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1. Some Introductory Remarks

Aerogels are fascinating materials that exhibit a highly open-
porous nanostructured morphology. They typically possess very
low densities (<0.2 g cm�3), high porosity (up to 99.98% v/v),
low thermal conductivities (up to 0.01Wm�1K�1), and sound
velocities as low as 20m s�1.[1] The combination of such proper-
ties makes aerogels a very interesting class of materials for

industry and research alike. Aerogels are
prepared from inorganic and organic sour-
ces, can be carbonized to synthesize carbon
aerogels, and can be developed in a hybrid
as well as a composite setting.[1,2] There are
two degrees of freedom in the aerogel
development, viz. the choice of starting
material and the process after gel
formation.[3] Maneuvering through both
these degrees of freedom can result in the
generation of aerogels with very different
morphologies. Most aerogels, such as
silica, organic ones such as resorcinol-
formaldehyde (RF), melamine-formaldehyde
(MF), and carbon aerogels exhibit a particle-
aggregated morphology. There, the growth
of the aerogel networks or aggregates can
occur through aggregation either driven
by nucleation or microphase separation.
On the other hand, a few aerogels such
as those from bio-based sources, exhibit a
fibrillar morphology. There, the aerogel net-
work is formed from 3D-interconnected
fibers that are formed from aggregating

polymer chains of e.g., the unit-structured polysaccharide. These
microstructures are typically visualized by means of microscopy
images as obtained from either scanning electron microscopy
(SEM) or transmission electron microscopy (TEM). Neither of
these imaging methods give a direct possibility to reconstruct or
visualize the 3D network morphology. To this end, tomographic
methods are sought after. A few authors have reported the appli-
cation of tomographic methods such as micro-computed
tomography,[4–6] nanoholotomography,[7] TEM tomography,[8]

and 4D scanning transmission X-ray microscopy combined with
ptychographic tomography.[9,10] While all these approaches have
yielded 3D visualizations of aerogels, one thing common in all
these approaches is the limitation of length scale that can be
explored. All of these approaches can characterize the aerogels only
in the macroporous region, while most of the pore-space and sub-
sequently interesting properties arise out of the mesoporous (and
in some case, microporous) region in the aerogels. These are not
captured by the state-of-the-art techniques. However, to the best of
the knowledge of the author, there has been one report illustrating
the nanostructure of fumed silica and silica aerogels by means of
advanced electron tomography.[11] There, the network morphology
was investigated by quantifying the obtained structure in terms of
porosity, tortuosity, and network connectivity. This methodology
needs to be explored to further investigate nanostructured materi-
als like aerogels. One might ask, why is the 3D reconstruction of
the aerogel morpholgy of an importance?
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Reconstructing aerogel morphology presents significant challenges, in particular,
if 3D visualizations of their mesoporous network are desired. Available microscopic
and tomographic tools find it difficult to probe into all types of aerogels for the
purposes of reconstructing their 3D nanoporous morphology. This is where
computational approaches have shown promising efforts. Herein, diverse models
that can be applied to describing different aerogels are explored. To begin with,
cluster–cluster aggregation models are examined for simulating the sol–gel pro-
cess and the resulting morphologies in fractal aerogels, e.g., silica-based. Gaussian
random field models and polymerization-induced phase separation models are
explored for modeling organic non-fractal aerogels, e.g., resorcinol-formaldehyde
(RF) ones. This is followed by Langevin-dynamics-based discrete element models
that are explored for simulating gelation in fibrillar aerogels, e.g., those from
biopolymer sources. Lastly, modified Voronoi approaches are investigated for
describing the 3D fibrillar morphology, also of fibrillar aerogels, like those from
biopolymers. A perspective is presented highlighting the strengths as well as
shortcomings in each of the model approaches. Possibilities to either extend
available approaches or explore new ones are briefly discussed at every interval.
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A significant proportion of the aerogels’ material development
has taken place at a laboratory level. With a larger goal of reverse
engineering, the improvement of the material properties of aero-
gels demands the need for theoretical and computational models
of aerogels. This is because most of the interesting features in
aerogels arise from their structure–property relations. While sev-
eral analytical methods, e.g., nitrogen porosimetry, small-angle
scattering methods, dynamic light scattering, etc. provide signifi-
cant information about the aerogel structure, they remain
implicit. They do not deliver information about the 3D nanostruc-
ture nor correlate synthesis parameters to structural parameters
explicitly. The easiest way of developing a computational model of
a material is to design a 3D network, which is often done by
tomography followed by 3D reconstruction. Generating such
tomographic models can assist the studies of the structure-
property relations, in particular for aerogels the simulation of
the thermal or mechanical transport through the material.
This, followed by the correlation of model parameters to the syn-
thesis ones, can help reverse engineer the properties of the aero-
gels even before the lab-scale development. However, the
shortcomings arising from the length-scale limitations of these
methods have been briefly discussed earlier. To this end, the
development of numerically modeledmicrostructures that adhere
to experimentally characterized aerogels’morphology is requisite.

Computational modeling of aerogels and their properties has
advanced significantly in the last decade. Modeling approaches
have primarily opted two routes. First, molecular simulations,
and the other, mesoscale ones. Molecular models of
aerogels, particularly those using molecular dynamics-based
investigations, have evolved steadily since the first study on
modeling silica aerogels by means of negative rupturing of sil-
ica.[12] While this approach has been used by several
authors[13–17] since then to model silica aerogels, it only is strictly
capable of modeling porous silica. It does not account for pro-
cesses, such as condensation reactions, that are relevant to
develop molecular models. Howbeit, for predicting structure–
property relations, they have proven to be worthy. They have also
been extended to model structure–property relations in fiber-
reinforced aerogel composites at the molecular level.[18,19]

Recently, molecular models to describe porous graphene[20]

and their applicability to model graphene aerogels[21] have been
proposed. While these molecular-dynamics-based models have
been developed, they remain fully atomistic. Thus, their applica-
bility to model the morphology of aerogels, as seen through SEM
or TEM images, remains questionable. Although, with increas-
ing computer power, significantly large molecular models can be
developed. The largest atomistic model for silica aerogels has
been 100 nm� 100 nm� 100 nm.[16] This is a large enough scale
to describe structural features as well as thermal and mechanical
properties of aerogels. However, they demand superior
computational resources and establishing correlations between
atomistic morphologies and real aerogel morphologies can be
challenging. Furthermore, as described earlier, none of the
above-mentioned molecular modeling approaches describe or
mimic the synthesis process of aerogels at the molecular level.
This has led to several gaps between molecular models and
lab-based material development. However, the premise is prom-
ising given that such molecular dynamics-based simulations
have addressed important issues in describing hydrogels.[22–26]

With respect to aerogels, this is an important subject that needs
to be addressed, however, more elaboration at this point may
drift the reader of this article off-topic. To this end, molecular
dynamics-based models will not be considered in this article,
but a special focus will be on mesoscopic models and their appli-
cability to design the 3D morphology of aerogels.

In this article, the author desires to overview and comment on
the available approaches to computationally model aerogels, such
that they can be applied to characterize aerogels at different scales.
Aerogel morphology can be categorized into either particle-
aggregated or colloidal and fibrillar. Thus, it is important to first
know the art of the aerogel network, before proceeding with the
choice of the modeling approach. With respect to the approaches,
there are again primarily two model hypotheses. On the one hand,
the model may describe the entire process through the network
formation up to the final state of the morphology. On the other
hand, approaches may utilize a shorter path, skipping the network
formation process and directly giving the final picture of the aero-
gel as an output. Both approaches have pros and cons and these,
within the context of aerogel modeling, will be addressed. The dif-
ferent modelingmethodologies in application to designing aerogel
networks are summarized in Table 1. These approaches will be
discussed in the following sections.

2. Particle-Aggregated Aerogels

A major class of aerogels prepared from organic and inorganic
sources exhibit a particle-aggregated morphology. Figure 1
shows a TEM image of a silica aerogel and an SEM image of
an RF aerogel. One can visualize the network structure of these
aerogels to be formed from the aggregation of particles. The
images show the appearance of well-defined particles. Note that
the scale in images is nearly 2 orders of magnitude apart.
Classical silica aerogels show particle sizes in the order of a
few nanometers,[27] while flexible silica aerogels, e.g., from the
methyltrimethoxysilane recipe, exhibit particle sizes up to a
few micrometers.[28] In contrast, classical RF aerogels from
the recipe of Pekala[29] show particle sizes in a few nanometers,
while those from the recipe of Schwan and Ratke[30] as shown in
this image, exhibit much larger particle sizes. While both the
above-illustrated aerogels show a similar morphology, their struc-
tural features are quite different. Silica aerogels show a fractal

Table 1. Summary of various methods applied to computationally design
and model aerogels. DLCA: Diffusion-limited cluster–cluster aggregation,
BA: Ballistic aggregation, CG-MD: Coarse-grained molecular dynamics,
MD: All-atom molecular dynamics, CM: Constitutive model, GRF:
Gaussian random field model, PIPS: Polymer-induced phase separation,
LD-DEM: Langevin dynamics with discrete element method.

Type of aerogel Methods

Silica aerogel DLCA BA CG-MD MD CM

Organic aerogel GRF PIPS CM

Carbon aerogel DLCA

Graphene aerogel MD

Biopolymer aerogel Voronoi LD-DEM CM

Aerogel composites MD CM
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morphology, meaning that they exhibit self-similar features.
Although seemingly similar, (most) organic aerogels do not show
such fractal features.[31,32] The process of network formation in
these two aerogels is very different. Silica aerogels form bonds
purely from nucleation and growth. This means monomers form
oligomers through the condensation reactions. These evolving
entities (sol particles) undergo stochastic or nonstochastic
motions inside the solution forming clusters, and these clusters
and new oligomers further aggregate forming the network.
On the other hand organic aerogels, e.g., RF, exhibit smooth-
surfaced domains, indicating that the synthetic opportunity
afforded by kinetic growth processes is not demonstrated. The
dominant processes that determine the structure in organic aero-
gels are developed near equilibrium, accounting for the smooth-
surfaced domains correlated in a non-self-similar fashion. It was
subsequently shown that the growth in such aerogels implicates
microphase separation, induced and limited by cross-linking as
the dominant process leading to the observed morphology.[31] To
this end, in this section, several approaches to computationally
reconstruct the morphology of both types of aerogels will be
discussed.

2.1. Fractal Aerogels

As described earlier, silica aerogels are excellent examples of frac-
tal materials. They are synthesized by means of the sol–gel pro-
cess. In this process, sol particles are typically formed as a result
of chemical reactions from dissolved precursor solutions and
these particles undergo Brownianmotion and in the process start
diffusing, thus, initiating aggregation and adding up to gelation.
Chemically this process is called condensation followed by sub-
sequent gelation. Fully gelled solutions are obtained after aging.
These gels, hydrogels or alcogels, are then dried supercritically to
obtain aerogels. It remains a common assumption that the gel
structure is unaffected while drying under supercritical condi-
tions. Thus, the network in the fully gelled state and in the aero-
gel state are treated the same. This process of generating the fully
gelled network can be meticulously captured by means of the
diffusion-limited aggregation (DLA)[33] approach. Here, the
diffusion-limited cluster–cluster aggregation (DLCA)[34] is typi-
cally chosen because the clusters being formed during the sol-gel
process are themselves mobile, thus rendering the classical DLA
model useless. Hasmy et al.[35] in 1994 first showed that the scat-
tering intensity results obtained using small-angle neutron scat-
tering on silica aerogels can be matched by the scattering curves
obtained on model structures of silica aerogels described using
the DLCA model. The surface area, which for aerogels, is fractal
in nature, as well as the pore volume and size distributions could
be very well captured by such models as well as validated with
experimental data. That the aerogel models could describe the
fractal region of the scattering intensity very well was already
shown by Hasmy et al.[35] Since this publication, the application
of DLCA for describing silica aerogel networks has become
well-known.

DLCA works in the following way. One starts with defining a
simulation box with periodic boundary conditions. This is
followed by initializing N number of particles in the box.
These can be typically placed randomly or in an arranged manner
in the box. The former is preferred to agree with the real state of
sol particles. The algorithm is illustrated in Figure 2. First,
Figure 2a shows the particles initialized in the box. These par-
ticles follow the random walk theory, and whenever a particle
comes in contact with another particle, it diffuses and is consid-
ered to bond. To model contact, typically, a critical distance δcrit is
defined, such that if particle A comes within a distance x with
particle B, where x ≤ δcrit, it diffuses. This continues up to
the point that all particles and clusters are fully connected form-
ing one aggregate. This is important, because in a real aerogel
one has only a single network. However, it must be noted that
cluster–cluster aggregation may not always accurately depict the
morphology of all silica aerogels. Hüsing and Schubert[2] briefly
outlined the influence of the pH on the growth mechanism of
silica gels and aerogels. This is sketched in Figure 3a. In the lit-
erature, however, aerogels are generally modeled using the
DLCA model, the mechanism of which was illustrated and
explained earlier. The (modified or poisoned) Eden growth
model[36] has not been generally applied to study the structural
features in silica aerogels. This issue of choosing either of the two
growth mechanisms needs addressing to develop accurate digital
twins of silica aerogel networks, thus taking the pH dependence

Figure 1. a) A transmission electron microscopy (TEM) image of silica
aerogel and b) a scanning electron microscopy (SEM) image of an resor-
cinol-formaldehyde (RF) aerogel, illustrating the well-defined particle-
aggregated morphology.
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into account. A fully connected 3D network of a model silica aero-
gel, modeled by means of DLCA, can be visualized in Figure 3b.
Here, the model parameters include N, the number of particles
initialized, d, diameter of the particles, and s, step-size of the par-
ticles. The latter demonstrates how fast a particle moves. While
sufficiently largeN should eliminate any size-effects in themodel,
the parameter d can be correlated with experimental data by fol-
lowing either small-angle scattering data or dynamic light scatter-
ing one. It can be chosen to have a constant value or possess a
distribution. s may also be correlated with experimental data.
The box size together with the particles size and number of par-
ticles dictates the relative density or porosity of the model aerogel.

Alternatively, one may choose to apply other aggregation mod-
els for describing aerogels. A simple extension to this modeling
approach is the chemically or reaction-limited cluster-cluster
aggregation (RLCA).[37] This algorithm is largely the same as
DLCA, with the only modification being that not every collision
may result in aggregation. It is here that a probability is defined
to simulate diffusion. While these two approaches undergo
Brownian motion, thus appearing similar, some authors have
suggested applying ballistic aggregation for modeling aerogels.[38]

In the ballistic aggregation approach, a particle undergoes a linear
motion up to the collision. If it does not collide with another
particle even after reaching the boundary, it is given a different
trajectory. Good agreement was reported with experimental data
using such an approach. While all three approaches can model
silica aerogels, the DLCA or RLCA is more physically inclined
toward the sol–gel process, and since Hasmy et al.[39] demon-
strated the suitability of applying DLCA to model aerogels among

all other possible algorithms, most of the authors have used this
approach ever since. After this pioneering work of
Hasmy et al.,[35] the next significant step in the application of
DLCA came in the year 2000, when Ma et al.[40] applied this
modeling approach to describe the mechanical properties of sil-
ica aerogels. Now, DLCA is a purely mathematical construct
driven by the physics of Brownian motion at the mesoscale.
Since atomic degrees of freedom are neglected, there exists
no interatomic potential that can be used to calculate the energy
and forces in the network subjected to deformation. To circum-
vent this limitation, Ma et al.[40] ignored the particles in the mod-
eled network and exported the bonds between the particles into a
finite element program and treated them as beams. First, the
bond was designed by joining the centers of any two particles
as obtained in the DLCA model. Second, these were modeled
as beams because bonds under deformation can undergo three
modes of deformation, viz. stretching, bending, and torsion. All
these modes can be captured by means of a beam element. Ma
et al.[40] simulated the imported network structure under hydro-
static compression and evaluated the bulk modulus. They deter-
mined a power-law scaling between the bulk modulus K and the
relative density ρ, and was expressed as K ∝ ρ3.6. Generally, in
the aerogel literature, such relations have been used to describe
the relation between Young’s modulus E and ρ. For silica aero-
gels, this relation usually is shown to be between 3 and 4. Ma
et al.[40] also argued upon the role of dead-ends in contributing to
the compliance of aerogels. They developed models with as well
as without dead-ends, and subjected the local network structure
to hydrostatic compression, always yielding an exponent value of

Figure 2. Graphic illustrating the diffusion-limited cluster–cluster aggregation (DLCA) modeling process mimicking mechanistically the sol–gel process
of gel formation. The red particles represent single (sol) particles, while the purple ones illustrate clusters. Images generated in the authors’ research
group.

(a) (b)

Figure 3. a) Influence of pH on the growth mechanism in silica (aero)gels. Image is based on Ref. [2]. b) A model silica aerogel generated by the DLCA
algorithm with a box size of 250 nm� 250 nm� 250 nm. Image generated in the authors research group.
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3.6. They concluded that the decrease in the fraction of bonds
bearing the mechanical load in the aerogel model with decreas-
ing density is what makes the aerogel network so compliant.[41]

The dead-ends had no contribution to the mechanical stiffness
of the material. For low-density aerogels, the few bonds connect-
ing larger clusters become sources of stress concentration, leav-
ing the larger clusters unloaded. In a subsequent study, they also
showed that about 70% of the network strain energy comes from
the bending of beams.[42] As for the rest, the contribution from
torsion is over 25% leaving only a small contribution from axial
stretching energy.

Recently, this modeling approach was further extended by
Abdusalamov et al.[43] for describing the macroscopic properties
of aerogels using the DLCA network structure. In this work, we
modeled the structural and fractal features of the silica aerogels
by means of the DLCA model. The fractal properties were vali-
dated with the synthesized silica aerogels. While simulating the
mechanical properties, Ma et al.[40] simulated only the local
network structure by subjecting it to hydrostatic compression.
In our work, we applied the periodic boundary conditions in
the finite element method, which means that the bulk mechani-
cal properties of the representative volume element (RVE) of the
aerogel could be determined. The RVE was then subjected to uni-
axial compression, a test typically chosen for describing the
mechanical properties of aerogels. Interestingly, the simulation
could show the regions of stress concentration very clearly and it
was also shown that the majority of the bonds remained stress-
free (see Figure 4). The presence of backbone paths could be
visualized in 3D. This is again an important result, thus, the
inclusion of Figure 4 in this article. Such kind of backbone paths,
those that bear the majority of the subjected load leaving the rest
of the network stress-free, are observed in colloidal materi-
als.[44,45] Since uniaxial compression was simulated, we obtained
a power-law scaling for their Young’s modulus, and it was shown
to be E ∝ ρ3.61. This agreed well with available experimental
data.[46,47] Before moving the discussion forward, the author
would like to point out that better connectivity, purely from a
computational perspective, is achieved using the on-lattice algo-
rithm for simulating DLCA, compared to the off-lattice one.
Using a purely off-lattice algorithm may result, in some occa-
sions, in not having a well-formed backbone in the material.
This might explain the reason why Ma et al.[40] used the on-lattice
algorithm.

Other authors have also shown the applicability of DLCA
toward the description of silica aerogels. For example, very
recently, Borzecka et al.,[48] developed 2D DLCA and RLCA mod-
els to study the gelation kinetics in aerogels. They obtained the
condensation kinetics curves and qualitatively compared the
results to those obtained experimentally. There, quantitative
agreement could not be achieved as the models were only 2D,
while aerogels form 3D networks. However, the study was prom-
ising such that application of 3D models to do the same and per-
haps reverse engineer the gelation process of aerogels can be
realized. Another interesting report on modeling aerogels by
means of DLCA came in 2000 by Haard et al.[49] There DLCA
was applied to model helium-aerogel systems for providing esti-
mates of the quasiparticle mean free path and inter-surface spac-
ing. They simulated DLCA with particles not with a constant size
but rather the network having a distribution of particle sizes. The
mean free path was found to depend simply on the inverse of the
aerogel density. In another application of DLCA, Liu et al.[50]

developed a two-level model, a particle–particle interaction model
and a cluster–cluster model. The prior one described the inter-
actions between primary particles, where the polymerization
reaction between the primary particles was considered and the
neck properties were numerically modeled. They modeled the
neck stiffness by short-range interactions, which were modeled
by means of a modified Hertzian elastic contact theory. The frac-
ture of the interparticle neck was modeled using a critical stress
criteria, which was calculated by dividing the pull-off force with
the neck cross-section area. The cluster model was described by
means of the DLCA approach. The simulations were performed
using the discrete element method (DEM), where the motion of
particles are realized by solving their equations of motion. Model
sizes of up to 64 000 particles were simulated. The effect of the
primary particle size on the mechanical properties was studied.
A power-law scaling relation of E ∝ ρ3.88 was obtained for model
systems with a constant particle size. On accounting for the vari-
ation in connectivity and particle sizes, exponents in the range of
3.06–3.88 could be obtained. Reasonable quantitative agreement
of the Young’s modulus and tensile strength of silica aerogels
was achieved after accounting for the primary particle size
effects. It was thus shown, that the tensile properties of silica
aerogels are significantly dependent on the primary particles
sizes. Their group subsequently applied DLCA together with a
fiber model to describe the properties of fiber-reinforced silica

(a) (b) (c)

(Avg: 75%)

+0.000e+00
+4.382e+04
+8.764e+04
+1.315e+05
+1.753e+05
+2.191e+05
+2.629e+05
+3.067e+05
+3.505e+05
+3.944e+05
+4.382e+05
+4.820e+05
+1.400e+06

S, Mises

Figure 4. a) RVE from a DLCA model aerogel network in reference configuration, b) under deformed configuration after 10% compression, and
c) zoomed version showing the critical backbone paths. Reprinted (adapted) with permission from.[43] Copyright 2021 American Chemical Society.
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aerogels.[51] As one can observe, most of the investigations using
computational approaches have investigated the structural and
mechanical properties of aerogels. First, using an approach
similar to that of Ma et al.[40] or Abdusalamov et al.,[43] one
can trivially simulate the thermal transport through the aerogel
network. Second, it is perhaps seldom reported due to that fact
that aerogels, being thermally superinsulating materials, have
undergone intensive lab-based experimental research for
improving their thermal characteristics. The mechanical proper-
ties remained relatively less within the focus, as many insulation
applications do not require the material to bear mechanical loads,
however, this has seen a significant change in the last decade,
with literature on improving mechanical stiffness and flexibility
of aerogels seeing a steep rise. Concerning the application of
DLCA to simulate the thermal properties, an interesting study
was reported by Zhao et al.,[52] where they applied the DLCA
model within a finite volume framework for predicting the total
thermal conductivity in silica aerogels. In this study, they modi-
fied the DLCA algorithm by restricting the aggregation growth
within the simulation box, thus resulting in a non-periodic struc-
ture. There, solid–gas coupling, conduction, and radiation were
accounted for. For model aerogels with ρ¼ 110 kgm�3, total
thermal conductivity as low as 0.0154Wm�1K�1 at 300 K and
1 bar could be achieved. For pressures <100 kPa, conductivity
as low as 0.0047Wm�1K�1 could be modeled. So far, the appli-
cation of DLCA has been focused on studying silica aerogels.
However, recently Pang et al.[53] modeled carbon aerogels using
the DLCA model to study the hydrogen adsorption characteris-
tics. This was simulated by applying the grand canonical Monte
Carlo method. They studied the influence of particle diameter,
aerogel density, temperature, pressure, and the specific surface
area on the hydrogen adsorption capacity. Interestingly, the spe-
cific surface area of the modeled aerogel was higher than that of
the experimentally measured one, despite other parameters such
as the porosity having similar values. A similar model approach
was applied to study nitrogen adsorption in silica aerogels using
the DLCA method.[54] There too, notably, the specific surface
areas of the modeled aerogels were comparatively higher than
that of the experimentally measured ones. In fact, there, the par-
ticle size was adjusted so as to obtain agreeable surface area cal-
culations. This discrepancy in the measured and calculated
specific surface area could be attributed to the difference in size
scales. DLCA (or most other) models are limited to a simulation
box size, which although is supposed to be representative of the
entire network structure, this may not always be the case.
Moreover, the larger pores, those that are few but account for
lowering the specific surface area, are usually not accounted.
Furthermore, the applicability of DLCA to model carbon aerogels
needs investigation. It was clearly shown by Pekala and Alviso[55]

that carbon aerogels do not show fractal characteristics. Thus, the
applicability of DLCA-generated fractal networks to study such
aerogels is questionable.

Apart from the application of DLCA to model silica aerogels, a
simplified beam-based unit cell was modeled to describe silica
aerogels by Lei and Liu.[56] They modeled a silica aerogel RVE
made up of cubic-shaped unit cells having dead-ends. They com-
pared the mechanical properties of the model with dead-ends
and without, and concluded that the dead-ends have no role
to play in Young’s modulus of the material, but do have a

significant contribution in their compressive strength. This,
together with the reports of Ma et al.[40–42] confirm that dead-ends
have no role to play in the mechanical stiffness of aerogels. It is
my opinion, that the random connectivity and the pearl-necklace-
like morphology are critical factors in describing the mechanical
properties of aerogels. While there are several reports, using
DLCA, that take into account the random connectivity in aero-
gels, almost no study has analytically or computationally investi-
gated the influence of the pore-wall features on the structural and
mechanical properties of aerogels. This subject was addressed
only recently, when Rege et al.[57] illustrated the influence of
the pearl-necklace-like morphology and the variations in the neck
sizes on themechanical properties of the pore walls. Having such
a morphology as against the pore wall having a constant cross-
section results in significantly different maximal axial and
bending stresses and critical buckling loads in the pore walls,
which may provide insights into the bulk failure mechanisms
subject to variations in the particle-neck sizes.

To summarize the application of DLCA to model fractal
morphologies in aerogels and then subsequently investigate their
mechanical and even thermal properties, while the above-
mentioned studies report significant progress in modeling silica
aerogels, it is still in nascent stages. Material modeling has today
evolved into a separate category of science that is not only used to
model particular behavior, but to rather predict material behavior
and properties as well as accelerate the synthesis of new materi-
als. The advent of artificial intelligence has significantly boosted
the efforts toward rapid materials development. In the case of
modeling aerogels, DLCA has so far only focused on finding
out the power scaling relationships between the aerogel density
and the target property, thus from a mechanical perspective,
focused only on the linear elastic regime of deformation.
Since periodic boundary conditions have been applied within
a finite element setting, it must be possible to simulate the
macroscopic stress–strain curves of silica aerogels under large
deformations, those that are in agreement with experimental
data. This will validate the modeling approach very strongly,
as well as provide insights into the damage and failure in the
aerogel networks. This could also very well set the first step
toward using computational approaches towards tailoring and
reverse engineering aerogels. Machine learning (ML) models
have been so far applied to optimize the thermal and optical per-
formances of aerogels for energy-saving applications in glazing
systems.[58,59] However, there have been very few articles exploit-
ing ML approaches to optimize and design the network architec-
ture of aerogels. To this end, recently an ML model was
developed to predict the fractal dimension in an aerogel given
DLCAmodel parameters (see Figure 5), where the model showed
an R2 score of 0.973.[60] This was a first-of-its-kind ML model for
predicting structure-property relations in aerogels. Moreover, the
same neural network was inverted to predict model parameters
for a target material property. The model was quite successful in
doing so. However, like many previous studies using DLCA to
model silica aerogels, quantifying purely the structural character-
istics and the fractal properties is not going to bring research on
the modeling of aerogels forward. Direct quantitative measure-
ments of mechanical and thermal properties using such models
are necessary. To this end, efforts have been made to develop an
ML model for predicting the mechanical properties of silica
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aerogels, and subsequently applying a reinforcement learning
approach for inverse designing the aerogels for target mechanical
properties.[61] However, these investigations find themselves in
preliminary stages.

2.2. Non-Fractal Aerogels

Aerogels such as those from RF form networks due to micro-
phase separation. Here, unlike silica aerogels, self-similar kinetic
growth processes are not dominant. Many authors report a lack
of observation of a fractal behavior in RF aerogels.[31,32] It may be
possible that aerogels have very low densities or else those pre-
pared from other recipes may exhibit a fractal nature. However,
this is still to be explored. Having said that, like silica aerogels,
RF aerogels do show a pearl-necklace-like morphology of the
clusters. This appearance could be attributed to the transition
from nucleation and growth to spinodal decomposition.
Pekala and Schaefer[31] proposed microphase separation as the
mechanism driving the growth of the gel in such materials.
This was attributed to a persistent observation of peaks in the
scattering curves, absence of fractal behavior, and observation
of short-scale smooth-surfaced morphology, thus implying the
occurrence of network formation near equilibrium. The degree
of branching is controlled by the catalyst concentration used in
polymerization.

There are not many studies reporting on modeling the phase
separation-driven growth of porous networks in RF or other
organic aerogels. Roberts[62] first developed an approach based
on Gaussian random fields (GRF) to describe the morphology
of organic, in particular RF, aerogels. GRFs were chosen because
they have in the past shown to describe networks arising in spi-
nodal decomposition,[63] microemulsions,[64] and porous
rocks.[65] He realized that the standard 1-cut GRF model cannot
create aerogel-like porosities, while a 2-cut model would exhibit
only sheetlike structures. To overcome this challenge, he mod-
eled the open-porous network by defining the solid phase

occupying two regions, where these regions were statistically
independent GRFs. This independence allows the calculation
of correlation functions. To correlate the model to experimental
data, he subsequently derived the surface area and scattering
intensity. Roberts obtained good validation for RF aerogels syn-
thesized with R/C ratios of 300 and 50, with respect to the surface
area and matching of the scattering intensity curves. Similar to
specific surface area predictions in the case of DLCA models, the
calculated surface areas in the GRF models of RF aerogels were
always higher compared to the experimental ones. Gommes and
Roberts,[32] then building up on Roberts’ previous work, showed
that neither approach, aggregation, or phase-separation, when
considered alone, fully satisfies the description of such aerogels.
This means that both forms of aggregation must not be consid-
ered mutually exclusive for network formation.

The modeling approach can be elucidated as follows. Two sta-
tistically independent GRFs yðxÞ and zðxÞ are considered, with
mean equal to zero and variance equal to one. Given two thresh-
olds α and β, the solid skeleton of the gel is defined as the regions
of space where both α ≤ yðxÞ ≤ β and α ≤ zð xÞ ≤ β. To this, a
field-field correlation function must be defined. In the work of
Gommes and Roberts,[32] they defined a simple function with
two parameters, viz. the correlation length ξ and the domain
scale d. This was chosen in a way that guarantees that the specific
surface area of the level-cut morphology remains finite. Thus, the
model approach is very straightforward and not complex.
Determining the surface areas and pore-size distributions result
in the possibility of achieving validation of the structures against
those of that of real aerogels. Figure 6 illustrates exemplary struc-
tures of RF aerogels generated by means of GRFs. The network
structures generated here agree with the comments of Pekala,[31]

that they exhibit smooth-surfaced domains. In the study by
Gommes and Roberts,[32] they proposed two hypotheses:
a) the structure of the gel was considered to be biphasic compris-
ing of a polymer phase and a liquid phase with conservation of
the total volume of the polymer during gel formation, and b) the

Figure 5. A first-of-its-kind artificial neural network (ANN) for structure–property prediction in silica aerogels. Reproduced from Ref. [60] with permission
from the Royal Society of Chemistry.
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morphology was considered to have two different length scales,
one that was mesoporous and the other that was microporous. To
this end, two models were developed: in model A, the small-scale
structure was a colloidal polymer suspension that filled the pores
of the skeleton; in model B, the small-scale structure consisted of
micropores within the gel’s skeleton. The behavior of model A
corresponded to the aggregation theory of gel formation, similar
to the one discussed in Section 2.1. The intersection model did
exhibit pearl-necklace-like structures and the polydispersity could
be controlled by the factor ξ=d. In contrast, model B mimicked
the microphase separation theory of gel formation. This was
studied by modeling the time evolution of the model networks.
To do this, one can study the evolution of morphological param-
eters during the formation of the gel by means of small angle
scattering studies, and then mimick these onto the model param-
eters, thus being able to simulate the growth of aerogel networks.
They showed that while aggregation and microphase separation
seem to be two distinct processes, in the case of RF aerogels, both
scenarios lead to very similar morphologies. This can be agreed
by reviewing SEM or TEM images of, e.g., silica and RF aerogels.
Thus, the proposed two-point function sufficed in constructing
the aerogel morphology. As one can now correlate, structures
similar to DLCA can be generated (see Figure 6). Of course, here,
no well-defined particles can be observed. This is because, here,
the internal surface of the microstructure is modeled as an iso-
surface of the GRF. However, visual similarities in the network
appearance with the DLCA can be observed.

Another interesting way of treating this problem of model
network formation by phase separation is using polymeriza-
tion-induced phase separation (PIPS). Modulating the phase sep-
aration during polymerization has shown to be very effective in
tailoring the network architecture of RF aerogels.[66] This
presents a motivation for exploring PIPS for computationally
describing the structure of such aerogels. While this has not been
yet used to model aerogels, Wang et al.[67] recently applied their
previously developed model[68] to investigate PIPS for modeling
porous microstructures within the framework of a phase-field
study. Since this model is yet not used to describe aerogels, it
will not be explored in detail within the context of this article.
However, it presents an interesting approach that needs to be
built on to model organic aerogel networks. Basically, the model
is based on the Flory–Huggins theory. A simple motivation for

the use of this theory was that it accounted for the degree of poly-
merization for the free energy mixing. It is known that with an
increasing degree of polymerization, the free energy, and the
phase diagram become highly asymmetric. The polymer phase
remains in the spinodal region, while the solvent phase moves
outside thus attaining equilibrium concentration. This observa-
tion leads to different diffusion mechanisms for the solvent and
polymer phases. The polymer phase is governed by an abnormal
diffusion mechanism while the solvent phase is controlled by
normal diffusion. Because the driving force for the concentration
evolution in the solvent phase after passing through the spinodal
point is much greater than the one in the polymer phase, these
two phases reach the equilibrium concentration asynchronously,
which leads to an asynchronous evolution of the polymer and
solvent phases. This asynchronous effect gives rise to the mor-
phological transition from continuous networks to pearl-like dis-
persed droplets. Within the context of this study, the gelation of
these dispersed droplets was not simulated. The gelation of these
dispersed droplets is governed by Brownian motion and can be
modeled using various approaches. This is in line with the con-
clusions from Pekala and Schaefer that the network formation is
a result of phase separation and kinetic growth. Computationally,
this also aligns well with the previous modeling approach involv-
ing GRFs and the subsequent discussion presented. The model
accounting for both, diffusion and capillary flow, is illustrated in
Figure 7. Different forms of morphological transformations
under PIPS, such as percolation-to-cluster, cluster-to-percolation,
tiny droplets and polymer-ring patterns could be observed.

Both the above-described methods show promising potentials.
While GRFs can already model nanostructured networks of
organic aerogels, PIPS can be extended to account for aggrega-
tion, thus resulting in porous colloidal networks. It is especially
interesting to check the applicability of these to model carbon
aerogels. These are obtained by pyrolyzing organic aerogels,
who then undergo a massive loss in mass and a simultaneous
creation of a high amount of micropores resulting from
the escaping of gas. Modeling carbon aerogels becomes interest-
ing, particularly owing to their high potential in battery
applications.[69] Another interesting method that can model
phase separation along with the other process is the Lattice
Boltzmann method (LBM).[70] This approach has so far, to the
best of knowledge of the author, not been applied to create

Figure 6. Gaussian random field models having different porosities are illustrated. a) 90%, b) 93%, and c) 95%. Images generated in the authors research
group.
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aerogel nanostructures. However, LBM has been applied to sim-
ulate thermal conductivity[71,72] and phonon heat transport[73]

in aerogels. The method, however, shows tremendous potential
in its applicability to design organic and carbon aerogels.

While new methods exist to be explored and the existing
methods demand improvements, there are different approaches
for modeling fractal and non-fractal aerogels with reasonable
accuracy than can be validated with available characterization
approaches.

3. Fibrillar Aerogels

While the above-mentioned section and presented models
therein have shown to be powerful in computationally generating
the porous morphology and subsequent structure–property rela-
tions in aerogels having a particle-aggregated morphology, there
is a wide class of aerogels that exhibit a fibrillar morphology.
This is commonly observed in the case of biopolymer aerogels,
in particular polysaccharide-based ones. This is because biopoly-
mer aerogels are synthesized from fibrillar building blocks. As an
example, an SEM image of a cellulose aerogel is illustrated in
Figure 8. The fibrils are typically formed from the aggregation
of polymer chains and their physical and chemical crosslinking

leads to a 3D-interconnected fibrillar morphology. Before the
development of computational models describing the 3D mor-
phology in aerogels, there were a few studies that developed
constitutive models of such fibrillar aerogels. These models were
motivated by the investigations by Gibson and Ashby on open-
porous materials.[74,75] They observed that the microscopic kine-
matics within such networks dictate their macroscopic

Figure 7. Network evolution with time for three different setups: a–c): only diffusion, d–f ): diffusion with weak capillary flow, and g–i): diffusion with
strong capillary flow. The cyan surface denotes interface of the polymer-rich and polymer-poor phases, while the orange surfaces illustrate the isosurfaces
inside the polymer-rich phase. Image reused from [67] with permission from Springer Nature.

Figure 8. A scanning electron micrograph (in-lens) of a cellulose aerogel.
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mechanical properties. Thus, models based on deformation in
the pore-wall fibrils were developed to study such aerogels.

Since these models do not reconstruct the morphology of the
aerogels, they will be only briefly discussed. A first-of-its-kind
constitutive model for cellulose aerogels was proposed by
Rege et al.[76] The model was based on the assumption of
square-shaped cells representing pores that are distributed
homogeneously through the 3D space. This is generally in agree-
ment with cellulose aerogels.[77] The mechanical properties of the
aerogels were modeled by describing the deformation in the pore
walls based on the Euler–Bernoulli beam theory, by accounting
for large deflections in the pore walls.[78] This model accounted
for only the strain energy from bending. The model showed good
agreement against the experimental data of cellulose aerogels,
despite the fact that the axial effects were ignored. The model
was then extended to account for these axial effects and was then
shown to capture the behavior not only in cellulose, but also pec-
tin and κ-carrageenan aerogels.[79] The reason that the model
accounting only for the bending contribution to the strain energy
obtained good validation is because the total network strain
energy in aerogels is largely dominated by the bending
stresses.[42] A more generalized model describing not only aero-
gels, but also other open-cellular materials was recently
reported.[80] Thus far, the above-mentioned models only
accounted for the active fibrils in the network. This means, once
the pore walls collapsed, their contribution to the network strain
energy was considered zero. Hence, only the linear-elastic region
and the onset of pore-collapse could be captured with this model.
Only recently, this model was extended to capture the densifica-
tion behavior in these aerogels.[81] Here, the contribution of the
open cells as well as that of the collapsed cells to the network
strain energy was considered. Very good validation of the model
response against the experimental data of cellulose and pectin-
based aerogels could be demonstrated. In separate reports, the
tensile behavior in aerogels was also described,[82] as well as
the models were extended to capture the influence of hydration
in biopolymer aerogels.[83,84] While the above-mentioned models
can be applied for predictive modeling of aerogels, they do not
describe the network morphology of the fibrillar aerogels in ques-
tion. In the following, two approaches to generate this fibrillar

morphology of biopolymer aerogels and subsequently investigate
their structure-property relationships will be discussed.

The network formation in fibrillar aerogels is of significant
interest to the community. As discussed earlier, the fibrous
appearance comes from the aggregation of polymer chains dur-
ing the gelation process and the subsequent formation of entan-
glements leading up to a 3D-interconnected network. While this
process can be adequately modeled by approaches such as molec-
ular dynamics, as was the case in silica aerogels, it would be com-
putationally exhaustive, due to the presence of various processes
involved. Here, limitations arising from time- and length-scale
effects present a bottleneck with regard to correlations to avail-
able experimental data from analytics. As for silica aerogels, the
DLCAmodel mechanistically mimics the sol–gel process of aero-
gel synthesis, or as with RF, the PIPS model can describe the
phase separation in RF, which can be subsequently extended
to account for aggregation and model the aerogel networks.
There has been a strong need for a model capable of adequately
describing the fibrillar morphology of aerogels. Recently,
Depta et al.[85] proposed a mesoscale model under a DEM-based
Langevin dynamics framework for modeling the gelation in Ca-
alginate hydrogels. As an example model system, the Ca-alginate
system was chosen, thus, the modeling of alginate polymer
systems using Caþ in aqueous media. The aggregation of
polymer fibers and the resulting morphology could be captured
very well, as shown in Figure 9. The sophisticated modeling
approach led to investigations of the impact of various composi-
tion and process parameters on the gelation mechanism, those
which included ion concentration, polymer concentration,
composition of alginate, and molecular weight of the polymer
fibers. Interestingly, higher-scale network formation during
the gelation on a micrometer length scale and millisecond time-
scale could be achieved.

The algorithm works as follows. A simulation box is defined,
where, the polymer fibers are generated and placed randomly
having random orientations. The polymer chains are first
abstracted as dimer units, modeled as a set of primary particles,
connected by flexible bonds and the interactions between the
units and the environment were implicitly described. This is con-
ceptually similar to the bonded-particle-method (BPM).

Figure 9. Illustration of the 3D fibrillar network in Ca-alginate aerogels by means of the discrete element method. The image on the right shows a close-up
2D zoomed view. Adapted with permission.[85] Copyright 2021, The Authors. Published by American Chemical Society.
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A procedure similar to MD is followed. The perfectly linear fibers
must be first relaxed without interacting with each other. This
lets them get to their normal relaxed state. Equilibration must
be followed to avoid and correct overlap between polymer fibers.
For simulating the gelation process, three interaction mecha-
nisms were considered, viz. diffusion of units in a solvent,
the interaction between the units of different chains, and the
interaction of units within a chain through solid bonds. The net-
work model was described using the Markov process. The
motion of each particle in the DEM frame is governed by diffu-
sion, solid bonds between the particles, and interaction with
other particles. Diffusion was modeled based on Langevin
dynamics. Only translational diffusion was considered. The
absence of rotational diffusion avoided the necessity of coordi-
nate transformations, thus reducing computational time, while
also permitting simulations with larger time steps. The bonded
interaction was modeled by accounting for normal and bending
components of the force in the bonds. This was primarily dic-
tated by the axial and bending stiffness. This is a typical approach
for modeling the elastic energy in bonded chains within, e.g.,
percolating clusters.[86] To model the interactions, a Lennard–
Jones potential was chosen. The model further included an
implicit probabilistic ion model capturing the effects of the
ion availability during ion-mediated gelation. The proposed
model was implemented in the DEM framework MUSEN.[87]

The model could be verified against the experimental data for
the bundle sizes and the pore-size distributions. Good agreement
was observed. It remains to see if the model can be extended to
account for periodicity within the structure, so that it can in the
future be applied to study the structure–property relationships.
However, the results showcasing the network formation have
been impressive, and the methodology can be trivially adjusted
to model other biopolymer aerogel networks.

While it remains interesting to model the evolution of the
microstructure, by involving the gelation mechanism in the
model generation process, for most instances involving
structure–property modeling, it suffices to be able to accurately
describe the final resulting microstructure of the material. Since
we are on the subject of fibrillar microstructures, it has been
pointed out that many fibrillar aerogels, such as those from cel-
lulose, exhibit a foam-like morphology.[77] This could also be
observed in the SEM image from Figure 8. A recognized method
for generating randomized microstructures for cellular foams is
through Voronoi tessellation. A Voronoi tessellation is simply a
partitioning of a given domain in n-dimensional space into m
distinct regions based onm corresponding points called seeds.[88]

Each consequent region is then referred to as a Voronoi cell.
Voronoi tessellations have been used in the past to describe many
open- and closed-porous materials. A proof-of-concept study on
the application of this method for describing aerogels was first
presented by Rege et al.[89] There, 2D Voronoi tessellations adher-
ing to the pore-area distribution of cellulose aerogels were devel-
oped. While Voronoi is principally a randomized network
generation approach, a fitting algorithm was applied to make
the randomized geometry adhere to the given cell-size distribu-
tion. While this was not the most efficient approach, it worked
fine in 2D. The 2D tessellations were then imported into a finite
element program and the cell-wall properties were chosen as that
of the cellulose fibrils that form the aerogel network. These were

primarily the cell-wall diameter and Young’s modulus of the wall.
Periodic boundary conditions were applied in FE and the bulk
mechanical properties, albeit in 2D, were simulated. The influ-
ence of different cell-wall diameters and different cell-size distri-
butions were simulated. The results were in agreement
qualitatively with previously reported modeling studies, those
that were compared to experimental data. In this case, comparing
with experimental data was not possible because the non-trivial
out-of-plane connectivity of the aerogel network was not
accounted for. Thus for quantitative validations, use of 2D
Voronoi tessellations for describing aerogels is not very useful.

To address the challenge of generating the 3D network of such
aerogels, a modified Voronoi tessellation approach was devel-
oped and proposed by the same group.[90] Fitting the pore-size
distribution of aerogels to the randomized algorithm of the
Voronoi diagram in 3D presented a significant bottleneck. It
was deemed necessary that the Voronoi network needed to be
built upon the basis of the pore-size distribution. To this end,
a model using the Laguerre–Voronoi tessellation[91,92] based
on the random closed packing of polydisperse spheres[93,94]

was developed. Laguerre–Voronoi tessellation is basically a
weighted version of the Voronoi tessellation. The model flow
is straightforward. First, a polydisperse sphere pack that adheres
to the pore-size distribution of a given aerogel is generated using
the Lubachevsky–Stillinger approach[95] using a force-biased
algorithm.[96] The sphere-volume distribution adheres to the
pore-volume distribution as obtained from experimental charac-
terization. More details on the exact methodology can be found in
our previous work.[90] The Voronoi diagram is then generated on
each sphere, where the cell boundaries are generated tangential
to the sphere surface at the point of contact between two adjacent
spheres of different sizes rather than the typical equidistant posi-
tioning. The spheres are then removed from the geometry, thus
only forming a template for creating the Voronoi diagram as ini-
tially desired. Thus, the pore-size distribution of the generated
microstructure now adheres to that of the input one from a true
aerogel, thus mimicking the real aerogel network. This model
flow is sketched in Figure 10. It must be noted that this is
achieved after introducing a corrector step, where the volume
of the Voronoi structure is scaled to that of the original sphere
pack. In hindsight, it is noteworthy, that although not really accu-
rate, the process mimics the aerogel synthesis process. In
Figure 10, one has a network, say of biopolymer fibers, and filled
pores, with spheres representing the pores filled with solvent.
Then, one extracts the spheres from themodel, mimicking, again
mechanistically, the effect of the drying process. Anyhow, even
without this superficial correlation, highly nanoporous networks
adhering to the input pore-size distribution can be formed. In
particular, those that have a fibrillar nature. Of special interest,
the fiber diameter was not assumed to be constant and that of a
particular value. The only input so far to the microstructure was
the pore-size distribution of the aerogel. Now, the relative density
of the aerogel was measured and taken as an input, and the fiber-
diameter distribution was obtained by maintaining the pore-size
distribution and relative density simultaneously. This gave a dis-
tribution that was well in the range of experimentally measured
fiber diameters. This is important because the fibers through the
aerogel network are not all of a constant thickness, and experi-
mental analysis only provides an average value for the fiber
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thickness, for e.g., from SEM-image analysis. This proposed
computational approach can provide a distribution of fiber diam-
eters, thus providing more structural information about the aero-
gel network. Thus, the modeling approach only involves two
material parameters, viz. pore-size distribution and relative den-
sity of the aerogel. The developedmicrostructure was then imple-
mented in a finite element program to simulate the mechanical
properties. It is of special importance to highlight that the linear
elastic behavior as simulated by this microstructure coalesced the
one experimentally tested. This was tested against κ-carrageenan
aerogels with three different wt% concentrations of
κ-carrageenan. It was observed that unlike in silica aerogels,
the stress distribution through the biopolymer aerogel network
was very homogeneous. This can be clearly seen from the well-
connected network in the case of biopolymers as shown in
Figure 11 as against the fragmented one in the case of silica aero-
gels in Figure 4. This may very well be the reason why biopoly-
mer aerogels exhibit a power scaling exponent near to 2,[77] such
that the one in the open-cell foam model. This also demonstrates
the significance of network connectivity in aerogels and their
resulting properties. It was recently illustrated that it is not only

the density, but also the pore sizes and the pore-wall morphology
that dictate the mechanical properties in aerogels.[97] This was
shown by applying the above-mentioned radical Voronoi models,
thus demonstrating the capabilities of the modeling approach to
(a) design aerogel networks and (b) investigate the structure-
property relations.

This approach to modeling fibrillar nanostructures is much
faster than the previous one based on Langevin dynamics. It also
is periodic in nature, thus within a finite element setting, it can
be used to describe the bulk mechanical and thermal properties
of aerogels. Having expressed that, the Langevin dynamics model
describes the gelation of such fibrillar aerogels very accurately.
It is indeed worth exploring this approach and extending it to
be applicable for modeling bulk material properties.

4. Concluding Remarks

This article presents a perspective into different ways of design-
ing or constructing the aerogel morphology using computational
approaches. There has been a steady progress in the evolution of
the field of computational models describing aerogels. To this
end, different approaches are elucidated. Aggregation and
phase-separation models are discussed within the context of
silica or organic aerogels, while discrete element models and
modified Voronoi approaches are reported in the context of bio-
polymer aerogels. All presented approaches show promising
insights into the possibility of designing aerogel networks as well
as usability to study structure–property relations. However, there
are several shortcomings in the presented approaches, that if
overcome, they can be exploited to realize reverse engineering
the synthesis process of aerogels, thus initiating data-driven
rapid materials development. Since different research groups
use different protocols for preparing aerogels, and changes in
such protocols, lead to aerogels with different end properties,
establishing unified or uniform material properties of aerogels
becomes challenging. Here, machine learning approaches can
be exploited to solve this issue of consistency in developing mate-
rial data sheets keeping an overview of the synthesis strategies.
However, this requires generating a large amount of dataset,
which seems difficult for aerogels at the present laboratory-based
development. However, correlating computational models to

Figure 10. Generation of a fibrillar aerogel network by means of sphere-pack combined with Laguerre Voronoi tessellations. The pore-size distribution is
first taken as an input to generate a sphere-pack having a volume distribution adhering to that of the aerogels. Voronoi tessellations are then generated
over the spheres, only to have then the spheres eliminated leaving an open-porous fibrillar network. The last image shown on the right illustrates a cube-
shaped RVE.

Figure 11. Deformed RVE for κ-carrageenan aerogels showing an even
stress-distribution through the model aerogel network. Image reused from
Ref.[90].
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synthesis protocols can be an efficient way of exploiting a way of
generating datasets. Datasets from physics-informed computa-
tional models can be generated faster, manifold, and much
cheaper than laboratory-based syntheses and subsequent charac-
terization. Rapid reverse engineering of aerogels needs joint
efforts on both, experimental laboratory-based and computa-
tional data-based, ends.
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