were built years ago,
but are missing in the official digital cadastral maps (DFK). The detection of undocumented building
constructions is essential to urban planning and monitoring. The state of Bavaria, Germany, uses two
semi-automatic detection methods for this task that suffer from a high false alarm rate. To solve this
problem, we propose a novel framework to detect undocumented building constructions using a
Convolutional Neural Network (CNN) and official geodata, including high resolution optical data
and the Normalized Digital Surface Model (nDSM). More specifically, an undocumented building
pixel is labeled as “building” by the CNN but does not overlap with a building polygon of the DFK.
The class of old or new undocumented building can be further separated when a Temporal Digital
Surface Model (tDSM) is introduced in the stage of decision fusion. In a further step, undocumented
story construction is detected as the pixels that are “building” in both DFK and predicted results
from CNN, but shows a height deviation from the tDSM. By doing so, we have produced a seamless
map of undocumented building constructions for one-quarter of the state of Bavaria, Germany at a
spatial resolution of 0.4 m, which has proved that our framework is robust to detect undocumented
building constructions at large-scale. Considering that the official geodata exploited in this research
is advantageous because of its high quality and large coverage, a transferability analysis experiment
is also designed in our research to investigate the sampling strategies for building detection at
large-scale. Our results indicate that building detection results in unseen areas at large-scale can be
improved when training samples are collected from different districts. In an area where training
samples are available, local training sampless collection and training can save much time and effort.

Keywords: building detection; Convolutional Neural Network; deep learning; semantic segmentation;
decision fusion

1. Introduction

The creation and maintenance of databases of buildings have numerous applications,
which involve urban planning and monitoring as well as three-dimensional (3D) city modeling.

Remote Sens. 2020, 12, 3537; doi:10.3390/rs12213537 www.mdpi.com/journal/remotesensing
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In particular, the complete documentation of buildings in official cadastral maps is essential to the
transparent management of land properties, which can guarantee the legal and secure acquisition of
properties. In Germany, the boundary of a building is acquired through a terrestrial survey by the
official authority and then a two-dimensional (2D) ground plan of buildings is documented in the
official cadastral map, which is known as the digital cadastral map (DFK).

However, due to the lack of information from owners about some building construction projects,
some building constructions are never recorded via terrestrial surveying and are thus missing in the
DFK. These building constructions are called undocumented building constructions, and include
both undocumented buildings and undocumented story construction. Undocumented buildings have
two types, old undocumented buildings and new undocumented buildings. Old undocumented
buildings are buildings that were constructed many years ago but never recorded in the cadastral
maps. New undocumented buildings are buildings that have only recently been erected. In this
regard, the building ground plans of both old and new undocumented buildings are missing in the
DFK. Both old and new undocumented buildings should be terrestrially surveyed by the official
authority, but they may only charge the terrestrial survey fee for new undocumented buildings, due to
Germany’s regulations. In undocumented story construction, there are some changes on site, such as a
newly built story or story demolition, that were not documented in the records of the official authority.
Undocumented story construction will not lead to changes in the DFK, but this information is crucial
to updating 3D building models. Therefore, collecting this undocumented building constructions is
necessary to continue and complete these databases.

The technologies of airborne imaging and laser scanning show great potential in the task of
building detection for nationwide 3D building model derivation [1,2]. The high resolution airborne
data sets make detailed analysis of the geospatial targets more convenient and efficient. In the past,
identifying undocumented buildings entailed a visual comparison of aerial images from different flying
periods with DFK, enabling a comprehensive and timely interactive survey of changes in buildings.
However, the visual interpretation of the aerial photos required a great amount of workforce and time.

In order to reduce the amount of work, two semi-automatic strategies are currently used by the
state of Bavaria, Germany for the detection of undocumented buildings: the filter-based method [3]
and the comparison-based method [4]. Both of these methods first detect buildings in remote sensing
data. In the filter-based method, various filters, including a height filter, color filter, noise filter,
and geometry filter, are applied to the data to detect the buildings. The comparison-based method
detects all buildings with the aid of heuristically defined threshold values for the colors of buildings in
the representative RGB color space and for the height in the Normalized Digital Surface Model (nDSM).
Then both methods overlay the building detection results on the DFK to identify undocumented
buildings. With the help of a Temporal Digital Surface Model (tDSM) derived from two Digital Surface
Models (DSMs) in different epochs, new undocumented buildings can be discriminated from old
undocumented buildings. Both methods are based on heuristic methods [3]. However, the heuristic
definition of threshold values is not standardized, and have to be determined individually for different
flight campaigns. Therefore, the data covering a large area cannot be processed in a uniform and
standardized manner. Moreover, there are many false alarms in the results obtained from these
two methods, where vegetation is frequently misclassified as buildings. For instance, the results
of undocumented buildings obtained from the filter-based method also involve isolated vegetation
(see Figure 1). In addition, these two methods do not provide any evidence of undocumented
story construction.



Remote Sens. 2020, 12, 3537 3 of 21

Figure 1. Building detection results obtained from the filter-based method overlaid on the DFK (gray)
to identify undocumented buildings (blue).

Recently, deep learning methods such as the Convolutional Neural Network (CNN) have been
favored by the remote sensing community [5,6] in applications such as land cover classification [7,8],
change detection [9,10], multi-label classification [11,12], and human settlement extraction [13,14].
CNN comprises multiple processing layers, which can learn hierarchical feature representations from
the input without any prior knowledge. For the task of building detection from remote sensing
data, CNN has also proven to achieve remarkable performances that far exceed those of traditional
methods [15–17]. This is due to their superiority in generalization and accuracy without hand-crafted
features. A key ingredient of CNN is training data. The amount of training data can be reduced if
the pretrained transferable model is applicable in another unseen area [18], a property that is called
transferability [19,20]. However, due to the limited size and quality of existing publicly available data
sets, transferability cannot be well investigated in the task of building detection.

In this paper, our unique contributions are three-fold:

(1) A new framework for the automatic detection of undocumented building constructions is
proposed, which has integrated the state-of-the-art CNNs and fully harnessed official geodata.
The proposed framework can identify old undocumented buildings, new undocumented
buildings, and undocumented story construction according to their year and type of construction.
Specifically, a CNN model is firstly exploited for the semantic segmentation of stacked nDSM
and orthophoto with RGB bands (TrueDOP) data. Then, this derived binary map of “building”
and “non-building” pixels is utilized to identify different types of undocumented building
constructions through automatic comparison with the DFK and tDSM.

(2) Our building detection results are compared with those obtained from two conventional solutions
utilized in the state of Bavaria, Germany. With a large collection of reference data, this comparison
has statistical sense. Our method can significantly reduce the false alarm rate, which has
demonstrated the use of CNN for the robust detection of buildings at large-scale.

(3) In order to offer insights for similar large-scale building detection tasks, we have investigated the
transferability issue and sampling strategies further by using reference data of selected districts
in the state of Bavaria, Germany and employing CNNs. It should be noted that this work is in an
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advanced position to study the practical strategies for the task of large-scale building detection,
as we implement such high quality and resolution official geodata at large-scale.

The remainder of the paper is organized as follows: Related work is reviewed in Section 2.
The study area and official geodata utilized in this work are described in Section 3. Section 4 details
the proposed framework for the detection of undocumented building constructions. The experiments
are described in Section 5. The results and discussion are provided in Sections 6 and 7, respectively.
Eventually, Section 8 summarizes this work.

2. Related Work

2.1. Two Conventional Strategies for the Detection of Undocumented Buildings

In the state of Bavaria, Germany, there are two conventional strategies utilized to detect
undocumented buildings, the filter-based method [3] and the comparison-based method [4]. For both
methods, the detection of undocumented buildings is carried out by first detecting all buildings in
the remote sensing data and then identifying undocumented buildings within the DFK by overlaying
the results with the DFK. Finally, the detected undocumented buildings are separated into two
classes by introducing a tDSM, i.e., they are classified as old undocumented buildings and new
undocumented buildings.

The filter-based method detects buildings from remote sensing data based on multiple filters,
which include height, color, and geometric filters. Considering that buildings are elevated objects,
a “height filter” is first applied in an nDSM, in order to remove all points with height less than an
empirically determined threshold. Then, the second filter “color filter” takes the color values of
the individual points into account. It is assumed that all pixels belonging to the class “building”
are normally distributed in an individual color channels. Thus, the values of the individual color
channel from the TrueDOP for each building are calculated to derive a confidence range for the
buildings. If the color values of the examined pixel are beyond this confidence range, it will be
removed. The Normalized Difference Vegetation Index (NDVI) is then calculated to remove vegetation.
The third filter, the “noise filter”, is implemented by comparing its height with neighboring points in
a defined area. This is a further separation of those vegetation points. The last filter, the “geometry
filter”, recognizes buildings according to their area, the number of breakpoints, the ratio of area to
circumference, and elongation (angularity).

In the comparison-based method, all buildings at present are delineated by setting heuristic
threshold values based on color and height information. The building footprints from the DFK
are first intersected with the TrueDOP to derive the training areas of buildings. Then, the RGB
color values from the training areas are collected from the TrueDOP as a reference [4], where the
frequency and distribution of the individual RGB combination are utilized in order to separate
buildings from vegetation with an empirically chosen threshold. Finally, with the help of the
nDSM, incorrect classifications between buildings and other objects such as streets are avoided by an
empirically determined height threshold.

In order to minimize the incorrect detection of non-building cases that can be caused by the
height noise of the nDSM or by vegetation, the filter-based method utilizes “color filters” and
the comparison-based method exploits a RGB cube. However, aerial imaging is carried out with
different airplanes and opposite trajectory directions at different times and with different lighting
conditions, where the color channels for the same objects can also have varied values. The color
values for each individual building are also largely dependent on the amount of current sunlight.
Therefore, the confidence range or thresholds are not sufficient to identify buildings. For these two
methods, buildings can only be identified through different heuristic thresholds for different districts,
which is still not a fully automatic strategy. Furthermore, these two methods do not provide a more
detailed type of undocumented building construction case–undocumented story construction.
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2.2. Shallow Learning Methods for Building Detection

Building detection is a favored topic in the remote sensing community. Over the past
decades, a large number of shallow learning methods have been proposed, which can be
summarized into four general types [15]: (1) edge-based, (2) region-based, (3) index-based,
and (4) classification-based methods.

The edge-based methods recognize the buildings based on geometric details of buildings.
In [21], the edges of buildings are first detected using the edge operator, and then are grouped
based on perceptual groupings to construct the boundary of the buildings. In the region-based
methods, the region of buildings is identified based on image segmentation methods, using a
two-level graph theory framework enhanced by shadow information [22]. The index-based methods
indicate the presence of buildings by a number of proposed indices to depict the building features.
The morphological building index (MBI) [23] is a building index that extracts buildings automatically,
and describes the characteristics of buildings by using multiscale and multidirectional morphological
operators. In the classification-based methods, buildings are extracted by feeding the spectral
information and spatial features into a classifier to make a prediction. In [24], automatic recognition of
buildings is achieved through a Support Vector Machine (SVM) classification of a great quantity of
geometric image features.

The shallow learning methods have shown some good results in the task of building detection
by combining different spectral, spatial, or auxiliary information or assuming building hypotheses.
However, the prior information and hand-crafted features of shallow learning methods make it
difficult to achieve generic, robust, and scalable building detection results at large-scale. Moreover,
the optimization of parameters in the shallow learning-based methods also leads to inefficiency
in processing.

2.3. Deep Learning Methods for Building Detection

Recently, the emergence of deep learning methods, which are based on artificial neural networks,
have made strong contributions to the task of building detection. The use of multiple layers in the
network allows the automatic learning of representations from raw data. Prior information is not
required in deep learning methods for hand-crafted feature design, which indicates that deep learning
methods can generalize well over large areas. CNNs are deep learning architectures, that are commonly
used and have been exploited as a preferred framework for the task of building detection, as they
have demonstrated more powerful generalization capability and better performance than traditional
methods [25]. The task of building detection using CNNs is related to the task of semantic segmentation
in computer vision, which aims at performing pixel-wise labelling in an image [26]. This indicates
that a CNN can assign a class label to every pixel in the image. Different CNN architectures, such as
fully convolutional networks (FCN) [27] and encoder-decoder based architectures (e.g., U-Net [28],
SegNet [29] and others), are commonly used for the task of semantic segmentation, which outperform
shallow learning approaches marginally [30].

FCN is a pioneer work for semantic segmentation that effectively converts popular classification
CNN models to generate pixel-level prediction maps with the transposed convolutions. In [31],
the spectral and height information from different data sets are combined as the input for FCN to
generate building footprints. In addition to FCN, the encoder-decoder based architectures are another
popular variant. Spatial resolution has been gradually reduced for highly efficient feature mapping in
the encoder, while feature representations are recovered into a full-resolution segmentation map in
the decoder. In U-Net, the skip connections, which links the encoder and the decoder, is beneficial
to the preservation of the spatial details. Considering that the results of FCN-based methods are
sensitive to the size of buildings, the U-Net structure implemented in [32] increases scale invariance of
algorithms for the task of building detection. SegNet is another encoder-decoder based architecture,
where the max-pooling indices from the encoders are transferred to the corresponding decoders.
By reusing max-pooling indices, SegNet requires less memory than U-Net. In [25], SegNet is exploited
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to produce the first seamless building footprint map of America at the spatial resolution of 1 m.
Currently, FC-DenseNet [33] is a favoured method among different CNN architectures for the semantic
segmentation of geospatial scenes, and is superior to many other networks in accuracy [17,34] due to
its better feature extraction capability [16].

3. Study Area and Official GeoData

In our research, the study area covers one-quarter of the state of Bavaria, Germany (see Figure 2),
which includes 16 districts: Ansbach, Bad Toelz, Deggendorf, Hemau, Kulmbach, Kronach, Landau,
Landshut, Muenchen, Nuernburg, Regensburg, Rosenheim, Wasserburg, Schweinfurt, Weilheim,
and Wolfratshausen. Bavaria is a federal state of Germany located in the southeast of the country. It is
the state with the largest land area and the second most populous state in Germany. The 16 selected
districts include both urban and rural areas, where different types of buildings are covered.

Figure 2. (a) The location of the state of Bavaria, Germany, (b) The study sites in this research,
which cover 16 districts in the state of Bavaria, Germany.
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Four types of official geodata are used in this study: nDSM, tDSM, TrueDOP, and DFK. The sample
data sets are illustrated in Figure 3 and their related details are shown in Table 1. In the state of
Bavaria, Germany, aerial flight compaigns are acquired through both aerial photographs and Airborne
Laser Scanning (ALS). A regular point grid from ALS can be derived as the Digital Terrain Model
(DTM). The DSM is obtained from a point cloud generated from optical data with the dense matching
method [35]. The nDSM utilized in this research is a difference model between a current DSM at time
point 2 (year 2017) and the DTM of the scene, which highlights elevated objects above the ground,
such as buildings and trees. In this research, the tDSM is the difference model of two DSMs captured
at two time points, i.e., time points 1 (year 2014) and 2 (year 2017). The TrueDOP is an orthophoto
with RGB bands acquired in time point 2 (year 2017); ortho projection and geo-localization has been
achieved corresponding to the DSM. Thus, all buildings and elevated objects in TrueDOP lie in position
without geometric distortion. Each district is covered by a large number of tiles of TrueDOP, nDSM,
and tDSM, where each tile has a size of 2500 × 2500 pixel at 0.4 m. The DFK is the cadastral 2D ground
plan where the footprint of buildings is delineated. It is acquired via a terrestrial surveying in the
field with accuracy in the range of cm. One of the limitations of a publicly available data set is the
lack of high quality ground truth data [36], where inaccurate locations of building annotations lead
to the misalignment between the building footprint and the data used for analysis [37]. It should be
noted that, the DFK exploited as ground reference in our research is accurate: the buildings shown in a
TrueDOP coincide the corresponding building footprint in the DFK.

Figure 3. Sample data from (a) TrueDOP, (b) nDSM, (c) rasterized DFK, and (d) tDSM.

Table 1. Detailed information of data sets utilized in this research.

Data Set Temporal Information Spatial Resolution Size Channels

Normalized Digital Surface Model (nDSM) year 2017 0.4 m 2500 × 2500 1
Temporal Digital Surface Model (tDSM) from year 2014 to year 2017 0.4 m 2500 × 2500 1
Orthophoto with RGB bands (TrueDOP) year 2017 0.4 m 2500 × 2500 3

Digital Cadastral Map (DFK) year 2017 0.4 m 2500 × 2500 1
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4. Methodology

4.1. The Proposed Framework for the Detection of Undocumented Building Constructions

Undocumented building constructions comprise two cases: undocumented buildings and
undocumented story construction. Undocumented buildings are the buildings that exist in airborne
survey data (nDSM and TrueDOP), but are not recorded in the cadastral 2D ground plan (DFK).
Undocumented story construction represents buildings that exist in both airborne survey data (nDSM
and TrueDOP) and the cadastral 2D ground plan (DFK), but show a signal of height deviation in
the tDSM due to story buildup or demolition. We propose a framework to detect undocumented
building constructions that is able to identify both undocumented buildings and undocumented story
construction. This proposed framework is carried out based on CNN and decision fusion, and can be
implemented as a routine strategy in large-scale object detection works.

An overview of the proposed framework is illustrated in Figure 4. The framework proposed in
this study consists of three main tasks: (1) detection of undocumented buildings, (2) discrimination
between old and new undocumented buildings, and (3) detection of undocumented story construction.

Figure 4. Flowchart of the proposed approach for the detection of undocumented building constructions.

In the proposed framework, TrueDOP stacked with the nDSM are utilized as the two main
data sources in the first stage, building detection. These were chosen because that individual data
sources may lead to biased building detection results. In the TrueDOP, the buildings share very
similar spectral and texture characteristics with other areas, such as sidewalks. Moreover, varied light
intensities due to atmospheric and seasonal effects, as well as shadow, can result in the variation in the
appearance of buildings [38], which is largely dependent on the time of data acquisition. The nDSM
data derived from the DSM and ALS data can directly inference the scene geometry, avoiding the
influence of environmental variables. However, some issues emerge when relying solely on the
nDSM, including marked occluded surfaces and planar surfaces that are split up [36]. In this case,
buildings and other elevated objects above the ground can not be discriminated well by purely nDSM
methods. Therefore, in order to make full use of both data sets, we stack the TrueDOP and the nDSM
as input of the CNN model, which assigns the class label “building” or “non-building” to each pixel.
The undocumented building pixels can then be identified when we overlay the predicted results with
DFK, highlighting those pixels that are assigned the class label of “building” from the CNN model but
belongs to the “non-building” class in the DFK.
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In order to further distinguish between different types of undocumented buildings, the temporal
information is essential to identifying the time window of the constructions. In this regard, the tDSM,
which is the difference between two DSMs acquired at two time points, is introduced as an additional
source of information. New constructions can be identified with an empiric value (1.8 m) applied to the
tDSM, which indicates that there is a height deviation for this pixel within the period between
two time points (from year 2014 to year 2017 in this research). This is due to the fact that a
story or a building is usually higher than 1.8 m. If there is a height deviation within this period,
the obtained undocumented building pixels from the previous stage will be assigned to the class as
new undocumented building. It indicates that this undocumented building was constructed after
time point 1 (year 2014). Otherwise it will be assigned the class of old undocumented building,
which indicates that there was an undocumented building constructed before time point 1 (in this case,
the year 2014).

Another case of building construction that can lead to a height deviation in two DSMs, is the
undocumented story construction, which refers to story buildup or demolition on an existing building.
The predicted results from the CNN model are first overlaid with the DFK. When the pixel in both
data sources corresponds to the class “building” and if there is a height deviation identified in the
tDSM, this pixel is placed in the class of undocumented story construction.

4.2. A CNN Model for Building Detection

Considering that the spatial resolution of airborne data is relatively high, massive quantities of
data can be collected within the area of one-quarter of the state of Bavaria, Germany. CNNs, the most
favored methods for many large-scale tasks [39], are therefore implemented as the most essential part
of our proposed framework. FC-DenseNet is exploited as the base semantic segmentation network
for building detection in the proposed framework, the goal of which is to assign the class label of
“building” or “non-building” to each pixel.

Network Architecture

FC-DenseNet is also an encoder-decoder architecture, where the key ingredient is the DenseNet
block. DenseNet [40] is a network that has proven to achieve superior performance for scene
classification tasks [41]. In this regard, FC-DenseNet (see Figure 5) is proposed in [33], where the
DenseNet is extended to a fully convolutional network for semantic segmentation tasks. The DenseNet
block has introduced a new connective pattern between layers, where the input of each layer is all
preceding features, and the output features from this layer are then transferred to all subsequent
layers. Instead of ResNet [42], which combines features by summation, DenseNet combines features
using iterative concatenation. This provides a more efficient flow of information through the network.
The feature concatenation in the DenseNet block reuses all features, which makes the connections
within layers shorter. In this regard, the intermediate layers will be enforced to learn distinguished
feature maps for easier training. Another important design element of FC-DenseNet is the skip
connections [43] between the encoder and the decoder, where higher resolution information can be
passed. The spatial details can be well recovered in the decoder from the encoder with the help of the
skip connection.
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Figure 5. The implemented CNN architectures: FC-DenseNet.

5. Experiment

5.1. Data Preprocessing

The crucial element of our proposed framework is the CNN method that can predict buildings
at current state. Training data is essential for CNN learning, and thus all the official geodata are
preprocessed to collect training patches as input. DFK is provided as shape files, and first converted
to the raster format at 0.4 m, which is the same spatial resolution as TrueDOP, nDSM, and tDSM.
Then, all the tiles of TrueDOP, nDSM, and the DFK as corresponding ground reference are clipped
into patches with a size of 256 × 256 pixels, where each patch has an overlap of 124 pixels with its
neighboring patches.

Then, we collect the patches from 14 districts in the state of Bavaria, Germany, except the districts
of Bad Toelz and Nuernburg. And for each district among the 14 selected districts, we split the collected
patches into the train and validation subset. Table 2 shows the number of training and validation
patches for the 14 selected districts.

Table 2. The numbers of training and validation patches for the 14 selected districts.

District Number of Training Patches Number of Validation Patches

Ansbach 67,965 18,077
Wolfratshausen 14,982 3671

Kulmbach 24,998 5679
Kronach 19,987 5112
Landau 34,964 8733

Deggendorf 38,454 9763
Landshut 60,957 15,090
Muenchen 88,364 22,213

Regensburg 47,947 11,941
Hemau 9481 2243

Rosenheim 59,141 14,789
Wasserburg 14,150 3567
Schweinfurt 54,951 13,759

Weilheim 76,959 19,202
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5.2. Experiment Setup

Using the training and validation data collected from the 14 selected districts, we have firstly
trained a FC-DenseNet model to get building detection results. Then, with the aid of tDSM, we have
generated a seamless map of undocumented detection for one-quarter of the state of Bavaria, Germany.

To validate our building detection results, we choose the district “Bad Toelz” as the test area.
Firstly, we compare our results in the district of Bad Toelz with those obtained from two conventional
solutions (filter-based method and comparison-based method) utilized in the state of Bavaria, Germany.
Furthermore, we also make a comparison among different CNNs. Thus, we implement another
two commonly used networks (FCN-8s [27] and U-Net [28]) in the remote sensing community for
building detection.

As one contribution of our work, the transferability issues with training data from selected
districts around the state of Bavaria, Germany are explored. In this regard, transferability is examined
by training another FC-DenseNet model with the training and validation data only from the district of
Ansbach. Then we evaluate the two FC-DenseNet models on the districts of Bad Toelz and Nuernburg,
respectively. Note that the districts of Bad Toelz and Nuernburg are not included from the 14 selected
districts, which is helpful to investigate the transferability of these two trained models.

In order to investigate the sampling strategy in a local area where training samples are available,
we also test the two trained FC-DenseNet models on the district of Ansbach, since the district of
Ansbach is included in training and validation data of both trained models.

5.3. Training Details

In this study, all networks are applied under a Pytorch framework and trained for 100 epochs.
All models are trained from scratch by a stochastic gradient descent (SGD) optimizer with a learning
rate of 0.000001. The cross entropy loss is utilized as the loss function, and the batch size is 5. A Tesla
P100 GPU with 16 G memory is used to train our models.

The configurations of CNNs included in experiments are listed as follows;

(1) FC-DenseNet is composed of four DenseNet blocks in both encoder and decoder, and one
bottleneck block connecting them, which is also a DenseNet block. In each DenseNet block,
we utilize 5 convolutional layers.

(2) FCN-8s adopts a VGG16 architecture [44] as the backbone.
(3) U-Net is composed of five blocks in both the encoder and decoder. Each block in the encoder has

two convolution layers, and in the decoder it has one transposed convolution layer.

5.4. Evaluation Metrics

For building detection, the model performance is evaluated by calculating the accuracy metrics,
which include overall accuracy, precision, recall, F1 score, and intersection over union (IoU), which are
defined as:

Overall accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score =
2 ∗ precision ∗ recall

precision + recall
(4)

IoU =
TP

TP + FP + FN
(5)

where TP (true positive) is the number of pixels correctly identified with the class label “building”,
FN (false negative) denotes the number of omitted pixels with the class label of “building”. FP (false
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positive) represents the number of “non-building” pixels in the ground reference, but are mislabeled
as “building” by the model. TN (true negative) is the number of the correctly detected pixels with
the class label of “non-building”. Precision denotes the fraction of identified “building” pixels that
are correct with ground reference, and recall represents how many “building” pixels in the ground
reference are correctly predicted. The F1 score denotes a harmonic mean between precision and recall.

6. Results

6.1. Results of Undocumented Building Constructions from Proposed Framework

In our research, we have generated a seamless map of undocumented building constructions for
one-quarter of the state of Bavaria, Germany. Due to the limited space, the zoom-in visual examples
of the large-scale undocumented building constructions can only be presented at block level here
(see Figure 6).

Figure 6. Zoomed-in results of undocumented building constructions for one-quarter of the state of
Bavaria, Germany at block level.
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To evaluate the undocumented detections in a more targeted manner, we collected all the
undocumented buildings in the district of Bad Toelz. Each undocumented building was reevaluated by
manual photo interpretation to determine the correctness. Among the 1545 undocumented buildings
from our results in the district of Bad Toelz, 1271 undocumented buildings were correctly detected.

A detailed visual analysis of undocumented building constructions in the district of Bad Toelz is
given as an example in Figure 7, including (a) old undocumented building, (b) new undocumented
building, (c) undocumented story construction. Note that the training data set excludes the data for
the district of Bad Toelz, but it can still provide satisfying results in this district. Case (a) represents old
undocumented buildings (green), which are clearly distinguishable in the TrueDOP and are shown
as elevated objects in the nDSM. However, they are not contained in the DFK. Considering that
no height deviation is present in the tDSM, these undocumented buildings belong to the class of
old undocumented building, which indicates that they were built before time point 1 (year 2014).
In case (b), a new undocumented building (red) is depicted well in our detection results. From the
TrueDOP and nDSM, it can be clearly seen that this is a building, however, it is not present in the DFK.
Since there is an obvious signal of height deviation from tDSM, this new undocumented building was
built in the period covered by the tDSM (from year 2014 to year 2017). For the undocumented story
construction illustrated in case (c), a strong signal of height deviation is present in the tDSM. This site
corresponds to a building that has been recorded in the DFK; thus, we can conclude that this height
deviation results from story buildup.

Figure 7. Example of detection results of undocumented building reconstructions for (a) old
undocumented building, (b) new undocumented building, and (c) undocumented story construction.
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6.2. Results of Building Detections from Proposed Framework

In our proposed framework, the module of CNN plays a vital role, and its performance
has an impact on the final undocumented building detections results. In order to evaluate the
CNN performance of the proposed framework, we compare our building detection results in the
district of Bad Toelz with those acquired from two conventional solutions (filter-based method and
comparison-based method) utilized in the state of Bavaria, Germany. A comparison among different
CNNs (FC-DenseNet, FCN-8s, and U-Net) is also presented in this section.

6.2.1. Comparison with Two Conventional Solutions

The visual building detection results from the proposed framework and two other conventional
solutions (the filter-based method and the comparison-based method) are shown in Figure 8.
For further verification, a statistical analysis of the results from these three methods on the district of
Bad Toelz is carried out (see Table 3). As a comparative measure, the F1 score is clearly more objective
here, since it takes both false alarms and omitted detections into consideration.

Figure 8. Building detection results from (a) filter-based method, (b) comparison-based method,
and (c) CNN model.
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Table 3. Statistical accuracy of building detection results among different methods.

Method Overall Accuracy Precision Recall F1 Score IoU

Filter-based method 97.6% 59.7% 82.3% 69.3% 53.0%
Comparison-based method 90.4% 24.1% 89.0% 37.9% 23.4%

CNN method 99.0% 84.6% 85.5% 85.1% 74.0%

For the filter-based method, the low precision rate results from some false detection. One reason
is that the nDSM naturally delivers all elevated objects, such as vegetation and trucks, in addition
to buildings. The other reason is that the color filter is mostly affected by aerial imaging conditions,
which means that vegetation can be also misclassified as buildings under some uncertainties.
Some omission errors in the results also reduce the recall value, which may be due to the confidence
intervals of the color filter. This interval may be insufficient to identify buildings, since the RGB values
for an individual building are significantly dependent on the amount of sunlight. In this case, there are
some buildings whose colors are in the peripheral areas, e.g., very bright white roofs or very dark
roofs, which can not be identified as buildings.

In the results obtained from the comparison-based method, the precision value is much lower
than the other two methods, which indicates that many non-building pixels are mislabeled as buildings.
After a further detailed visual check, we have found that there is a lot of confusion between trees
and buildings. Since some trees grow above the roofs, the RGB color cube in TrueDOP collected
from reference buildings also involve RGB color values of vegetation. In this regard, the reference for
buildings in the RGB color cube will be distorted by these vegetation components, and thus vegetation
can be wrongly classified as buildings. Moreover, the color values of vegetation and dark roofs are
also similar in shadow areas, which produces misclassifications between vegetation and buildings.

The CNN method yields the highest precision values, which indicates that it can suppress false
alarms well. The CNN model clearly outperforms the other two methods with respect to accuracy
(F1 score). This proves that, in a comparison of the building detectors examined, reliable building
detection and a good separation from vegetation are only possible with the CNN model. This is due to
the powerful generalization capability of CNNs, which are independent from prior knowledge and
hand-crafted features.

6.2.2. Comparison with Other CNNs

In order to compare with other CNNs, two networks including FCN-8s, and U-Net are also trained
with the training and validation samples collected from 14 districts. Their respective performance is
then tested on the district of Bad Toelz.

Statistical results of three networks are shown in Table 4. It is demonstrated that FC-DenseNet
outperforms other two methods in terms of both F1 score and IoU. Specifically, comparisons with
FCN-8s and U-Net, where FC-DenseNet obtain increments of 3.9% and 3.2% in F1 score, respectively,
validates its superiority in the task of building detection. Compared to U-Net, FC-DenseNet reaches
improvements of 3.2% and 4.6% in F1 score and IoU, which indicates that the DenseNet block is more
effective than the normal block.

Figure 9 shows a few examples of building detection results of three networks. In all these
three scenes, FC-DenseNet is able to capture more buildings, whereas U-Net and FCN-8s suffer
from more omission errors. This is mainly because, in FC-DenseNet, the DenseNet block reuses
features, which leads to a better judgment of buildings. Thanks to the architecture of skip connection,
FC-DenseNet is capable of preserving sharper building boundaries than FCN-8s.
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Figure 9. Three examples (a–c) represent the building detection results from three CNNs: FCN-8s,
U-Net, and FC-DenseNet.

Table 4. Statistical accuracy of building detection results among different CNNs.

Method Overall Accuracy Precision Recall F1 Score IoU

FCN-8s 98.8% 82.5% 80.1% 81.2% 68.4%
U-Net 98.8% 81.5% 82.3% 81.9% 69.4%

FC-DenseNet 99.0% 84.6% 85.5% 85.1% 74.0%

7. Discussion

The collection of training samples for large-scale building detection takes a large quantity of
time and manual work. Therefore, the investigation of transferability issues and sampling strategies
for building detection at large-scale is vital in practical use. In this regard, we have trained two
FC-DenseNet models with different training and validation sets, and named them as the trained
model 1 and 2, respectively. In the trained model 1, the training samples are only collected from the
district of Ansbach. In the trained model 2, the training samples are collected not only from the district
of Ansbach, but also another 13 districts.

7.1. Transferability Investigation

The transferability of trained models is examined by evaluating the performances of the two
trained models in the districts of Bad Toelz and Nuernburg, respectively. For both trained models,
neither training data nor validation data include the data from these two districts, which is considered
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as a more realistic test for the task of large-scale building detection, since training data can only be
collected from limited areas. Table 5 proves that the trained model 2 has superior transferability. In the
district Bad Toelz, F1 score and IoU of the trained model 2 shows a large improvement of 12.8% and
17.4% in comparison to the trained model 1, respectively. In the district of Nuernburg, the trained
model 2 surpasses the trained model 1 by 3.9% and 5.8% in the F1 score and IoU score, respectively.

Table 5. Accuracy of two different trained models evaluated in the districts of Bad Toelz and Nuernburg.

Trained Model Train and Validation District Test District Overall Accuracy Precision Recall F1 Score IoU

1 Ansbach Bad Toelz 98.2% 75.3% 69.4% 72.3% 56.6%
2 14 districts Bad Toelz 99.0% 84.6% 85.5% 85.1% 74.0%
1 Ansbach Nuernburg 92.4% 86.9% 78.0% 82.2% 69.8%
2 14 districts Nuernburg 94.6% 87.6% 84.7% 86.1% 75.6%

Some visual examples of these two trained models in the districts of Bad Toelz and Nuernburg
are illustrated in Figure 10 for comparison. The visual results are consistent with the statistical results
of Table 5, where the trained model 2 shows higher increments of precision and recall than the trained
model 1. This indicates that when the evaluation data is unseen by both the training and the validation
set, the optimal sampling strategy is to collect training data from different districts rather than from
only one. This improvement is due to the fact that the trained model 2 collects the training samples
from 14 different districts in the state of Bavaria, Germany, where the variety in the types of buildings
facilitates the learning of CNN. This again confirms that a diverse training set is beneficial to the
generalization capability of CNN. Since CNN is focused on learning location-specific building patterns,
a diverse training set can mitigate this effect and enable the CNN to learn more generic patterns,
where the semantic segmentation in an unseen area can be improved [45].

Figure 10. Two examples (a,b) represent the buildings detection results in the district of Bad Toelz
obtained from trained model 1 and trained model 2, respectively. Two examples (c,d) represent the
buildings detection results in the district of Nuernburg obtained from trained model 1 and trained
model 2, respectively.
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7.2. Sampling Strategy Investigation

In order to investigate the sampling strategy in a local area where training samples are available,
we test the two trained models on the district of Ansbach. This is due to the fact that the district of
Ansbach is included in both two trained models. The evaluation data in the district of Ansbach is the
same as the validation data in the trained model 1 (18,077 patches). Table 6 presents a comparison of the
statistical accuracy of two trained models. An interesting finding is that, statistical metrics of the two
trained models only show slight differences, which indicates that local training sample collection and
training can achieve comparative performance as collecting extensive training samples from different
districts. This is because training data in the trained model 1 share a similar data distribution with
evaluation data in the district of Ansbach, which can also lead to a good fit of the model. This provides
a sampling strategy in a local area where the training samples are available, so that we can just use
only local training samples to obtain the building detection results in this area rather than collecting
extensive training samples from multiple districts. This sampling strategy can save much more effort
and time in a local area with available training samples.

Table 6. Accuracy of two different trained models evaluated in the district of Ansbach.

Trained Model Train and Validation District Test District Overall Accuracy Precision Recall F1 Score IoU

1 Ansbach Ansbach 98.9% 90.9% 90.3% 90.5% 82.7%
2 14 districts Ansbach 98.8% 91.3% 89.3% 90.3% 82.3%

8. Conclusions

In order to ensure the transparent management of land properties, buildings as vital terrestrial
objects, need an official terrestrial survey to be documented in the cadastral maps. For this purpose,
we have proposed a framework for the detection of undocumented building constructions from
official geodata, which includes nDSM, TrueDOP, and DFK. Moreover, the proposed framework
categorizes detected undocumented building constructions into three types: old undocumented
building, new undocumented building, and undocumented story construction with the aid of tDSM.
This can contribute to the management of different construction cases.

Our framework is based on a CNN and decision fusion, and has shown greater potential for
updating the building model in geographic information system than two strategies used so far in the
state of Bavaria, Germany.

We investigated the transferability issue and sampling strategies for building detection at
large-scale. In an unseen area, the model that collects diverse training samples from multiple districts
has better transferability than the model that collects training data from only one district. However, in a
local area where training samples are already available, the local samples collection and training can
achieve comparative performance as the model that collects extensive training samples from different
districts. These practical strategies are beneficial to other large-scale object detection works that use
remote sensing data.

Furthermore, the seamless map of undocumented building constructions generated in our research
covers one-quarter of the state of Bavaria, Germany at a spatial resolution of 0.4 m, and is beneficial to
efficient land resource management and sustainable urban development.
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