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Introduction 

Background: 

• Seagrass meadows provide many valuable ecosystem services, such as blue carbon sequestration, natural nursery for many marine species, food source, habitat, and 

so on. For example, the fisheries support at Gran Canaria was estimated to be worth 600,000 € per year (Tuya et al., 2014, de los Santos et al., 2020).  

• Seagrasses have been highly threatened in the past century, with global habitat losses of 19.1% (Dunic et al., 2021). 

• There is a considerable lack of knowledge on the global seagrass distribution, and spatial data for seagrass habitats is unavailable in many places (Waycott et al., 

2009; Dunic et al., 2021).  

• As this information is essential for the Blue Carbon Accounting, seagrass mapping is needed. 

 

Situation: 

• Seagrasses are usually submerged, so the optical sensors are the most practical 

approach from space. 

• The recent free and high-resolution (4.77 m) Norway’s International Climate and 

Forests Initiative (NICFI) by PlanetScope has a buffer along the shorelines that includes 

shallow coastal waters. These are where seagrasses can usually be found. 

• Our multitemporal approach can be integrated with NICFI images to map seagrasses 

(Lee et al., 2022). 

 

Problem: 

• The NICFI has only four spectral bands, which is a limiting factor. 

• Owing to accessibility matters, collecting data from all islands has been challenging. 

• Classification of seagrass areas is still possible, albeit with some errors (Lee et al., 2022). 

 

Experiment hypothesis: 

• Feature generation from existing spectral bands through segmentation would improve the current classification.  
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The classification accuracies for the seagrass maps in the Seychelles  

are improved in the Central and Southern regions, 

while having mixed results for the Northern region. 

Table R1. Benchmark classification accuracy for the 

Seychellois seagrass map (without segmentation 

features) by region.  

Region North Central South 

Mean Overall 
Accuracy 

62.70% 62.70% 64.60% 

Mean Producer’s 
Accuracy for 

seagrass class 
74.40% 67.80% 63.70% 

Mean User’s 
Accuracy for 

seagrass class 
63.80% 86.30% 91.10% 

Figure R1. Resource demand in computational time (left) and product asset size (right) with varying parameters.  

Seed grid size: 5, 10, 15, 20; SNIC size: 10, 100, 1000, 10000; Reduce Connected Components: 10, 100, 1000, 10000. 

Figure R2. Overall classification accuracy with varying parameters across different regions. Greyed points are invalid.  

Seed grid size: 5, 10, 15; Compactness: 0, 0.2, 0.4, 0.6, 0.8; Reduce Connected Components: 10, 100, 1000. 

Added processing steps 

The authors would like to acknowledge the contributions of many collaborators for the ground truth and expert knowledge-annotated dataset, including the University of Seychelles, Island Conservation Society, School of 

Science & Centre for Marine Ecosystems Research (Edith Cowan University) and the Pew Charitable Trusts.  

• There were no significant trends for the seed grid, compactness and reduce 

connected components parameters (p-values > 0.05), based on their tested 

range. Nonetheless, the selection criteria could still be augmented by their 

resource demands as well as feasibility of output.  

• Seed grid should be set no lower than 10 in GEE, as the resource costs for 

the finer resolutions only introduces more noise. 

• Although costing more computing resources, reduce connectivity should be 

set no lower than 100 in GEE, as the image will be patchy.  

• Although the performance of compactness seems towards the larger values, 

there were no significant differences for all three regions. 

Table R3. Generalised Linear Regression of the parameters to the classification overall accuracy for 

the northern region. There were no significant results across all three regions. Regression trends were 

also similar between regions, except in the South where sdGrd has a slightly positive estimate.  

rCC: Reduce Connected Components, sdGrd: Seed grid size, Compact: Compactness. 

Region Coefficient Estimate 
Standard 

Error 
t value Pr (> |t|) 

(intercept) 0.826 2.597 0.318 0.756 

North  

Log10(rCC) -0.085 0.932 -0.091 0.929 

sdGrd -0.033 0.177 -0.186 0.855 

Compact 0.237 0.397 0.598 0.560 

Log10(rCC):sdGrd 0.016 0.064 0.244 0.811 

Log10(rCC):Compact -0.096 0.144 -0.668 0.516 

sdGrd:Compact -0.021 0.028 -0.757 0.462 

Log10(rCC):sdGrd:Compact 0.009 0.010 0.834 0.419 

Figure R3. F1 score for the seagrass class with varying parameters across different regions. Greyed points are invalid.  

Seed grid size: 5, 10, 15; Compactness: 0, 0.2, 0.4, 0.6, 0.8; Reduce Connected Components: 10, 100, 1000. 

Table R2. Best classification accuracy for the Seychellois 

seagrass map with the corresponding segmentation 

parameters by region.  

Region North Central South 

Best Overall 
Accuracy 

69.70% 73.40% 75.70% 

Best Producer’s 
Accuracy for 

seagrass class 
62.60% 89.20% 86.90% 

Best User’s 
Accuracy for 

seagrass class 
63.90% 77.70% 81.50% 

Seed Grid 10 15 15 

Compactness 0.6 0.6 0.8 

Reduce 
Connected 
Component 

1000 100 1000 

Figure M1. Subset maps comparing the original PlanetScope NICFi images (left) with the seagrass map from the classification without segmentation features (middle) and with segmentation 

features (right) over the three defined regions. Basemap: CartoDB Positron. 

Figure I1. Map of the Seychelles showing the three geographic regions for this study.   

Basemap: CartoDB Positron. 


