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Abstract—Monitoring maritime infrastructures is an impor-
tant part of maritime safety and security. To best assess the
security status of these facilities, detailed information should
be made available to stakeholders, such as port authorities,
law enforcement agencies and emergency services in a concise
and easily understandable format. In this work, we propose
a novel real-time 3D reconstruction framework for enhancing
maritime situational awareness. We introduce and verify a
pipeline prototype for dynamic 3D reconstruction of maritime
objects using a static observer and stereoscopic cameras on an
GPU-accelerated embedded device. Our pipeline runs with ∼6Hz
on a Nvidia Jetson Xavier AGX embedded system and is verified
using a simulated dataset of a harbor basin.

Index Terms—situtational awareness, dynamic 3D reconstruc-
tion, real time monitoring, maritime safety and security

I. INTRODUCTION

The maritime environment is home to many driving fac-
tors of modern society. Maritime transport, for example, is
a crucial element of global trading, helping to facilitate a
close interdependency between countries, manufacturers and
markets [1]. Maritime infrastructures such as harbour areas
and cargo terminals, are critical for the sucessful functioning
of the maritime transport chains. Therefore, monitoring their
security, integrity and operational safety is of key importance.
This work focuses on the improvement of optical maritime
infrastructure monitoring by detecting and reconstructing dy-
namic maritime objects for a consistent 3D display.
We present a novel system prototype that performs real-time
3D reconstruction of dynamic maritime objects in static scenes
using stereoscopic cameras on an embedded system. The use
of a GPU-accelerated embedded system is a cost-effective
solution that allows our pipeline to run in-situ at remote
locations. Our pipeline is able to generate consistent 3D point
clouds from video data in real-time, reducing the required
bandwidth for transmission and improving spatial information.
Maritime dynamic objects are targets of observation that
navigate through and interact with the maritime infrastructure.
In our work we focus on ships though our system prototype
can be readily expanded to include more categories like

cars, trucks or cargo. The term static scene describes the
non-moving, rigid-body structures and refers to the maritime
infrastructure itself. While in the domains of autonomous
driving and robotics, simultaneous localisation and mapping
(SLAM) systems that employ 3D reconstruction are the main
focus of research, our approach is fundamentally different.
A vast body of research exists for indoor, small-scale RGB-
D1 systems in the context of autonomous robotics [7] as well
as on LiDAR2 and stereoscopic outdoor 3D reconstruction for
autonomous driving [21] [8]. Due to the sensor setups for
moving observers as shown in [2] a specific motion model is
implicitly assumed. In our use case, which deals with static
camera views, no moving observer is present which limits
the use of these existing works. While LiDAR technology
is also researched in great detail, the lasers struggle with
water surfaces as shown in [3] leading to distortions and the
necessity of extensive filtering.
This work therefore presents a novel framework for enhanc-
ing maritime situational awareness by introducing a pipeline
prototype for dynamic 3D reconstruction of maritime objects
using a static observer and stereoscopic cameras on an GPU-
accelerated embedded device. As a proof of concept, the
pipeline presented in this work was tested and verified using
a 3D simulation in a virtual, geo-referenced environment for
a single dynamic object only.

II. RELATED WORK

Dynamic 3D reconstruction can be split into different sub-
problems with their respective research bodies associated with
them. Therefore, this section will focus on complete, state-of-
the-art 3D reconstruction systems only.
[4] proposed a complete system that can be considered a basis
of real-time 3D reconstruction. Their KinectFusion system can
perform stereo-based 3D reconstruction in static environments
using RGB-D cameras in real-time (∼2Hz). [5] proposes im-
provements to this work through the incorporation of auxiliary

1RGB-D: RGB camera with short-range, active depth sensors
2LiDAR: Light detection and ranging
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data like multiple objects and color data. A core aspect of [4]
is the use of truncated signed distance fields (TSDF) and a
volumetric grid to fuse depth information into a consistent,
implicit representation. Since TSDFs can be generated through
projective data assocation [6], they can be efficiently computed
in parallel and are suitable for a GPU device.
[7] adopted the framework by [4] and proposed a large-scale
SLAM system in the context of robotics. They improved on
the computational performance of object tracking, allowing for
faster motions and shorter update increments. Moreover, their
system added a streaming approach to support larger environ-
ments and higher spatial resolution. A major contribution is
the development of a highly efficient variant of the iterative-
closest point algorithm (ICP) for GPU devices that allows real-
time tracking of point clouds. This work, however, performs
static 3D reconstruction using handheld RGB-D cameras as a
means to generate 3D static maps of indoor areas. Since RGB-
D cameras employ active illuminators in the near infrared
spectrum for increased depth resolution, they can not be used
in outdoor environments with strong infrared lighting.
Therefore, a different system is required to infer good depth
estimates. This was addressed by [8] who proposed a com-
plete stereo-based hybrid real-time 3D reconstruction system.
Developed in the context of autonomous driving, their system
achieves 5Hz on desktop hardware. The system can perform
3D reconstruction of static environments and dynamic objects.
Still, the system does not use embedded systems and aims to
generate a 3D static map. Also, it assumes a moving observer
(camera) that is positioned at a fixed height in the direction of
travel. This assumption simplifies the motion model because
the ego-motion of the camera is smooth and always relative
to the heading of the car (limiting the degrees of freedom).
Also, the system only works in close range where the depth
error is limited, approaching and passing objects of interest
throughout the test sequences to smooth out noise. The work
also addresses the concept of noise filtering (voxel garbage
collection) in the output of the voxel volume based on [9]. This
is an important factor to consider when using reconstructed
data for display.
Regarding the segmentation of dynamic agents, [10] evaluated
several techniques for tracking and masking. While not being a
direct 3D reconstruction system, their work outlines instance-
aware object tracking by using 3D reconstructed data as input.
While the system performs online, it is non-real-time, again
with a focus on desktop hardware. The proposed system
can identify several classes of objects but is also tested and
verified in the context of autonomous driving. Thus the same
restrictions as in [8] apply. Nevertheless, results have low error
showing how 3D reconstruction can help leveraging object
tracking. While the technique for depth estimation is based
on SfM (structure-from-motion), the basic principle can be
readily transferred to other algorithms.
A full dynamic 3D reconstruction system using instance-aware
tracking was presented by [11]. They propose a hybrid 3D
reconstruction system that, similarly to Barsan et al. [8], can
work with static environments and dynamic agents. Their main

Fig. 1. A comparison between the real harbor basin (left) and the digital re-
creation (right). Notable are the accuracy of reflections on the water surface,
materials and general perspective.

contribution is the inclusion of several TSDF volumes for
different dynamics agents and the static environment. Instance
segmentation to isolate dynamic objects is performed using
the well-known Mask R-CNN3 network. Their probabilistic
framework allows for detailed integration results for small-
scale indoor environments. However, performance on a desk-
top GPU and a high-end CPU is limited to 4-9Hz showing
the high performance demand. The largest performance drop
stems from the use of Mask R-CNN.
Our pipeline was developed as a modular multi-stage system
like [8], theoretically supporting multi-object reconstruction
similar to [5] and [11] with a unique volume per object. Instead
of using deep learning for instance segmentation as [10] and
[11], we use a simple approximation based on motion to allow
our pipeline to run at a higher framerate on the embedded
systems. Since a clean display is important for our use case,
the noise reduction techniques presented by [8] and [9] are
extended, implemented and verified in our presented pipeline.

III. DATASET CREATION

To validate our pipeline we created a virtual dataset in the
open-source 3D software Blender3D [12]. Since we wanted
to have ground-truth references for all pipeline stages, we
digitally re-created a physical harbor basin to scale including
physically-based materials and rendering. Figure 1 shows a
comparison between the real harbor basin with different boats
in frame and the digital copy with the tugboat. Depth is
between ∼25m and ∼60m, motivated by typical observation
scenarios at port basins and locks. To verify our dynamic 3D
reconstruction system, we used a virtual re-creation of a real
tugboat to scale (∼35m length). The sequence is 25s long (624
frames). It was created as a stereoscopic dataset with a distance
of four meters between cameras. Besides stereoscopic frames,
the dataset contains ground-truth values for every pipeline
stage including 3D shape, object transformation, camera geo-
reference (UTM projection), depth information (1cm resolu-
tion), mask information and a bounding box.

IV. DYNAMIC EMBEDDED 3D RECONSTRUCTION

Real-time dynamic 3D reconstruction is performed on a
GPU-accelerated embedded device, the Nvidia Jetson Xavier

3Region-based convolutional neural network
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Fig. 2. A schematic view of the reconstruction pipeline with ground-truth
examples for each stage. Images are captured by a stereoscopic camera. The
object is detected on the left frame using deep learning. Following that, image
segmentation is performed and combined with the bounding box to produce
a mask of the detected dynamic object. Next, object depth is estimated with
respect to the left frame. The resulting depth data is masked using the binary
mask and fed to object tracking, resulting in a transformation matrix. Finally,
the left input frame, depth and transformation data are fused into a volume
to generate a 3D point cloud for situational awareness display.

AGX. Processing is done by a pipeline comprised of several
successive stages. All computations are done on a per-frame
basis with exception of the last stage, which is point cloud
extraction. This is only done on demand when a new rep-
resentation is requested. Figure 2 shows an overview of the
processing pipeline, from left to right:

1) Stereoscopic camera frames are pre-processed to prepare
a pipeline run. This includes scaling, color channel
conversion as well as uploading the frames to the GPU
device. The stereo frames are uploaded once, with all
major processing done on the GPU.

2) Object detection is performed using a CNN on the left
stereo frame to generate a 2D bounding box.

3) Dense optical flow vectors are computed for the left
frame, converted to a binary mask and multiplied by
the 2D bounding box to segment the left frame.

4) A dense depth map is created from stereo image pairs
and multiplied with the previously calculated binary
mask to filter out unwanted background information.

5) Using the masked depth map, object tracking is per-
formed to estimate the visual odometry (i.e. the motion
estimation) of the dynamic object.

6) Tracking information, depth map and left color frame
are fused into a consistent volumetric representation.

7) Output of the pipeline is a filtered 3D point cloud with
adaptive voxel garbage collection.

Each stage will be briefly described in the following sections
to provide an overview of the algorithms and techniques
involved. The pre-processing stage uses common computer
vision techniques and is therefore not discussed.

A. Object detection

In order to extract the position of a maritime object a
robust and near real-time object detector is needed. The object
detector used in this work must provide the bounding box of a

Fig. 3. Object detection examples. a) shows the four samples of the additional
rendered dataset for object detection training. b) shows an example of tugboat
detection using YOLOv5 [13] on one of the left images of the virtual stereo
dataset. The detection is represented by the green bounding box and the
number represents the detection confidence.

ship with minimum possible inference time. Object detection
is always performed on the left stereo image. For this work
the YOLOv5 method is selected [13]. It is a state-of-the-
art algorithm for real-time object detection trained on the
MS COCO dataset [14] that can perform efficiently on an
embedded system. The algorithm was deployed on embedded
device using the Pytorch framework [15]. For a robust ship
detection model, we rendered an additional training set of
114 images of a tugboat in different sizes and perspectives.
In Figure 3 some samples of the additional training set and an
example of the tugboat detection on our virtual stereo dataset
(see III) are shown. If no object was detected during this stage,
the pipeline starts over again.

B. Image segmentation

Given a valid object detection, this stage continues to
compute the dense (meaning, pixel-wise) optical flow vectors
of the current and previous left stereo frames. Optical flow is
the amount of displacement between two frames and can be
used to describe motion of the 2D image plane. To make the
computation of a dense flow map possible in real-time, this
stage uses specialized video-encoding hardware integrated into
the embedded device. More specifically, this is a hardware-
implementation of the pyramidal Lucas-Kanade optical flow
[16]. The Lucas-Kanade method works by minimizing the
differences in image intensity over a local neighborhood using
least-squares. The result is a pixel displacement vector that
relates two points between the frames. The flow magnitude
is then computed to create a binary image based on a fixed
threshold. This is then constrained to the detected bounding
box, yielding an instance mask.

C. Depth estimation

Since the previous step can be offloaded to specialized
hardware, the depth estimation stage can run in parallel to
the image segmentation. Inference of depth from two stereo
frames is key for 3D reconstruction as it allows re-projection
of image points into a 3D point cloud. While several geometric
techniques exist to compute depth from 2D features, this work
uses semi-global matching (SGM) [17] to compute a dense
depth map for every pixel. The method finds the disparity for
every point between two stereo frames by minimizing both
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a local matching term and a wider (hence the name, semi-
global) regularization term. Disparity is the horizontal distance
between two pixels and can be converted to depth using the
physical distance between two cameras and the focal lengths
respectively. SGM is linear-independent for every pixel and
can be efficiently computed on the GPU in parallel. Since
the depth error grows quadratically with this method and the
disparity is related to the image resolution, only a limited field
of view is supported. This work currently aims at harbor basins
and water locks where a physical range from ∼25 to ∼65
meters is typical.

D. Object tracking

In order to integrate several views (frames) into a consistent
display, we need to track the object’s motion. The centroid of
the first detected position is assumed to be origin of a local ob-
ject coordinate system. All subsequent motion of the detected
object is relative to that point. Since the integration requires
the voxel volume to be aligned with the object’s position, we
perform pose estimation for six degrees of freedom using the
iterative-closest point (ICP) algorithm [18]. By masking out
all static depth information, we can treat the dynamic object
as static and perform camera tracking. The camera motion can
be expressed as a matrix. The inverse of that matrix keeps the
camera fixed and thus describes the objects motion (so called
ego-motion). We use the metric summarized by [19] combined
with parallel ICP implementations presented by [6] and [4].
However, we use a optimized implementation presented by [7]
that takes advantage of partial matrix multiplications available
on the GPU device. As proposed by [4], we use a frame-to-
model approach using ray-casting to improve the robustness
of the system. Furthermore, we propose a novel constraint to
the tracking system. We re-project the centroid of a masked
depth map into the camera frame to constraint object motion.
By limiting the difference to the distance between the current
and previous observed centroids, we avoid sudden failure of
the tracking system.

E. Volumetric integration

Estimated depth, object tracking information and the left
camera color frame are then fused into a consistent volumet-
ric display using projective truncated signed distance fields
(TSDF). For this we developed our own implementation of
[4], adapted to our target system. The approach is well suited
for the reconstruction of dynamic objects as shown in [5],
[11]. For better color display, we included a projection-based
filter and constrained the truncation distance to a narrower
band around the iso-surface to avoid mismatches due to the
overall scale of maritime environments. An important detail is
the use of an adaptive weighting scheme. Each time a voxel is
successfully updated, its weight value is increased by one. At
the same time, a global weight counter is increased every time
a volume integration happens. These two values are used in
the next stage for filtering. And finally, we currently limit the
maximum resolution to 12 cm for depth error compensation.

F. Point cloud generation

To provide a suitable model for display in a situational
awareness map, we extract and filter the voxel volume to gain
a dense point cloud. This step happens only on-demand and
not every frame. Besides 3D positions, the point cloud also
stores color and normal information as well as the distance
to the estimated iso-surface (given by the TSDF value). Our
novel multi-stage filtering performs voxel garbage collection
similar to [9] and [8] but improving on the speed and overall
methods of filtering. First, we propagate through the voxel
volume to fill a label buffer with binary values by filtering
each TSDF value. First, we apply a band-pass filter to extract
only a narrow area around the iso surface. Then we reject all
points if their integration weight is below a certain percentage
of the global weight counter. Lastly, a comb filter is used to
filter out points based on their hue spectrum. Since water has
a very distinct hue range, we found that ships have a good
contrast to allow filtering. We reduce the voxel volume using
the pre-filtered label buffer in parallel on the GPU to yield
valid points.

V. RESULTS

Using the simulated dataset, we verified our pipeline. The
overall runtime of our pipeline is ∼ 161.95ms (∼6.2Hz). Our
dynamic 3D reconstruction system was tested on a Nvidia
Jetson Xavier AGX embedded device with GPU-acceleration.
For every stage, we generated the respective ground-truth data
and compared it to the estimated outputs. In the following
sections we discuss the results of each stage.

A. Object detection

For this stage, we selected the lightest configuration of
YOLOv5, named YOLOv5-Nano. It is a good compromise
between memory footprint, inference time and precision. We
start training with pre-trained weights on the MS COCO
dataset [14] and extend the training for 50 more epochs
with batch size eight with our additional rendered dataset
containing multiple views of the tugboat. The image input
size is 640× 640px. This configuration allows for an efficient
inference within the embedded system. We obtain an average
precision (AP) of 0.907 and average inference time on the
Jetson AGX Xavier of 74.436 ms per frame.

B. Image segmentation

Instance segmentation runs on average in 29.54ms including
optical flow estimation and mask creation. The AP is 0.68
showing a good overall match with the ground-truth mask.
Figure 5 shows the optical flow vectors and the binary mask
(from left). While performance and precision are good, the
major disadvantage of this technique is currently the necessity
of object motion.

C. Depth estimation

To support medium-scale environments, we chose a baseline
of 4m and a maximum disparity of 256 pixels. The mean
absolute error (MAE) is ∼ 0.3022m with estimation taking
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Fig. 4. Left: Left frame taken from the stereo dataset, input for our pipeline. Right: 3D reconstructed tugboat using our presented pipeline prototype for
dynamic 3D reconstruction on an embedded system. A volume dimension of 5123 with a voxel reoslution of 0.1m was used.

Fig. 5. Different outputs from successive pipeline stages. From left to right:
Optical flow vectors (color encoded with flow as saturation and direction as
hue), binary instance mask, estimated disparity, physical depth map with mask
applied.

24.54ms on average. Figure 5 show estimated disparity (in
blue) and the masked depth (far right) with details in bow
and bridge being clearly distinguishable. Considering ∼ 40m
depth of the test scene, this is only 0.75% which is low. The
results are scene-dependent. Therefore, camera baseline and
maximum disparity of the stereo setup must be optimized for
optimal overall performance without sacrificing quality.

D. Object tracking

Since the object tracking stage uses ray-casting to fit the
current depth map to the already integrated model we provide
two timings. The ICP method itself runs in ∼ 2.66ms and the
ray-casting takes ∼ 27.67ms. While the addition of raycasting
significantly increases the processing time, it also stabilizes the
integration stage. The overall translational error of the object
tracking stage is ∼ 8.64m and the rotational errors for all three
Euler angles α, β, γ for axis XY Z are α = 3.85, β = 5.31,
and γ = 1.95 degrees, respectively. Although the error is high
compared to areas like autonomous robotics the scale here is
also larger. With a maximum scene depth of ∼ 65m, the error
corresponds to 13.3%. For geo-referencing and tracking the
object this provides an acceptable error. Also, since we are
more interested in a complete reconstruction than a precise
localisation, we can neglect drifting.

E. Volumetric integration

Table I shows a comparison between different voxel reso-
lutions for the integration stage. For comparison we run the

TABLE I
RESULTS FOR VOLUMETRIC INTEGRATION STAGE

Voxel Volume Memory Time

resolution (m) dim. usage (MB) (ms)

0.4 1283 25.2 1.01

0.2 2563 201.3 1.02

0.1 5123 1610.6 1.05

pipeline with ground-truth inputs from the dataset to generate
an optimal result for every resolution. Despite all voxel resolu-
tions requiring almost equal update time, their memory usage
differs significantly. This is an important consideration on an
embedded system. The timing similarities can be explained by
memory transfers and pipeline stalling in the GPU. For single-
object 3D reconstruction a volume of 5123 is feasible for
real-time processing with improved accuracy and details. For
multiple objects a resolution of 0.2m and a volume dimension
of 2563 yield a good compromise between speed, details and
memory consumption. While a volume dimension of 10243

was tested, it caused the system to run out of memory.

F. Point cloud generation

Figure 4 shows the output of the pipeline in comparison to
a frame from the dataset. While certain details are occluded by
noise, the overall shape, color and geometry is present. Even
finer details like the stairs on the back of the bridge are seen
in the reconstruction. Figure 6 shows a visual comparison of
the unfiltered pipeline output (a) and with filtering applied (b).
The voxel garbage collection efficiently removes outlier noise
while improving the overall shape with only high-confidence
points being kept. Also, the density and file size of the
point cloud was reduced from 2, 538, 535 points (337MB un-
compressed) to 516, 464 points (68MB uncompressed). Thus,
the garbage removal yields a ∼ 4.9 reduction factor while
improving readability.

VI. CONCLUSION

This work presents a novel framework to generate 3D mod-
els from stationary camera systems for improving monitoring
in maritime infrastructures and for integration into situational
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Fig. 6. a) The 3D reconstructed model with a volume dimension of 5123

and a voxel resolution of 0.2m. Voxel garbage collection is disabled. Ghosting
artifacts and projection noise are clearly visible. b) All parameters are identical
to a) but voxel garbage collection is enabled. The confidence threshold for
inliers was set to 10%, meaning only samples with a higher integration weight
are taken into account. Clearly visible is the removal of outlier noise and the
well-defined silhouette.

awareness systems. We describe and evaluate a dynamic 3D
reconstruction pipeline prototype that delivers valid results
for single maritime object detection and reconstruction. The
system runs in near real-time with ∼ 7Hz on an GPU-
accelerated embedded device. The system output is ready for
import into a high-resolution 3D static map to enhance static
situational awareness displays with consistent dynamic 3D
objects. Our approach reduces the need for context-switching
between multiple video feeds and object displays. It aims to
create a more unified approach to situational awareness.

VII. FUTURE WORK

While the overall pipeline provides valid results, the pose
prediction and instance segmentation require the object to be
in motion. As a next step we want to refine these stages to
support also semi-static objects that only move sporadically.
The tasks of object detection, instance segmentation and pose
estimation can be trained using a single back-end, as shown
by [20]. Therefore, we aim to create a unified stage that
outputs bounding box, mask and pose in a single step without
sacrificing the real-time constraint. Furthermore, we plan to
refine the depth error by the use of statistical shape priors
[21] and probabilistic fusion techniques [11] to support larger
scene depths. Lastly, we aim to provide an automatic pipeline
that integrates the reconstructed object into the high-resolution
3D static map.
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