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Robust Stabilization of Elastic Joint Robots by
ESP and PID Control: Theory and Experiments

Manuel Keppler1, and Clara Raschel1, David Wandinger1, Andreas Stemmer1 and Christian Ott1,2

Abstract—This work addresses the problem of global set-point
control of elastic joint robots by combining elastic structure
preserving (ESP) control with non-collocated integral action.
Despite the popularity and extensive research on PID control for
rigid joint robots, such schemes largely evaded adoption to elastic
joint robots. This is mainly due to the underactuation inherent
to these systems, which impedes the direct implementation of
PID schemes with non-collocated (link position) feedback. We
remedy this issue by using the recently developed concept of
“quasi-full actuation,” to achieve a link-side PID control structure
with “delayed” integral action. The design follows the structure
preserving design philosophy of ESP control and ensures global
asymptotic stability and local passivity of the closed loop. A
key feature of the proposed controller is the switching logic
for the integral action that enables the combination of excellent
positioning accuracy in free motion with compliant manipulation
in contact with the environment. Its performance is evaluated on
an elastic joint testbed and a compliant robot arm. The results
demonstrate that elastic robots may achieve positioning accuracy
comparable to rigid joint robots.

Index Terms—PID control, Elastic joint robot, Underactuation.

I. INTRODUCTION

THE introduction of lightweight robot arms enabled compli-
ant manipulation in contact with unknown environments

and safe interaction with humans [1]–[3]. A major challenge
inherent to the control design for such lightweight robots is
the flexibility introduced into the robot joints, which is usually
due to gear elasticity or the compliance of torque sensors. The
control design became further challenging with the advent of
robots with series elastic actuators (SEA) or variable impedance
actuators [4]. In these articulated soft robots (ASRs), one
deliberately incorporates highly compliant elements into the
drive train with a stiffness that is low enough that these elements
can be exploited as energy storage. All systems mentioned
above are underactuated since the number of degrees of freedom
is greater than the number of actuators. The implied loss of
the matching property between control actions and outputs
(non-collocation) impedes a direct implementation of PID-like
controllers with link position feedback.

However, for such systems to be commercially attractive,
combining safe and compliant behavior in contact with high
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Figure 1. DLR David: A soft robot with variable stiffness actuators. [15]

positioning accuracy in free motion is paramount. The former
has been subject to extensive research in the past and present
years [2], [3], [5]–[9]. Additionally, several works [10]–[14]
proposed robust controllers using integral action to address
the latter. A review of the literature reveals that most of the
experimental evaluations are concerned with robot arms, where
parasitic effects cause the joint flexibility [10], [11], [14]; thus,
the joint stiffness is usually relatively high, and the rigid body
part gives a good approximation of the dominating dynamics.
A lack of experimental analysis of integrator-based schemes on
highly compliant robot arms exists, which raises the question
of whether such systems, as shown in Fig. 1, can achieve a
position accuracy comparable to that of rigid joint robots. This
paper aims at to closing this gap.

Recently, we recently proposed the concept of elastic
structure preserving (ESP) control for ASRs, which is based on
the idea of preserving the structure of the open loop dynamics
[16] but unlike [17], implements damping directly on the link
side rather on the motor side, while also achieving motion
tracking. In [8], we extended this approach to full Cartesian
impedance control by achieving a link-side PD behavior.

The non-collocated PD feedback in [8] globally asymp-
totically stabilizes a desired set-point if the gravity force is
balanced or compensated. Such an approach requires accurate
knowledge of the gravitational forces. Using the best estimate
usually results in (small) steady-state errors necessitating robust
control. If a constant bounded disturbance occurs on a rigid
joint robot, it is well known that adding an integral action to
PD feedback can eliminate the resulting steady-state error [13],
[18], [19]. Further, it allows for dealing with (non-perfectly
compensated) gravity forces, which to some extent, can be
considered a constant disturbance (from the local point of view)
[20]. Motivated by this observation, we exploit the concept of
quasi-full actuation [21] to extend the ESP controller [8] to
a link-side PID control structure. Specifically, we adopt the
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“delayed” linear PID controller proposed by Loria [18] and
combine it with gravity compensation [22]. Our approach is
motivated by the following observations.

Gravity in some manipulators, can range from zero up
to 30 % or more of the maximum permissible torque [20].
For a PID controller with constant gains, this implies that
transients in point-to-point control can exhibit substantial
differences according to the type of motion required (going
up or down) or the operational configurations [20]. The
proposed controller achieves a uniform transient throughout
the entire manipulator workspace by combing PID feedback
with gravity compensation (up to the aforementioned model
uncertainty). It is customary to activate the integral action
only when the manipulator is near its desired configuration
to avoid overshooting and to deactivate it when the error is
too large [20]. The delayed PID controller [18] allows for a
theoretical treatment of this heuristic idea. In summary, this
work contributes:

• A “delayed” PID controller [18] for elastic joint robots,
with non-collocated feedback, which ensures global asymp-
totic stabilization. By combining integral action with
gravity [22] compensation, this works aims at improving
positioning accuracy with minimal overshooting.

• A closed-loop that is locally passive with respect to
external forces and a linear sum of link velocity and
position errors in PID mode, and satisfying standard
passivity in PD mode.

• A controller that combines high positioning accuracy
in free motion with compliant manipulation in contact.
Experimental evaluations demonstrate that an elastic
manipulator may achieve positioning accuracy comparable
to that of a rigid one.

This paper is organized as follows. Section II states the
considered model, and Section III recalls some fundamentals for
our main contribution. Section IV and V present locally stable
PID controller for systems with linear and nonlinear elasticities,
respectively. Our main result, a delayed PID controller, is
presented in VI. Section VII introduces the experimental
setup, Section VIII reports extensive experimental results, and
Section IX concludes the paper.

Throughout and this paper, we denote by λm(A) and λM(A)
the smallest and largest eigenvalues of a symmetric positive-
definite bounded matrix A(x) for any x ∈ Rn.

II. MODEL

We consider an elastic joint robot satisfying Spong’s model
[23] with kinetic energy T (q, q̇) = 1

2 q̇
TM(qu)q̇, where

q represents the n generalized coordinates, which can be
partitioned into unactuated and actuated degrees of freedom
qu, qa ∈ Rn/2 such that q = (qu, qa). Matrix M = MT =
diag(M(qu),B) ≻ 0 denotes the generalized inertia matrix,
where M(qu) and B are the inertia matrices associated with
the rigid robot dynamics and the reflected motor inertias. The
gravitational, g(qu), and elastic forces are derived from the
potential energies Vg(qu) and Ve(φ) =

1
2φ

TKφ, φ = qa−qu,
where K is the diagonal matrix of the joint stiffness values. Let
Q′ ∈ Rn represent the generalized external forces, with forces

acting on the unactuated and actuated subsystems partitioned
so that Q′ = (Q′

u,Q′
a). Then, the associated Euler–Lagrange

equations are

M(qu)q̈u +C(qu, q̇u)q̇u + g(qu)−Kφ = Q′
u,

Bq̈a +Kφ = u+Q′
a,

(1)

where C(qu, q̇u) is the Coriolis and centrifugal matrix con-
nected with the rigid body dynamics, and u is the generalized
input force exerted by the n/2 actuators. Introducing

Ke =

[
K −K

−K K

]
, (2)

allows writing the elastic potential energy compactly as
Ve =

1
2q

TKeq. For notational simplicity, we shall refrain from
writing the explicit dependency on q, q̇ of any coefficient. In
this work, we assume the following:

Assumption 1. For all qu ∈ Rn/2, the matrix M is positive
definite, and there exist some positive constants dm and dM
such that dmI <M < dMI .1

Property 1. For a suitable choice of C in (1), we have that
Ṁ = C + CT [25], where C = diag(C,0). Moreover, the
matrix C(x,y) is bounded in x and linear in y such that
∥C(x,y)∥ ≤ kC∥x∥ ∥y∥ [24].

III. PROBLEM FORMULATION AND PRELIMINARY RESULTS

We consider the link positions qu as outputs with constant
desired values q∗u ∈ Rn/2. The associated equilibrium motor
positions, q∗a, are dictated by the equilibrium condition of (1),
and for Q′ = 0, we get q∗a = q∗u +K

−1g(q∗u). The output qu
is non-collocated with the input u, which impedes direct the
implementation of PID output-feedback control. We can remedy
this issue by employing the concept of quasi-full actuation
[21]. That is, we introduce the virtual motor coordinates q̄a
and inputs ū = (ūu, ūa) and apply the coordinate and input
transformation

qa =q̄a +K
−1ūu, (3)

u =BK−1 ¨̄uu + ūu + ūa, (4)

as reported in [21] to (1) and obtain

Σ̄u : Mq̈u +Cq̇u + g(qu)−K(q̄a − qu) = ūu +Q′
u,

Σ̄a : B ¨̄qa +K(q̄a − qu) = ūa +Q′
a,

(5)

with the generalized coordinates q̄ = (qu, q̄a). In this text, we
shall exploit ūu for implementing non-collocated PID feedback.

Remark 1. If ūu feeds back only the unactuated states,
and possibly contains the time explicitly, then the coordinate
transformation (3) establishes a one-to-one correspondence
between the solutions q(t) and q̄(t) of (1) and (5), respectively.
Thus, instead of studying and controlling the behavior of (1),
one can equivalently study and control the behavior of (5).

In summary, we are interested in designing a control law
(dynamic state feedback) u = u(q, q̇,v), v̇ = f(q,v), such
that the closed loop (1) with u is globally asymptotically stable
at any setpoint (q, q̇,v) = (q∗,0,0). In particular, we are
interested in using the transformed dynamics (5) to implement
a delay PID controller that achieves this objective.

1This is always the case for manipulators with only revolute joints. [24]
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Figure 2. (top) Passivity of Σ̄pd with respect to the output q̇ or (q̇ + ϵq̃)
[27], where Σ̄pd is the transformed robot dynamics (5) under PD plus gravity
compensation control (7). (bottom) Feedback interconnection of the passive
robot dynamics (under PD+ control) with a linear PI controller.

IV. PID CONTROL FOR LINEAR ELASTICITIES

Using the virtual input ū, we can easily achieve local
asymptotic stabilization of (5) with PID control. Since we aim
at compensating for output steady-state errors, the following
controller only feeds the link position error into the integrator.
We extend the results of [26] to elastic joint robots.

Remark 2. It is convenient to introduce the following def-
initions. Let Kpu,Ki ∈ Rn/2 and Kv ∈ Rn be symmetric
positive definite matrices, Kp = diag(Kpu,0), and

q̃ = (q̃u, q̃a) = (qu − q∗u, q̄a − q∗u),
v = (vu,0) ∈ Rn,

z = (zu,0), z
′ = z +Q′ ∈ Rn,

ζ = (ζu, ζa) ∈ Rn.

(6)

Proposition 1. Consider the transformed system (5) in closed
loop with the PID control law

ū =−Kpq̃ −Kv ˙̄q +
∂Vg

∂q̄
+ v, (7)

v̇u =−Kiq̃u, vu(0) = vu0 ∈ Rn/2, (8)

with the definitions in Remark 2. Consider the signals

ζ =ϵq̃ + ˙̄q, zu = vu − 1
ϵKiq̃u, (9)

with Kpu − 1
ϵKi > 0, then there exists some constant ϵ > 0

such that the resulting closed loop can be represented as the
feedback interconnection of Σ̄pd and Σ̄I , as in Fig. 2, with:

• Σ̄pd defines a locally OSP2 mapping z +Q′ 7→ ζ.
• Σ̄i defines an OSP mapping −ζu 7→ zu.

The closed loop is locally asymptotically stable at the origin
x ≜ (q̃, ˙̄q, zu) = 0 for Q′ = 0.

2OSP: output strictly passive.

Proof of Proposition 1. It is convenient to introduce

Kp =K′
p +

1
ϵdiag(Ki,0),

K′ =K′
p +Ke,

(10)

where ϵ > 0 is a (small) constant to be determined. First, we
observe that q̄a−qu = q̃a−q̃u which implies that Keq̄ = Keq̃,
such that making the substitution (7) and (5) gives

M¨̄q +
(
C +Kv) ˙̄q + (Ke +Kp)q̃ = v +Q′. (11)

Then, considering (9) and (10), we can write the error dynamics
(5), (7) and (8) as (see also Fig. 2)

Σ̄pd : M¨̄q + (C +Kv) ˙̄q +K′q̃ = z +Q′, (12)
Σ̄i : żu = −Ki(q̃u + 1

ϵ q̇u). (13)

To show the postulated stability and passivity properties of
the closed loop, we consider the following Lyapunov function
candidate, which shall also serve as storage function:3

V (x) =Hpd +Hi, (14)

Hi(zu) =
1
2ϵz

T
uK

−1
i zu, (15)

Hpd(q̃, ˙̄q) =
1
2

(
˙̄qTM ˙̄q + q̃TK′q̃

)
+ ϵq̃TM ˙̄q, (16)

where ϵ is a sufficiently small constant satisfying:
√
λm(K′)/λM(M) ≥ ϵ > 0, (17)

2λm(K′)/λM(Kv) ≥ ϵ > 0, (18)
1
2λm(Kv)/

[
(kC∥q̃∥+ λM(M)

]
≥ ϵ > 0, (19)

where the existence of a constant kC > 0 is ensured by
Property 1. Condition (17) ensures that Hpd is a positive definite
function; see Appendix X for details. Positive definiteness
of V follows trivially. After some simplifications and using
Property 1, we get for the time derivative of Hpd along the
solutions of the closed-loop dynamics (12)

Ḣpd = ˙̄qTz′ − ˙̄qTKv ˙̄q + ϵ
(
˙̄qTM ˙̄q + q̃TṀ ˙̄q + q̃TM¨̄q

)
,

=ζTz′ − ˙̄qTKv ˙̄q + ϵ
(
˙̄qTM ˙̄q + q̃T[CT ˙̄q −Kv ˙̄q −K′q̃

])
.

(20)

Let us establish upper bounds on the following terms

ϵ ˙̄qTM ˙̄q ≤ϵλM(M)∥ ˙̄q∥2, (21)

ϵ ˙̄qTCq̃ ≤ϵkC∥q̃∥ ∥ ˙̄q∥2, (22)

− ˙̄qTKv ˙̄q ≤− 1
2

(
˙̃qTKv

˙̃q + λm(Kv)∥ ˙̄q∥2
)
, (23)

−ϵq̃TKv ˙̄q ≤ϵλM(Kv)∥q̃∥ ∥ ˙̄q∥. (24)

The inequalities (21) and (22) follow immediately from
Property 1 and the results in [24, p. 256]. Knowing that
Kv is positive definite, we get for the spectral norm
∥Kv∥ =

√
λM(KT

vKv) = λM(Kv), which implies (24). Next,
from (20)–(24), we conclude that

Ḣpd ≤− ϵ

[
∥q̃∥
∥ ˙̄q∥

]T

Q

[
∥q̃∥
∥ ˙̄q∥

]
+ δ + ζTz′;

δ =−
{

1
2λm(Kv)− ϵ

[
kC∥q̃∥+ λM(M)

]}
∥ ˙̄q∥2;

Q =

[
λm(K′) − 1

2λM(Kv)
− 1

2λM(Kv)
1
2ϵλm(Kv)

]
.

(25)

3Note that we can always substitute qu = q̃u + q∗
u to write storage and

Lyapunov functions in terms of only the error coordinates.
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Inequality (18) implies that Q is positive definite and (19) that
δ ≤ 0. As the existence of δ ≤ 0 is connected to (19), we
can conclude only local OSP for Σ̄pd. Next, let us establish
passivity for the subsystem Σ̄i with the storage function Hi in
(15). Its time derivative along the solutions of Σ̄i is

Ḣi = −zT
uζu. (26)

We established the passivity properties of Σ̄pid and Σ̄i.
Let Q′ = 0. Consider the set

Bα = {x ∈ R3n : V (x) ≤ α}, (27)

where α is the largest positive constant such that (19) holds,
and thus V̇ (x) ≤ 0 for all x ∈ Bα. Knowing that V is positive
definite and radially unbounded, and that V̇ ≤ 0 for all x ∈ Bα,
we conclude that the set is positively invariant (in words, if
x(0) ∈ Bα then x(t) ∈ Bα for all t ≥ 0) and qualifies as a
domain of attraction for x(t). Local asymptotic stability of the
origin x = 0 can be shown by invoking Krasovskii–La’Salle’s
invariance principle [28, p. 129].

V. PID CONTROL FOR NONLINEAR ELASTICITIES

In this section, we sketch an extension of Proposition 1 to
a robot arm modeled by4

Mq̈u +Cq̇u + g(qu)−ψ(qa − qu) =Q′
u,

B ¨̄qa +ψ(qa − qu) =u,
(28)

where the generalized elastic forces ψ satisfy:

Assumption 2. The Ck, k ≥ 3, positive definite elastic potential
Ve : Rn → R is associated with the joint deflections φ such
that the ith generalized elastic force ψi(φi) = ∂Ve(φ)/∂φi

and local stiffness κi(φi) = ∂2Ve(φ)/∂φ
2
i satisfy:

cM ≥ sup
φ∈Rn/2

∥κi(φi)∥ ≥ cm ∀φi ∈ R, (29)

φiψi(φi) ≥ β∥φi∥2 ∀φi ∈ R, (30)

for some cm, cM , β > 0, and ψi(0) = 0.

Then, we can apply the coordinate and input transformation
from [21]; that is, we apply the transformation

ψ(φ) = ψ(φ̄) + ūu, (31)

where φ̄ = q̄a − qu = q̃a − q̃u, and the intermediary input

u =B(Ȧ+ ȧ) + ūu +Aūa + (I −A)ψ(φ̄), (32)

to (1) which gives5

Mq̈u +Cq̇u + g(qu)−ψ(q̄a − qu) =ūu +Q′
u,

B ¨̄qa +ψ(q̄a − qu) =ūa.
(33)

Comparing (33) with (5), it is evident that we are now in
a position to proceed analogously to the linear spring case.

4For simplicity, we neglect externals forces on the motor inertias.
5Note that equations (31), (32) and (33) correspond to (39), (A7) and (A10)

in [21], with A = κ−1(φ)κ(φ̄) and a = (I − A)q̇u + κ−1(φ) ˙̄uu. A
physical interpretation of the transformation (31) and a detailed derivation of
(33) is provided in [21].

Applying the PID controller (7) to (33) yields the error
dynamics

Σ̄pd : M¨̄q +
(
C +Kv) ˙̄q +

∂Ve

∂q̄
+K′

pq̃ = z +Q′ (34)

Σ̄i : żu = −Ki(q̃u + 1
ϵ q̇u) (35)

Proposition 2. The conclusion of Proposition 1 remains valid
if the PID control law (7)–(8) is applied to the transformed
system (33), which results in the closed loop (34)–(35).

Sketch of Proof of Proposition 2. In the following, we sketch
a proof by highlighting the modifications required compared to
the proof of Proposition 1. Observing that the error dynamics
(11) and (34) only differ in the potential forces suggests
modifying the storage function (16) to

Hpd(q̃, ˙̄q) =
1
2

(
˙̄qTM ˙̄q + q̃TK′

pq̃
)
+ Ve(φ̄) + ϵq̃TM ˙̄q. (36)

Considering Assumption 2 and proceeding analogously to
Appendix X, we conclude that Hpd is a positive definite
function. Considering that q̃T(∂Ve/∂φ̄) = φ̄

Tψ(φ̄), we get

Ḣpd =ζTz′ − ˙̄qTKv ˙̄q+

ϵ
(
˙̄qTM ˙̄q + q̃T

[
CT ˙̄q −Kv ˙̄q −

∂Ve

∂q̄
−K′

pq̃
])
.

(37)

with z′ as in (6), and a positive lower bound on the terms:

q̃T
[
∂Ve

∂q̄
+K′

pq̃

]
≥ β∥φ̄∥2 + λm(Kpu − 1

ϵKi)∥q̃u∥2 =

q̃T
[
(β + λm(Kpu − 1

ϵKi))I −βI
−βI βI

]

︸ ︷︷ ︸
Kβ

q̃ ≥ λm(Kβ)∥q̃∥2,

where λm(Kβ) > 0 follows from of Kpu − 1
ϵKi > 0 and

β > 0. Using (17)–(19), (21)–(24) and the inequalities above:

Ḣpd ≤− ϵ

2

[
∥q̃∥
∥ ˙̄q∥

]T

Qnl

[
∥q̃∥
∥ ˙̄q∥

]
+ δ + ζT

uz
′
u;

Qnl =

[
2λm(Kβ) −λM(Kv)
−λM(Kv)

1
ϵλm(Kv)

]
.

(38)

with δ as in (25). Using the storage and Lyapunov functions
Hpd and V2 = Hpd +Hi, with the definitions in (15) and (36),
we can complete the proof following the steps in Prop. 1.

VI. DELAYED PID CONTROL

From Proposition 1, it is evident that only local asymptotic
stability is assured (analogous to the rigid robot case, c.f. [29]).
The presence of the cross term ϵkc||q̃|| || ˙̄q||2 in (25) and (38)
impedes us from claiming OSP and asymptotic stable setpoint
control in the global sense. To deal with this problematic
term, we can adopt nonlinear PID controllers [26], [27] and
normalize the cross term by modifying ϵ to a non-constant
term, as in [30]. However, motivated by the observation that
it is customary to activate the integral term only when the
output is “close” to its desired value to avoid overshooting,
we adopted the delayed PID controller from Loria [18]. The
idea is to patch together a globally and locally asymptotically
stable controller, where the former drives the solution into an
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arbitrarily small domain of attraction of the latter one; see [31].
For the former, we choose the global ESP controller in [8].

Proposition 3 (ESP-PD control [8]). Consider the transformed
system (5) or (33) in closed loop with the PD feedback

ū =−Kpq̃ −Kv ˙̄q +
∂Vg

∂q̄
, (39)

with the definitions in Remark 2. Then the closed loop is a
passive map q̇u 7→ Q′

u and, for Q′ = 0, globally asymptotically
stable at the origin y = (q̃, ˙̄q) = 0.

Proof of Proposition 3. First, we notice that the closed loop
(5) and (39) is a special case of the error dynamics (33) and
(39); thus, this proof is concerned with the latter one. Using

V3(y) =
1
2

(
˙̄qTM ˙̄q + q̃TKpq̃

)
+ Ve(φ̄), (40)

as storage and Lyapunov candidate function, we get

V̇3 = − ˙̄qTKv ˙̄q + ˙̄qT
uQ′

u (41)

and conclude the desired passivity property. Moreover, setting
Q′

u = 0, then global asymptotic stability of the origin y = 0
immediately follows invoking Krasovskii–La’Salle’s invariance
principle [28].

Following [18], we can use Proposition 3 to formulate a
globally asymptotically stable delayed PID controller.

Proposition 4 (Delayed ESP-PID Control). Consider, in
absence of external force, i.e., Q′ = 0, the transformed system
(5) or (33) in closed loop with the PID feedback

ū =−Kpq̃ −Kv ˙̄q +
∂Vg

∂q̄
+ v, (42)

v̇u =

{
0, vu(0) = 0 ∈ Rn for 0 ≤ t ≤ ts

Kiq̃u, vu(ts) = 0 ∈ Rn/2 for t ≥ ts
(43)

with the definitions in Remark 2. Then, there always exists a
finite time constant ts ≥ 0, a sufficiently large proportional gain
Kpu and/or a sufficiently small integral gain Ki, independent
of the initial conditions, such that the closed-loop system is
globally asymptotically stable at the origin x = (q̃, q̇,vu) = 0.

Proof of Proposition 4. From Proposition 3, we know that
during the first phase

(
0 ≤ t ≤ ts

)
of the delayed ESP-

PID controller, (q̃(t), q̇(t)) → 0 as t → ∞. Thus, for any
strictly positive α, in the first phase the solution is driven
into the domain of attraction Bα of the PID controllers in
Proposition 1 and 2 in finite time. Next, let us lower bound V2.
By Taylor’s Theorem [32], Ve(φ̄) =

1
2 φ̄

T ∂2Ve(rφ̄)
∂φ̄2 φ̄ for some

r, 1 ≥ r ≥ 0, which implies that Ve(φ̄) ≥ cm
2 ∥φ̄∥2, and hence

V2 ≥ λ
2 {cm∥φ̄∥2 + λm(Kpu)∥q̃u∥2} = λ

2 q̃
TKmq̃, where

1 > λ > 0, Km =

[
{λm(Kpu) + cm}I −cmI

−cmI cmI

]
.

Continuing similarly to [18], let us derive an upper bound
for α using V m

2 = λ
2λm(Km)∥q̃∥2 and the set Bm

α = {x ∈
R3n : V m

2 (x) ≤ α}. It immediately follows from the definitions
that V m

2 ≤ V2 and Bα ⊂ Bm
α ; thus, V̇2(Bm

α ) ≤ 0 implies that
V̇2(Bα) ≤ 0. We know that condition (19), i.e., ∥q̃∥ ≤ d, with
d = [λm(Kv)/(2ϵ)− λM(M)]/kc, is sufficient to ensure that

Impactor

Li
nk

Endstop

Figure 3. A series elastic actuator testbed with impactor.

V̇2(x) ≤ 0. Thus, for ∥q̃∥ ≤ d and V̇2(Bm
α ) ≤ 0 to hold true

it should be that α ≤ 1
2λλm(Km)d2. Finally, to ensure global

asymptotic stability of the origin x = 0, it is sufficient to
choose the time ts as the first time instant when x(ts) ∈ Bα,
that is,

ts : V2
(
x(ts)

)
≤ α. □

Remark 3. In practice, we can also employ a state-dependent
switching, that is, activate the second case in (43) as soon as
q̃ satisfies (19).

Remark 4. The link acceleration and jerk signals can be
expressed in terms of the robot states (q, q̇) using the model (1);
see appendix of [33] for details. Exploiting this property allows
writing the final control law u, constituted by (4),(42)–(43),
in the desired (dynamic state feedback) form u = f(q, q̇,vu).

VII. EXPERIMENTAL SETUP

This section introduces the experimental setups, the em-
ployed integrator logic and reports experimental validation of
the proposed controller. We offer an experimental comparison
with the state of the art controllers reported in [6], [13], see
eq. (26), and [34]; referred to as C1, C2 and C3. C1 is a
joint impedance controller developed for lightweight robots
with inherent joint elasticity such as LWR III. C2 is a robust
PID controller with non-collocated integral action; a critical
feature shared by our controller (ESP-PID). ESP-PID and C2
share the same PID gain layout as in Table I, but with a
damping ratio of 2 for C2. The gains for C1 were obtained
by manual tuning; following the notation in [6]: Kqd = kpu,
Dθ = 52.9Nmrad−1 s, Bθ = 0.65B, D = 1.72Nmrad−1 s.
C3 has the same structure as C1, but with integral feedback.

A. Hardware

We will study the performance of the proposed controllers
on two different robots. The first is a dedicated SEA testbed,
and the second, DLR David, is a soft robot. Table I summarizes
critical system and control parameters. We employed a fourth-
order derivative filter with a cut-off frequency of 80Hz for
either system to obtain velocity signals. We used the momentum
observer [5] to compensate motor friction and estimate Q′

u.
The SEA testbed is constituted by an LWR III motor unit

and elastic elements from DLR C-Runner, and moves in the
horizontal plane, as depicted in Fig. 3. See [33] for details. This
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Table I
SYSTEM AND CONTROL PARAMETERS

David Testbed

Link inertia n.a. 1 kgm2

Motor inertia 0.3117 kgm2 0.6 kgm2

Joint stiffness 52.4–826Nmrad−1 362Nmrad−1

Actuator limits ±67Nm ±100Nm
Link sensor resolution 16 bit / 271° 23 bit / revolution
Controller rate 3000Hz 3000Hz
P gain [Nmrad−1] Kpu,ii = 100 kpu = 200
I gain [Nmrad−1 s−1] Ki,ii =1000 ki = 200
D gain [Nmrad−1 s] ξu = 0.6, ξa = 0.1 ξu = 0.7, ξa = 0.3
Inertia shaping reduced to 0.3B no

basic setup is intended to demonstrate the achievable control
performance in a scenario where the dynamics of the actual
hardware matches the considered model (1) closely.

DLR David [15], as shown in Fig. 1, is implemented
with variable stiffness actuators. For the experiments, we
considered the first four main axes. The applied stiffness setting
corresponds to the stiffness profile shown in blue in Fig. 1. We
followed the damping design reported in [16] and ξu and ξa
refer to the link- and motor-side modal damping factors.

B. Integrator Logic

Practical experience suggests activating integral action only
when q̃u is close to zero to reduce overshooting, and deacti-
vating it when q̃u becomes large to avoid undesirable transient
behavior. A common difficulty in using integral action is the
presence of stick-slip effects, which can cause oscillations due
to the interplay of integral gains and friction nonlinearities
[20]. To alleviate this issue, deactivating the integral action
is customary when q̃u is very small. It is worth mentioning
that we did not encounter such oscillations with the reported
integral gains on David or the SEA testbed. The integrator logic
in Algorithm 1 applies to each joint individually and evolves
around two critical events: 1) the estimated external torque Q̂′

ui

surpasses some threshold δc, with δc = 1Nm for the SEA and
δc = 6Nm for David, 2) the position error grows too large, i.e.,
q̃ui ≥ δq with δq = 2° for both systems. For each system, the
noise level of the corresponding momentum observer dictates
a lower bound on δc. Remark 3 provides justification for a
position-error-based switching event; theoretically, δq should
be linked to (19). For practical purposes, however, δq should
be treated as a joint-specific tuning parameter. Clamping is
used to avoid integrator windup. Regarding Algorithm 1, line 6
corresponds to the global PD controller in Proposition 3 and
line 8 to the local PID controller in Proposition 1 and 2. The
case Qu ̸= 0 in line 4 does not allow for a “standard” stability
analysis, but the passivity conclusions of Proposition 1 and 2
hold. In this case, vu is constant and thus can be treated as a
constant external force on the unactuated subsystem of Σ̄pd.

VIII. EXPERIMENTAL RESULTS

a) Testbed: Elastic vs. Rigid Actuators: Figure 4 best
summarizes the overall conclusion drawn from the following
experiments, which presents the positioning accuracy achieved
by: 1) C3 on a testbed constituted by a single “rigid” actuator

Algorithm 1: Integrator logic applies to each joint individually

Inputs: q̃ui, q̇ui, Q̂′
ui

Outputs: vui, v̇ui, v̈ui
1: INIT: vui = 0, v̇ui = 0, v̈ui = 0
2: while System running do
3: if |Q̂′

ui| > δc then
4: HOLD: vui holds present value, v̇ui = 0, v̈ui = 0
5: else if |q̃ui| > δq then
6: OFF: vui, v̇ui = 0, v̈ui = 0
7: else
8: ON: integrator initializes with the last value of vui

vui =
∫ t
0 kiq̃ui(τ)dτ, v̇ui = kiq̃ui, v̈ui = ki ˙̃qui

9: end if
10: end while

10.1 µrad

C1

SEA

C3

ESP-PID

C2

RMSE

Steady-state error [µrad]

4.5 µrad

1.2mrad

16.9 µrad

-2 -1 0 1 2 3 4 5

-20 -10 0 10 20 30 40 50

CAESAR

Steady-state error [mrad]

Figure 4. Link-side positioning accuracy: elastic versus rigid joint. The
arithmetic means (black bars) and root-mean-square errors (RMSE) are shown.

of the space robot CAESAR [34], 2) C1, C2 and ESP-PID
on a dedicated SEA testbed. In total, ten different reference
link positions were selected, and each approached from
both directions from three different distances. This procedure
was executed twice for a total number of 120 data points.
The distances were selected to exhibit both “slow” friction-
dominated behavior (static and Stribek friction) and “fast”
inertial force-dominated behavior. In summary, the integrator-
based schemes (bottom) reduce the steady-state errors by two
orders of magnitudes compared to C2. ESP-PID approaches
the link sensor resolution of 0.75 µrad, while C3 is limited in
its accuracy by the link sensor resolution of 16.9 µrad.

b) Testbed: Step Response and Disturbance Rejection:
Figure 5 shows exemplary the disturbance rejection and set-
point control performance of the compared controllers. Note
that ESP-PID achieves a satisfactory disturbance rejection
behavior despite input saturation during a collision with the
impactor, as shown in Fig. 3. Comparing the performance of the
different controllers, we conclude that 1) non-collocated integral
action successfully reduces the steady state error, 2) “direct”
damping through non-collocated velocity feedback improves the
transient and disturbance rejection behavior, 3) the robustness
of a control design does not necessarily suffer from relying on
link and acceleration signals. Latter observation can possibly
be explained by the technique noted in Remark 4.

c) David: Set-point and Motion Tracking Control: In
practice, the tracking problem is often solved by regulating the
link positions about a time-varying trajectory. Figure 6 shows
the performance of the ESP-PID on David. As expected from a
regulation controller, the tracking error approaches zero only in
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Figure 6. Delayed PID controller on David.

phases where the desired velocity is zero. Gravity compensation
combined with a state-dependent damping design may enable
overshoot-free transients [16]. By replacing the regulation con-
troller with a globally asymptotically stable tracking controller
in phases where integral terms are deactivated, we can expect
to improve the transient performance. Figure 7 considers such
case by combining the tracking controller from [16] with the
proposed delayed PID controller; resulting in an improved
transient performance. However, the presented stability results
would require some extension to cover such a case.

d) David: Disturbance Rejection & Impedance Behavior:
A human user applies forces on the end-effector by pushing and
pulling on the robot’s hand. The exerted torques are reported in
Fig. 8 (top), and Fig. 8 (bottom) reports the associated torque-
deflection relations. We can observe that the results closely
approximate the desired steady-state behavior (dashed line).
Figure 9 shows the disturbance rejection performance due to
external forces imposed by a human. For comparison, using a
stiff motor controller reveals the intrinsic oscillatory dynamics
of the system, as shown in Figure 9 (bottom). We conclude
that the desired compliance in contact is not impaired thanks
to the integrator logic. Furthermore, the robustness towards
disturbances is demonstrated, see also the attached video.
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Figure 7. Delayed PID controller “patched” with a motion tracking controller
[16] on David.
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Figure 8. (Top) Time variations of the external torques. (Bottom) External
torque versus joint deflections for the first four joints.

IX. CONCLUSIONS

This work addressed the practically relevant problem of
compensating steady-state errors in the setpoint control of
elastic joint robots. Following the structure preserving design
philosophy of ESP control, we achieved a link-side PID
control structure with delayed integral action, ensuring global
asymptotic stability in free motion and passivity during an
interaction. By preserving desired physical properties such
as passivity—and refraining from canceling manipulator non-
linearities or the motor dynamics—the design is expected to
be robust. The impact and interaction experiments support
this hypothesis. The experiments further demonstrate that the
proposed controller combines excellent positioning accuracy
with compliant interaction in contact. Steady-state errors
caused by, e.g., friction or uncertain gravity knowledge, are
successfully compensated, and the final errors are close to
the sensor resolution. Good transients without overshooting
are achieved throughout the workspace by combining non-
collocated PID action with gravity compensation and by
activating the integral action only close to the desired position.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

0 2 4 6 8 10

-0.2

0

0.2

q̃
u

[r
ad

]

0 5 10 15

Time [s]

-0.2

0

0.2
q̃
u

[r
ad

]

Joint 1 Joint 3
Joint 2 Joint 4

Figure 9. (Top) Disturbance rejection behavior of the delayed PID controller.
(Bottom) Disturbance rejection of a “stiff” PD controller with motor position
and velocity feedback highlighting David’s intrinsic oscillatory dynamics.

Compliant and rigid robots may each have their advantages
and disadvantages. However, when it comes to positioning
accuracy, they are potentially on equal footing, as highlighted
in this work. Future research is needed to achieve a similar
level of accuracy in motion tracking.

X. APPENDIX

We can rewrite the storage function (16) as

HPD = 1
2

[
ζTMζ + q̃T(K′ − ϵ2M)q̃

]
,

which is positive definite in (q̃, ˙̄q) since ϵ satisfies (17).
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