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Self-Contained Calibration of an Elastic Humanoid Upper Body
Using Only a Head-Mounted RGB Camera

Johannes Tenhumberg1,2 Dominik Winkelbauer1 Darius Burschka3 Berthold Bäuml1,2

Abstract— When a humanoid robot performs a manipulation
task, it first makes a model of the world using its visual sensors
and then plans the motion of its body in this model. For this,
precise calibration of the camera parameters and the kinematic
tree is needed. Besides the accuracy of the calibrated model,
the calibration process should be fast and self-contained, i.e., no
external measurement equipment should be used. Therefore, we
extend our prior work on calibrating the elastic upper body of
DLR’s Agile Justin by now using only its internal head-mounted
RGB camera. We use simple visual markers at the ends of the
kinematic chain and one in front of the robot, mounted on
a pole, to get measurements for the whole kinematic tree. To
ensure that the task-relevant cartesian error at the end-effectors
is minimized, we introduce virtual noise to fit our imperfect
robot model so that the pixel error has a higher weight if
the marker is further away from the camera. This correction
reduces the cartesian error by more than 20 %, resulting in a
final accuracy of 3.9 mm on average and 9.1 mm in the worst
case. This way, we achieve the same precision as in our previous
work [1], where an external cartesian tracking system was used.

I. INTRODUCTION

When the humanoid robot Agile Justin performs a task, it
first uses its internal camera to make a model of the world,
including the poses of objects. It then plans how to move its
body in this world model to reach an object without obstacle
collison or self-collisions. The success of this look-and-move
approach depends highly on the calibration of its cameras
and the whole kinematic tree. In the case of Agile Justin,
the deviation from the nominal geometric kinematics is as
large as 61 mm. This significant error makes it necessary to
add safety margins for the collisions, and robust and precise
manipulation is almost impossible.

In our previous paper [1], we derived a model with
elasticities for the humanoid and showed how to use it
efficiently inside an optimization-based planner. The calibra-
tion of the model was based on the cartesian measurements
of an external tracking system where tracking targets were
mounted on the two end effectors. Using an external tracking
system poses two main problems. First, calibration is only
possible when in the lab. Second, the internal camera is
not incorporated in the calibration, although it is used when
performing manipulation tasks, limiting the accuracy.

In this paper, we show that the elastic model of a humanoid
robot can be calibrated using only its head-mounted RGB
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Fig. 1. DLRs’s Agile Justin [2] collecting measurements using its head-
mounted RGB camera for the calibration of its elastic forward kinematics as
well as the camera’s intrinsic and extrinsic parameters. Only simple markers
on both hands as well as the depicted marker mounted on a pole are used. As
described in Section V, we select filtered random configurations to identify
the robot in its whole work space.

camera and simple markers on the two end effectors and
one in front of the robot. The main contributions are:

• We perform a self-contained robot calibration using
only the head-mounted 640× 480 RGB camera, i.e.,
without any external measurement equipment.

• The complete kinematic tree, including the torso, left
and right arms, the neck, and the camera, are calibrated.
The model has 129 free parameters, including the DH
parameters, joint and lateral elasticities, and the extrin-
sic and intrinsic parameters of the camera.

• We show that directly minimizing the error between
measured and reprojected pixel coordinates of the mark-
ers results in non-optimal cartesian precision (which is
relevant for performing tasks) when dealing with imper-
fect models, as in the case of our complex humanoid
robot. Therefore, we introduce a virtual noise term to
compensate for the mapping between the image and
cartesian space. This correction reduces the cartesian
error at the end effectors by 20 %.

• We validate the calibration results on the real robot. For
this evaluation, we use an external tracking system. The
final cartesian error at the end effectors is 3.9 mm on
average and 9.2 mm in the worst case.



Fig. 2. Sketch of the calibration setup. The robot collects images of
markers on both of its hands and a pole in front of it. The blue chains show
how forward kinematics plus camera projection close the measurement loop.
Even if the arms are not directly involved in the pole measurements, their
mass distribution in different positions influences the torso elasticities.

• The procedure of collecting measurements with the
robot’s internal RGB camera and performing the cal-
ibration takes under 30 minutes. Required for the speed
is a method to select the poses accounting for a clear
view of the markers while allowing for a wide variety
of joint configurations.

• The dataset, as well as a Python package to calibrate a
general elastic robot, are provided1. The tool allows a
combination of non-geometric forward kinematics with
different custom measurement functions.

II. RELATED WORK

An accurate forward kinematics is relevant for most
robotic applications; therefore, there are a lot of examples
of successful calibrations. Most of the time, the robotic
arm’s geometric model is calibrated with an external tracking
system [3, 4, 5, 6]. For an overview of the calibration and
compensation of elastic robots, we refer to the related work
in the preceding paper [1].

However, the calibration model must not only be ex-
pressive enough to match the real robot well. Another
important aspect is a fast and easy calibration process to
make it broadly applicable and easy to repeat if necessary.
Ideally, the robot uses its internal sensors to calibrate itself.
This choice also ensures that precisely the same chain is
calibrated the robot uses to perform its task. Sang De Ma
[7] introduced a self-calibration technique for active vision
systems. Hubert et al. [8] added a bayesian approach and
performed hand-eye calibration of an anthropomorphic robot
using a checkerboard marker.

Maier et al. [9] calibrated the joint offsets for the hu-
manoid robot Nao by following four checkerboard markers
on both of its hands and feet with its RGB camera. Finally,
Stepanova et al. [10] used a combination of visual and tactile
self-observing to calibrate all the DH parameters for the iCub
robot. However, they did this only in simulation.

While using a single camera for calibration is convenient,
minimizing the error in image space is not the same as
minimizing the relevant error in the cartesian task space.

1You can find the dataset, videos of the measurements, additional details
to the methods, and the code to calibrate an arbitrary elastic robot at
https://dlr-alr.github.io/2022-humanoids-calibration.
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Fig. 3. DLRs’s Agile Justin collects measurements to calibrate its non-
geometric forward kinematics. The images are from the robot’s internal
RGB camera with a resolution of 640×480, showing examples for the left
arm, the right arm, and the pole. The markers’ distances to the camera vary
between measurements from 0.2 m up to 1.5m. Without a correction (red),
the pixel error is uniformly distributed over the distances, leading to more
significant cartesian errors for detections further away from the camera as
they correspond to a larger area. The correction (blue) counteracts this and
improves the cartesian accuracy by 20 %.

Reprojection terms have been used for calibration with RGB-
D cameras [11, 12]. But they did not introduce virtual noise
to account for an imperfect robot model and did not use it
to transform the error in the image space to the task-relevant
cartesian space. They only assumed a real noise for the joints,
which can often be measured quite accurately and does not
need to be handled as unknown noise.

We have already tackled the problem calibration for the
humanoid Agile Justin [2]. Because this complex mecha-
tronic system is built from lightweight components, it is
especially susceptible to torque-dependent elasticity effects.
Furthermore, its autonomous motion has strict accuracy
requirements for its sensors and its forward kinematics. In
previous work, the multi-sensorial head [13], the IMUs in
the head and base [14], and the eye-hand chain [15] were
calibrated. While using the internal sensors, they ignored the
torso for calibration, even as this chain has a significant error.

In the preceding paper, we described the non-geometrical
model of the humanoid Agile Justin and showed how to
calibrate it with an external camera system [1]. Furthermore,
we introduced an efficient technique to compensate for the
implicit model, which was crucial as we wanted to use it in
an optimization-based path planner [16].

The main drawback of this previous work was the de-
pendence on the external tracking system. This dependence
not only limits the general applicability of the approach.
Using the external system, we do not calibrate the relevant
chain between the robot camera and body, which is pertinent
to perform tasks autonomously. Instead, this consecutive
paper provides a fast and accurate auto-calibration for Agile
Justin’s entire kinematic chain. Relying only on the mea-
surements collected by its internal RGB camera, we calibrate
exactly the chain needed for whole-body motion planning.

https://dlr-alr.github.io/2022-humanoids-calibration


III. ROBOT MODEL

A. Forward Kinematics

We use the same elastic forward kinematics as in [1] to
model the robot. To describe how the robots physical pose
F in the cartesian workspace changes with joint angles q in
the configuration space we us the DH formalism with the
geometric parameter ρ. The forward kinematics f to maps
not only to the position of the end effector(s) but to all frames
of the robot.

F = [0T1,
0T2, . . . ,

0TN ] = f(q, ρ) (1)

Following Caenen and Angue [17] we integrate the non-
geometric effects from elasticities κ by explicitly expressing
the influence of torques τ onto the DH parameters.

ρ = ρ(ρ0, κ, τ) = ρ0 + κ τ (2)

The non-geometric forward kinematics is then given by

F = f(q,Θf) = f(q, ρ∗(q, ρ0, κ, ν︸ ︷︷ ︸
Θf

)).

where ρ∗ describes the solution of the non-geometric DH-
parameters in torque equilibrium, resulting from the robots
mass distribution ν in configuration q. For more details on
the derivation of those equations, as well as an algorithm
to compensate and use this implicit model efficiently see
Tenhumberg and Bäuml [1].

B. Camera Model

The forward kinematics describes the cartesian position
of the different body parts. If one wants to use a camera
to measure those positions, one needs a model to project
from the cartesian into the image space U : R3 → R2. Here
we use the classical pinhole model with radial distortion to
project a 3D point of the marker x into 2D pixel coordinates
u [15]. First, the detected point x must be transformed into
the camera frame 0TC. After this, the 3D point is projected
along the z-axis of the camera frame with(P (x) and radial
distortion D(u, ξC) is added. The pixel coordinates of the
image u are then calculated as an offset from the cameras
center point cC scaled with the focal length fC:

U(0xM, 0TC,ΘC) = cC + fC ·D(P (CT0
0xM), ξC), (3)

with P (x) =

(
xx

xz
,
xy

xz

)T

; D(u, ξC) =
u

1 + ξC|u|2
(4)

Besides the position of marker 0xM = 0Ti
ixM and frame of

the camera 0TC = 0Tj
jTC relative to the forward kinematics

F , the intrinsic parameters of the camera are also part of the
calibration. Those additional parameters are combined and
denoted as ΘC = [ixM, jTC, cC, fC, ξC].

IV. CALIBRATION PROBLEM

The goal of calibration is to find the set of parameters
Θ = [Θf ,ΘC] which best fit the kinematic model and the
camera model defined in the last section.

A. Maximum a Posteriori Estimation
As usual, we formulate the calibration as a probabilistic

estimation problem [18]. In Fig. 4 on the left, the proba-
bilistic model is depicted using the functions introduced in
Section III to connect the input joint angles q with the pixel
coordinates of the markers u depending on the parameters Θ.
The goal is to find the maximum of the posterior distribution
p(Θ|S) given the measurements S = {(u(n), q(n))}N . For
simplicity of notation, in what follows, we do not discern
between the three different markers but assume that S
includes all measurements.

As Fig. 4 shows, the stochastic variable of a markers pixel
coordinates u can be expressed as a function (the so-called
measurement function h) of the two input nodes q and Θ

h(q,Θ) = U(f(q,Θf)i
ixM , f(q,Θf)j

jTC , ΘC)

u = h(q,Θ) + ηu, ηu ∼ N(0, Cu), Cu = σ2
uI.

When the data is collected with the camera, there is real
measurement noise on the pixels. We model this as gaus-
sian noise ηu with zero mean diagonal variance σu. The
maximum a posteriori (MAP) problem assuming a diagonal
Gaussian prior p(Θ) then results in a non-linear least squares
problem

min
Θ

∑
n

log p(u(n)|q(n),Θ) + log p(Θ) =

= min
Θ

∑
n

(∆u(n))TC−1
m ∆u(n) +∆ΘTC−1

p ∆Θ, (5)

with ∆u(n) = u(n) − h(q(n),Θ), Cm = Cu, (6)

and ∆Θ = Θ−Θp, Cp = diag σ2
p.

In Section VI we report the results of solving this opti-
mization problem.

B. Virtual Cartesian Noise
The MAP approach in (5) minimizes the difference be-

tween the measured marker and the reprojection of the
marker in pixel coordinates. This method usually gives
reasonable estimates for the parameters Θ if the final pixel
error gets very small, i.e., when the measurement model can
fit the real robot well. But when fitting an imperfect model,
i.e., a model which can not wholly reproduce all aspects
of the real robot, the vanilla MAP approach still would
minimize the overall pixel error by equally distributing the
error between all measurements in (5). Intuitively, this is not
what we expect from a good fit: we want a fit that minimizes
the error in cartesian space. A camera measures angles. This
means a pixel further away corresponds to a larger area in
physical space than a pixel closer to the camera. Therefore
a pixel error for a marker far from the camera should count
more than a pixel error close to the camera.

To achieve this in a methodological sound way, we in-
troduce an additional node in the graphical probabilistic
model (Fig. 4, right graph). This addition explicitly models
the (actually deterministic) imperfection as additional virtual
noise in the marker’s 3D position.

0x̃M = 0xM + ηx̃, ηx̃ = N(0, Cx̃), Cx̃ = σ2
x̃I.



Fig. 4. The probabilistic graph of the calibration problem includes the
camera and robot model from Section III. It describes how the markers
pixel coordinates u are computed from the joint configuration q and the
model parameters Θ for each of the N samples. Left (w/o red parts): In the
original mapping, the real pixel measurement noise ηu is the only source
of stochasticity. Right: An additional virtual cartesian noise node is added
to compensate for the imperfect (actually deterministic) kinematic model.
Left (with red parts): As shown in Section IV-B, the virtual noise can be
incorporated into the original model, resulting in an effective pixel noise
with a σ̃u depending on the distance of the marker to the camera (∝ 1/z2).

It is important to note that the noise is added in base
coordinates as we want the model error to be distributed
equally in the world (and not, e.g., relative to some moving
frame of the robot). The pixel coordinates of this noisy
marker position now depend on this additional noise term

u = U(0xM + ηx̃,
0TC,ΘC) + ηu.

By marginalizing over the new variable 0x̃M, we get the
effect of the additional virtual noise on the distribution of
the pixel coordinates explicitly

p(u|0xM, 0TC,Θ) =

∫
p(u|0x̃M, 0TC,Θ)p(0x̃M|0xM)d0x̃M.

Due to non-linearities in U , the resulting distribution is non-
Gaussian. However, we can approximate it with a Gaussian
distribution by linearizing U for the noise and using Gaussian
arithmetic. This results in almost the same form as before ex-
cept for a new effective covariance C̃u = C̃u(

0xM, 0TC,Θ)
which now also depends on the marker’s coordinates.

u ≈ U(0xM, 0TC,ΘC) + η̃u, η̃u ∼ N(0, C̃u),

C̃u(
0xM, 0TC,Θ) = Cu + JUCx̃J

T
U ,

JU (
0xM, 0TC,Θ) =

∂U(x, 0TC,ΘC))

∂x

∣∣∣
x=0xM

Assuming that the camera distortion can be neglected for
calculating the effective noise distribution, we finally get

C̃u ≈ σ2
uI + σ2

x̃

(
fC
xz

)2
1 +

x2
x

x2
z

xxxy

x2
z

xxxy

x2
z

1 +
x2
y

x2
z

 , (7)

Fig. 5. The different marker positions in the image for the left arm, the
pole on the floor and the right arm. We move the pan-tilt joints of the robot’s
neck to get a good coverage of the image over all markers.

Fig. 6. The different distributions in configuration space of the right
arm with 7 joints. In red are the taught poses [19, 13, 15]. In blue are the
configurations resulting from the rejection sampling approach described in
Section V leading to a broader distribution. The joint limits are black.

where x = CxM = 0T−1
C (0xM).

The resulting MAP problem looks exactly the same as the
original one (5), except that the weighting of the individual
measurement errors is changed to Cm = C̃u(

0xM, 0TC,Θ).
Looking at (7), this result means that markers further away
are more critical and scaled with z2 – just as we intuitively
expected.

V. EFFICIENT SAMPLE COLLECTION

One goal of selecting measurement poses is to cover the
whole configuration space. Sampling uniformly in the con-
figuration space ensures that the calibrated model works well
even if the robot moves autonomously and uses its full range
of motion far away from taught standard configurations.

Nevertheless, the configurations must be feasible for the
measurement setup. When the robot uses its camera to collect
measurements of the markers, it imposes strict constraints.
The markers must be in the camera’s field of view, must
not be occluded by the robot’s own body, and must face
toward the camera. We check for occlusion with simple ray
tracing and a sphere model of the robot by drawing a straight
line from the camera to the marker and ensuring it does not
collide with any of the spheres. Checking if the camera and
the marker face each other can be done by simply calculating
the scalar product between their relative position and viewing
direction. Furthermore, we want to ensure that only a single
marker is visible to the robot at any configuration. In the case
of Agile Justin, we needed over 10 million configurations to
find 100 feasible measurement configurations for a marker.

As all those calculations happen before the calibration,



Fig. 7. We also collect measurements using the Vicon tracking system
described in [1] to evaluate our approach in the cartesian space. This external
tracking system consists of six cameras mounted on the ceiling and directly
tracks the cartesian position of retro-reflective markers with high accuracy.

one must account for uncertainties with larger thresholds
and safety margins. Fig. 6 shows that this general rejection
sampling approach (blue) is better suited to get an even
distribution over the configuration space. In contrast, in red
are the taught poses used in prior works. This comparison
shows that even for experts, it is hard to choose unbiased
configurations for a complex humanoid.

We collect multiple measurements per robot configuration
to speed up the calibration procedure. In the case of Agile
Justin, the camera is mounted on a pan-tilt joint, allowing us
to adjust the marker’s position in the image easily. Assuming
that in the initial configuration, the marker is roughly in the
center of the camera’s field of view, we move the camera to
collect four additional measurements where the tag is in one
of the corners of the image each time.

Fig. 5 shows the marker positions in the image when
adjusting the head to collect multiple measurements per
configuration. The main reason for only moving the head
while keeping the rest of the body fixed is to increase
the number of samples quickly. Furthermore, good image
coverage makes calibrating the camera intrinsics easier. To
ensure that, we used neck joints to move the projection of
the marker toward the corners while keeping a safety margin
to the image center and borders.

As in Tenhumberg and Bäuml [1], we solve a traveling
salesman problem to order the configurations we want to
measure and reduce the time for calibration. Furthermore, we
use an optimization-based path planner to perform short and
collision-free paths between the measurement configurations.

VI. EXPERIMENTAL EVALUATION

With this approach, we collected measurements for 50
configurations per marker, with five head positions each,
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Fig. 8. Absolute cartesian error of the left and right arm after the full
calibration. The relative error between those two is significantly smaller,
indicating that the main part of the remaining error comes from the torso.

Fig. 9. Distribution of the errors in image space for the three markers at the
pole, the left, and the right wrist. Calibrating only the geometric parameters
(center) does not explain the elasticities in the torso seen in the pole marker.
The entire calibration (left) with geometric and non-geometric parameters
distributes the remaining errors uniformly over the three markers.

resulting in 50× 5× 3 = 750 samples for the three markers.
We split the set (equally for each marker) into 500 samples
for calibration and 250 samples for evaluation. The virtual
noise is set to σx̃ = 1 cm and the pixel noise to σu = 0.2
(sub-pixel detection accuracy). It takes roughly 8 minutes to
collect the measurements for the markers on the hands and an
additional 13 minutes to make the measurements for the pole.
The latter takes more time as the joint configurations are
further apart in this setting, as the whole body is involved and
not only one arm. Together with performing the calibration
itself (3 minutes), the whole procedure takes 32 minutes.
For comparison, the procedure with the external tracking
system takes 25 minutes, which is a little faster as no separate
configurations for each marker are necessary. However, there
is an additional overhead for the setup of the tracking system.

For comparison, we also used the external cartesian track-
ing system to perform a new calibration using the method
from Tenhumberg and Bäuml [1]. For this, we recorded
recorded 100 different configurations (see Fig. 7). We also
use this cartesian tracking data to evaluate the calibration
based only on the head-mounted camera. For this, the posi-
tion of the reflective targets and the tracking systems frame
relative to the robot are recalibrated.

Fig. 9 shows the error in image space for the markers on
the left and right arm and the pole for different calibration
models. On the right-most image is the nominal forward
kinematics, and in the center is the geometric model with
the DH parameters. The left image shows the full calibra-
tion, including joint and lateral elasticities and the camera
intrinsics. One can see that the torso chain is responsible
for significant non-geometric errors due to the large acting



TABLE I
ERROR IN THE IMAGE AND THE CARTESIAN SPACE FOR DIFFERENT

CALIBRATION MODELS WITH AND W/O VIRTUAL NOISE (VN), WITH AND

W/O INTRINSIC CAMERA PARAMETERS (ΘC) AND USING ONLY THE

CAMERA (IMAGE) OR TRACKING SYSTEM (POINTS).

Calibrate Image Error [px] Cartesian Error [mm]
on ΘC VN µ σ max µ σ max

Images no no 1.05 0.59 3.76 4.77 2.29 11.75
Images yes no 0.97 0.53 3.44 4.65 2.27 11.58
Images no yes 1.21 0.70 4.13 4.11 1.87 9.34
Images yes yes 1.15 0.62 3.97 3.94 1.83 9.16
Points - - - - - 3.12 1.71 8.23

torques and its mechanical design with ropes. In Fig. 8 we
further analyzed the influence of the different body parts.
The absolute cartesian errors of the right and left arm are
red and blue, respectively. Here the torso chain is part of the
measurements; therefore, its error is included. However, the
torso is excluded if we look at the distance between the left
and right target and compare it against the measured length.
This reduced error in the relative arm positions indicates that
the remaining error mainly comes from the torso chain.

The results also emphasize the need for our virtual noise
term to cope with the imperfect model of the robot. Even
the elastic robot model does not capture all the relevant
effects, and a significant error remains. That the virtual
noise helps to distribute the error evenly in the task-relevant
cartesian space can be seen in Table I. While the pixel
error increases slightly, the mean and maximal cartesian error
gets smaller by over 20 % when correcting for the mapping
between the image and task space. Furthermore, we show
that it is possible to include the camera intrinsics ΘC in
the calibration, further improving the accuracy. The mean
final error at the end effectors is 3.9 mm on average and
9.2 mm in the worst case. These results are comparable to a
calibration using the cartesian measurements of an external
tracking system, which is reported in the last row.

VII. CONCLUSION

The main advantage over the previous work from Ten-
humberg and Bäuml [1] is that the new approach does not
rely on an external camera system and calibrates the same
chain used when performing manipulation tasks. However,
to achieve comparable accuracy in the cartesian task space,
it is not enough to minimize the pixel error in the image
of the single RGB camera. We correct this mapping by
introducing virtual cartesian noise. This way, it is ensured
that the remaining error of our imperfect model is minimized
in the task-relevant cartesian space and not the pixel space.
We show that this simple, self-contained approach leads to a
similar good precision as using an external tracking system,
reducing the error to 3.9 mm on average.

In the future, we want to reduce the number of samples
needed by optimizing the used kinematic configurations –
similarly to the work of Carrillo et al. [13], but for an
elastic robot model and based on the here presented generic
configuration generation scheme. We also want to improve
the kinematic model by introducing an additional non-linear

term for the torso chain, as we found here that this sub-chain
is the primary source of the remaining error.
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