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Repetitive or tiring tasks and movements during manual work can lead to

serious musculoskeletal disorders and, consequently, to monetary damage for

both the worker and the employer. Among the most common of these tasks is

overhead working while operating a heavy tool, such as drilling, painting, and

decorating. In such scenarios, it is desirable to provide adaptive support in order

to take some of the load off the shoulder joint as needed. However, even to this

day, hardly any viable approaches have been tested, which could enable the

user to control such assistive devices naturally and in real time. Here, we present

and assess the adaptive Paexo Shoulder exoskeleton, an unobtrusive device

explicitly designed for this kind of industrial scenario, which can provide a

variable amount of support to the shoulders and arms of a user engaged in

overhead work. The adaptive Paexo Shoulder exoskeleton is controlled through

machine learning applied to force myography. The controller is able to

determine the lifted mass and provide the required support in real time.

Twelve subjects joined a user study comparing the Paexo driven through

this adaptive control to the Paexo locked in a fixed level of support. The

results showed that the machine learning algorithm can successfully adapt

the level of assistance to the lifted mass. Specifically, adaptive assistance can

sensibly reduce the muscle activity’s sensitivity to the lifted mass, with an

observed relative reduction of up to 31% of the muscular activity observed

when lifting 2 kg normalized by the baseline when lifting no mass.
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Introduction

An exoskeleton, as commonly defined in robotics, is a

mechanism typically consisting of a series of rigid links

coupled with the individual segments of the user’s limbs,

normally with the aim of increasing strength or facilitating

movements (Yang et al., 2008; Anam and Al-Jumaily, 2012).

In the industrial setting, exoskeletons can aid workers dealing

with tasks which could otherwise lead to serious work-related

musculoskeletal disorders (WRMSDs). (Yamamoto et al., 2002;

Huysamen et al., 2018). Tasks involving manipulating or holding

heavy objects overhead are linked with a variety of WRMSDs in

the shoulder (Bjelle et al., 1979), especially when associated with

the requirement of keeping the arm at a higher angle from the

torso (Svendsen et al., 2004). Exoskeletons could be used to

provide support against gravity when this sort of posture cannot

be avoided. Examples of such exoskeletons which are currently

available on the market include the ShoulderX by SuitX (SuitX,

2021), Comau’s Mate (Comau, 2021), and the PAEXO Shoulder

Support by Ottobock (Ottobock, 2021), all of which are designed

to provide support at the shoulder joint through a passive spring

mechanism. They have been shown to reduce short-term

physical strain when performing tasks involving, for instance,

holding a heavy tool above the head level or maintaining an

awkward pose (Alabdulkarim et al., 2019; Maurice et al., 2019;

Schmalz et al., 2019; Nelson et al., 2020; Fritzsche et al., 2021).

Although long-term data are not yet available, these devices show

promise for reducing health risks for the workers, decreasing

their likelihood of incurring into shoulder WRMSDs.

However, in the aforementioned examples, the level of

assistance provided by the exoskeleton can only be set

manually by changing the spring stiffness parameter or the

lever arms. In the literature, certain solutions are presented

where the spring offset is set by a motor, but this still needs a

manual input by the experimenter or the user (Grazi et al., 2020);

this factor usually induces the designers to provide the support

mechanism with a lower limit for the maximum force that can be

exerted on the user, as the device could otherwise cause

difficulties for the wearer when trying to lower their arms

from a raised position. An intention-based control system,

able to actively set the level of support online without the

need for the user to manually input the desired level of

assistance, on the other hand, could allow the designers to

provide their exoskeletons with higher output torques. In

Missiroli et al. (2022), a concept is presented where the level

of assistance in a tendon-based system is determined based on

the angle of the arm with respect to the body. Although the

system presented there did not automatically change the level of

assistance provided to the shoulder joint, but rather only the

assistive torque exerted on the elbow, keeping the user’s posture

into account would definitely enable the controller to adapt the

provided assistance in a natural fashion. Here, we present a

solution that adapts the level of assistance based on the weight of

the lifted object. This estimate is achieved by measuring muscular

activity, thus providing an appropriate level of support without

the need for conscious participation by the user, thus decreasing

the overall mental workload as opposed to a setup where the user

has to manually set the level of assistance.

The most traditional means to measure muscle activation,

namely, surface electromyography (sEMG, Merletti et al. (2009))

has often been investigated in the literature as a possible mean of

controlling exoskeletons (Singh et al., 2012). For example,

Gopura et al. (2009) proved the effectiveness of an impedance

control–based model using sEMG activity and upper-limb

posture for controlling a 7DOF exoskeleton. However, this

method is hardly viable in industry, as it would be unpractical

to fit a worker with a set of sensors which need to be in direct and

constant contact with the skin. In general, there is a lack of robust

and accepted ways to let a user control an upper-limb

exoskeleton, which would also be practical in an industrial

setting. While pursuing this goal, in this work we turn our

attention to a cheaper and easier-to-use alternative to sEMG,

namely, force myography (FMG, Curcie et al. (2001), Wininger

et al. (2008), Ravindra and Castellini, (2014), Radmand et al.

(2016), Connan et al. (2016)). This sensor technology relies on

measuring muscle bulging upon contraction, usually by means of

a force sensor pressed onto the body. FMG sensors do not need to

be in direct contact with the skin, and can be easily integrated in a

harness worn above the clothing. A further advantage is that

implementation of this kind of sensors can be extremely cheap, as

force can be measured by means of a simple strain gauge, while

still providing measurements so accurate that they can be used in

order to control prosthetics (Cho et al., 2016).

Of course, FMG suffers from issues as well. Examples include

saturation and bias of the measured signal, as well as problems of

cross-talk between muscle groups depending on the harness

design, for instance, bulging of one muscle could lead to an

increase in pressure on sensors diametrically opposed, if the

sensors are arranged in a bracelet. Still, there are already

examples in the literature of FMG usage to control

exoskeletons. In Islam and Bai, (2019) the authors determine

three payload levels through support vector machines with FMG

sensors as an input. However, in this case, the exoskeleton was

not providing any support and was used passively. Ebrahimi et al.

(2017) developed and tested on one participant a method for

adjusting the control parameters of their exoskeleton in real time

by using several measurements: joint angle, speed, force sensors

on the lower and upper arms, and force-sensing gloves. In this

case, the control parameters were modified based on a single

calibration round, and were not changed in real time. Adopting a

slightly different approach, Huang et al. (2015) and Miller and

Rosen, (2010) both used force sensors to compute a trajectory

that the exoskeleton would help to execute. In these cases, the

experimenters used non-movable rehabilitative exoskeletons

with active, non-compliant motors assisting each joint of

the user.

Frontiers in Robotics and AI frontiersin.org02

Sierotowicz et al. 10.3389/frobt.2022.919370

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.919370


The aforementioned studies have evaluated the use of FMG

for exoskeleton control, but in no case, to the best of our

knowledge, the approach has been fully evaluated online. The

exoskeleton used is a fully portable solution employing a

compliant and lightweight actuation mechanism able to

provide an adaptive support via a motor changing the lever

arm distance between the arm and the support bars, allowing to

change the support torque at the joint.

In order to test the feasibility and the performance of the

concept proposed here in an online setting, 12 users were

recruited to perform a set of repetitive

pickup–hold–carry–release tasks, while a regression-based

machine learning algorithm used FMG measurements to

estimate the weight lifted by the user, and appropriately adjust

the level of assistance provided by an industrial exoskeleton in

real time. The exoskeleton of choice was an adaptive prototype

built by Ottobock, based on a modified version of the Paexo

Shoulder Support (Ottobock, 2021). The modified version of the

Paexo will henceforth be denoted as Adaptive Paexo Shoulder.

Because the setup presented here is based on an assistive device

which has already been tested and characterized (Maurice et al.,

2019; Ottobock, 2021), the focus of this study was not to confirm

the effects of exoskeleton’s fixed support as compared to the

unassisted condition, but rather as compared to an intent-based

adaptive assistance condition. We hypothesized to observe a

more constant muscular effort over different lifted masses

when using adaptive assistance, as opposed to a fixed passive

assistance. In other words, we expected a diminished increase in

muscular activity in the shoulder muscles as a consequence of

increasing the lifted mass. The results of this evaluation are

extremely promising in this sense, showing furthermore that

adaptive assistance increases kinematic stability of the shoulder

joints enabling more precise movements. The strength of this

study resides in demonstrating the feasibility of real-time control

on a semi-active exoskeleton using force myography (FMG) as

input. FMG sensors are potentially far more practical in real-

world applications than their EMG counterparts. Furthermore,

to the best of our knowledge, this is the first study showcasing the

online control of a supportive exoskeleton based on the

estimation of the lifted mass.

Materials and methods

The adaptive Paexo Shoulder

The adaptive Paexo Shoulder (Figure 1) expands upon the

basic Paexo design from Ottobock (2021), as it features the

possibility to automatically set the overall support provided by

the passive spring-based actuator. For this purpose, a DC

brushless Faulhaber 2057B motor is integrated directly at the

shoulder joint (Figure 2). The motor can be used to change the

length of the lever arm with which the spring element pulls the

humeral orthosis. Therefore, the adaptive Paexo Shoulder still

behaves like a passive device, but allows to automatically

change the operating point of the of the spring mechanism,

effectively increasing or decreasing the overall support

provided to the user. This mechanism introduces a certain

latency in the control loop, as a transition from the minimum

to the maximum lever arm can last up to 2 s. However, internal

testing shows that, because the system is always providing

some level of support, this latency has no issue and the user

still perceives the support as transparent. In the setup

presented here, the level of support depends on various

anthropometric measurements of the user, according to Eqs

FIGURE 1
Adaptive Paexo Shoulder as worn by a participant. 1) Textile
support structure, 2) assistive structure, and 3) control electronics
including power source.

FIGURE 2
Actuated joint of the adaptive Paexo Shoulder: 1) axe
compensation, 2) brushless dc servo motor, 3) nut with encoder,
and 4) trapezoid leadscrew.
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3–6. The adaptive Paexo Shoulder has the same frame and

structure characteristics as the Paexo: the actuator is mounted

on the arm bar, which is connected to the support bar via an

expander rope. This acts as a spring that generates a torque in

the joint as a function of the arm anteversion. A textile

stabilization harness supports donning and doffing, and

keeps the structure close to the torso. The only semi-rigid

structures coming into contact with the body are the belt and

the two underarm cuffs. A rotational encoder is used to

measure the joint angle. The entire setup weighs 3 kg and

can be used with a 14.8V/1550mAh LiPo battery for 6–8 h,

depending on the amount of usage.

Force myography bracelets

In the presented setup, the required support level of the

adaptive Paexo Shoulder was calculated based on measurements

from a set of FMG sensors. As FMG entails measuring the force

from muscle bulging, the design of the harness pressing the

sensors onto the body segments to be monitored is paramount.

The FMG sensors were lodged in individual housings, which

were in turn arranged in two modular bracelets worn by the user

on the forearm and upper-arm, respectively. The FMG sensors

(FSR 400 short by Interlink Electronics, (Electronics, 2022)) are

integrated in an analog amplification circuit designed internally

(see (Connan et al., 2016)). The amplification circuit board and

the FSR were housed in flexible 3D-printed housings, as shown in

Figure 3. The armbands (as shown in Figure 3) consisted of four

elements:

• Sensor housing main body, which holds the sensor and

binds the shell assembly to the lateral connectors.

• Sensor face-plate, which conveys and directs the pressure

from muscle bulging directly on the sensor strain gauge.

The two sub-elements are connected by means of snap-on

appendages on the face-plate.

• Side connectors, designed to be easily extendable, thus

providing flexibility over a range of arm sizes, with the

possibility of being fitted with a rigid clip, which is used to

ensure that the bracelet fit limbs with smaller

circumference.

• Binding clips, whose purpose is constraining the length of

connectors as described earlier to fit limbs of smaller

circumference.

Because of the modular design, the number of sensors for

each bracelet can be changed, and fine adjustments can be made

as required in order to improve the fit on any individual user,

either by using the binding clips, or by adding additional

connectors and shells. The bracelet was manufactured via

fused deposition modeling out of TPU material, with shore

hardness 90A, which gives the outer surfaces a gritty texture

making the friction between connectors and shell bodies such

that no additional fasteners are required to keep the elements in

place. The used force-sensing resistors are shown in Castellini

and Ravindra (2014) and Connan et al. (2016) to have an

extended linear region in the sensitivity curve. The bracelets

were designed and tested to keep the sensor in this linear region.

The measurements from the FMG sensors were acquired and

transmitted to a remote host via a data acquisition (DAQ) system

shown in Figure 4. The DAQ board used here is an updated

version of the one presented in Connan et al. (2016).

The DAQ board is designed around a low-power

microcontroller (MSP430F5529, by Texas Instruments)

running at 25 MHz. During normal operation, the system

FIGURE 3
CAD view of the bracelets and bracelet elements. (A) Render of an assembled FMG bracelet with 10 sensing elements. (B) Render of one rigid
clip which can be used to clamp the lateral connectors to fit the bracelet to limbs of lower circumference. (C) Full FMG setup as worn by a participant
during the experiment. Notice also the EMG sensor probes worn on the shoulder.
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draws approximately 80 mA, which translates to more than a day

of continuous operation when powered by a 7.2 V 2400mAh

LiPo battery. The DAQ can acquire data on up to 32 hard-wired

channels. The analog signal from these channels is converted to

digital with 12 Bits resolution. In the setup presented here, only

20 FMG sensors are used. In order to facilitate the integration of

remote hosts in the control loop, the adaptive Paexo Shoulder can

be controlled through a wireless interface over a Bluetooth

FIGURE 4
DAQ system for FMG: overview of the major components.

FIGURE 5
Block diagram of the control loop regulating the level of assistance and detail of EMG sensor placement.
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module (RN42 from Roving Networks). In the setup presented

here, a remote host PC ran the prediction algorithm which

estimated the mass lifted by the user (see Estimation of the

required support) and translated it to a desired support level.

The communication between the host computer and the adaptive

Paexo Shoulder controller was based on a serial protocol and the

out- and inbound messages were checked at a rate of 200 Hz. The

control loop and the sensors used to monitor the muscular effort

during the study are shown in Figure 5.

Estimation of the required support

To estimate the support desired by the participant in real

time starting from the 20 FMG signals, we used standard ridge

regression (Hoerl and Kennard, 1970). Let x ∈ R20 denote the

signal vector; then the output of the ridge regression estimator is

y = wTx, where w ∈ R20 is obtained through regularized

minimization of the mean-squared error, leading to the

following closed form solution for w

w � XTX + λI( )−1XTy, (1)

where X ∈ R20×N is the design matrix gathering N observed

sensor measurements of the form x, and y ∈ RN is a vector

gathering the weight lifted in association with each observation x
present in X. Although the weights in this vector were not in

kilograms, the values were proportional and subsequently

discretized and scaled as shown in Eq 2. X and y must be

collected at the beginning of each experiment in order to

create an appropriate training set for the calibration of the

ridge regression model and provide a sensible estimation of

the optimal w. λ represents a regularization term, which keeps

the parameters in w low in magnitude.

The FMG signals were sampled by the DAQ board at

192.5Hz, and then wirelessly transmitted to a host computer

where they were filtered with a first order Butterworth filter, with

cut-off frequency of 1 Hz to extract slower dynamics. For the

calibration procedure, the filtered signals were then fed to the

ridge regression algorithm with λ = 1, which was trained once at

the beginning of each experimental round (i.e. only once per

subject), only allowing for initial re-calibrations if the prediction

was visibly unstable. The reasons for instability of the prediction

are most likely wrong sensor placement or an erroneous

performance of the actions required for the calibration.

During the calibration procedure, the FMG signals would be

sampled for 10 s while the participant performed one of the

following actions per sampling:

• Both arms relaxed and kept along the sides, hands

unclenched.

• Right arm raised at 45° over the horizontal plane, no

weight held.

• Right arm raised at 45° over the horizontal plane, holding a

1 kg weight.

• Right arm raised at 45° over the horizontal plane, holding a

2 kg weight.

These correspond, in turn, to the following labels: yl,i ∈ [0, 0.1,

0.5, 1.2]. These values for the response variable were chosen based on

previous tests. The dataset consisted, therefore, of approximately

1925 samples for each of the four labels. The training of the

regression model takes under 1 s with this number of

observations. The time efficiency in the training phase is the

main reason why a ridge regression model was chosen for this

application. Although no circumstances were observed during the

course of the experiment where amodel recalibration was necessary,

the short duration of the procedure would make it possible to easily

recalibrate the model, should the sensors need to be repositioned or

re-instrumented ina real-world scenario. After training, the

regression algorithm provided a 1-dimensional estimation ypred of

the user’s effort based on signals filtered analogously to those used

for calibration. The obtained prediction was then additionally low-

pass filtered, clipped between 0 and 1, and subsequently discretized

in three levels, according to the following criteria:

yclass �
0 if 0≤ypred < 0.35
1 if 0.35≤ypred < 0.75
2 if ypred ≥ 0.75

⎧⎪⎨
⎪⎩ , (2)

The prediction step of the regression model is instantaneous when

compared to the latency due to the adaptive Paexo Shoulder’s

mechanism. The value of yclass was communicated to the

adaptive Paexo Shoulder (Figure 5) in order to issue support

levels for, respectively, 0 kg, 1 kg, or 2 kg weights. The exact

amount of force provided to the user was computed on the

adaptive Paexo Shoulder’s internal controller, depending on each

user’s biometrics (specifically body weight and height, using the

relations shown in Eqs 3–6). Although the FMG sensors used in the

experiment have non-negligible hysteresis at high forces, as well as a

non-linear transfer function, it was shown in Ravindra andCastellini

(2014) that formoderately high forces (0–15N), like those that could

be produced by muscle bulging, the behavior is fairly consistent and

their transfer function is nearly linear. For this reason, it was not

deemed necessary to make use of more advanced ML algorithms to

account for non-linearity.

The conversion from the algorithm’s estimate to lever arm

length takes into account the estimated lifted weight y as well as

the user’s body mass m and arm’s length l according to the

following laws:

mlifted � m fua + ffa + fh( ) + y, (3)

hCOM � mfuahua +mfufhfa + mfh + y( )hh
mlifted

, (4)

τ � 0.7gmhCOM, (5)
L � 0.05523τ + 3.007, (6)
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where fua, ffa, and fh represent the percentage of the bodyweight

constituted by the upper-arm, forearm, and hand, respectively, hua,

hfa, and hh represent the position of the centers of mass for the

upper-arm, forearm, and hand, respectively, and g is the

gravitational acceleration. All of the remaining constants were

empirically determined during pre-tests in order to provide a

good level of support without exerting too much pressure on the

user. The bodyweight coefficients and the positions of the centers of

mass are all based on anthropometric tables found in Drillis et al.

(1964). The positions of the individual centers of mass are based on

the length of the user’s arm with the arm in a standard working

position, which in this case was assumed to be constant across all

tasks. Therefore, after the initial calibration and during the session,

the level of assistance only changes as a function of the estimated

liftedmass. The actual support force provided during the experiment

depends on the characteristics of the user and on the shoulder

anteversion angle, but for reference, the Paexo can provide a

maximum support force of around 50 N.

Participants

Twelve participants (nine males, three females, 27.6 ± 2.9 years

old, 71.9 ± 6.5 kg, 1.76 ± 0.07 m) were involved in a repetitive series

of tasks, designed in order to require different levels of assistance at

different times. The study designwas within-subject: the participants

were divided in two subgroups. Group A performed the tasks with

the adaptive assistance on first, and then performed them again with

the adaptive assistance off and the Paexo set to a mid-scale support

force. Group B completed the tasks with the conditions inverted.

This subdivision had the goal of counterbalancing the effects of

fatigue over time on the outcome metrics. All users were thoroughly

informed about the experiment before taking part in it, both orally

and in writing, and then signed an informed consent form. The

experiment was carried out in conformity with the WHO Helsinki

Declaration and was authorized by the DLR internal committee for

safety and data protection. Although the end-user group would

presumably also consist of able-bodied individuals, no particular

effort was put in assuring that the study population wouldmatch the

end-user group in terms of age, gender, or BMI distribution.

Experimental setup

For the purposes of the experiment, in addition to the FMG

sensor setup and the on-board sensors of the adaptive Paexo

Shoulder described earlier, the participants were fitted with three

Trigno EMG sensors by DelSys. These were placed on the

anterior, superior, and posterior deltoid of the right arm,

respectively, as shown in Figure 5. Although dorsal muscles

are also involved in the overhead work, the EMG probes were

placed exclusively on the deltoid muscles because the results

presented in Maurice et al. (2019) suggested that the support

force provided by the Paexo has the most significant effect on the

activity of this muscle group, and does not significantly affect the

activity of dorsal muscles. By extension, no significant differences

could realistically be expected on dorsal muscle activity when

comparing passive and adaptive assistance. The EMG

measurements were bandpass filtered between 20 and 450 Hz.

The feed from the sensors was sent to the host PC at a rate of

2000 Hz. For the purposes of the offline analysis, the absolute

value of the EMG was extracted. The average and standard

deviation of the EMG were extracted over the whole time

during which the task was computed. The maximal value of

the EMG measured for each participant was used as a

normalizing factor.

The EMG measurements were used, among other things, to

compute the muscular effort ratio rd, defined as the ratio of the

mean absolute value of the EMG on the deltoids (the index d

indicates the deltoid group) when lifting 2 kg and when lifting

0 kg, in accordance with the following relation

rd � |EMGm�2 kg|
|EMGm�0 kg|

, d ∈ ant., sup.{ }. (7)

This is indicative of the rate at which muscle activity

increases as a consequence of increasing lifted mass. What we

set out to demonstrate is that the adaptive assistance significantly

decreases this rate when compared to the non-adaptive

assistance.

The participants were asked to maintain their shoulders

parallel to a screen placed in front of them, which showed

them a GUI guiding them through the sequences by showing

prompts and the remaining duration of each task. On the

participant’s right, a stack of shelves served to store the

weights used throughout the session. Markings were drawn on

the shelf in order to help the participants find the reference points

for the two main angles at which they were required to hold their

right arm. The experimental setup and GUI are shown in

Figure 6. The stability of the shoulder angle as measured by

the exoskeleton’s internal encoder was also used as an evaluation

metric. Specifically, the standard deviation on the shoulder angle

is measured by the Paexo’s on board shoulder encoder. This is

indicative of the precision with which the user is able to maintain

a position or a trajectory.

Experimental protocol

After providing their informed consent and general data, the

participants were fitted with the exoskeleton and the sensor

setup. The sensor density was sufficient to ensure that muscle

activity caused by lifting a mass would be measurable

independent of the bracelet’s orientation around the body

segment’s longitudinal axis. The two bracelets were positioned in

order to cover the region of largest diameter on both the right
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forearm and the right humerus, and the positioning of the sensors

was never changed throughout the experimental session. After being

fitted with the devices and after performing a familiarization round,

the participants performed the calibration procedure described in

the estimation of the required support. During the session proper, the

participants were asked to performa series of tasks involving holding

either 0 kg, 1 kg, or 2 kg with the arm horizontal or at about 45°

above the horizontal plane for 30 s. The weight was to be held either

in an isometric contraction or moved in circles counter-clockwise at

about one round per second. All of these tasks were to be repeated

FIGURE 6
Experimental setup. (A) Participant performing the experiment. (B) GUI.

FIGURE 7
Flow-chart of the experimental protocol.
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twice. The combination of these factors gives sequences from 1 to

6 as shown in Figure 7. The relevant tasks for this sequence are

shown on the left side of Figure 8. After completing these, the

participants were asked to compile a mid-experiment questionnaire

specific to these sequences. The participants were then asked to

perform two further sequences. These required the participants to

pick 0 kg, 1 kg, or 2 kg from a lower shelf, move them in circles close

to a higher shelf, and then leave them there, and then repeat these

tasks starting with the higher shelf. This sequence of tasks was to be

repeated twice, and these two repetitions are shown as sequences

seven and eight in Figure 7. The relevant tasks for these sequences

are shown on the right side of Figure 8. The order in which the tasks

were performed was not randomized, as the goal of the study was

not to ascertain an effect of the task on the muscular activity, but

only the effects of the adaptive assistance as opposed to the non-

adaptive assistance. After this, the participants were asked to fill a

mid-experiment questionnaire about sequences seven and eight, as

well as a condition-specific mid-experiment questionnaire.

All participants completed all tasks and sequences with both

adaptive and non-adaptive assistance. As the expected effect of

the adaptive assistance was not to decrease the measured

muscular activity overall, but rather to decrease the overall

sensitivity of the muscular activity to the lifted mass, the level

of support force set for the Paexo under the non-adaptive

assistance condition is irrelevant. During the experiment, the

Paexo was set to a mid-scale support force in order to drive the

system at its average operating point. At the end of the session,

the participants were asked to compile a post-experiment

questionnaire. Here, as well as in the mid-experiment

questionnaires, the participants were asked to assign a score

from 0 to 20 to a set of task load metrics, in accordance with the

NASA Task Load Index assessment Hart and Staveland, (1988).

Furthermore, in the post-experiment questionnaire, the subjects

were asked to assess the modified version of the adaptive Paexo

Shoulder they used with a reduced version of the System

Usability Score test (SUS, Brooke. (1996)). The SUS consists

of a series of questions to be answered on a 5-level Likert scale.

The questions are formulated in such a way that, when evaluating

a maximally usable system, the answers should ideally alternate

between the maximum and the minimum value on the Likert

scale. This is to avoid response repetition bias. The particulars of

the two experimental conditions were not explained to the

participants. In spite of this, it was not possible to carry out

the experiment with the participants completely blind to the

current condition, as the adaptive assistance causes the Paexo’s

Shoulder motor to move and emit audible sounds, and moreover,

one can easily detect changes in the level of assistance. This factor

could influence the subjective evaluations, but it should not affect

the other metrics. The alternating of groups starting with the

non-adaptive and adaptive assistance should aid in counteracting

possible biases in the subjective assessments.

Results

In order to analyze the effects of the different assistance types on

the adopted metrics, a repeated measure analysis of variance

(rmANOVA) on a multivariate model fitted to the data was

performed. The model had the mode of assistance as the main

independent variable, with value either adaptive or non-adaptive.

Within themodel, the variables sequence, task, andmode of assistance

were all considered within-subject predictors, as all subjects

completed all the tasks and sequences with both conditions. The

rmANOVA analysis was performed using the Statistics andMachine

Learning Toolbox within the Matlab environment (Matlab 2021a;

MathWorks,Natick,MassachusettsMA,United StatesUnited States)

FIGURE 8
Detailed breakdown of each sequence.
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(MathWorks, 2021). The most significant results in terms of p-value

are listed and explained in the discussion. All main results are

reported in Table 1. The assessed metrics are indicated in the

leftmost column. The average EMG on the most affected muscle

groups and a comparison of the ratios rd are shown in Figures 9, 10.

Table 1 also contains the result of a post hoc multiple

comparison of estimated marginal means, which shows some

of the relevant effects sorted by task. As the independent variable,

which was the mode of assistance, only has two possible values,

no adjustment was needed for the post hoc analysis. The

subjective assessments (except the SUS) were evaluated on a

discrete scale with 20 bins, where the participants had to express

the perceived answer to a given question item, based on the

NASA Task Load Index (TLX) test (Hart and Staveland, 1988).

Figure 11 shows the measured standard deviation of the shoulder

angle as measured by the Paexo’s internal encoder. Finally,

Table 1 reports the relative error in the estimation of the

lifted weight, normalized by the maximum possible error value.

Discussion

The results presented earlier enable us to characterize many

aspects of the presented setup, as well as to draw a few tentative

conclusions on the overall effectiveness of the presented

setup. Although many solutions involving passive or semi-passive

exoskeletons have been presented in the literature in the past (Grazi

et al., 2020; SuitX, 2021; Missiroli et al., 2022), intention-based

TABLE 1 Overview of the results for all experimental conditions and significant ANOVA effects were applicable. The metric values are indicated in
format mean (standard deviation).

Metric (condition) [Unit] Non-adaptive assistance Adaptive assistance Significant ANOVA or
t-test effects of
assistance mode

rant (Single-weight tasks) [ ] 2.23 (0.69) 1.70 (0.41) F (1, 11) = 13.02; p < 0.005

rant (Task 4) [ ] 2.34 (0.82) 1.86 (0.44) F (1, 11) = 4.88; p < 0.05

rant (Task 6) [ ] 2.17 (0.56) 1.67 (0.28) F (1, 11) = 16.19; p < 0.005

rant (Task 8) [ ] 2.25 (0.77) 1.78 (0.48) F (1, 11) = 7.17; p < 0.05

rant (Task 10) [ ] 2.15 (0.61) 1.49 (0.36) F (1, 11) = 18.39; p < 0.005

rsup (Mixed-weights tasks)[ ] 2.26 (0.80) 1.85 (0.71) F (1, 11) = 7.12; p< .05
SD on shoulder angle (single-weight seq.) [rad] 0.36 (0.12) 0.33 (0.13) F (1, 11) = 50.88; p< .001
Subjective assessment of strain (single-weight sequences) [ ] 13.50 (3.40) 11.75 (3.36) Paired T-test: p < 0.1

Weight estimation error (single-weight sequences) [%] Does not apply 21.33 (24.72) Does not apply

Weight estimation error (mixed-weight sequences) [%] Does not apply 29.91 (32.02) Does not apply

System usability scale assessment score [%] Does not apply 74.23 (14.05) Does not apply

FIGURE 9
sEMG for single-weight sequences sorted by the assistancemode for the anterior deltoid. (A) Bar graph of sEMGmeasurements by liftedweight.
(B) Violin plots of the sEMG ratios (sEMG when lifting 2 kg over sEMG when lifting no weight) by the assistance mode.
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control concepts for such systems are rarely investigated. The main

hypothesis of this study is that an intention-based support level

selector, used in real time, can effectively reduce the correlation of

muscular effort to lifted mass by adjusting the torque and therefore

the forces acting onto the user. This would have many potential

advantages, and it minimizes the undesired interaction forces

between the exoskeleton and the user, which is in general

desirable (Ajayi et al., 2020). As the basis of the presented setup

is a passive assistive exoskeleton whose main characteristics have

been presented in the past (Maurice et al., 2019; Ottobock, 2021),

this study does not focus on confirming the effects of the passive

support as compared to the case unassisted condition, but rather

focuses on identifying the effects of adaptive assistance as compared

to a non-adaptive, mid-scale level of support provided by the Paexo.

Shoulder stability

The standard deviation on the shoulder angle as measured

through the Paexo’s encoder is significantly affected by the

assistance modality, both in the tasks requiring the participant

to hold the weight, as well as in those requiring circular

movements. This effect was only detected in the sequences

with single weight, most likely because the mixed-weight

FIGURE 10
sEMG for mixed-weight sequences, color-coded by assistance mode for the superior deltoid. (A) Bar graph of sEMG measurements by lifted
weight. (B) Violin plots of the sEMG ratios (sEMG when lifting 2 kg over sEMG when lifting no weight) by the assistance mode.

FIGURE 11
Angular encoder at the shoulder level (A) Violin plot of shoulder angle standard deviation by the assistance mode. (B) Violin plot of shoulder
angle standard deviation by task.
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sequences involved faster movements over shorter times. This

would reduce the effect of assistance mode on the shoulder angle

stability. Conversely, in the case of single-weight sequences, the

higher standard deviation detected under non-adaptive

assistance seems to be due to the fact that the participants

would slowly lower their arms because of fatigue over the

required 30 s of contraction. Figure 11 shows violin plots of

this metric overall as well as a breakdown of the tasks.

Subjective assessment

No effect of the assistance modality on the subjectively

assessed metrics can be detected, with the remarkable

exception of the perceived strain for the sequences

involving one weight, which is positively affected by the

adaptive modality (p < 0.1, Table 1). In the SUS test, the

participants evaluated the system with an average score of

74.23 ± 14.05% (Table 1), which corresponds to a B according

to the SUS score-grade curve.

Muscle activity

No significant effect of the mode of assistance on the mean

EMG could be determined, when considering all tasks and all

sequences. This is likely due to the fact that the adaptive Paexo

Shoulder, when in the non-adaptive mode, was providing a

mid-scale level of support, which is overall similar to the

average level of support provided in the adaptive mode.

However, the effect of adaptive assistance, as used within

this user study, is statistically significant when one considers

the difference in mean EMG activation when lifting no weight

and when lifting 2 kg. In particular, the assistance mode shows

a significant effect on the ratio between the mean EMG activity

when lifting 2 kg and when lifting no weight (the ratios are

shown in Figures 9, 10). The effects are most significant for the

sEMG on the anterior deltoid during single-weight sequences

and for the superior deltoid during mixed-weight sequences

(Table 1). A possible reason for this is that the mixed-weight

sequences entailed leaving and picking up weights from the

shelves on the participant’s right hand side. This would

require the user to perform frequent horizontal arm

abductions, in addition to the arm flexions and extensions

needed in order to lift the weights and to return to the neutral

position, which can be largely performed by the anterior

deltoid. This could lead to an overall more noticeable

recruitment of the superior deltoid, which is mainly used in

horizontal arm abduction.

As stated earlier, this indicates that under adaptive assistance,

the average muscle activity at the shoulder level does not increase as

much when the mass to be lifted increases. If this trend were

confirmed over a wider range of support forces, this would

indicate that this type of adaptive control can effectively scale the

level of support as the weight to be lifted increases. As the available

support levels of the adaptive Paexo Shoulder increase with the

future versions, the adaptive control could likely be used to reduce

the amount of muscle fatigue even for higher weights, thereby easing

the workload on the user, without increasing the amount of force

necessary to lower the user’s upper limbs. Actually, if the exoskeleton

were able to provide higher support forces, conceivably even to such

a degree that it would be difficult for the user to lower their arms

without intention-based control, the adaptive assistance system

would likely be able to further flatten the relation between mean

sEMG and lifted mass, as shown in Figures 9, 10. There is an

assumption underlying this claim, namely, that the adaptive

assistance algorithm would then be able to decrease the provided

support when needed. This has partially been shown by this study.

An interesting fact is that the effect of assistance mode on the EMG

ratio is more pronounced, with a p value of 1.105e − 3, when taking

into consideration the second repetition performed by the

participants, as opposed to the first one, where the effect has a p

value of 0.022. This could indicate that the adaptive assistance leads

to a slower onset of fatigue compared with the non-adaptive

assistance.

Prediction accuracy

The muscle activity sensing system shown here and the

associated prediction algorithm were accurate enough for

practical uses. Remarkably, the user-exoskeleton system

constitutes a closed-loop system, as the desired support is

issued by the adaptive Paexo Shoulder, the muscle activity of

the user naturally reduces, thereby reducing the amount of

support provided. Evidently, each time the weight to be lifted

changes, the user and the exoskeleton reach a new point of

dynamical equilibrium in the provided support, balancing

each other. In this work we have not explored this

relationship, but it is a fascinating research issue and will

be investigated in the future. We are especially interested in

how modeling this relationship might render the device more

ergonomic.

Study limitations

As is obviously the case, this study has limitations. First, the

participants were instructed to only use one particular type of

grasp, namely power grasping. Although many studies in

prosthetics have shown that machine learning and FMG can

easily be used to detect the intent of the users more precisely, the

performance is naturally bound to change when allowing for

different grasps. Second, we could not use any motion tracking

system to determine the potential differences in the motor

strategies of the participants, introduced by the adaptive
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support control. Third, the current range of support that the

adaptive Paexo Shoulder is able to provide is rather limited and

constitutes a simple case study, which needs to be broadened.

These are some aspects which should be addressed by future

research. The main goal of future work on this sort of device

should focus on generalizing the estimation of the lifted mass to

various kinds of grasp, and on the inclusion of posture data in the

estimation of the needed assistance, as shown in Missiroli et al.

(2022).

Conclusion

The Paexo has been conceived since its early design stage

with non-obtrusiveness and simplicity in mind: it can be donned

and doffed easily and quickly and guarantees the full range of

motion of the user’s shoulders while worn. The adaptive Paexo

Shoulder follows the same design philosophy, and additionally

provides adaptive support via a lightweight servo motor. Still, the

question remains: how to let the user control it transparently,

effectively, and in real time? Taking inspiration from the previous

work in the field of upper-limb prosthetics, in this work, we have

assessed the effectiveness of FMG to determine in real time the

amount of support required by the user depending on the lifted

mass, and consequently, to control the motor of the adaptive

Paexo Shoulder, thereby determining the effects of an adaptive

support offered by the device.

A substantial advantage provided by FMG is that it can be

worn on the worker’s clothing, as opposed to sEMG sensors,

which is an unavoidable constraint in most industrial and

commercial settings. Future work will also investigate the

integration of further sensor modalities enabling the support

force estimator to take into account also the user’s posture, in

addition to the estimation of the lifted mass.
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