
Citation: Baungarten-Leon, E.I.;

Martín-del-Campo-Becerra, G.D.;

Ortega-Cisneros, S.; Schlemon, M.;

Rivera, J.; Reigber, A. Towards

On-Board SAR Processing with

FPGA Accelerators and a PCIe

Interface. Electronics 2023, 12, 2558.

https://doi.org/10.3390/

electronics12122558

Academic Editors: Dariusz Kania,

Alexander Barkalov, Remigiusz

Wiśniewski and Larysa Titarenko

Received: 20 April 2023

Revised: 22 May 2023

Accepted: 23 May 2023

Published: 6 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Towards On-Board SAR Processing with FPGA Accelerators
and a PCIe Interface
Emilio Isaac Baungarten-Leon 1 , Gustavo Daniel Martín-del-Campo-Becerra 2 , Susana Ortega-Cisneros 1,* ,
Maron Schlemon 2, Jorge Rivera 1 and Andreas Reigber 2

1 Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute (IPN),
Guadalajara 45019, Mexico; emilio.baungarten@cinvestav.mx (E.I.B.-L.); jorge.rivera@cinvestav.mx (J.R.)

2 Microwaves and Radar Institute (HR), German Aerospace Center (DLR), 82234 Weßling, Germany;
gustavo.martindelcampobecerra@dlr.de (G.D.M.-d.-C.-B.); maron.schlemon@dlr.de (M.S.);
andreas.reigber@dlr.de (A.R.)

* Correspondence: susana.ortega@cinvestav.mx; Tel.: +52-33-3777-3600

Abstract: This article addresses a novel methodology for the utilization of Field Programmable
Gate Array (FPGA) accelerators in on-board Synthetic Aperture Radar (SAR) processing routines.
The methodology consists of using High-Level Synthesis (HLS) to create Intellectual property (IP)
blocks and using the Reusable Integration Framework for FPGA Accelerators (RIFFA) to develop a
Peripheral Component Interconnect express (PCIe) interface between the Central Processing Unit
(CPU) and the FPGA, attaining transfer rates up to 15.7 GB/s. HLS and RIFFA reduce development
time (between fivefold and tenfold) by using high-level programming languages (e.g., C/C++);
moreover, HLS provides optimizations like pipeline, cyclic partition, and unroll. The proposed
schematic also has the advantage of being highly flexible and scalable since the IPs can be exchanged
to perform different processing routines, and since RIFFA allows employing up to five FPGAs,
multiple IPs can be implemented in each FPGA. Since Fast Fourier Transform (FFT) is one of the
main functions in SAR processing, we present a FPGA accelerator in charge of the reordering stage
of VEC-FFT (an optimized version of FFT) as a proof of concept. Results are retrieved in reversed
bit order, and the conventional reordering function may consume more than half of the total clock
cycles. Next, to demonstrate flexibility, an IP for matrix transposition is implemented, another
computationally expensive process in SAR due to memory access.

Keywords: Field Programmable Gate Array (FPGA); High-Level Synthesis (HLS); Peripheral Com-
ponent Interconnect express (PCIe); Reusable Integration Framework for FPGA Accelerators (RIFFA);
Synthetic Aperture Radar (SAR)

1. Introduction

Synthetic Aperture Radar (SAR) systems have been extensively used for Earth remote
sensing. They provide high-resolution, light- and weather-independent reconstructions
for various applications, including climate and environmental change research and Earth
system monitoring [1]. Similar to conventional radar, electromagnetic waves (in the form of
a series of short pulses) are transmitted from a spaceborne or airborne platform, backscat-
tered, and finally collected by the receiving antennas. The combination of the echo signals,
received over a period of time, allows for the construction of a virtual aperture much longer
than the physical antenna length [2].

SAR systems produce large amounts of raw data, which needs to be processed for im-
age reconstruction. Due to limited on-board processing capacities (e.g., power, size, weight,
cooling, communication bandwidth, etc.) on SAR platforms, the raw data is commonly
sent to the ground station for processing. Nevertheless, since the volume of raw data and
computational load of modern SAR systems have been increasing meaningfully, down-
linking the large data throughput has become a major bottleneck. For instance, to attain a

Electronics 2023, 12, 2558. https://doi.org/10.3390/electronics12122558 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122558
https://doi.org/10.3390/electronics12122558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6243-219X
https://orcid.org/0000-0003-1642-6068
https://orcid.org/0000-0001-6646-1529
https://orcid.org/0000-0003-0978-2224
https://orcid.org/0000-0002-2118-5046
https://doi.org/10.3390/electronics12122558
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122558?type=check_update&version=1

Electronics 2023, 12, 2558 2 of 28

0.5 m × 0.5 m resolution, the F-SAR system from the German Aerospace Center (DLR) [3]
acquires SAR raw data with approximately 285,000 × 32,768 (azimuth/range) samples per
channel. Assuming the complex64 (8-byte) format, each channel results in approximately
70 GB of raw data. With three channels for Maritime Moving Target Indication (MMTI),
approximately 210 GB are processed. Seeking to ease this problem, the generation of on-
board imagery has been conducted; however, constraints on computational performance,
data size, and transfer speeds must be tackled.

Previous related studies have approached the issue in different ways. The work pre-
sented in [4] addresses real-time on-board SAR imaging by means of a Field Programmable
Gate Array (FPGA) together with a Digital Signal Processor (DSP). The application re-
quirements include an optimal balance between processing delay, throughput, appropriate
data format, and circuit scale. The DSP is used to implement auxiliary functions, while
the FPGA is employed to implement the main processing flow of the Chirp Scaling (CS)
algorithm [5,6], which makes use of the Fast Fourier Transform (FFT)/Inverse FFT (IFFT).
Pipeline optimization is applied to the FFT to improve processing efficiency. Long develop-
ment times, however, are emphasized as one of the main challenges.

The work addressed in [7] presents a heterogeneous array architecture for SAR
imaging. An Application Specific Instruction Set Processor (ASIP) is utilized, attaining
Giga operations per second. The research seeks to comply with the desired power con-
sumption and lists the main advantages and disadvantages of the technology against
other technologies.

i. Central Processing Units (CPUs) are flexible and portable; however, their power
efficiency is quite low, a bottleneck for real-time SAR applications.

ii. Graphics Processing Units (GPUs) provide powerful parallel computation and
programmability. However, the average power consumption (up to 150 W) limits
the application of GPUs for on-board processing.

iii. A multi-DSP architecture allows for the performance of many complex theories and
algorithms on hardware. Nevertheless, it entails low power efficiency.

iv. FPGAs possess rich on-chip memory; moreover, computational resources are con-
figurable to meet SAR signal processing requirements, e.g., high throughput rate,
desired operations per second, and power consumption. However, the development
cycle of FPGAs is relatively long.

The work in [8] addresses real-time SAR imaging systems and focuses on the data
format. Specifically, after assessing the advantages offered by fixed-point data processing,
the authors propose a solution based on the utilization of a System-on-Programmable-Chip
(SoPC), implemented in a Zynq+NetFPGA platform. The use of SoPC is due to high-
performance embedded computing. System C is employed to develop the Register Transfer
Level (RTL) code.

Concerning spatial-grade devices, [9] presents a comparison between different spatial-
grade CPUs, DSPs, and FPGAs. The research demonstrates and quantifies how emerging
space-grade processors are continually increasing the capabilities of space missions by
supporting high levels of parallelism in terms of computational units. The considered
processors include multicore and many-core CPUs (HXRHPPC, BAE Systems RAD750,
Cobham GR712RC, Cobham GR740, BAE Systems RAD5545, and Boeing Maestro), DSPs
(Ramon Chips RC64 and BAE Systems RADSPEED), and FPGA architectures (Xilinx Virtex-
5QV FX130 and Microsemi RTG4). GPUs are excluded since there are no space-grade
GPUs. In terms of integer Computational Density (CD) and CD/W, the best results are
attained by RC64, Virtex-5QV, and RTG4. In terms of Internal Memory Bandwidth, the
best results are achieved by the RC64 and the Virtex-5QV. In terms of External Memory
Bandwidth, the best results are attained by the RAD5545 and the Virtex-5QV. Lastly, in
terms of Input/Output Bandwidth, best results are achieved by RAD5545, Virtex-5QV,
and RTG4.

The research in [10] explores the utilization of Qualcomm’s Snapdragon System on
a Chip (SoC) technology in space missions. Specifically, it focuses on the successful de-

Electronics 2023, 12, 2558 3 of 28

ployment of the Snapdragon 801 SoC in the Ingenuity Helicopter on Mars and the use
of Snapdragon 855 development boards in the International Space Station. The study
compares different GPUs such as Nvidia Jetson Nano, Nvidia TX2, Nvidia GTX 560M,
and Nvidia GTX 580; it also highlights that GPUs are not commonly used for space com-
puting. The study refers to traditional FPGA implementations with the VIRTEX-5 SX50T
FPGA as a benchmark. Interestingly, the research demonstrates that, in certain scenarios,
the software implementation on the Snapdragon SoC outperforms the traditional FPGA
implementations. This finding emphasizes the computational power and efficiency offered
by Snapdragon technology in the context of space-related applications. However, it should
be noted that the FPGA VIRTEX-5 SX50T uses 65 nm technology, while the Snapdragon
855 uses 7 nm technology.

Multiple implementations for on-board SAR processing with small and low-power
GPU devices have been realized. In [11], the paper demonstrates the successful imple-
mentation of SAR processing algorithms on the Jetson TX1 platform. The optimized
implementation takes advantage of the GPU’s parallel processing capabilities, resulting
in improved performance compared to CPU-based approaches. This highlights the po-
tential of the Jetson TX1 platform for accelerating SAR processing tasks in a compact and
energy-efficient manner. In [12], the research presents a small UAV-based SAR system
that utilizes low-cost radar, position, and attitude sensors while incorporating on-board
imaging capability. The system demonstrates the feasibility of cost-effective SAR imaging
using a Nvidia Jetson Nano as the host computer of the drone. The choice of a powerful and
energy-efficient platform for data processing and control enhances the system’s capabilities.
Leveraging the Jetson Nano’s GPU capabilities and parallel processing power, the system
can perform real-time processing, sensor integration, and image reconstruction tasks.

In both cases [11,12], the amount of processed information differs from the previous
example of the three-channel MMTI system. Although [11] does not specify the image
dimensions, it mentions a data weight of 172 MB; on the other hand, although [12] does not
specify the data weight, it mentions the image dimensions (120 m× 100 m with a resolution
of 0.25 m). As a point of comparison, Ref. [13] presents image dimensions similar to the
MMTI example; the article tackles on-board SAR processing using SIMD instructions with
an Intel® Core™ i7-3610QE (by Intel Corporation in Santa Clara, CA, USA) processor. The
image dimensions are 7.5 km by 2.5 km with a resolution of 0.5 m. Note the large difference
between the data weight in [11] (172 MB) and in the MMTI example (210 GB), as well as
the image size, 120 m × 100 m in [12] in contrast to 7.5 km × 2.5 km.

In general, FPGA-based accelerators provide problem-specific processing solutions
that are highly parallelized and reliable. Moreover, there is a wide variety of devices to select
from, according to the application requirements. Nonetheless, as discussed previously,
there are some concerns regarding the implementation, including a long development time
and a low Data Transfer Rate (DTR). However, these issues can be solved effectively by
making use of tools like High-Level Synthesis (HLS) [14], employed to reduce development
time between fivefold and tenfold [15,16], and Reusable Integration Framework for FPGA
Accelerators (RIFFA) [17], utilized to develop a Peripheral Component Interconnect express
(PCIe) interface. On the one hand, HLS allows describing Hardware (HW) via high-level
programming languages (e.g., C/C++, System C, or OpenCL). Additionally, HLS permits
applying optimizations like pipeline, cyclic partition, and unroll. On the other hand, RIFFA
provides a framework that works directly with the PCIe endpoint, achieving high data
transfer speeds (up to 15.7 GB/s for PCIe 3.0 with 16 lanes). RIFFA runs on Windows and
Linux with the programming languages C, C++, Python, MATLAB, and Java [17].

Correspondingly, this article addresses a novel methodology for the utilization of
FPGA accelerators in on-board SAR processing routines. The methodology consists of
using HLS to create Intellectual Property (IP) blocks and using RIFFA to develop a PCIe
interface between the CPU and the FPGA. The proposed schematic has the advantage
of being highly flexible and scalable since the IPs can be exchanged to perform different

Electronics 2023, 12, 2558 4 of 28

processing routines and since RIFFA allows employing up to five FPGAs while multiple
IPs can be implemented in each FPGA.

The suggested methodology, for example, is suitable for the project described in [4], as
each stage of the CS algorithm can be implemented as an IP. Making use of HLS would
reduce development time significantly, whereas different optimizations (e.g., pipeline,
cyclic partition, or unroll) could be applied to meet application requirements. In con-
trast to [7], an FPGA implementation has greater flexibility than an ASIP, as it is not
limited by an instruction set. Similar to [8], the proposed methodology allows perform-
ing the same algorithm for different input/output data formats; the main difference is
that our methodology provides further optimization capabilities and PCIe infrastruc-
ture. Finally, [9] addresses space-grade FPGA systems (i.e., Virtex-5QV and RTG4) that
are configurable with the proposed methodology and are able to process large data
throughput efficiently.

As proof of concept, we present a FPGA accelerator in charge of the reordering stage
of VEC-FFT [18], a software-optimized version of the FFT. Among the most frequently
employed SAR focusing techniques, we can find the range-doppler algorithm [19,20],
CS [8,9], and Omega-K (ω-k) [21–23], along with their extended versions. Common to all
these methods is the use of the FFT, which has a high computational cost as it involves many
additions, subtractions, and multiplications. Consequently, optimizing the FFT enhances
the performance of such SAR focusing techniques.

VEC-FFT is based on Radix-4 [24] and executed using Single Instruction Multiple
Data (SIMD) [25], achieving high efficiency due to parallel data processing. However,
after the FFT is computed, results are retrieved in reversed bit order, meaning that data
reordering is required as a further step. VEC-FFT shows better performance in contrast
to the Fastest Fourier Transform in the West (FFTW) Scalar [18], a popular C++ FFT
library. Furthermore, when the reordering stage is not performed, VEC-FFT results are
faster than FFTW SIMD [18]. For example, without data reordering, VEC-FFT solves a
16,384-point FFT utilizing only 91,601 clock cycles, whereas FFTW Scalar and FFTW SIMD
entail 452,253 and 106,601 clock cycles, respectively. Nevertheless, VEC-FFT requires
142,460 additional clock cycles to compute the reordering post-processing step, for a total
of 234,061 clock cycles. Note that the data reordering function consumes more than half of
the total clock cycles.

A HW implementation of the VEC-FFT reordering function using the proposed
methodology significantly reduces the number of required clock cycles. By instance, from
142,460 to 44,569, for the example above mentioned. Moreover, the IP can be instantiated
multiple times, performing more than one reordering function at a time.

Next, to demonstrate flexibility, the VEC-FFT reordering IP is replaced by an IP
for matrix transposition, another computationally expensive process due to memory la-
tency. The matrix transpose is implemented for squared matrices with dimensions of
32 × 32, 64 × 64, and 128 × 128. The addressed CPU implementation utilizes 10,424,
38,505, and 210,928 clock cycles, respectively; conversely, the HW implementation, us-
ing the proposed methodology, reduces the number of clock cycles to 1041, 4113, and
16,401, correspondingly.

Finally, the main contributions of this work are summarized as follows:

i. A novel methodology for the utilization of FPGA accelerators in on-board SAR
processing routines.

a. Improvement of development time by making use of HLS and RIFFA, which
allow working with high-level programming languages (e.g., C/C++).

b. Use of the optimizations offered by HLS (e.g., pipeline, cyclic partition, and
unroll) to meet application requirements.

c. High flexibility. The schematic has the advantage of being modular, as the
IPs can be exchanged to perform different processing routines.

d. Increased DTR (up to 15.7 GB/s) via a PCIe interface developed with RIFFA.

Electronics 2023, 12, 2558 5 of 28

e. High scalability. RIFFA permits using up to five FPGAs, while multiple IPs
can be implemented in each FPGA.

ii. Proof of concept through the implementation of two FPGA accelerators.

a. Reordering stage of VEC-FFT [18].
b. Matrix transpose; aimed at demonstrating flexibility in the utilization of

different IPs.

The remainder of the article is organized as follows: Section 2 reviews HLS and RIFFA;
Section 3 explains the integration of RIFFA with the HLS Ips; Section 4 addresses the HLS
IP for the reordering stage of VEC-FFT and the HLS IP for matrix transposition; Section 5
assesses the performance of the FPGA against the CPU; Section 6 presents the discussion;
and finally, Section 7 concludes this work.

2. Development Tools
2.1. High-Level Synthesis (HLS)

Generally, HW description languages (HDLs) like Verilog and Very High-Speed Inte-
grated Circuit HDL (VHDL) involve long development times since they work at a low level
of abstraction. Conversely, HLS offers a simpler and faster solution for HW description as
it consists of an automated process. It creates a synthesizable Register Transfer Level (RTL)
from an algorithm written with a high-level language (i.e., C/C++, System C, or OpenCL),
whose design can be placed and routed in an FPGA.

IP blocks created with HLS are commonly less efficient than those created with HDLs
since HLS makes use of state machines [14–16]. Utilizing a state machine means having
a sequence of steps, which may result in suboptimal parallelization. In addition, HLS is
only recommended when dynamic memory and recursive functions are not necessary. The
code of a function is to be translated into logic cells (synthesis); therefore, the number of
function calls within a recursive function must be known a priori.

The main reason for choosing HLS over HDLs is to improve productivity and reduce
development time concerns, as HLS provides correct-by-construction features. Furthermore,
for the purposes of this work, HLS implementations are sufficiently fast and efficient. We
refer to the software (SW), Vivado Design Suite [26], and Vivado HLS [27], associated
with the ZC706 development board [28]. The workflow depicted in Figure 1 shows the
methodology followed for the implementation and validation of a SoC via HLS, resulting
in the creation of an IP block.

First, the problem definition and its main limitations are set. Next, HW description is
performed by means of the SW Vivado HLS as a translation of high-level programming
languages. The next three stages consist of validating whether the system is synthesiz-
able and the functions are logically correct. Synthesis means translating C/C++, System
C, or OpenCL code into HDL code, such as Verilog or VHDL. If the previous valida-
tion passes, the RTL is wrapped as an IP and exported to the SW Vivado Design Suite
for synthesis and further analysis. The resultant IP is treated like any other module
developed in HDL. Subsequently, HW integration is performed, and additional func-
tional tests are performed with the physical system. If the system fails, then debugging
is performed; if the system works correctly, then its functioning is documented in de-
tail. The workflow in Figure 1 has two validation points, depicted via red rhombuses.
Part of the validation consists of comparing the results retrieved by the IP with a gold
bench variable.

Electronics 2023, 12, 2558 6 of 28Electronics 2023, 12, x FOR PEER REVIEW 6 of 26

Figure 1. Methodology was followed for the implementation and validation of a SoC via HLS,
resulting in the creation of an IP block.

2.2. HLS Optimizations
The HW description process performed by HLS includes different optimizations,

known as pragmas. These are aimed at enhancing performance by reducing latency (clock
cycles) and resource usage. Since this work pursues reducing the latency of VEC-FFT, we
focus on such pragmas, which encompass Pipelining, Unrolling, and Array Partition [29].
• Pipelining divides a loop into multiple stages, which perform different operations.

The stages are executed in parallel, each one works simultaneously on different
iterations of the loop.

• Unrolling is the process of expanding the iterations of a loop into separate statements
to eliminate the overhead associated with the loop control logic. Less instructions per
iteration are needed, reducing the number of clock cycles required to complete the
loop.

• Array partitioning optimizes the memory usage and performance of software
algorithms for implementation on hardware platforms. It involves dividing a large,
multi-dimensional array into smaller, manageable partitions that are processed and
stored in parallel.

2.3. Reusable Integration Framework for FPGA Accelerators (RIFFA)
RIFFA [17] is an open-source reusable library to connect an FPGA with other devices

via PCIe. RIFFA is quite popular, as it can be used in multiple development boards of the
main FPGA manufacturers (e.g., Intel and Xilinx). In the following, the main
characteristics of RIFFA are addressed [17]. These are divided into two categories: SW and
HW.

Software:

Figure 1. Methodology was followed for the implementation and validation of a SoC via HLS,
resulting in the creation of an IP block.

2.2. HLS Optimizations

The HW description process performed by HLS includes different optimizations,
known as pragmas. These are aimed at enhancing performance by reducing latency (clock
cycles) and resource usage. Since this work pursues reducing the latency of VEC-FFT, we
focus on such pragmas, which encompass Pipelining, Unrolling, and Array Partition [29].

• Pipelining divides a loop into multiple stages, which perform different operations. The
stages are executed in parallel, each one works simultaneously on different iterations
of the loop.

• Unrolling is the process of expanding the iterations of a loop into separate statements
to eliminate the overhead associated with the loop control logic. Less instructions
per iteration are needed, reducing the number of clock cycles required to complete
the loop.

• Array partitioning optimizes the memory usage and performance of software al-
gorithms for implementation on hardware platforms. It involves dividing a large,
multi-dimensional array into smaller, manageable partitions that are processed and
stored in parallel.

2.3. Reusable Integration Framework for FPGA Accelerators (RIFFA)

RIFFA [17] is an open-source reusable library to connect an FPGA with other devices
via PCIe. RIFFA is quite popular, as it can be used in multiple development boards of the
main FPGA manufacturers (e.g., Intel and Xilinx). In the following, the main characteristics
of RIFFA are addressed [17]. These are divided into two categories: SW and HW.

Software:

• Support for Linux kernels 2.6.27+ and Windows 7 (drivers).

Electronics 2023, 12, 2558 7 of 28

• Implemented with C/C++, Python, MATLAB, or Java.
• Capable of working with multiple FPGAs (up to five) per system.
• Simple functions to Transmit (TX) and Receive (RX) data. For instance, the related

C/C++ code for TX/RX is presented next (Scheme 1).

Electronics 2023, 12, x FOR PEER REVIEW 7 of 26

• Support for Linux kernels 2.6.27+ and Windows 7 (drivers).
• Implemented with C/C++, Python, MATLAB, or Java.
• Capable of working with multiple FPGAs (up to five) per system.
• Simple functions to Transmit (TX) and Receive (RX) data. For instance, the related

C/C++ code for TX/RX is presented next (Scheme 1).

Scheme 1. C/C++ TX/RX functions provided by RIFFA.

Where:
- fpga: Pointer to structure “fpga_t”.
- chnl: Channel number.
- data: Pointer to the data array.
- len: Data length (32 bits).
- destoff: Specifies where to start the data writing.
- last: Zero means that the current transfer is not the last in a sequence of transfers.

One indicates the last transfer.
- timeout: Waiting time value in ms.
- return: Number of transmitted/received data.

The function fpga_send sends a len of data through the FPGA channel chnl using
the fpga_t structure. The values destoff and last are also sent; destoff is used to
support the distribution of data across multiple send transactions, whereas last indicates
whether the data transfers are finished or not. When last equals 1, the channel interprets
the end of the transaction. Conversely, when last equals 0, the channel stands by for
additional transactions. Finally, when timeout is equal to zero, communication is
blocked indefinitely. Multiple threads sending data through the same channel may result
in corrupt data or errors. Accordingly, fpga_send returns the actual number of words
sent. Function fpga_recv applies the same principles as fpga_send, with the difference
that it receives data from the FPGA channel chnl in the data pointer.

Hardware:
• Works directly with the PCIe endpoint, being capable of saturating the PCIe link.
• Unrequired knowledge of bus addresses, buffer sizes, or PCIe packet formats.
• Independent TX and RX signals.
• Communications model based on Direct Memory Access (DMA) transfers.
• Data is expressed in widths of 32 bits, 64 bits, or 128 bits.
• Well documented.

Figure 2 shows the architectural diagram of RIFFA. Data is transferred through
RIFFA’s RX/TX modules using addresses provided by the workstation. These engines
provide DMA transfer for all RIFFA channels. On the SW side, there is simply one data
TX and one data RX function. Different libraries are provided for each supported
programming language, i.e., C/C++, Python, MATLAB, and Java.

Scheme 1. C/C++ TX/RX functions provided by RIFFA.

Where:

- fpga: Pointer to structure “fpga_t”.
- chnl: Channel number.
- data: Pointer to the data array.
- len: Data length (32 bits).
- destoff: Specifies where to start the data writing.
- last: Zero means that the current transfer is not the last in a sequence of transfers.

One indicates the last transfer.
- timeout: Waiting time value in ms.
- return: Number of transmitted/received data.

The function fpga_send sends a len of data through the FPGA channel chnl using
the fpga_t structure. The values destoff and last are also sent; destoff is used to
support the distribution of data across multiple send transactions, whereas last indicates
whether the data transfers are finished or not. When last equals 1, the channel interprets
the end of the transaction. Conversely, when last equals 0, the channel stands by for
additional transactions. Finally, when timeout is equal to zero, communication is blocked
indefinitely. Multiple threads sending data through the same channel may result in corrupt
data or errors. Accordingly, fpga_send returns the actual number of words sent. Function
fpga_recv applies the same principles as fpga_send, with the difference that it receives
data from the FPGA channel chnl in the data pointer.

Hardware:

• Works directly with the PCIe endpoint, being capable of saturating the PCIe link.
• Unrequired knowledge of bus addresses, buffer sizes, or PCIe packet formats.
• Independent TX and RX signals.
• Communications model based on Direct Memory Access (DMA) transfers.
• Data is expressed in widths of 32 bits, 64 bits, or 128 bits.
• Well documented.

Figure 2 shows the architectural diagram of RIFFA. Data is transferred through RIFFA’s
RX/TX modules using addresses provided by the workstation. These engines provide
DMA transfer for all RIFFA channels. On the SW side, there is simply one data TX and
one data RX function. Different libraries are provided for each supported programming
language, i.e., C/C++, Python, MATLAB, and Java.

Electronics 2023, 12, 2558 8 of 28
Electronics 2023, 12, x FOR PEER REVIEW 8 of 26

Figure 2. High-level architectural diagram of RIFFA’s 2.0 framework [17].

3. Integration of RIFFA
The proposed HW architecture consists of two main elements: RIFFA, responsible for

generating the signals utilized by PCIe, and the IPs, whose functionality depends on the
application, e.g., the reordering stage of VEC-FFT and matrix transpose. The IPs connect
with RIFFA through RIFFA channels, which obey the set of signals presented in Table 1
[17]. These are divided into two subsets: those for RX and those for TX. As shown in Figure
3, the operation of the channels is based on a finite-state machine composed of eight states.
The state machine manages the receiving, processing, and sending of data.

The receiving of data starts at state 0, waiting for the signal “CHNL_RX”.
Subsequently, state 1 collects the data and counts the number of received words, taking
into consideration the signal “CHNL_RX_DATA_VALID”. If the count is equal to
“CHNL_RX_LEN”, it continues to the next stage (processing). The data processing begins
with a counter reset “rCount = 0”, which occurs in state 2. Following that, state 3 asserts
“ap_start” to indicate the start of the IP and waits for the assertion “ap_done”, which
indicates that the IP finished its work (e.g., data reordering or matrix transpose). Data
sending starts at state 4 with the reset of the IP via assertion “rst_ip”. State 5 sets “rst_ip”
to zero and initializes “rCount”. Next, state 6 loads “rCount” with the number of data
integers, making use of signal “C_PCI_DATA_WIDTH”. Recall that an integer is a data
type with a width of 32 bits. Finally, at state 7, RIFFA is instructed to send the data from
the FPGA to the CPU through the signal “CHNL_TX_LEN”. After this, the finite state
machine goes to state 0 and waits for the next data to be sent.

To simplify the implementation process, both the RIFFA channels and IPs are
instantiated within RIFFA. The IP integrates with RIFFA through the RX/TX control
signals specified in [17]. The IP is then connected to the RIFFA channel using the
“ap_start” and “ap_done” signals. Once the integration is performed, the data transfer
process begins with the fpga_send function, which sends data from the PC memory to the
FPGA. The channel waits until all data is received and the “ap_start” signal is asserted,
indicating that the IP can start processing the data. Once the IP finishes processing, it
asserts the “ap_done” signal, and the channel waits for the fpga_recv function to retrieve
the processed data from the FPGA.

Figure 2. High-level architectural diagram of RIFFA’s 2.0 framework [17].

3. Integration of RIFFA

The proposed HW architecture consists of two main elements: RIFFA, responsible for
generating the signals utilized by PCIe, and the IPs, whose functionality depends on the
application, e.g., the reordering stage of VEC-FFT and matrix transpose. The IPs connect
with RIFFA through RIFFA channels, which obey the set of signals presented in Table 1 [17].
These are divided into two subsets: those for RX and those for TX. As shown in Figure 3,
the operation of the channels is based on a finite-state machine composed of eight states.
The state machine manages the receiving, processing, and sending of data.

Table 1. Control signals to receive (RX) and send (TX) data through RIFFA [17].

RX and TX Control Signals

RX Engine

Name I/O Description

CHNL_RX_CLK O Provide the clock signal to read data from the
incoming FIFO.

CHNL_RX I Goes high to signal incoming data. Will remain high
until all incoming data is written to the FIFO.

CHNL_RX_ACK O Must be pulsed high for at least 1 cycle to
acknowledge the incoming data transaction.

Electronics 2023, 12, 2558 9 of 28

Table 1. Cont.

RX and TX Control Signals

RX Engine

Name I/O Description

CHNL_RX_LAST I High indicates this is the last received transaction in
a sequence.

CHNL_RX_LEN[31:0] I Length of the received transaction in 4-byte words.

CHNL_RX_OFF[30:0] I Offset in 4-byte words indicating where to start
storing received data (if applicable in design).

CHNL_RX_DATA[DWIDTH-1:0] I Receive data.
CHNL_RX_DATA_VALID I High if the data on CHNL_RX_DATA is valid.

CHNL_RX_DATA_REN O
When high and CHNL_RX_DATA_VALID is high,

consumes the data currently available on
CHNL_RX_DATA.

TX Engine

CHNL_TX_CLK O Provide the clock signal to write data to the
outgoing FIFO.

CHNL_TX O Set it high to signal a transaction. Keep it high until
all outgoing data is written to the FIFO.

CHNL_TX_ACK I Will be pulsed high for at least one cycle to
acknowledge the transaction.

CHNL_TX_LAST O High indicates this is the last send transaction in a
sequence.

CHNL_TX_LEN[31:0] O Length of the sent transaction in 4-byte words.

CHNL_TX_OFF[30:0] O Offset in 4-byte words indicating where to start
storing sent data in the PC thread’s receive buffer.

CHNL_TX_DATA[DWIDTH-1:0] O Send data.

CHNL_TX_DATA_VALID O Set high when the data on CHNL_TX_DATA is valid.
Update when CHNL_TX_DATA is consumed.

CHNL_TX_DATA_REN I
When high and CHNL_TX_DATA_VALID is high,

consumes the data currently available on
CHNL_TX_DATA.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 26

Table 1. Control signals to receive (RX) and send (TX) data through RIFFA [17].

RX and TX Control Signals
RX Engine

Name I/O Description
CHNL_RX_CLK O Provide the clock signal to read data from the incoming FIFO.

CHNL_RX I
Goes high to signal incoming data. Will remain high until all incoming data is written to

the FIFO.
CHNL_RX_ACK O Must be pulsed high for at least 1 cycle to acknowledge the incoming data transaction.
CHNL_RX_LAST I High indicates this is the last received transaction in a sequence.

CHNL_RX_LEN[31:0] I Length of the received transaction in 4-byte words.

CHNL_RX_OFF[30:0] I
Offset in 4-byte words indicating where to start storing received data (if applicable in

design).
CHNL_RX_DATA[DWIDTH-1:0] I Receive data.

CHNL_RX_DATA_VALID I High if the data on CHNL_RX_DATA is valid.

CHNL_RX_DATA_REN O
When high and CHNL_RX_DATA_VALID is high, consumes the data currently available

on CHNL_RX_DATA.
TX Engine

CHNL_TX_CLK O Provide the clock signal to write data to the outgoing FIFO.

CHNL_TX O
Set it high to signal a transaction. Keep it high until all outgoing data is written to the

FIFO.
CHNL_TX_ACK I Will be pulsed high for at least one cycle to acknowledge the transaction.
CHNL_TX_LAST O High indicates this is the last send transaction in a sequence.

CHNL_TX_LEN[31:0] O Length of the sent transaction in 4-byte words.

CHNL_TX_OFF[30:0] O
Offset in 4-byte words indicating where to start storing sent data in the PC thread’s

receive buffer.
CHNL_TX_DATA[DWIDTH-1:0] O Send data.

CHNL_TX_DATA_VALID O
Set high when the data on CHNL_TX_DATA is valid. Update when CHNL_TX_DATA is

consumed.

CHNL_TX_DATA_REN I
When high and CHNL_TX_DATA_VALID is high, consumes the data currently available

on CHNL_TX_DATA.

Figure 3. State machine for the operation of RIFFA channels:, ■, PCIe port receives data; ■, IP
processes the data; ■, PCIe port sends the processed data.
Figure 3. State machine for the operation of RIFFA channels: �, PCIe port receives data;

Electronics 2023, 12, x FOR PEER REVIEW 9 of 26

Table 1. Control signals to receive (RX) and send (TX) data through RIFFA [17].

RX and TX Control Signals
RX Engine

Name I/O Description
CHNL_RX_CLK O Provide the clock signal to read data from the incoming FIFO.

CHNL_RX I
Goes high to signal incoming data. Will remain high until all incoming data is written to

the FIFO.
CHNL_RX_ACK O Must be pulsed high for at least 1 cycle to acknowledge the incoming data transaction.
CHNL_RX_LAST I High indicates this is the last received transaction in a sequence.

CHNL_RX_LEN[31:0] I Length of the received transaction in 4-byte words.

CHNL_RX_OFF[30:0] I
Offset in 4-byte words indicating where to start storing received data (if applicable in

design).
CHNL_RX_DATA[DWIDTH-1:0] I Receive data.

CHNL_RX_DATA_VALID I High if the data on CHNL_RX_DATA is valid.

CHNL_RX_DATA_REN O
When high and CHNL_RX_DATA_VALID is high, consumes the data currently available

on CHNL_RX_DATA.
TX Engine

CHNL_TX_CLK O Provide the clock signal to write data to the outgoing FIFO.

CHNL_TX O
Set it high to signal a transaction. Keep it high until all outgoing data is written to the

FIFO.
CHNL_TX_ACK I Will be pulsed high for at least one cycle to acknowledge the transaction.
CHNL_TX_LAST O High indicates this is the last send transaction in a sequence.

CHNL_TX_LEN[31:0] O Length of the sent transaction in 4-byte words.

CHNL_TX_OFF[30:0] O
Offset in 4-byte words indicating where to start storing sent data in the PC thread’s

receive buffer.
CHNL_TX_DATA[DWIDTH-1:0] O Send data.

CHNL_TX_DATA_VALID O
Set high when the data on CHNL_TX_DATA is valid. Update when CHNL_TX_DATA is

consumed.

CHNL_TX_DATA_REN I
When high and CHNL_TX_DATA_VALID is high, consumes the data currently available

on CHNL_TX_DATA.

Figure 3. State machine for the operation of RIFFA channels:, ■, PCIe port receives data; ■, IP
processes the data; ■, PCIe port sends the processed data.

, IP
processes the data;

Electronics 2023, 12, x FOR PEER REVIEW 9 of 26

Table 1. Control signals to receive (RX) and send (TX) data through RIFFA [17].

RX and TX Control Signals
RX Engine

Name I/O Description
CHNL_RX_CLK O Provide the clock signal to read data from the incoming FIFO.

CHNL_RX I
Goes high to signal incoming data. Will remain high until all incoming data is written to

the FIFO.
CHNL_RX_ACK O Must be pulsed high for at least 1 cycle to acknowledge the incoming data transaction.
CHNL_RX_LAST I High indicates this is the last received transaction in a sequence.

CHNL_RX_LEN[31:0] I Length of the received transaction in 4-byte words.

CHNL_RX_OFF[30:0] I
Offset in 4-byte words indicating where to start storing received data (if applicable in

design).
CHNL_RX_DATA[DWIDTH-1:0] I Receive data.

CHNL_RX_DATA_VALID I High if the data on CHNL_RX_DATA is valid.

CHNL_RX_DATA_REN O
When high and CHNL_RX_DATA_VALID is high, consumes the data currently available

on CHNL_RX_DATA.
TX Engine

CHNL_TX_CLK O Provide the clock signal to write data to the outgoing FIFO.

CHNL_TX O
Set it high to signal a transaction. Keep it high until all outgoing data is written to the

FIFO.
CHNL_TX_ACK I Will be pulsed high for at least one cycle to acknowledge the transaction.
CHNL_TX_LAST O High indicates this is the last send transaction in a sequence.

CHNL_TX_LEN[31:0] O Length of the sent transaction in 4-byte words.

CHNL_TX_OFF[30:0] O
Offset in 4-byte words indicating where to start storing sent data in the PC thread’s

receive buffer.
CHNL_TX_DATA[DWIDTH-1:0] O Send data.

CHNL_TX_DATA_VALID O
Set high when the data on CHNL_TX_DATA is valid. Update when CHNL_TX_DATA is

consumed.

CHNL_TX_DATA_REN I
When high and CHNL_TX_DATA_VALID is high, consumes the data currently available

on CHNL_TX_DATA.

Figure 3. State machine for the operation of RIFFA channels:, ■, PCIe port receives data; ■, IP
processes the data; ■, PCIe port sends the processed data. , PCIe port sends the processed data.

Electronics 2023, 12, 2558 10 of 28

The receiving of data starts at state 0, waiting for the signal “CHNL_RX”. Subsequently,
state 1 collects the data and counts the number of received words, taking into consideration
the signal “CHNL_RX_DATA_VALID”. If the count is equal to “CHNL_RX_LEN”, it
continues to the next stage (processing). The data processing begins with a counter reset
“rCount = 0”, which occurs in state 2. Following that, state 3 asserts “ap_start” to indicate
the start of the IP and waits for the assertion “ap_done”, which indicates that the IP
finished its work (e.g., data reordering or matrix transpose). Data sending starts at state
4 with the reset of the IP via assertion “rst_ip”. State 5 sets “rst_ip” to zero and initializes
“rCount”. Next, state 6 loads “rCount” with the number of data integers, making use of
signal “C_PCI_DATA_WIDTH”. Recall that an integer is a data type with a width of 32 bits.
Finally, at state 7, RIFFA is instructed to send the data from the FPGA to the CPU through
the signal “CHNL_TX_LEN”. After this, the finite state machine goes to state 0 and waits
for the next data to be sent.

To simplify the implementation process, both the RIFFA channels and IPs are instan-
tiated within RIFFA. The IP integrates with RIFFA through the RX/TX control signals
specified in [17]. The IP is then connected to the RIFFA channel using the “ap_start” and
“ap_done” signals. Once the integration is performed, the data transfer process begins with
the fpga_send function, which sends data from the PC memory to the FPGA. The channel
waits until all data is received and the “ap_start” signal is asserted, indicating that the
IP can start processing the data. Once the IP finishes processing, it asserts the “ap_done”
signal, and the channel waits for the fpga_recv function to retrieve the processed data from
the FPGA.

Figure 4 provides a visual representation of the integration of HLS IPs with RIFFA by
means of channels. Observe how the various components work together to enable efficient
data transfer and processing.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 26

Figure 4 provides a visual representation of the integration of HLS IPs with RIFFA
by means of channels. Observe how the various components work together to enable
efficient data transfer and processing.

Figure 4. Schematic of the system. Up to 12 channels can be used per PCIe port.

4. Proof of Concept
Towards the usage of FPGA accelerators for on-board SAR processing, this section

addresses the proof of concept of the proposed methodology via the implementation of
two HLS IPs: the reordering stage of VEC-FFT and matrix transpose. The HW
implementations are described in detail, providing insights for further implementations
of SAR algorithms on FPGAs. First, VEC-FFT is briefly reviewed, explaining the necessity
of a HW accelerator for the reordering stage. Subsequently, the implementation of such
IP is presented, already integrated with RIFFA. Next, aimed at demonstrating flexibility
in the utilization of different IPs, the IP for matrix transposition is addressed.

4.1. Vectorized Fast Fourier Transform (VEC-FFT)
VEC-FFT is an optimized FFT function based on the radix-4 algorithm [24]. The

optimizations mainly concern an efficient implementation of Intel’s SIMD instructions,
leading to an ideal vectorization level and system usage rate. The main optimizations
performed are listed next [18]:
• Separation of the input data into its real and imaginary parts.
• Splitting of the Radix-4 algorithm into its different stages with the goal of optimizing

each stage separately.
• Restructuring of the Radix-4 butterfly [24] to reduce computational effort.
• Pre-calculation and pre-vectorization of the twiddle factors.
• Pre-identification of elements that must be swapped in the reordering final step.

Figure 4. Schematic of the system. Up to 12 channels can be used per PCIe port.

Electronics 2023, 12, 2558 11 of 28

4. Proof of Concept

Towards the usage of FPGA accelerators for on-board SAR processing, this section
addresses the proof of concept of the proposed methodology via the implementation of
two HLS IPs: the reordering stage of VEC-FFT and matrix transpose. The HW imple-
mentations are described in detail, providing insights for further implementations of SAR
algorithms on FPGAs. First, VEC-FFT is briefly reviewed, explaining the necessity of a
HW accelerator for the reordering stage. Subsequently, the implementation of such IP is
presented, already integrated with RIFFA. Next, aimed at demonstrating flexibility in the
utilization of different IPs, the IP for matrix transposition is addressed.

4.1. Vectorized Fast Fourier Transform (VEC-FFT)

VEC-FFT is an optimized FFT function based on the radix-4 algorithm [24]. The
optimizations mainly concern an efficient implementation of Intel’s SIMD instructions,
leading to an ideal vectorization level and system usage rate. The main optimizations
performed are listed next [18]:

• Separation of the input data into its real and imaginary parts.
• Splitting of the Radix-4 algorithm into its different stages with the goal of optimizing

each stage separately.
• Restructuring of the Radix-4 butterfly [24] to reduce computational effort.
• Pre-calculation and pre-vectorization of the twiddle factors.
• Pre-identification of elements that must be swapped in the reordering final step.

The computations performed by FFT Radix-4 [18] are exemplified by:

XF(k)

XF
(

k + N
4

)
XF
(

k + N
2

)
XF
(

k + 3N
4

)

=

1 1 1 1
1 −j −1 1
1 −1 1 −1
1 j −1 −j

AF(k)

Wk
N BF(k)

W2k
N CF(k)

W3k
N DF(k)

 (1)

k = 0, 1, . . . , N − 1, ∀N = 4n, n ∈ N.

with

AF(k) =

N
4 −1

∑
n=0

x(4n)W4nk
N ,

Wk
N BF(k) = Wk

N

N
4 −1

∑
n=0

x(4n + 1)W4nk
N ,

W2k
N CF(k) = W2k

N ∑
N
4 −1

n=0 x(4n + 2)W4nk
N ,

W3k
N DF(k) = W3k

N

N
4 −1

∑
n=0

x(4n + 3)W4nk
N

where Wk
N = e−j 2πk

N .

Electronics 2023, 12, 2558 12 of 28

The restructuration of the kernel, as well as its separation into a real and imaginary
part, are represented by Equations (2) and (3):

XF
re(k)

XF
re

(
k + N

4

)
XF

re

(
k + N

2

)
XF

re

(
k + 3N

4

)

=

SumF
re(AC) + SumF

re(BD)

SubF
re(AC) + SubF

re(BD)

SumF
re(AC)− SumF

re(BD)

SubF
re(AC) + SubF

re(BD)

, (2)

where
SumF

re(AC) = AF
re(k) + W2k

N CF
re(k),

SumF
re(BD) = Wk

N BF
re(k) + W3k

N DF
re(k),

SubF
re(AC) = AF

re(k)−W2k
N CF

re(k),

SubF
re(BD) = Wk

N BF
im(k)−W3k

N DF
im(k);

and

XF
im(k)

XF
im

(
k + N

4

)
XF

im

(
k + N

2

)
XF

im

(
k + 3N

4

)

=

SumF
im(AC) + SumF

im(BD)

SubF
im(AC)− SubF

im(BD)

SumF
im(AC)− SumF

im(BD)

SubF
im(AC) + SubF

im(BD)

, (3)

where
SumF

im(AC) = AF
im(k) + W2k

N CF
im(k),

SumF
re(BD) = Wk

N BF
im(k) + W3k

N DF
im(k),

SubF
re(AC) = AF

im(k)−W2k
N CF

im(k),

SubF
re(BD) = Wk

N BF
re(k)−W3k

N DF
re(k).

Equations (1)–(3) are depicted in Figure 5. Figure 5a shows a Radix-4 butterfly
(Equation (1)) of 16 points, with entries given in normal order and outputs retrieved
in reversed bit order. Figure 5b represents the restructuration of the kernel
(Equations (2) and (3)), aimed at reducing computational effort by reutilizing previously
calculated values. Figure 1c exemplifies Equation (2), in which the formerly computed
values SumF

re(AC), SumF
re(BD), SubF

re(AC), and SubF
re(BD), are reused.

Electronics 2023, 12, 2558 13 of 28

Electronics 2023, 12, x FOR PEER REVIEW 12 of 26

⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝑋 (𝑘)𝑋 𝑘 + 𝑁4𝑋 𝑘 + 𝑁2𝑋 𝑘 + 3𝑁4 ⎦⎥⎥

⎥⎥⎥
⎥⎤ = ⎣⎢⎢⎢

⎡𝑆𝑢𝑚 (𝐴𝐶) + 𝑆𝑢𝑚 (𝐵𝐷)𝑆𝑢𝑏 (𝐴𝐶) − 𝑆𝑢𝑏 (𝐵𝐷)𝑆𝑢𝑚 (𝐴𝐶) − 𝑆𝑢𝑚 (𝐵𝐷)𝑆𝑢𝑏 (𝐴𝐶) + 𝑆𝑢𝑏 (𝐵𝐷) ⎦⎥⎥⎥
⎤, (3)

where 𝑆𝑢𝑚 (𝐴𝐶) = 𝐴𝑖𝑚𝐹 (𝑘) + 𝑊𝑁2𝑘𝐶𝑖𝑚𝐹 (𝑘),
𝑆𝑢𝑚 (𝐵𝐷) = 𝑊𝑁𝑘 𝐵𝑖𝑚𝐹 (𝑘) + 𝑊𝑁3𝑘𝐷𝑖𝑚𝐹 (𝑘), 𝑆𝑢𝑏 (𝐴𝐶) = 𝐴𝑖𝑚𝐹 (𝑘) − 𝑊𝑁2𝑘𝐶𝑖𝑚𝐹 (𝑘),
𝑆𝑢𝑏 (𝐵𝐷) = 𝑊𝑁𝑘 𝐵𝑟𝑒𝐹 (𝑘) − 𝑊𝑁3𝑘𝐷𝑟𝑒𝐹 (𝑘).

Equations (1)–(3) are depicted in Figure 5. Figure 5a shows a Radix-4 butterfly
(Equation (1)) of 16 points, with entries given in normal order and outputs retrieved in
reversed bit order. Figure 5b represents the restructuration of the kernel (Equations (2)
and (3)), aimed at reducing computational effort by reutilizing previously calculated
values. Figure 1c exemplifies Equation (2), in which the formerly computed values 𝑆𝑢𝑚 (𝐴𝐶), 𝑆𝑢𝑚 (𝐵𝐷), 𝑆𝑢𝑏 (𝐴𝐶), and 𝑆𝑢𝑏 (𝐵𝐷), are reused.

(b)

(a) (c)

Figure 5. (a) Radix-4 butterfly of 16 points, with entries given in normal order and outputs retrieved
in reversed bit order. (b) Restructuration of the kernel (Equations (2) and (3)). (c) Graphic
representation of Equation (2), handling the real data in the FFT.

Tables 2 and 3 show the computation performance of VEC-FFT in CPU clock cycles,
with and without the reordering stage [18]. The tests consider FFT sizes ranging from 64

Figure 5. (a) Radix-4 butterfly of 16 points, with entries given in normal order and outputs retrieved in
reversed bit order. (b) Restructuration of the kernel (Equations (2) and (3)). (c) Graphic representation
of Equation (2), handling the real data in the FFT.

Tables 2 and 3 show the computation performance of VEC-FFT in CPU clock cy-
cles, with and without the reordering stage [18]. The tests consider FFT sizes ranging
from 64 to 16,384 points. When comparing the performance of a 16,384-point FFT, it
turns out that the reordering stage has a significant impact on the overall performance,
consuming 60% of the total processing time. For instance, for 16,384 points, VEC-FFT
requires 234,061 clock cycles; conversely, it consumes only 91,601 clock cycles when data
reordering is excluded. One of the main reasons for this difference in clock cycles is the
amount of memory changed when computing the reordering stage: 8064 for both real and
imaginary parts.

Table 2. VEC-FFT performance in clock cycles [18].

Size Min Median Mean Standard
Deviation

64 253 262 265 10
256 1207 1238 1248 87

1024 5428 5508 5625 308
4096 24,974 25,442 25,722 891

16,384 227,400 229,619 234,061 11,282

Electronics 2023, 12, 2558 14 of 28

Table 3. VEC-FFT performance in clock cycles without reordering [18].

Size Min Median Mean Standard
Deviation

64 187 199 199 9
256 766 802 804 31

1024 3649 3712 3746 162
4096 17,079 17,343 17,464 437

16,384 88,576 90,200 91,601 6222

Additionally, as mentioned in [18], the increase in repetitive calls of FFT functions
(e.g., VEC-FFT) reduces performance due to the HW administration performed by the
Kernel in the Operating System (OS). Recall that the Kernel is the main layer between the
OS and the HW, responsible for memory and process management, file systems, device
control, and networking. The repetitive calls of FFT functions (e.g., VEC-FFT) are common
in SAR processing. Such is the case of the first and last stages of Omega-K in [23], which
require performing 2D FFT on the imagery, involving the computation of FFT series.

4.2. HLS IP for the Reordering Stage of VEC-FFT

HLS offers the possibility of using the optimizations mentioned in Section 2 by means
of a single line of code, as seen in Scheme 2. However, since the C/C++ synthesis is
performed by HLS, it is difficult to know a priori which pragmas perform more efficiently
for certain tasks. Consequently, it is common to compare the different optimizations after
synthesis. Five different optimizations are applied: cyclic partition, pipeline with one Block
Random Access Memory (BRAM) port, pipeline with two BRAM ports, unroll, and unroll
and pipeline (1 BRAM port). The obtained results are presented in Table 4, contrasting
those retrieved without any optimization.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 26

to 16,384 points. When comparing the performance of a 16,384-point FFT, it turns out that
the reordering stage has a significant impact on the overall performance, consuming 60%
of the total processing time. For instance, for 16,384 points, VEC-FFT requires 234,061
clock cycles; conversely, it consumes only 91,601 clock cycles when data reordering is
excluded. One of the main reasons for this difference in clock cycles is the amount of
memory changed when computing the reordering stage: 8064 for both real and imaginary
parts.

Table 2. VEC-FFT performance in clock cycles [18].

Size Min Median Mean Standard Deviation
64 253 262 265 10
256 1207 1238 1248 87

1024 5428 5508 5625 308
4096 24,974 25,442 25,722 891

16,384 227,400 229,619 234,061 11,282

Table 3. VEC-FFT performance in clock cycles without reordering [18].

Size Min Median Mean Standard Deviation
64 187 199 199 9
256 766 802 804 31

1024 3649 3712 3746 162
4096 17,079 17,343 17,464 437

16,384 88,576 90,200 91,601 6222

Additionally, as mentioned in [18], the increase in repetitive calls of FFT functions
(e.g., VEC-FFT) reduces performance due to the HW administration performed by the
Kernel in the Operating System (OS). Recall that the Kernel is the main layer between the
OS and the HW, responsible for memory and process management, file systems, device
control, and networking. The repetitive calls of FFT functions (e.g., VEC-FFT) are common
in SAR processing. Such is the case of the first and last stages of Omega-K in [23], which
require performing 2D FFT on the imagery, involving the computation of FFT series.

4.2. HLS IP for the Reordering Stage of VEC-FFT
HLS offers the possibility of using the optimizations mentioned in Section 2 by means

of a single line of code, as seen in Scheme 2. However, since the C/C++ synthesis is
performed by HLS, it is difficult to know a priori which pragmas perform more efficiently
for certain tasks. Consequently, it is common to compare the different optimizations after
synthesis. Five different optimizations are applied: cyclic partition, pipeline with one
Block Random Access Memory (BRAM) port, pipeline with two BRAM ports, unroll, and
unroll and pipeline (1 BRAM port). The obtained results are presented in Table 4,
contrasting those retrieved without any optimization.

Scheme 2. Usage of pragmas in HLS. Each sentence represents a different optimization: pipeline,
unroll, and cyclic partition, respectively.

The VEC-FFT reordering IP is optimized with a cyclic partition due to the attained
lower latency, as observed in Table 4. Eight Block Random Access Memories (BRAMS) are

Scheme 2. Usage of pragmas in HLS. Each sentence represents a different optimization: pipeline,
unroll, and cyclic partition, respectively.

Table 4. Optimizations were applied to VEC-FFT’s reordering function (1024 points). Three main
parameters are assessed: maximum frequency at which the circuit works, latency (amount of clock
cycles required by the IP to finish the task), and resources used, i.e., number of slices, Look-Up Tables
(LUTs), Flip Flops (FFs), and DSPs.

Parameter

HLS Implementations

Cyclic
Partition

Pipeline
with 2

BRAM Ports

Pipeline
with 1

BRAM Port

Unroll and
Pipeline (1

BRAM Port)
Unroll Without

Optimization

Maximum Frequency 118.119 MHz 121.227 MHz 121.227 MHz 125.723 MHz 130.548 MHz 130.548 MHz

Latency
(Clock cycles) 2713 2738 4500 9411 23,714 23,906

Resources
used

Slices 778 582 465 1007 751 751
LUTs 2180 1607 1275 2341 1942 1942
FFs 2096 1692 1197 2632 2208 1861

DSPs 12 8 4 30 20 20

Electronics 2023, 12, 2558 15 of 28

The VEC-FFT reordering IP is optimized with a cyclic partition due to the attained
lower latency, as observed in Table 4. Eight Block Random Access Memories (BRAMS)
are needed: 4 BRAMs for real data and 4 BRAMs for imaginary data. The connections
between the IP, the memories, and the input/output signals are shown in Figure 6. The
integration of RIFFA with the IP is achieved through the schematic depicted in Figure 4, as
explained previously. Data is sent from the CPU to the memory blocks via PCIe, splitting
the 128-bit frame into four frames of 32 bits, one per memory (imaginary or real data). The
data reordering IP starts working until the acknowledgement of data reception “ap_start”
is received. Subsequently, IP processes the data and saves the results in the memories. After
the processing is finished, “ap_done” is asserted, and the data is sent to the CPU via PCIe.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 26

needed: 4 BRAMs for real data and 4 BRAMs for imaginary data. The connections between
the IP, the memories, and the input/output signals are shown in Figure 6. The integration
of RIFFA with the IP is achieved through the schematic depicted in Figure 4, as explained
previously. Data is sent from the CPU to the memory blocks via PCIe, splitting the 128-bit
frame into four frames of 32 bits, one per memory (imaginary or real data). The data
reordering IP starts working until the acknowledgement of data reception “ap_start” is
received. Subsequently, IP processes the data and saves the results in the memories. After
the processing is finished, “ap_done” is asserted, and the data is sent to the CPU via PCIe.

Table 4. Optimizations were applied to VEC-FFT’s reordering function (1024 points). Three main
parameters are assessed: maximum frequency at which the circuit works, latency (amount of clock
cycles required by the IP to finish the task), and resources used, i.e., number of slices, Look-Up
Tables (LUTs), Flip Flops (FFs), and DSPs.

Parameter

HLS Implementations

Cyclic Partition Pipeline with 2
BRAM Ports

Pipeline with 1
BRAM Port

Unroll and
Pipeline (1 BRAM

Port)
Unroll Without

Optimization

Maximum Frequency 118.119 MHz 121.227 MHz 121.227 MHz 125.723 MHz 130.548 MHz 130.548 MHz
Latency

(Clock cycles)
2713 2738 4500 9411 23,714 23,906

Resources
used

Slices 778 582 465 1007 751 751
LUTs 2180 1607 1275 2341 1942 1942
FFs 2096 1692 1197 2632 2208 1861

DSPs 12 8 4 30 20 20

Figure 6. Schematic of the data reordering module (4096 points). The module employs 8 BRAMs to
store the data.

The results retrieved by the IP are compared against a gold bench variable as part of
the validations performed within the HLS workflow in Figure 1. A tolerance value of 1 ×
10−5 is set, meaning a difference between both attained results of ±0.00001, which leads to
a mean square error (MSE) in the order of 1 × 10−10. With respect to FFTW and FFTW SIMD
[18], VEC-FFT presents an MSE on attained results in the order of 1 × 10−9.

Figure 6. Schematic of the data reordering module (4096 points). The module employs 8 BRAMs to
store the data.

The results retrieved by the IP are compared against a gold bench variable as part
of the validations performed within the HLS workflow in Figure 1. A tolerance value of
1 × 10−5 is set, meaning a difference between both attained results of ±0.00001, which
leads to a mean square error (MSE) in the order of 1 × 10−10. With respect to FFTW and
FFTW SIMD [18], VEC-FFT presents an MSE on attained results in the order of 1 × 10−9.

4.3. HLS IP for Matrix Transpose

The matrix transpose transforms a given matrix by interchanging its rows and columns
so that the rows become columns and the columns become rows. Matrix transpose is
regularly used in SAR imaging to compute the 2D FFT [19–23]. First, the 1D FFT is
performed along each row of a matrix; then, the matrix is transposed; afterwards, the 1D
FFT is applied along each row; finally, the matrix is transposed one more time to put the
resultant array in the correct order. The sequence in which the 1D FFTs are performed is
important, as it affects the orientation of the resulting frequency spectrum.

Electronics 2023, 12, 2558 16 of 28

The HLS IP for matrix transposition is generated from the C++ code presented in
Scheme 3. Five different optimizations are applied, as described in Table 5.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 26

4.3. HLS IP for Matrix Transpose
The matrix transpose transforms a given matrix by interchanging its rows and

columns so that the rows become columns and the columns become rows. Matrix
transpose is regularly used in SAR imaging to compute the 2D FFT [19–23]. First, the 1D
FFT is performed along each row of a matrix; then, the matrix is transposed; afterwards,
the 1D FFT is applied along each row; finally, the matrix is transposed one more time to
put the resultant array in the correct order. The sequence in which the 1D FFTs are
performed is important, as it affects the orientation of the resulting frequency spectrum.

The HLS IP for matrix transposition is generated from the C++ code presented in
Scheme 3. Five different optimizations are applied, as described in Table 5.

Table 5. Optimizations applied for matrix transposition (128 × 128 points). Three main parameters
are assessed: the maximum frequency at which the circuit works, latency, and resources used, i.e.,
number of slices, LUTs, FFs, and DSPs.

Parameter

HLS Implementations

Cyclic Partition Pipeline with 2
BRAM Ports

Pipeline with 1
BRAM Port

Unroll and
Pipeline (1 BRAM

Port)
Unroll Without

Optimization

Maximum Frequency 131.65 MHz 131.69 MHz 131.69 MHz 131.69 MHz 131.69 MHz 131.65 MHz
Latency

(Clock cycles)
16,401 16,803 17,035 16,675 20,771 33,025

Resources
used

Slices 482 482 465 704 1493 399
LUTs 1301 1031 1301 1901 3534 1078
FFs 547 547 547 785 1215 351

DSPs 12 8 12 12 40 3

Scheme 3. C++ code for matrix transposition.

Due to lower latency, cyclic partition is chosen for the final implementation of the
HLS IP, which makes use of four BRAMS. The code utilized for such HLS optimization is
presented in Scheme 4. The matrix transpose module has a similar structure as the one
presented in Figure 6. As seen in Figure 4, the IPs are connected to a specific RIFFA channel
to send and receive data through the PCIe port.

Scheme 3. C++ code for matrix transposition.

Table 5. Optimizations applied for matrix transposition (128 × 128 points). Three main parameters
are assessed: the maximum frequency at which the circuit works, latency, and resources used,
i.e., number of slices, LUTs, FFs, and DSPs.

Parameter

HLS Implementations

Cyclic
Partition

Pipeline
with

2 BRAM
Ports

Pipeline
with

1 BRAM
Port

Unroll and
Pipeline
(1 BRAM

Port)

Unroll Without
Optimization

Maximum Frequency 131.65 MHz 131.69 MHz 131.69 MHz 131.69 MHz 131.69 MHz 131.65 MHz

Latency
(Clock cycles) 16,401 16,803 17,035 16,675 20,771 33,025

Resources
used

Slices 482 482 465 704 1493 399
LUTs 1301 1031 1301 1901 3534 1078
FFs 547 547 547 785 1215 351

DSPs 12 8 12 12 40 3

Due to lower latency, cyclic partition is chosen for the final implementation of the
HLS IP, which makes use of four BRAMS. The code utilized for such HLS optimization is
presented in Scheme 4. The matrix transpose module has a similar structure as the one
presented in Figure 6. As seen in Figure 4, the IPs are connected to a specific RIFFA channel
to send and receive data through the PCIe port.

Electronics 2023, 12, 2558 17 of 28Electronics 2023, 12, x FOR PEER REVIEW 16 of 26

Scheme 4. HLS cyclic partition optimization for matrix transposition.

5. Performance Assessments
5.1. VEC-FFT Data Reordering

Table 6 presents the clock cycles required by both implementations, CPU and FPGA.
The results attained in [18] are included to show the considerable impact that CPU
technology has on performance. Appendix A summarizes the system resources employed
in this research, whereas Appendix B depicts the system resources utilized in [18]. For
completeness, Table 7 compares the clock cycles employed by VEC-FFT (with and without
HW accelerator) against FFTW and FFTW SIMD [18] for a 16,384-point FFT.

Table 8 addresses the RX/TX DTR, measured in bytes per second (B/s). SW DTR
measures the time to fetch, process, and store data between memory and CPU, whereas
HW DTR measures the time to send and receive data between memory and FPGA. The
FPGA makes use of PCIe 2.0 with four lanes, attaining a maximum theoretical DTR of 2
GB/s. Eighty thousand repetitions are measured, divided into sections of ten thousand, to
avoid possible OS noise. Since the CPU sends and receives data while working with it, the
time of the entire function is measured. The measurements highlighted in green represent
the best-achieved performance.

Table 6. Data reordering measured in clock cycles: CPU vs. FPGA.

VEC-FFT Data Reordering
CPU vs. FPGA in Clock Cycles

CPU CPU as in [18] FPGA Size
4452 1879 2713 1024

19,592 8379 11,161 4096
178,068 142,460 44,569 16,384

Table 7. FFT of 16,384 points measured in clock cycles: VEC-FFT vs. FFTW.

FFT of 16,384 Points
VEC-FFT vs. FFTW in Clock Cycles

VEC-FFT+HW IP VEC-FFT [18] FFTW [18] FFTW SIMD [18]
136,170 234,061 452,253 106,601

Table 8. RX/TX data throughput: SW vs. HW of VEC-FFT Data Reordering with 16,384 Points, the
green background shows the best performance.

VEC-FFT Data Reordering of 16,384 Points

8 cycles of 10K
repetitions

SW
HW

TX RX
61.83 μs 80.60 μs 80.09 μs
62.63 μs 80.62 μs 80.14 μs
61.72 μs 80.37 μs 80.10 μs

Scheme 4. HLS cyclic partition optimization for matrix transposition.

5. Performance Assessments
5.1. VEC-FFT Data Reordering

Table 6 presents the clock cycles required by both implementations, CPU and FPGA.
The results attained in [18] are included to show the considerable impact that CPU tech-
nology has on performance. Appendix A summarizes the system resources employed
in this research, whereas Appendix B depicts the system resources utilized in [18]. For
completeness, Table 7 compares the clock cycles employed by VEC-FFT (with and without
HW accelerator) against FFTW and FFTW SIMD [18] for a 16,384-point FFT.

Table 6. Data reordering measured in clock cycles: CPU vs. FPGA.

VEC-FFT Data Reordering

CPU vs. FPGA in Clock Cycles

CPU CPU as in [18] FPGA Size

4452 1879 2713 1024
19,592 8379 11,161 4096

178,068 142,460 44,569 16,384

Table 7. FFT of 16,384 points measured in clock cycles: VEC-FFT vs. FFTW.

FFT of 16,384 Points

VEC-FFT vs. FFTW in Clock Cycles

VEC-FFT+HW IP VEC-FFT [18] FFTW [18] FFTW SIMD [18]

136,170 234,061 452,253 106,601

Table 8 addresses the RX/TX DTR, measured in bytes per second (B/s). SW DTR
measures the time to fetch, process, and store data between memory and CPU, whereas
HW DTR measures the time to send and receive data between memory and FPGA. The
FPGA makes use of PCIe 2.0 with four lanes, attaining a maximum theoretical DTR of
2 GB/s. Eighty thousand repetitions are measured, divided into sections of ten thousand,
to avoid possible OS noise. Since the CPU sends and receives data while working with
it, the time of the entire function is measured. The measurements highlighted in green
represent the best-achieved performance.

Electronics 2023, 12, 2558 18 of 28

Table 8. RX/TX data throughput: SW vs. HW of VEC-FFT Data Reordering with 16,384 Points, the
green background shows the best performance.

VEC-FFT Data Reordering of 16,384 Points

8 cycles of 10 K
repetitions

SW
HW

TX RX
61.83 µs 80.60 µs 80.09 µs
62.63 µs 80.62 µs 80.14 µs
61.72 µs 80.37 µs 80.10 µs
61.96 µs 80.53 µs 81.06 µs
62.02 µs 80.63 µs 80.15 µs
61.43 µs 80.65 µs 80.25 µs
62.11 µs 80.53 µs 80.13 µs
63.93 µs 80.54 µs 80.12 µs

Throughput 4.3379 GB/s 1.6308 GB/s 1.6364 GB/s

At this point, only one IP is evaluated at a time. However, it is possible to run multiple
IPs at the same time. Due to the limitations of the FPGA and motherboard, a maximum of
three IPs is set. Figure 7 shows the behavior of the system with three IPs.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 26

61.96 μs 80.53 μs 81.06 μs
62.02 μs 80.63 μs 80.15 μs
61.43 μs 80.65 μs 80.25 μs
62.11 μs 80.53 μs 80.13 μs
63.93 μs 80.54 μs 80.12 μs

Throughput 4.3379 GB/s 1.6308 GB/s 1.6364 GB/s

At this point, only one IP is evaluated at a time. However, it is possible to run multiple
IPs at the same time. Due to the limitations of the FPGA and motherboard, a maximum of
three IPs is set. Figure 7 shows the behavior of the system with three IPs.

■ data sending using CPU, ■ data sending using HW, ■ data processing using CPU, ■ data processing using HW,
■ CPU free for another task, ■ data receiving using CPU, ■ data receiving using HW.

Figure 7. Pipeline optimization for VEC-FFT data reordering (16,384 points) using three IPs. For
easy assessment, different colors are employed.

The FPGA works at 100 MHz; therefore, it requires more time to execute the
algorithm than the CPU, which works at 3.6 GHz. The time difference is used to perform
three additional VEC-FFT reorderings in the CPU; this means that the CPU and the FPGA
work in parallel. The results in clock cycles of such evaluations are presented in Table 9.
These were measured in SW, with a frequency of 3.6 GHz.

Table 9. RX/TX data throughput in clock cycles: SW vs. HW with three VEC-FFT Data Reordering
IPs, the green background shows the best performance.

Six VEC-FFT Data Reordering of 16,384 Points

8 cycles of 100K repetitions

SW HW with 3 IPs
(3 VEC-FFT Reordering in CPU)

1,169,660 1,159,188
1,163,704 1,143,108
1,149,216 1,153,364
1,165,484 1,156,580
1,159,100 1,148,352
1,149,184 1,154,900
1,169,496 1,160,336
1,159,256 1,150,128

Throughput 4.105 GB/s 4.127 GB/s

5.2. Matrix Transpose
As mentioned in the introduction, the proposed HW architecture offers the flexibility

of using different IPs. Therefore, for demonstration purposes, a matrix transpose IP is
developed, another computationally expensive process due to memory latency. The
matrix transpose is implemented for squared matrices with dimensions of 32 × 32, 64 × 64,
and 128 × 128, respectively. Table 10 presents the required clock cycles for the different
implementations of the matrix transpose, while Table 11 shows the DTR for a 128 × 128
matrix transpose. Finally, Table 12 presents the performance in clock cycles when working

Figure 7. Pipeline optimization for VEC-FFT data reordering (16,384 points) using three IPs. For easy
assessment, different colors are employed.

The FPGA works at 100 MHz; therefore, it requires more time to execute the algorithm
than the CPU, which works at 3.6 GHz. The time difference is used to perform three
additional VEC-FFT reorderings in the CPU; this means that the CPU and the FPGA work
in parallel. The results in clock cycles of such evaluations are presented in Table 9. These
were measured in SW, with a frequency of 3.6 GHz.

Table 9. RX/TX data throughput in clock cycles: SW vs. HW with three VEC-FFT Data Reordering
IPs, the green background shows the best performance.

Six VEC-FFT Data Reordering of 16,384 Points

8 cycles of 100 K repetitions

SW
HWwith 3 IPs

(3 VEC-FFT Reorderingin
CPU)

1,169,660 1,159,188
1,163,704 1,143,108
1,149,216 1,153,364
1,165,484 1,156,580
1,159,100 1,148,352
1,149,184 1,154,900
1,169,496 1,160,336
1,159,256 1,150,128

Throughput 4.105 GB/s 4.127 GB/s

Electronics 2023, 12, 2558 19 of 28

5.2. Matrix Transpose

As mentioned in the introduction, the proposed HW architecture offers the flexibil-
ity of using different IPs. Therefore, for demonstration purposes, a matrix transpose
IP is developed, another computationally expensive process due to memory latency.
The matrix transpose is implemented for squared matrices with dimensions of 32 × 32,
64 × 64, and 128 × 128, respectively. Table 10 presents the required clock cycles for the
different implementations of the matrix transpose, while Table 11 shows the DTR for a
128 × 128 matrix transpose. Finally, Table 12 presents the performance in clock cycles
when working with three IPs and performing the transpose of three 128 × 128 matrices.
Measurements in Table 12 are performed at 3.6 GHz.

Table 10. Matrix transpose measured in clock cycles: CPU vs. FPGA.

Matrix Transpose

CPU vs. FPGA in Clock Cycles

CPU FPGA Size (N ×M)

10,424 1041 32× 32
38,505 4113 64× 64
210,928 16,401 128× 128

Table 11. RX/TX data throughput: SW vs. HW of 128 × 128 Matrix Transpose, the green background
shows the best performance.

128 × 128 Matrix Transpose

8 cycles of 10 K
repetitions

SW
HW

TX RX
90.67 µs 40.17 µs 40.07 µs
90.50 µs 40.20 µs 40.06 µs
90.53 µs 40.20 µs 40.08 µs
90.52 µs 40.19 µs 40.06 µs
90.71 µs 40.25 µs 40.10 µs
92.11 µs 40.38 µs 40.03 µs
90.67 µs 40.21 µs 40.02 µs
90.66 µs 40.27 µs 40.07 µs

Throughput 1.4483 GB/s 1.6314 GB/s 1.6375 GB/s

Table 12. RX/TX data throughput in clock cycles: SW vs. HW with three 128× 128 Matrix Transposes
IPs, the green background shows the best performance.

Three 128 × 128 Matrix Transposes

8 cycles of 10 K repetitions

SW HWwith 3 IPs
646,959 279,195
633,711 281,649
629,814 281,325
619,368 281,310
631,227 279,813
660,726 279,978
629,667 281,460
627,411 280,152

Throughput 2.285 GB/s 2.5 GB/s

Electronics 2023, 12, 2558 20 of 28

5.3. Power Consumption

Reports on power consumption can be generated with the Vivado design suite [26].
As an example, for the development board xc7z045ffg900-2, we present in Figure 8 the
power consumption of a single IP for the reordering stage of VEC-FFT (1024 points). The
environmental parameters include an Output Load of 0 pF, an ambient temperature of
40 ◦C, and an Airflow of 500 linear feet per minute. The report yielded a total consumption
of 2.174 W, of which 1.716 W are related to RIFFA, 0.136 W to the IP accelerator, and
0.322 W to other factors.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 26

components, including the VEC-FFT IP, memories, and channels. Additionally, the RIFFA

framework contributes to the overall power consumption, with a linear increase of

approximately 0.123 W per channel (because RIFFA’s architecture is modified to use more

channels). This information highlights the direct impact of the number of FFT reorderings

and channels on power consumption in the system. As the number of FFT reorderings or

channels increases, the power consumption rises accordingly. It is important to consider

such a trend in power consumption when designing and implementing on-board SAR

systems, as it directly affects the system’s overall power requirements and efficiency.

Figure 8. Power consumption report: single IP for the reordering stage of VEC-FFT.

Figure 9. Total on-chip power consumption: multiple IPs for the reordering stage of VEC-FFT.

6. Discussion

Table 6 and Table 10 present the processing clock cycles required for each

implementation of VEC-FFT data reordering and matrix transpose, respectively. As can

be observed, HW implementations perform better than SW implementations when a large

amount of memory access is required. In Table 10, for example, the FPGA presents a

significant improvement in clock cycles in contrast to the CPU since the matrix transpose

consists of a series of value changes in memory. The FPGA performs multiple memory

accesses when storing and loading multiple data sets at the same time.

Concerning Table 7, at first glance, it might seem that FFTW SIMD has better

performance than VEC-FFT+HW IP; however, recall that the FPGA is capable of executing

0.0 W

0.5 W

1.0 W

1.5 W

2.0 W

2.5 W

Total On-Chip power RIFFA FFT reorder IP

Power consumption

RIFFA Top FFT reorder Others PCIe Gen 2 x 4

RIFFA wrapped FFT reorder IP Memories Channel

0.0 W

0.5 W

1.0 W

1.5 W

2.0 W

2.5 W

3.0 W

3.5 W

4.0 W

4.5 W

FFT reorder IP 2 FFT reorder IP 4 FFT reorder IP 6 FFT reorder IP

Total On-Chip power consumption

PCIe Gen 2 x 4 RIFFA wrapped FFT reorder function Others

Figure 8. Power consumption report: single IP for the reordering stage of VEC-FFT.

Figure 9 depicts the total power consumption associated with multiple IPs. The
graph exhibits a linear relationship, indicating that the power consumption increases
by approximately 0.132 W for each FFT reordering. Power consumption encompasses
several components, including the VEC-FFT IP, memories, and channels. Additionally,
the RIFFA framework contributes to the overall power consumption, with a linear in-
crease of approximately 0.123 W per channel (because RIFFA’s architecture is modified
to use more channels). This information highlights the direct impact of the number of
FFT reorderings and channels on power consumption in the system. As the number of
FFT reorderings or channels increases, the power consumption rises accordingly. It is
important to consider such a trend in power consumption when designing and implement-
ing on-board SAR systems, as it directly affects the system’s overall power requirements
and efficiency.

Electronics 2023, 12, 2558 21 of 28

Electronics 2023, 12, x FOR PEER REVIEW 19 of 26

components, including the VEC-FFT IP, memories, and channels. Additionally, the RIFFA

framework contributes to the overall power consumption, with a linear increase of

approximately 0.123 W per channel (because RIFFA’s architecture is modified to use more

channels). This information highlights the direct impact of the number of FFT reorderings

and channels on power consumption in the system. As the number of FFT reorderings or

channels increases, the power consumption rises accordingly. It is important to consider

such a trend in power consumption when designing and implementing on-board SAR

systems, as it directly affects the system’s overall power requirements and efficiency.

Figure 8. Power consumption report: single IP for the reordering stage of VEC-FFT.

Figure 9. Total on-chip power consumption: multiple IPs for the reordering stage of VEC-FFT.

6. Discussion

Table 6 and Table 10 present the processing clock cycles required for each

implementation of VEC-FFT data reordering and matrix transpose, respectively. As can

be observed, HW implementations perform better than SW implementations when a large

amount of memory access is required. In Table 10, for example, the FPGA presents a

significant improvement in clock cycles in contrast to the CPU since the matrix transpose

consists of a series of value changes in memory. The FPGA performs multiple memory

accesses when storing and loading multiple data sets at the same time.

Concerning Table 7, at first glance, it might seem that FFTW SIMD has better

performance than VEC-FFT+HW IP; however, recall that the FPGA is capable of executing

0.0 W

0.5 W

1.0 W

1.5 W

2.0 W

2.5 W

Total On-Chip power RIFFA FFT reorder IP

Power consumption

RIFFA Top FFT reorder Others PCIe Gen 2 x 4

RIFFA wrapped FFT reorder IP Memories Channel

0.0 W

0.5 W

1.0 W

1.5 W

2.0 W

2.5 W

3.0 W

3.5 W

4.0 W

4.5 W

FFT reorder IP 2 FFT reorder IP 4 FFT reorder IP 6 FFT reorder IP

Total On-Chip power consumption

PCIe Gen 2 x 4 RIFFA wrapped FFT reorder function Others

Figure 9. Total on-chip power consumption: multiple IPs for the reordering stage of VEC-FFT.

6. Discussion

Tables 6 and 10 present the processing clock cycles required for each implementation
of VEC-FFT data reordering and matrix transpose, respectively. As can be observed, HW
implementations perform better than SW implementations when a large amount of memory
access is required. In Table 10, for example, the FPGA presents a significant improvement
in clock cycles in contrast to the CPU since the matrix transpose consists of a series of value
changes in memory. The FPGA performs multiple memory accesses when storing and
loading multiple data sets at the same time.

Concerning Table 7, at first glance, it might seem that FFTW SIMD has better per-
formance than VEC-FFT+HW IP; however, recall that the FPGA is capable of executing
multiple IPs at the same time. This means that, using the same clock cycles, VEC-FFT+HW
IP can perform as many FFT reorderings as there are IPs.

Tables 8 and 11 present the attained DTR for VEC-FFT data reordering (16,384 points)
and 128 × 128 matrix transpose, correspondingly, using the CPU clock as reference. On the
other hand, Tables 9 and 12 consider the same cases, respectively, but with multiple (three)
IPs. As can be seen, the data throughput increases when multiple IPs are used and higher
parallel processing is performed. For the particular case of VEC-FFT data reordering, the
achieved data throughput is above the DTR defined (limited) by the PCIe port since both
the CPU and FPGA perform the VEC-FFT data reordering, as depicted in Figure 7.

Figure 8 shows the power consumption of a single IP for the reordering stage of
VEC-FFT (1024 points), using the FPGA xc7z045ffg900-2. As can be observed, the PCIe
ports consume most of the power. An increase in power consumption is expected with
more IPs, but it is still lower in comparison to the PCIe ports.

Power consumption depends on the architecture and the implemented system. The
addressed implementation consumes 2.174 W with one VEC-FFT IP and two channels,
2.577 W with two VEC-FFT IP and four channels, 3.337 W with four VEC-FFT IP and
eight channels, and 3.838 W with six VEC-FFT IP and twelve channels. It is important to
note that the implemented system can be further optimized to achieve more efficient
power consumption. For example, in the case of VEC-FFT data reordering, modify-
ing the system to use a single channel can result in a power saving of approximately
0.123 W. Additionally, when power consumption is a primary constraint, optimizations
that prioritize lower power consumption can be chosen instead of lower latency.

On-board SAR systems have specific requirements that depend on the application and
platform. These requirements include compact size and weight to accommodate the limited

Electronics 2023, 12, 2558 22 of 28

space and weight constraints of airborne and spaceborne platforms like drones or satellites.
Power efficiency is crucial to ensuring longer mission endurance and minimal energy con-
sumption, considering the limited power sources available. Real-time processing capability
is essential for rapid data acquisition, processing, and image reconstruction to provide
timely and actionable information. High-resolution imaging is a requirement to capture
detailed images of the Earth’s surface, necessitating the use of sensors and algorithms that
can achieve the desired resolution. On-board systems should also consider data storage
and transmission capabilities, including sufficient storage capacity, data compression tech-
niques, and efficient data transfer methods. Furthermore, on-board SAR systems must be
designed to withstand harsh environmental conditions encountered during aerial or space-
borne missions, ensuring resilience to temperature variations, vibration, electromagnetic
interference, and external elements.

Overall, on-board SAR systems must be compact, power-efficient, capable of real-
time processing, and able to capture high-resolution images. They need to integrate
sensors effectively, facilitate data storage and transmission, and exhibit resilience in harsh
environments. Adapting the system design to meet the specific requirements of each
application and platform is vital for successful deployment and data acquisition.

The combination of FPGA and CPU implementations using a PCIe interface offers
several advantages for SAR systems. It leverages the parallel processing power of FPGAs
alongside the flexibility and customizability of CPUs, resulting in the accelerated execution
of computationally intensive SAR algorithms. The PCIe interface facilitates efficient data
transfer between the FPGA and CPU, enabling seamless communication and real-time pro-
cessing. This implementation optimizes resource utilization, reduces power consumption,
and provides scalability options for handling varying processing requirements.

This study utilizes PCIe 2.0 with four lanes, reaching a maximum DTR of 2 GB/s,
limited by the PCIe technology. In order to achieve the same or better performance than
the CPU, a different PCIe technology might be employed. Correspondingly, Figure 10
shows the DTR for different PCIe technologies and the number of lanes. For example, PCIe
1.0 with four lanes attains a maximum DTR of 1 GB/s, whereas more recent versions
of PCIe with four lanes attain a maximum DTR of 2 GB/s, 3.9 GB/s, 7.8 GB/s, and
15.7 GB/s for PCIe 2.0, 3.0, 4.0, and 5.0, respectively. Note that increasing the number of
lanes increases the DTR achieved.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 26

1.0 with four lanes attains a maximum DTR of 1 GB/s, whereas more recent versions of
PCIe with four lanes attain a maximum DTR of 2 GB/s, 3.9 GB/s, 7.8 GB/s, and 15.7 GB/s
for PCIe 2.0, 3.0, 4.0, and 5.0, respectively. Note that increasing the number of lanes
increases the DTR achieved.

PCIe DTR for 128 × 128 matrix.

Figure 10. Comparative table of PCIe DTR for different versions and numbers of lanes. Each color
depicts different performance in comparison to CPU processing: red = lower performance; yellow =
equal performance; and green = higher performance.

A suitable PCIe technology and the addition of more FPGAs increase parallel
processing capacity, overcoming CPU measurements easily. For instance, PCIe 2.0 with
16 lanes attains a theoretical DTR of 8 GB/s, or about 7.4 GB/s in practice. For VEC-FFT
data reordering of 16,384 points, such technology reduces the TX/RX time from 61.43 μs
(see Table 8) to 35.43 μs, i.e., approximately 26 μs less than the CPU. This technology is
available on multiple boards, e.g., the Xilinx Virtex-7 FPGA VC709, the Solar Express 125,
and the XUP-PL4. Moreover, RIFFA [17] supports using a maximum of five FPGAs per
system with PCIe 3.0 or previous versions; also, since RIFFA works with a direct memory
access engine, it could be upgraded to PCIe 4.0.

In the context of wider expectations and requirements in on-board SAR processing,
the proposed methodology aligns with the need for real-time and efficient data
processing. The high DTR achieved, up to 15.7 GB/s, through the PCIe interface developed
using RIFFA addresses the challenge of data downlink by minimizing transfer bottlenecks
and enabling faster communication between the CPU and FPGA. This capability is vital
for on-board SAR systems, where timely and efficient data transfer is crucial for real-time
decision-making and analysis. As mentioned, the data size with three channels for MMTI
with 0.5 m × 0.5 m resolution is about 210 GB; correspondingly, with a DTR of 15.7 GB/s,
the transfer bottlenecks are significantly reduced.

Electromagnetic interference avoidance is a relevant factor in SAR space missions.
Accordingly, the proposed methodology allows the employing of space-grade FPGAs like
the Xilinx Virtex-5QV FX130 and Microsemi RTG4, which have an average power
consumption of 9.97 W and 3.91 W, respectively [9].

The choice of optimizations and the balance between power consumption and
processing capacity will ultimately depend on the specific requirements and constraints
of the project. As highlighted previously, there is a direct relationship between power
consumption and processing capacity, necessitating careful consideration and trade-offs
to achieve the desired system performance while optimizing power efficiency.

Related to a GPU implementation, leaving aside the limitations of GPUs for space
missions, GPU accelerators offer significant advantages for SAR processing. Their parallel
processing capabilities allow for simultaneous computation on multiple data elements,
making them well-suited for SAR algorithms. GPUs provide high computational power,
enabling faster processing and analysis of SAR data compared to CPU-based approaches.
With careful optimization and algorithm design, GPUs can deliver substantial speedups.
Additionally, GPU libraries, such as cuFFT and cuBLAS, provide optimized functions for
efficient SAR data processing. However, GPUs present limitations. Memory constraints
and bandwidth limitations can pose challenges when dealing with large datasets. Some

Figure 10. Comparative table of PCIe DTR for different versions and numbers of lanes. Each
color depicts different performance in comparison to CPU processing: red = lower performance;
yellow = equal performance; and green = higher performance.

A suitable PCIe technology and the addition of more FPGAs increase parallel pro-
cessing capacity, overcoming CPU measurements easily. For instance, PCIe 2.0 with
16 lanes attains a theoretical DTR of 8 GB/s, or about 7.4 GB/s in practice. For VEC-
FFT data reordering of 16,384 points, such technology reduces the TX/RX time from
61.43 µs (see Table 8) to 35.43 µs, i.e., approximately 26 µs less than the CPU. This technol-
ogy is available on multiple boards, e.g., the Xilinx Virtex-7 FPGA VC709, the Solar Express
125, and the XUP-PL4. Moreover, RIFFA [17] supports using a maximum of five FPGAs per
system with PCIe 3.0 or previous versions; also, since RIFFA works with a direct memory
access engine, it could be upgraded to PCIe 4.0.

Electronics 2023, 12, 2558 23 of 28

In the context of wider expectations and requirements in on-board SAR processing,
the proposed methodology aligns with the need for real-time and efficient data processing.
The high DTR achieved, up to 15.7 GB/s, through the PCIe interface developed using
RIFFA addresses the challenge of data downlink by minimizing transfer bottlenecks and
enabling faster communication between the CPU and FPGA. This capability is vital for
on-board SAR systems, where timely and efficient data transfer is crucial for real-time
decision-making and analysis. As mentioned, the data size with three channels for MMTI
with 0.5 m × 0.5 m resolution is about 210 GB; correspondingly, with a DTR of 15.7 GB/s,
the transfer bottlenecks are significantly reduced.

Electromagnetic interference avoidance is a relevant factor in SAR space missions.
Accordingly, the proposed methodology allows the employing of space-grade FPGAs
like the Xilinx Virtex-5QV FX130 and Microsemi RTG4, which have an average power
consumption of 9.97 W and 3.91 W, respectively [9].

The choice of optimizations and the balance between power consumption and pro-
cessing capacity will ultimately depend on the specific requirements and constraints of the
project. As highlighted previously, there is a direct relationship between power consump-
tion and processing capacity, necessitating careful consideration and trade-offs to achieve
the desired system performance while optimizing power efficiency.

Related to a GPU implementation, leaving aside the limitations of GPUs for space
missions, GPU accelerators offer significant advantages for SAR processing. Their parallel
processing capabilities allow for simultaneous computation on multiple data elements,
making them well-suited for SAR algorithms. GPUs provide high computational power,
enabling faster processing and analysis of SAR data compared to CPU-based approaches.
With careful optimization and algorithm design, GPUs can deliver substantial speedups.
Additionally, GPU libraries, such as cuFFT and cuBLAS, provide optimized functions for
efficient SAR data processing. However, GPUs present limitations. Memory constraints
and bandwidth limitations can pose challenges when dealing with large datasets. Some
SAR algorithms may not be easily parallelizable or may have irregular data access patterns,
affecting GPU performance. GPU programming complexity and power consumption are
additional considerations. Despite these limitations, GPUs remain a valuable tool for
SAR processing, and with careful optimization and algorithm design, they can provide
substantial speedups compared to CPU-based approaches.

Although multiple implementations with low-power GPUs (Jetson TX1, Jetson TX2,
or Jetson Nano) of on-board SAR processing have been made, such as [11,12], the amount
of data that these low-power GPUs can process is limited. On the other hand, the use of
GPUs with higher processing capacity, such as the one mentioned in [7] (the Tesla K10 GPU
Accelerator), has a power consumption of more than 150 W, which is a factor to consider in
on-board processing.

The advantages of the addressed methodology include the utilization of HLS to create
IP blocks and RIFFA to develop a PCIe interface. Employing HLS significantly reduces
development time, typically between fivefold and tenfold [15,16]. This accelerates the
design process and enables faster iterations and optimizations, which is one of the primary
constraints in multiple on-board SAR implementations regarding FPGA implementations,
as mentioned in [4,7–9].

Additionally, HLS offers several optimizations, including pipeline, cyclic partition,
and unroll techniques, which can further enhance the performance of the FPGA-based SAR
processing routines. These optimizations contribute to improved efficiency and resource
utilization, allowing for better utilization of the FPGA’s capabilities. E.g., the FFT could be
implemented with the radix-8 algorithm, and instead of using eight memories as shown
in Figure 6, sixteen memories would be used, and eight data sets would be processed at a
time instead of four.

The RIFFA framework facilitates the use of up to five FPGAs, with the potential for
multiple IPs to be implemented in each FPGA. This scalability ensures that the methodology

Electronics 2023, 12, 2558 24 of 28

can handle more complex SAR processing tasks or accommodate larger data volumes,
enhancing its applicability to different scenarios.

In comparison to existing approaches, the proposed methodology stands out by
leveraging the combined advantages of HLS, IP blocks, RIFFA, and FPGA accelerators.
While individual components and techniques have been employed in previous research,
their integration and application specifically for on-board SAR processing is relatively
novel. By capitalizing on these technologies, the methodology tackles the limitations and
challenges faced by conventional approaches, such as time-consuming development cycles,
limited scalability, and suboptimal processing efficiency.

Nevertheless, the use of FPGA accelerators presents some disadvantages that need
to be considered. One significant disadvantage is the resource consumption of FPGA
accelerators. FPGA designs require careful management of resources such as logic elements,
memory, and interconnects. Implementing SAR processing algorithms on FPGAs can be
resource-intensive, potentially requiring larger and more expensive FPGA devices to
accommodate the computational requirements. This can increase the overall cost of the
on-board SAR system. Additionally, FPGA accelerators may operate at lower frequencies
compared to other processing technologies like CPUs or GPUs. This lower operating
frequency can limit the processing speed and real-time capabilities of on-board SAR systems,
affecting their ability to handle time-sensitive tasks efficiently.

The implementation code of this article can be found in a public GitHub reposi-
tory: https://github.com/Baungarten-CINVESTAV/Towards-On-Board-SAR-Processing-
with-FPGA-Accelerators-and-a-PCIe-Interface (accessed on 11 April 2023). The repository
consists of three main folders:

i. HLS: contains the files related to the optimizations presented in Tables 4 and 5 and
the VEC-FFT reordering implementation for different data sizes.

a. FFT_Optimization_test: scripts and reports of the addressed HLS optimiza-
tions for VEC-FFT reordering.

b. Transpose_Optimization_test: scripts and reports of the different HLS opti-
mizations for matrix transpose.

c. FFT_Reorder_x_num: scripts and reports of the VEC-FFT reordering function
for different data sizes, using cyclic partition.

ii. Riffa_Scripts: provides the C code used to measure the number of clock cycles and
to transfer the data from the CPU to the FPGA and vice versa.

iii. Verilog: contains the Verilog files and performance reports of the schematic pre-
sented in Figure 4.

A readme file in the GitHub repository explains the points above in detail.

7. Conclusions

Aimed at incorporating FPGA accelerators into on-board SAR processing algorithms,
this article introduces a novel methodology to combine HW and SW via PCIe.
Two main tools are employed, the HLS synthesizer (i.e., Vivado HLS) and RIFFA, re-
ducing development time significantly (between fivefold and tenfold) and attaining high
transfer speeds, up to 15.7 GB/s for PCIe 3.0 with 16 lanes. HLS is a fast and efficient
way of creating IPs by transforming high-level programming languages (e.g., C/C++,
System C, or OpenCL) into HDL (i.e., Verilog or VHDL). Furthermore, it also permits easily
implementing optimizations like pipeline, unroll, and array partition. RIFFA, on the other
hand, provides a framework that works directly with the PCIe endpoint; therefore, it is no
longer necessary to implement PCIe communication.

The development of onboard SAR systems presents various challenges and consid-
erations. These systems must meet specific requirements such as compact size, power
efficiency, real-time processing capability, high-resolution imaging, and resilience to harsh
environmental conditions. Integrating FPGA accelerators with a CPU using a PCIe interface
offers several advantages for on-board SAR processing. The PCIe interface ensures efficient

https://github.com/Baungarten-CINVESTAV/Towards-On-Board-SAR-Processing-with-FPGA-Accelerators-and-a-PCIe-Interface
https://github.com/Baungarten-CINVESTAV/Towards-On-Board-SAR-Processing-with-FPGA-Accelerators-and-a-PCIe-Interface

Electronics 2023, 12, 2558 25 of 28

data transfer between the FPGA and CPU (up to 15.7 GB/s using the current methodol-
ogy), minimizing bottlenecks and enabling high-speed communication. The FPGA’s high
parallelism and customizable nature enhance the acceleration of computationally intensive
SAR algorithms, keeping the high parallelism through multiple IPs and optimizations. The
scalability of the implementation allows for handling large data sizes, ensuring efficient
processing, and up to five FPGAs can be used per system. However, it is important to note
that FPGA accelerators also have disadvantages, including logic resource consumption
and cost implications due to the need for larger FPGA devices. Additionally, the lower
operating frequency of FPGAs compared to CPUs or GPUs may impact real-time process-
ing capabilities. Despite these limitations, the FPGA+CPU implementation with a PCIe
interface remains a promising solution for on-board SAR processing, enabling efficient and
high-performance data processing.

In order to exemplify the advantages of the suggested methodology, we refer to the
VEC-FFT algorithm [18]. VEC-FFT retrieves results in reversed bit order, and the reordering
stage consumes more than half of the total clock cycles. Therefore, an FPGA accelerator for
the data reordering function is developed that communicates via PCIe with a CPU, where
the rest of the VEC-FFT algorithm is implemented.

Modular and scalar implementations are possible, meaning that the IPs are inter-
changeable and/or have multiple instantiations. For demonstration purposes, the original
(reordering) IP is replaced by an IP that performs the computationally expensive matrix
transpose. Experimental results show the capabilities of the introduced methodology,
together with the main advantages of parallel processing. The proposed solution allows for
the use of different PCIe technologies according to specific needs. Being scalable, up to five
FPGAs can be employed, each with multiple IPs.

The comparisons between CPU and FPGA for VEC-FFT re-encoding reveal similar
performance levels. However, it is important to consider the limitations of the ZC706 board
used in these comparisons. The ZC706 board operates at a working frequency of 100 MHz
and utilizes PCIe 2.0 with 4 lanes. Despite these limitations, the FPGA still demonstrates
competitive performance. To further enhance performance, one could explore the use of an
FPGA with a higher working frequency or leverage more advanced PCIe technology.

Moreover, in the case of matrix transpose, the FPGA outperforms the CPU, high-
lighting the inherent advantages of FPGA-based processing. Even with the limitations
imposed by the ZC706 board, the FPGA demonstrates favorable performance in this sce-
nario. This underscores the potential of FPGAs for accelerating computational tasks such as
matrix operations.

The current research and methodology provide a practical guide for developing FPGA
accelerators quickly and efficiently using HLS. The creation of modular IPs offers the
advantage of reusability, allowing the same IP to be utilized for different SAR algorithms.
Furthermore, the integration of the RIFFA framework offers a robust infrastructure for
efficient communication between the FPGA and the CPU, significantly minimizing bottle-
necks and enabling parallel processing capabilities. The direct DMA provided by RIFFA
facilitates seamless data transfer between the FPGA and the CPU, further enhancing the
overall performance of the system.

This research serves as a valuable resource for developers seeking to harness the
power of FPGAs for accelerating SAR processing and similar applications. By following
the presented methodology, developers can achieve faster development cycles, improved
performance, and enhanced efficiency in FPGA-based accelerator designs.

Author Contributions: Conceptualization, E.I.B.-L., G.D.M.-d.-C.-B. and S.O.-C.; methodology, E.I.B.-
L. and S.O.-C.; software, E.I.B.-L., S.O.-C. and M.S.; validation, E.I.B.-L., G.D.M.-d.-C.-B., S.O.-C., M.S.,
J.R. and A.R.; formal analysis, E.I.B.-L., G.D.M.-d.-C.-B., S.O.-C., M.S., J.R. and A.R.; investigation,
E.I.B.-L. and G.D.M.-d.-C.-B.; resources, E.I.B.-L., S.O.-C., J.R. and A.R.; data curation, E.I.B.-L.,
G.D.M.-d.-C.-B. and M.S.; writing—original draft preparation, E.I.B.-L.; writing—review and editing,
E.I.B.-L., G.D.M.-d.-C.-B., S.O.-C., M.S., J.R. and A.R.; supervision, G.D.M.-d.-C.-B. and S.O.-C.; project

Electronics 2023, 12, 2558 26 of 28

administration, G.D.M.-d.-C.-B., and S.O.-C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. System resources used for this research.

Processor Name Intel Core i3-4160

Code Name: Haswell
Cores: 2
L1 Data cache: 64 KB
L1 Inst cache: 64 KB
L2 cache: 512 KB
L3 cache: 3072 KB
Base frequency: 3.6 GHz

Memory Type DDR 3

Capacity 16 (2 × 8) GB
Frequency 667 MHz
CL 9 Clocks
tRC 49.5 ns
rRFC 260 ns
tRAS 36 ns

Operating System Linux

Distribution Ubuntu 18.04 LTS
Version 18.04 LTS (64 bits)

Appendix B

Table A2. System resources in [18].

Processor Name Intel Core i7 8700

Code Name: Coffee Lake
Cores: 6
L1 Data cache: 32 KB
L1 Inst cache: 32 KB
L2 cache: 256 KB
L3 cache: 12,288 KB
Base frequency: 3.2 GHz

Memory Type DDR 4

Capacity 64 (2 × 32) GB
Frequency 2333 MHz
CL 15 Clocks
tRC 15 Clocks
rRFC 15 Clocks
tRAS 15 Clocks

Operating System Linux

Distribution Ubuntu 18.04 LTS
Version 18.04 LTS (64 bits)

Electronics 2023, 12, 2558 27 of 28

References
1. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE

Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]
2. Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11.
3. Reigber, A.; Scheiber, R.; Jager, M.; Prats-Iraola, P.; Hajnsek, I.; Jagdhuber, T.; Papathanassiou, K.P.; Nannini, M.; Aguilera, E.;

Baumgartner, S.; et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications. Proc.
IEEE 2021, 101, 759–783. [CrossRef]

4. Yu, W.; Xie, Y.; Lu, D.; Li, B.; Chen, H.; Chen, L. Algorithm implementation of on-board SAR imaging on FPGA+ DSP platform.
In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China,
11–13 December 2019; pp. 1–5.

5. Zhang, Y.; Qu, T. Focusing highly squinted missile-borne SAR data using azimuth frequency nonlinear chirp scaling algorithm.
J. Real-Time Image Process. 2021, 18, 1301–1308. [CrossRef]

6. Chen, X.; Yi, T.; He, F.; He, Z.; Dong, Z. An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem
for High-Resolution Low Frequency Synthetic Aperture Radar Imaging. Remote Sens. 2019, 11, 1874. [CrossRef]

7. Wang, S.; Zhang, S.; Huang, X.; An, J.; Chang, L. A highly efficient heterogeneous processor for SAR imaging. Sensors 2019, 19,
3409. [CrossRef] [PubMed]

8. Li, B.; Li, C.; Xie, Y.; Chen, L.; Shi, H.; Deng, Y. A SoPC based fixed point system for spaceborne SAR real-time imaging processing.
In Proceedings of the 2018 IEEE High Performance extreme Computing Conference, Waltham, MA, USA, 25–27 September 2018;
pp. 1–6.

9. Lovelly, T.M.; George, A.D. Comparative analysis of present and future space-grade processors with device metrics. J. Aerosp. Inf.
Syst. 2017, 14, 184–197. [CrossRef]

10. Towfic, Z.; Ogbe, D.; Sauvageau, J.; Sheldon, D.; Jongeling, A.; Chien, S.; Mirza, F.; Dunkel, E.; Swope, J.; Ogut, M. Benchmarking
and testing of Qualcomm snapdragon system-on-chip for JPL space applications and missions. In Proceedings of the 2022 IEEE
Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA; pp. 1–12.

11. Pavlov, V.A.; Belov, A.A.; Tuzova, A.A. Implementation of synthetic aperture radar processing algorithms on the Jetson TX1
platform. In Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St.
Petersburg, Russia, 17–18 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 90–93.

12. Svedin, J.; Bernland, A.; Gustafsson, A.; Claar, E.; Luong, J. Small UAV-based SAR system using low-cost radar, position, and
attitude sensors with onboard imaging capability. Int. J. Microw. Wirel. Technol. 2021, 13, 602–613. [CrossRef]

13. Schlemon, M.; Scheiber, R.; Baumgartner, S.; Joshi, S.K.; Jaeger, M.; Pasch, S. On-board Processing Architecture of DLR’s
DBFSAR/V-SAR System. In Proceedings of the EUSAR 2022, 14th European Conference on Synthetic Aperture Radar, Leipzig,
Germany, 25–27 July 2022; pp. 1–5.

14. High-Level Synthesis, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15.
15. Pelcat, M.; Bourrasset, C.; Maggiani, L.; Berry, F. Design productivity of a high level synthesis compiler versus HDL. In

Proceedings of the 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation,
Agios Konstantinos, Greece, 17–21 July 2016; pp. 140–147.

16. Zamiri, E.; Sanchez, A.; Yushkova, M.; Martínez-García, M.S.; de Castro, A. Comparison of different design alternatives for
hardware-in-the-loop of power converters. Electronics 2021, 10, 926. [CrossRef]

17. Jacobsen, M.; Richmond, D.; Hogains, M.; Kastner, R. RIFFA 2.1: A reusable integration framework for FPGA accelerators. ACM
Trans. Reconfigurable Technol. Syst. 2015, 8, 1–23. [CrossRef]

18. Schlemon, M.; Naghmouchi, J. Fft optimizations and performance assessment targeted towards satellite and airborne radar
processing. In Proceedings of the 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance
Computing, Porto, Portugal, 9–11 September 2020; pp. 313–320.

19. Wu, J.; Xu, Y.; Zhong, X.; Sun, Z.; Yang, J. A three-dimensional localization method for multistatic sar based on numerical
range-doppler algorithm and entropy minimization. Remote Sens. 2017, 9, 470. [CrossRef]

20. Işıker, H.; Özdemir, C. Adaptation of stepped frequency continuous waveform to range-Doppler algorithm for SAR signal
processing. Digit. Signal Process. 2020, 106, 102826. [CrossRef]

21. Wu, S.; Wang, H.; Li, C.; Liu, X.; Fang, G. A modified Omega-K algorithm for near-field single-frequency MIMO-arc-array-based
azimuth imaging. IEEE Trans. Antennas Propag. 2021, 69, 4909–4922. [CrossRef]

22. Liu, W.; Sun, G.C.; Xia, X.G.; You, D.; Xing, M.; Bao, Z. Highly squinted MEO SAR focusing based on extended
Omega-K algorithm and modified joint time and Doppler resampling. IEEE Trans. Geosci. Remote Sens. 2019, 57,
9188–9200. [CrossRef]

23. Wang, C.; Su, W.; Gu, H.; Yang, J. Focusing bistatic forward-looking synthetic aperture radar based on an improved hyperbolic
range model and a modified Omega-K algorithm. Sensors 2019, 19, 3792. [CrossRef]

24. Rao, K.R.; Kim, D.N.; Hwang, J.J. Fast Fourier Transform: Algorithms and Applications; Springer: Dordrecht, The Netherlands, 2010;
Volume 32.

25. Intel Corporation. Intrinsics Guide. Available online: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#=
undefined&techs=FMA&expand=2297,3924,4202,2607,2755,2553&text=256 (accessed on 14 April 2023).

26. Feist, T. Vivado design suite. White Pap. 2012, 5, 30.

https://doi.org/10.1109/MGRS.2013.2248301
https://doi.org/10.1109/JPROC.2012.2220511
https://doi.org/10.1007/s11554-021-01135-6
https://doi.org/10.3390/rs11161874
https://doi.org/10.3390/s19153409
https://www.ncbi.nlm.nih.gov/pubmed/31382640
https://doi.org/10.2514/1.I010472
https://doi.org/10.1017/S1759078721000416
https://doi.org/10.3390/electronics10080926
https://doi.org/10.1145/2815631
https://doi.org/10.3390/rs9050470
https://doi.org/10.1016/j.dsp.2020.102826
https://doi.org/10.1109/TAP.2020.3048578
https://doi.org/10.1109/TGRS.2019.2925385
https://doi.org/10.3390/s19173792
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#=undefined&techs=FMA&expand=2297,3924,4202,2607,2755,2553&text=256
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#=undefined&techs=FMA&expand=2297,3924,4202,2607,2755,2553&text=256

Electronics 2023, 12, 2558 28 of 28

27. Xilinx. Vivado Design Suite User Guide: High-Level Synthesis (UG902); Xilinx, Inc.: San Jose, CA, USA, 2020.
28. ZC706 Evaluation Board User Guide v1.8. 2019. Available online: https://www.xilinx.com/support/documentation/boards_

and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf (accessed on 14 April 2023).
29. SDAccel Development Environment Help for 2019.1. 2019. Available online: https://www.xilinx.com/html_docs/xilinx2019_1/

sdaccel_doc/hls-pragmas-okr1504034364623.html#fde1504034360078 (accessed on 14 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#fde1504034360078
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#fde1504034360078

	Introduction
	Development Tools
	High-Level Synthesis (HLS)
	HLS Optimizations
	Reusable Integration Framework for FPGA Accelerators (RIFFA)

	Integration of RIFFA
	Proof of Concept
	Vectorized Fast Fourier Transform (VEC-FFT)
	HLS IP for the Reordering Stage of VEC-FFT
	HLS IP for Matrix Transpose

	Performance Assessments
	VEC-FFT Data Reordering
	Matrix Transpose
	Power Consumption

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

