Evaluation of tropical anvil cirrus in high-resolution DYAMOND simulations

<u>Karol Corko¹</u>, Ulrike Burkhardt¹, Martin Köhler²

¹Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhoffen, Germany

² Deutscher Wetterdienst, Offenbach, Germany

With deep convection mainly resolved, how well is the tropical UT cloudiness simulated?

Total (ice + snow + graupel) ice water path (TIWP) in high-resolution DYAMOND models

Tropical TIWP generally underestimated

Total (ice + snow + graupel) ice water path (TIWP) in high-resolution DYAMOND models

Tropical TIWP generally underestimated

Different TIWP distributions (too little IWP, maxima displaced) in NWP ICON

	Model & native	eresolution	Convective param. (D:deep, S:shallow)
DYAMOND MODELS	NICAM	3.5 km	None
	ICON	2.5 km	None
	FV3	3.25 km	S
	MPAS	3.75 km	D, S
	ARPEGE	2.5 km	None
	SAM	4 km	None
NWP models	DWD ICON	13 km	D, S
Reanalysis data	ERA5	0.25°	D, S
Observations	MODIS/GEO 1°		
Time period & area	11 th Aug – 10 th Sept 2016, Tropical ocean		
Resolution of analysis	1° x 1°		
DLR	MIL Sand Con		

Is lack of TIWP in models due to dynamics or cloud scheme?

Monthly mean

$$\overline{CWP} = \int_{-\infty}^{\infty} PDF_{w} \ CWP_{w} \ dw$$

Reasons for differences in dynamics (PDF_w):a) Processb) Distribution

Large variability in cloud water path reaction to convection!

How different is dynamics between the high-resolution models?

Impact of convection on UT cloudiness varies strongly!

Monthly mean

Daily mean

How different are NWP models compared to high-resolution models?

Conclusions

Deep convection is mainly resolved in DYAMOND models (resolution < 5km):

 \rightarrow Tropical TIWP still generally underestimated

- \rightarrow Similar convective activity but less scattered convection than in ERA5
- \rightarrow Reaction of cloud properties (TIWP & TLWP) to strength of convection shows large model variability (differences in cloud microphysics)
- \rightarrow Improvement compared to ICON-NWP (generally larger TIWP, in particular at lower convective strength)

 \rightarrow longer atmospheric lifetime of convective water

 \rightarrow underestimation of TIWP is connected to overestimation of precipitation

(talk: Ulrike Burkhardt, Wednesday A33F-05)

THANK YOU

