Observation Campaign of (99942) Apophis in the 2021 apparition. H.-J. Lee¹, M.-J. Kim¹, Y.-J. Lee², A. Marciniak³, S., Urakawa⁴, D.-H. Kim^{1,5}, H.-K. Moon¹, Y.-J. Choi^{1,6}, D. Kuroda⁷, S. Okumura⁴, S. Zoła⁸, J. Chatelain⁹, T. A. Lister⁹, E. Gomez¹⁰, S. Greenstreet¹¹, A. Pál¹², R. Szakáts¹², N. Erasmus¹³, R. Lees¹⁴, P. Janse van Rensburg^{13,14}, W. Ogłoza¹⁵, M. Dróżdż¹⁵, M. Żejmo¹⁶, K. Kamiński³, M. K. Kamińska³, R. Duffard¹⁷, D.-G. Roh¹, H.-S. Yim¹, T. Kim¹⁸, S. Mottola¹⁹, F. Yoshida^{20,21}, D. E. Reichart²², E. Sonbas²³, D. B. Caton²⁴, M. Kaplan²⁵, O. Erece^{25,26}, and H. Yang¹, ¹Korea Astronomy and Space Science Institute (e-mail: hile@kasi.re.kr), ²Technische Universität Berlin, ³Astronomical Observatory Institute, ⁴Japan Spaceguard Association, Bisei Spaceguard Center, ⁵Chungbuk National University, ⁶University of Science and Technology, ⁷Okayama Observatory, Kyoto University, ⁸Astronomical Observatory, Jagiellonian University, ⁹Las Cumbres Observatory, ¹⁰Las Cumbres Observatory, School of Physics and Astronomy, Cardiff University, ¹¹Department of Astronomy and the DIRAC Institute, University of Washington, ¹²Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eőtvős Loránd Research Network (ELKH), ¹³South African Astronomical Observatory, ¹⁴Department of Astronomy, University of Cape Town, ¹⁵Mt. Suhora Observatory, Pedagogical University, ¹⁶Kepler Institute of Astronomy, University of Zielona Góra, ¹⁷Departamento de Sistema Solar, Instituto de Astrofísica de Andalucía (CSIC), ¹⁸National Youth Space Center, ¹⁹Deutsches Zentrum für Luftund Raumfahrt (DLR), Institute of Planetary Research, ²⁰University of Occupational and Environmental Health, ²¹Planetary Exploration Research Center, Chiba Institute of Technology, ²²University of North Carolina at Chapel Hill, ²³Department of Physics, Adiyaman University, ²⁴Dark Sky Observatory, Dept. of Physics and Astronomy, Appalachian State University, 25Akdeniz University, Department of Space Sciences and Technologies, 26TÜB ITAK National Observatory, Akdeniz University Campus.

Introduction: The potentially hazardous asteroid (PHA) (99942) Apophis is an Sq-type asteroid [1,2], that will approach within Earth's geosynchronous orbit in April 2029. Apophis' Earth approach in 2029 will be an excellent opportunity to examine how the physical properties of the asteroid could be changed due to the Earth's gravitational perturbation. To do so, we need to understand the physical properties of Apophis before its 2029 Earth encounter.

Observation Campaign: On March 6, 2021, Apophis made a close approach to the Earth at a minimum distance of 0.11 AU whit the apparent magnitude reaching up to V~16. This was the most favorable condition to observe this asteroid until its 2029 encounter. Thus, we performed an extensive and long-term photometric and spectroscopic observation campaign during this 2021 apparition. The telescopes used for observation campaign of Apophis is listed in Table 1.

Photometric Campaign: We conducted photometric observations from January to April in 2021 for a total of 218 nights among 47 observers from 14 different countries using thirty-six 1 to 2-m class facilities. The main goals of our photometric campaign were to refine the spin state and convex shape model of Apophis.

Spectroscopic Campaign: We observed Apophis with CAHA/CAFOS and SEIMEI/KOOLS-IFU (Visible), IRTF/SpeX and Gemini-North/GNIRS (NIR) to check the surface composition variations. In this campaign, five visible and eight near-infrared spectra of Apophis were obtained. Each spectrum was obtained at different rotation phases of Apophis.

Convex Shape model and Spin State: The refinement of the convex shape model and spin state of Apophis was conducted employing light curve inversion technique for non-principal axis rotator [3],[4],[5]. Our model for Apophis is listed in Table 2 and the convex shape model of this asteroid is shown in Figure 1. We found that Apophis is rotating in a short axis mode and the shape of this asteroid can be approximated by an elongated prolate ellipsoid.

Surface Inhomogeneities: We found different taxonomic signatures in different phases based on the nearinfrared spectra (Figure 2). Some of the reflectance spectra of Apophis were shown to be typical for an Sqtype asteroid, as was previously known. However, most of them appear as the unweathered spectra of Q-type asteroid. These differences in the near-infrared spectra of Apophis would be caused by a local resurfacing event, inhomogeneous surface composition, or differences in particle size. Additionally, radar observations have suggested that this asteroid has a bifurcated shape [7]. Thus, we are cautious that this difference may have been caused by Apophis's contact binary.

References: [1] Binzel, R. P. et al. (2009) *Icarus*, 200, 480- 485. [2] Reddy et al. (2018) *AJ*, 155, 140. [3] Kaasalainen, M. (2001), *A&A*, 376, 302-309. [4] Kaasalainen, M. and Torppa, J. (2001). *Icarus*, 183, 24-36. [5] Kaasalainen, M. et al. (2001) *Icarus*, 153, 37-51. [6] DeMeo et al. (2009) *Icarus*, 202, 160-180. [7] Brozović M. et al. (2018) *Icarus*, 300, 115-128.

Table 1. List of telescopes for the observation campaign.

Telescope	Country	Telescope	Country	
- Photometric observation -				
Adiyaman Observatory 0.6 m ATLAS HKO 0.5 m	Turkey Hawaii, USA	AMU Winer, RBT 0.7m ATLAS MLO 0.5 m	Arizona, USA Hawaii, USA	
BOAO 1.8 m	Korea	CAHA 1.23 m	Spain	
CAHA 2.2 m	Spain	DOAO 1.0 m	Korea	
Kawabe Cosmic Park 1.0 m KMTNet SAAO	Japan South	KMTNet CTIO 1.6 m KMTNet SSO	Chile	
1.6 m Krakow-CDK500	Africa	1.6 m LCO CTIO A	tralia	
0.5 m LCO CTIO B	Chile	1.0 m LCO McDonald A	Arizona,	
LCO McDonald B 1.0 m LCO SAAO B 1.0 m LCO SSO A	Arizona, USA South Africa Aus-	LCO SAAO A 1.0 m LCO SAAO C 1.0 m LCO SSO B	South Africa South Africa Aus-	
1.0 m	tralia	1.0 m	tralia	
LOAO 1.0 m	Arizona, USA	OWL Mitzpeh Ramon 0.5 m	Israel	
OWL Oukaimeden 0.5 m	Morocco	OWL Tucson 0.5 m	Arizona, USA	
OWL Yeongcheon 0.5 m	Korea	SAAO Lesedi 1.0 m	South Africa	
Skynet DSO-14 0.4 m	Northern Califor- nia, USA	Skynet Prompt5 0.4 m	Chile	
Skynet Prompt6 0.4 m	Chile	Skynet Prompt MO 1 0.4 m	Chile	
Skynet RRRT 0.6 m	Virginia, USA	SOAO 0.6 m	Korea	
Sunora Observatory Zeiss-60	Poland	TUG 1.0 m	Turkey	
TESS 0.1 m	Space- based			
- Spectroscopic observation -				
Gemini-North Telescope 8.1 m	Hawaii, USA	IRTF 3.2 m	Hawaii, USA	
Seimei Telescope 3.8m	Japan	CAHA 2.2 m	Spain	

Notes. AMU: Adam Mickiewicz University, RBT: Roman Baranowski Telescope, ATLAS: Asteroid Terrestrial-impact Last Alert System, HKO: Haleakala Observatory, MLO: Mauna Loa Observatory, BOAO: Bohyunsan Optical Astronomy Observatory, DOAO: Deokheung Optical Astronomy Observatory, CAHA: Calar Alto Observatory, KMTNet: Korea Microlensing Telescope, CTIO: Cerro Tololo Inter-American Observatory, SAAO: South African Astronomical Observatory, SSO:Siding Spring Observatory, LCO: Las Cumbres Observatory, LOAO: Lemonsan Optical Astronomy Observatory, CDK: Corrected Dall-Kirkham, OWL: Optical Wide-field patroL Network, DSO: Dark Sky Observatory, MO: Meckering Observatory, RRRT: Rapid Response Robotic Telescope, SOAO: Sobaeksan Optical Astronomy Observatory, TUG: TÜBITAK National observatory, TESS: Transiting Exoplanet Survey Satellite, IRTF: NASA Infrared Telescope Facility

Table 2. Parameters of the Apophis model.

Physical parameter	Value
$\lambda_{\rm L}$ [deg.]	278+9
β_L [deg.]	-86^{+5}_{-4}
P _{\$\phi\$} [hr]	27.3885 ± 0.003
P _{\u03c0} [hr]	264.18 ± 0.03
φ ₀ [deg.]	183^{+7}_{-4}
ψ_0 [deg.]	3 ⁺⁵ ₋₁
Ia	$0.64^{+0.02}_{-0.09}$
Ib	$0.962^{+0.023}_{-0.002}$

Notes. λ_L , β_L are the ecliptic coordinates of the angular momentum vector \vec{L} ; P_{ψ} , P_{ϕ} are the periods of rotation and precession; ϕ_0 , ψ_0 are the standard Euler angles at t_0 ; I_a , I_b are the principal moments of inertia. They are normalized by I_c [5]. The epoch JD₀ for the standard Euler angles is 2456284.676388 (2012-12-23.176388).

Figure 1. Convex shape model of Apophis.

Figure 2. Reflectance spectra of Apophis in the nearinfrared region. The colored solid lines are the reference spectra of Q-type (green), Sq-type (blue), and Stype(red) asteroids [6].