

Deutsches Zentrum DLR für Luft- und Raumfahrt

exact [hhep]

Aircraft Modeling Results, Short-Range Turboprop Baselines (D250-321TP-2040, D220-320TP-2040) Author: Georgi Atanasov

EXACTINHE

EXACT Mid Term Review

March, 31th 2022

14-

Models Overview

Study Boundary Conditions

Reference A/C: A321neo		k
interpretation (EIS2016)		D239
Top-Level-Aircraft Requir	rements	(TLARs)
Design Range	[nm]	2500
Design PAX (single class)	[-]	239
Mass per PAX	[kg]	95
Design Payload	[kg]	25000
Max. Payload	[kg]	25000
Cruise Mach number	[-]	0.78
Max. operating Mach number	[-]	0.8
Max. operating altitude	[ft]	40000
TOFL (ISA +0K SL)	[m]	2200
Rate of Climb @ TOC	[ft/min]	>300
Approach Speed (CAS)	[kt]	136
Wing span limit	[m]	<=36

Redesign for EIS2040:

- TLARS ISO
- Engine Performance: -10% sfc
- Fuselage Mass: -5%
- Wing Structural Mass: -15%
- Empennage Mass: -3%
- Systems Mass: ISO

.

- Furnishings Mass: ISO
- Operator Items Mass: ISO

The goal of the modelling is to compare the performance characteristics between the turbofan and the turboprop baseline.

Family Concept Constraints

ISO Systems, except:

- Controls
- Hydraulics & Electrics
- Air conditioning

Components:

- ISO Wing (incl. High-Lift)
- ISO Empennage
- ISO Engines
- Lighter Landing Gear

D250TP & D250TF:

- 250 PAX
- Standard Payload 23750kg
- Max Payload 25000kg

TLARs:

- ISO design range (1500nm)
- Takeoff length and approach speed not additionally constrained
 → a result for ISO engines & wing

exact[®]

D220TP & D220TF:

- 220 PAX
- Standard Payload 20900kg
- Max Payload 24200kg
- Fuselage ~3.9m shorter

For more details:

"Cabin Modelling and Operator Item Assumptions for a Green Aircraft Family" by Y. Cabac, J.N. Walter, C. Hesse

The overall aircraft design process and optimization take into account both family members.

Modelling – Design Studies

• A propeller geometry study, resulting in an 11-bladed propeller design For more details:

"Propeller Design and Analysis based on BEMT for Target Setting Purposes within the Aircraft Conceptual Design Phase" by Yannic Cabac, Georgi Atanasov

• The VTP size was determined by a responce surface generated by CASCOT. For more details:

"Leveraging CPACS-based Flight Dynamics Analysis and Simulation Capabilities to Support Multidisciplinary Aircraft Design of Novel Electric Aircraft Concepts" by Johannes Autenrieb, Daniel Kiehn, Nicolas Fezans

• The fuselage mass was calculated with a dedicated tool chain. For more details:

"Advances in Assessment of Fuselage-Mounted Liquid Hydrogen Storage in Conceptual Aircraft Design" by Philip Balack "Integration of analytical fuselage structure sizing in PANDORA" by Michael Petsch

"Conceptual Loads Estimation and Assessment of Hydrogen Aircraft Configurations" by Tobias Hecken

exact®

Turofan vs Turboprop Comparison

D250-321TF-2040 (D250TF)

D250-321TP-2040 (D250TP)

Effect of Speed on Efficiency

Turbofan vs Turboprop: Aerodynamics

~9% improvement in L/D due to:

- smaller nacelles, wing and empennage
- increase in cruise CL due to less transonic effects limitations for the wing design, as well as relaxter engine-aero matching due to the lower speed.

The propeller is ~12% (relatively) more efficient than the fan, mainly due to the large diameter.

Turbofan vs Turboprop: Engines

Top of Climb Point (FL270, Ma0.6):

- TET = 1600K
- Thrust ~21.5kN
- etaProp = 84%
- => Gas Turbine Equivalent Power* = 4.6MW

*Equiv. Power is the total useful power including residual thrust

Gas turbine model efficiency:

- Equivalent power efficiency*: 52.5%
- 2-Stage Gearbox: 98.5% efficiency
- Total equivalent efficiency**: 51.6%

**Equiv. efficiency is defined as the fraction of the fuel heating energy that can be transformed into equivalent power.

Top of Climb Point (FL330, Ma0.76)

- TET = 1600K
- Thrust ~24.5kN
- etaFan = 75%

=> Gas Turbine Equivalent Power* * = 7.5MW

*Equiv. Power is the total useful power including core thrust.

Gas turbine model efficiency:

- Equivalent power efficiency*: 55.5% (more efficient due to size effect)
- 1-Stage Gearbox: 99.4% efficiency
- Total equivalent efficiency**: 55.1%

The gas turbines of the turboprop are smaller and the propeller requires a 2-stage gearbox, which results in ~7% (relatively) lower efficiency of the power generation compared to the geared turbofan.

Turbofan vs Turboprop: Engines Low-Speed

Turbofan vs Turboprop: Allowances

Total	kg	455	298	-35%	of take-off fuel flow
Taxi-In (5min)	kg	51	35	-31%	Taxi Idle assumes 10%
Approach (from 1500ft) & Landing (5min)	kg	100	63	-37%	Speed Perfo Tool)
Take-Off and Climb to 1500ft	kg	212	139	-35%	 Calculated with LSP (Low-
Taxi-Out (9min)	kg	92	61	-33%	
Fuel Allowances	Units	D250TF	D250TP	Rel.	of take-off fuel flow

The ~35% smaller gas turbines burn proportionally less fuel at idle power (taxi, approach&landing). The large propellers are significantly more efficient in producing thrust during take-off and initial climb.

The reduction of the fuel allowances is especially advantageous at shorter missions

Turbofan vs Turboprop: Mass Breakdown

Turbofan vs Turboprop: Design Block Fuel Comparison

Summary and Outlook

- Summary
 - 20-25% block fuel reduction compared to a respective turbofan design.
 - \circ Tendency for lower cruise altitudes \rightarrow increased potential for climate impact reduction.

Outlook

- Higher-fidelity wing calculation.
- Detailed Mach-number trade-off studies for the aircraft concepts.
- Feeding back results from the other HAPs into the design.

and the second and a little to the

Thank you for your attention!

Reach out to: georgi.atanasov@dlr.de

All renderings by Line Winkler (DLR)

Modelling – Design Studies

 A propeller geometry study, resulting in an 11-bladed propeller design For more details:

*Propeller Design and Analysis based on BEMT for Target Setting Purposes within the Aircraft Conceptual Design Phase" by Yannic Cabac, Georgi Atanasov

• The VTP size was determined by a responce surface generated by CASCOT. For more details:

"Leveraging CPACS-based Flight Dynamics Analysis and Simulation Capabilities to Support Multidisciplinary Aircraft Design of Novel Electric Aircraft Concepts" by Johannes Autenrieb, Daniel Kiehn, Nicolas Fezans

• The fuselage mass was calculated with a dedicated tool chain. For more details:

* Advances in Assessment of Fuselage-Mounted Liquid Hydrogen Storage in Conceptual Aircraft Design" by Philip Balack * Integration of analytical fuselage structure sizing in PANDORA" by Michael Petsch

"Conceptual Loads Estimation and Assessment of Hydrogen Aircraft Configurations" by Tobias Hecken

Backup Slide Engine Mass Breakdown

D250TF Engine Mass Breakdown

Total Engine Mass	8800
Gas Turbines	4200
Gearboxes	700
Fans (incl. inner ducts)	600
Nacelles (incl. thrust rev.)	1830
Pylons	960
Eng & Nacelle Systems	510

D250TP Engine Mass Breakdown

Total Engine Mass	7270
Gas Turbines	2720
Gearboxes	1280
Propellers	2100
Nacelles	410
Mounting Structure	340
Eng & Nacelle Systems	420

