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1. Introduction

Solar cell technologies play a steadily increasing role in the
energy transition in recent years, however, they have been used

already in the early 1960s of the past cen-
tury for generating power in space.[1–3]

Today, they are widely applied for power
delivery in spacecrafts, satellites, and
probes, where the field is dominated by sil-
icon photovoltaics and high-efficiency
multi-junction devices based on GaAs or
related materials.[4–7] Within the past
decade, novel thin-film materials and tech-
nologies were discovered that have been
improved continuously by systematic
research ever since.[8,9] In particular,
next-generation solar cell technologies,
which are based on soft materials such
as hybrid organic–inorganic perovskites
or organic semiconducting polymers, offer
a variety of new options and features that
make them particularly interesting for their
application in space.[10,11] Here, key advan-
tages are based on their significantly
reduced thickness of (sub-)micrometer
scale, compared to current space solar cells,
which are significantly thicker.[12] Thereby
significantly higher specific powers of the
solar modules can be envisioned when

using hybrid organic–inorganic perovskites or organic semicon-
ducting polymers. Moreover, their upscalable manufacturing at
low- or ambient temperatures from solution enables the use of
thin polymeric foils as substrates and thereby true mechanical
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Exploration of novel thin-film solar cell technologies outreaches for their application
in space. For extraterrestrial tests, irradiance conditions must be well determined to
extract quantitative solar cell performances. Here, a new method for solar position
determination is presented, based on parallelized ambient light sensor measure-
ments is presented obtained from the sounding rocket experiment Organic and
Hybrid Solar Cells In Space during the MAPHEUS-8 mission. The solar position
evolution is optimized using stochastic and gradient-based methods in a Bayesian
approach. Comparison with independent positioning estimates shows compelling
agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irra-
diation component mitigates a small systematic offset. Further, solution uncer-
tainties are estimated with Monte-Carlo Markov-chain sampling. The point-source
irradiation model’s accuracy can compete with that of a camera-based trajectory.
During equatorial Sun positions, the method’s precision appears even higher––the
1σ uncertainty of the derived solar position is as small as 3° for the effective angular
deviation. This simple sensor array triangulation method being complementary to
other attitude determination methods shows reasonable accuracies and allows
implementation in systems of limited computational capabilities to determine the
solar position or irradiance conditions for space or terrestrial solar cell applications.
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flexibility of such ultra-thin and lightweight devices.[13–19]

Research on their long-term stability came increasingly into
focus in the past years, and the novel material attests to promis-
ing behavior in harsh environments of strong particle irradia-
tion.[20,21] Taking these novelties together, the technologies
have the potential to become the next generation of space solar
cells.[22,23] Previous tests of the novel materials range from labo-
ratory tests that simulate space conditions, over near-space mis-
sions on stratospheric balloon flights to rocket flights to
space.[24–30] However, further tests that focus on their application
in their designated role are necessary before these next-genera-
tion solar cells canmake the step from experimental technologies
to their integration as conventional space technologies. In con-
trast to laboratory or terrestrial experiments, the determination
of solar cell irradiation in a space environment is the central chal-
lenge in relating the solar cell behavior to the solar irradiance and
thereby quantifying solar cell performance parameters. For ter-
restrial applications, there exists a broad range of different meth-
ods that allow determining the solar position or at least rotating
the solar panel to follow the solar movement via feedback
loops.[31] Precise attitude control in space, however, raises the
necessity for testing further methods such as camera-based
methods for determining the Earth horizon.[32] Toward low-cost
solar position determination, the current of multiple solar cells in
the orthogonal arrangement has been measured to successfully
derive the angular position of the light source.[33] However, their
low number of sensing surfaces and orientations result in lim-
ited angular estimation accuracy and a limited field of view.

In the present study, we present a method for solar position
determination based on triangulation via data parallelization of
several ambient light sensors. Each sensor is a simple, commer-
cially available I2C sensor and faces in a distinct direction into
space. In our work, we analyze the measurement data obtained
by the light sensors being part of the Organic and Hybrid Solar
Cells in Space (OHSCIS) sounding rocket module, which we
designed and used to successfully test novel thin-film solar cell
technologies in the space environment for the very first time
during the sounding rocket flight of MAPHEUS-8.[27,28] The tri-
angulationmethod we describe here can readily be generalized to
any geometrical arrangement of ambient light sensors and is not
restricted to extraterrestrial use for solar positioning or light irra-
diance determination. We investigate the time-synchronized
light sensor measurements by establishing and refining a solar
irradiation model using machine learning techniques to derive a
global solution for the global model parameters and the solar
position at each time. Making use of posterior Monte-Carlo
Markov-Chain (MCMC) sampling, we estimate model parameter
distributions and correlations as well as solar position estimation
errors for each measurement. In recent work, Braun et al. recon-
structed the payload orientation over time by detecting the
Earth’s horizon and Sun on the images from two opposite-look-
ing cameras and fusing the resulting estimates of the Earth nadir
and Sun direction vectors with time-integrated measurements
from an inertial measurement unit (IMU).[32] Comparing both
datasets, we find strong agreement between both trajectories
with an absolute deviation of only a few degrees within the entire
dataset. We further show that including a simple Earth model of
a homogeneously radiating, Lambertian extended surface as a
second radiation component improves our trajectory solution

by increasing the total model likelihood, reducing the attributed
measurement noise, and confining the model results closer to
the trajectory reconstructed by Braun et al. From the model,
we derive the evolution of Earth’s normal direction over time,
which allows a rough but fully defined orientation estimate by
fixing the third independent axis of rotation. The derived model
results allow triangulating the solar position over time and thus
reconstructing the irradiance conditions that have been present
during MAPHEUS-8. Potential future flights of the OHSCIS
module, as well as independent systems relying on parallelized
ambient light sensors, can be based on this principle for light-
source positioning or solar irradiance determination.

2. Experiment and Dataset

The OHSCIS module (Figure S1a, Supporting Information)
contained eight hatches each 45° azimuthally arranged. They
were covered with fused silica glass (n¼ 1.46 at λ¼ 550 nm) that
has negligible absorption in the visible range but gives rise to
angular-dependent Fresnel reflection. Each hatch contained
two ambient light sensors of type BH1750FVI that steadily collect
illumination measurements during the flight (Figure S1b,
Supporting Information).[33] The special feature of the two sen-
sors that are located in a single hatch is that one sensor is rotated
upwards by 22.5° and the other one downwards by 22.5° as
indicated in Figure S1c, Supporting Information, creating
an effective viewing angle of 45° between the two sensors.
In combination with the eight hatches with the 45° angle between
neighboring hatches, each of the total 16 light sensors of the
OHSCIS module was oriented in a distinct spatial direction.

The light sensors are designed for terrestrial illumination
measurement purposes and thus are expected to saturate under
strong AM0 irradiation, the solar irradiation spectrum with
around 1366Wm�2 in space, according to the ASTM E-490 spec-
trum.[34,35] To quantify expected saturation, the sensor spectral
sensitivity curve extracted from the sensor datasheet was folded
with the AM0 solar spectrum, which results in possible maxi-
mum brightness measurements of 88 331 lx in the sensor con-
figuration of lowest sensitivity (default high-brightness
measurement-time register value of 31), while the 16-bit mea-
surement range is effectively limited to 65 535 lx.[33] Thus, the
measurement-time register value was further reduced down to
15 to avoid possible saturation for the sensor application in space
with a safety margin of around 1/3 of the available measurement
range as a compromise of safety and proper use of large parts of
the possible sensitivity scale for accurate measurements.
Figure 1a shows the linearity of the measurement-time register
value to sensor brightness response for stable light sources in our
laboratory. Here, we note that this graph and the results of this
work allows to fine-tune the measurement-time register value for
improved accuracy for future flights of the OHSCIS module.

In this work the focus lies on the sensor measurements
acquired during stable payload configuration, i.e., selecting
approximately the μ-gravity time of the flight of MAPHEUS-8.
During flight, the cameras could capture both, the Sun and
Earth horizon, even simultaneously, which was not possible in
earlier flights.[32] Good solar position and Earth horizon tracking
at different times of the flight by the cameras have been the key to
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the high precision of attitude determination in Braun et al.’s
work. This in turn is the solid ground to interpret the results
of this work. The dataset includes all light sensor measurements
starting with the first at around Tþ 60.5 s (after lift-off ) after acti-
vation of the rate-control system. The measurement at Tþ 444.4 s
was included as the last measurement, before payload spin-up
became too strong, yielding a total number of 256 measurements
of all 16 sensors that are time-synchronized. This way as many
reliable measurements as available were included with the goal
to maximize the amount of data for model training. As a conven-
tion in this work, each of the 256 measurements is called (single)
frame. For the selected data, the payload showed a sufficiently sta-
ble orientation, i.e., within the measurement time asynchrony of
the 16 light sensors (of up to 0.7 s in the dataset), the payload ori-
entation change effective angle is strictly below 1°.[28] Thus this did
not influence the solar triangulation results within their accuracy.
Each single sensor measurement in the dataset is an integer

number ranging from 0 to 31 776, the minimum and maximum
registered brightness value by a light sensor during flight.

3. Radiation Model

To model the brightness values measured by the sensors, we
need: a) to define the sensor response function, b) consider
further effects that have an impact on the model, e.g., angle-
dependent fused silica transmission or geometrical shadowing
of the light sensors, and c) to incorporate all these relations into
a coordinate system together with the definition of the light
source(s).

We describe the sensor sensitivity as a function of the incident
angle onto the sensor, which is measured relative to the sensor
surface normal or sensor viewing direction. To find a functional
dependence of incident angle and sensor response, we extract the

Figure 1. Light sensor properties and angular response modeling. a) Measured linear correlation of sensor measurement time and response for ambient
light and a strong laboratory light source. The black solid line shows the maximum register value that can be used without causing sensor saturation in
laboratory AM1.5G measurements. The dashed black line shows the maximum register value that can be used for AM0 without saturation from folding
the AM0 spectrum with the spectral sensor response. The dotted black line results from scaling the saturation register threshold measured with the
AM1.5G lamp to the AM0 spectrum. The solid orange line is the choice for the space flight with a 1/3 safety margin. Note the double-logarithmic
representation. b) Angular light sensor response as measured in the lab, extracted from manufacturer datasheet, and approximated with a cosine
to the power of 3/2 (blue). On top we add the sigmoidal function that suppresses the response above the cutoff angle αc, resulting in the total sensor
response model (red). c) Angular fused silica transmission derived from Fresnel equations for n = 1.46. d) Effective sensor response angular contour plot
including sensor response (without sigmoidal function) and Fresnel transmission. The contour lines are no circles since the glass transmission peaks at
angles different than the peak of the sensor sensitivity and due to the cylindrical Mercator projection that distorts regions at high latitudes.
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sensor sensitivity curves from the sensor datasheet for vertical
and horizontal directions and execute laboratory measurements
for various incident angles with the light sensors in our labs with
a fixed and stable light source (Figure 1b). Comparing the
extracted and measured sensor sensitivity curves, we find a good
agreement within a few degrees or percent, which is our attrib-
uted measurement error of single sensor measurements. The
validation measurements lie in between the range of the curves
extracted from the datasheet. The empirical and extracted data
show a strong agreement with a cosine function to the power
of 3/2. Therefore, for numerical simplification in our calcula-
tions, we model the sensor sensitivity curve like that as

RS αð Þ ¼ cos αð Þ3=2 (1)

with the incident angle α. Deviations in the shape of our simpli-
fied sensor model and the intrinsic functional behavior are small,
however, there might be systematic sensor misalignment prop-
erties that we estimate to be of order 1°. In our laboratory tests,
we could not detect inter-sensor sensitivity variations, however,
such systematic sensitivity sensor differences would add to mea-
surement uncertainty. Also, sensor read-out noise adds on top to
the measurement uncertainty. For AM1.5G 1000Wm�2 irradi-
ance, we determine a standard measurement error of 0.1%.
However, the effective measurement error can become more
pronounced for lower signal-to-noise ratios in faint conditions.
All these effects add up to potential measurement uncertainties
that we discuss in the next section.

A closer look at the measurements in Figure 1b shows a quick
cutoff of the sensor response caused by the onset of geometrical
shadowing effects above certain incident angles. Here, we note
that this effect occurs due to shadowing by the rocket payload,
i.e., only in one direction along the vertical axis for a sensor.
To include this cutoff behavior in the modeling in an easy
way, we define the cutoff angle αc to be identical in all directions
and extend the sensor response model with a sigmoidal function

RS;eff αð Þ ¼ cos αð Þ3=2Sig α, αcð Þ (2)

where the sigmoidal function

Sig α, αcð Þ ¼ 1
2

1þ tanh
γ α� αcð Þ

2

� �� �
(3)

is defined to be close to 1 below αc, 0.5 at αc, and close to 0 above
αc (cf. Figure 1b) with the slope γ. We use the sigmoidal function
instead of, e.g., a Heavyside step function to be compatible with
gradient-based optimization methods. We set γ¼ 0.88 to let the
sigmoidal function decrease from 0.9 to 0.1 within 5°, which
roughly corresponds to the estimated geometrical shadowing
range.

A light ray is transmitted through the glass before arriving at
the sensor. The glass transmission follows Fresnel’s equations
since glass absorption is negligible in the optical range, where
the solar spectrum and sensor sensitivity peak (�550 nm, see
Figure S2, Supporting Information). Correspondingly, we use
a refractive index of fused silica of n¼ 1.46.[36] The effective glass
reflection coefficients of light of different polarization concern-
ing the plane of incidence are

R⊥ ¼ n1 cosðα1Þ � n2 cosðα2Þ
n1 cosðα1Þ þ n2 cosðα2Þ

� �
2

(4)

Rk ¼
n2 cosðα1Þ � n1 cosðα2Þ
n2 cosðα1Þ þ n1 cosðα2Þ

� �
2

(5)

where n1 and α1 are the refractive index and incident angle (to the
surface normal) of a light ray inside the initial medium, n2 and α2
in the final medium, respectively. Since for the transmission
from vacuum to glass and back from glass to vacuum n1 and
n2, as well as α1 and α2, are exchanged, respectively, and the
expressions for R⊥,Rk are squared and hence symmetric func-
tions, we can write the effective glass transmission as

T ¼ 1� R⊥ þ Rk
2

� �
2

(6)

The refracted angle we express via Snell’s law via incident
angle and the refractive indices

α2 ¼ arcsin
n1 sinðα1Þ

n2

� �
(7)

and thus derive the angle-dependent fused silica transmission
T(α1) in Figure 1c. Note that the incident angle of the light
ray on the glass differs from the incident angle of the sensor.
For the description of the geometry, we use a spherical coordi-
nate system to make use of the azimuthal symmetry of the
OHSCIS module to define a certain direction with the azimuthal
angle φ and the polar angle θ

r φ, θð Þ ¼
cos φð Þ sin θð Þ
sin φð Þ sin θð Þ
cos θð Þ

0
@

1
A (8)

We define the coordinate system following the MORABA coor-
dinate system, i.e., the payload points always toward θ¼ 0°, a radial
direction of the cylindrical OHSCIS module mantle surface cor-
responds to θ¼ 90°, see also Figure S3, Supporting Information.
Thus, the eight window normal directions are ðφi, θiÞ ¼
ð16.875° þ 45° ⋅ i, 90°Þ with i being an integer. Accordingly, the
sensor φi coordinates are the same, θi ¼ 67.5°, 112.5° for upward-
and downward-oriented light sensors, respectively. First, we con-
sider a point source defined by its position r. The effective incident
angle between a ray direction r and surface normal direction n is
then calculated via the scalar product

α ¼ arccos
r ⋅ n
jrjjnj

� �
(9)

Combining Equations (2)–(7) to account for total solar
brightness, sensor angular sensitivity, shadowing effects, and
angular-dependent glass transmission, we calculate the response
of a specific sensor to the light source as

Rtotal A, αc, ns,ng, r
� 	 ¼ Rtotal A, αc,φs, θs,φg, θg,φ, θ

� 	
¼ LRs αsð ÞSig αs, αcð ÞT αg

� 	
(10)

With the sensor normal direction ns, glass normal direction
ng, and the derived incident angles αs and αg onto a sensor
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and the glass, respectively. Here, we introduced L, the global scal-
ing value that refers to the brightness of the light source. An exam-
ple simulation of a point source together with sensor response is
shown in Figure 2a, which illustrates howmultiple sensors can be
used together for point-source triangulation. For modeling the
solar irradiation (the Sun-only model) onto each of the 16 light
sensors for a given solar position, we describe the Sun as a
point-like light source. In reality, the Sun with its angular diameter
of around 1° is an extended source. However, within fair reason-
ing, the solar ray divergence does not affect our model description.
For a given set of parameters, L, αc, φ, θ we calculate the sensor
response for each of the 16 light sensors to obtain a sensor simu-
lation for the given parameters that can describe a single frame.

In a refinement step for the model (Sunþ Earth model), we
include Earth as a second irradiation source. Earth is hereby

modeled as an extended source where we apply the following
assumptions (also see Figure S4, Supporting Information).
First, Earth subtends a semisphere, i.e., a solid angle of 2π.
Second, the semisphere is approximated by a discrete number
of angularly equally distributed points, i.e., with regular spacing
between them. To achieve this, we make use of the special
Icosahedron, a convex regular polyhedron with 20 faces that
are equilateral triangles. These points of known coordinates
allow quick iterative doubling of points by creating new points
in the center of nearest neighbors. The new points again produce
smaller equilateral triangles. This way, we reach a reasonable
number of points to describe Earth within a few iterations.
Third, all these points act as point sources with equal brightness.
This is equivalent to assuming Earth to be an ideal and homo-
geneous Lambertian emitter. Each point is contributing to the
sensor response as described earlier. The orientation of the semi-
sphere we describe with its “normal” direction ne. This direction
is the same as the normal direction of an infinite plane that cov-
ers the very same semisphere. In other words, Earth’s normal
direction points toward Earth’s center. We create this Earth radi-
ation model where first, the model optimization is not sensible of
its discretized nature, and second, where a change of Earth’s nor-
mal direction changes Earth radiation influence of the sensors in
a continuous way to enable gradient-based optimizations. We
select the radiating Earth points by limiting their angular
distance to the normal direction to 90° by using the sigmoidal
function introduced earlier to assign weights to the Earth points
(see color in Figure S4, Supporting Information). This ensures a
gradual change in horizon-point weighting. Second, we notice
that rotating Earth points can lead to a non-monotonic sensor
signal response and thus hinders the convergence of gradient-
based optimizations. Thus we decide to keep the coordinates
of Earth points fixed relative to the light sensors, to avoid such
discretization artifacts. We define Earth’s brightness with a new
parameter E that is normalized to the (weighted) number of
points. This way, our model is independent of the number of
Earth points used and we can use Earth’s brightness as a resilient
estimate parameter.

To extend the Sun-only model with the Earth component, we
stick to the previously described coordinate system. For the
rocket flight of a few minutes, we assume a fixed effective angle
of the solar position and Earth-normal direction. At apogee time,
4:25 a.m. on June 13th, 2019 in Kiruna, Sweden, the geometric
solar angle above the horizon was �10°. Thus the effective angle
between the direction of the Sun and the normal direction of
Earth is αe ¼ ∠ ne, rð Þ � 100°. Within the time passed during
the dataset, the Sun moves by an angle that roughly equals its
angular diameter. Thus, we only introduce a small error by fixing
the angle. A rotation of the payload around the Sun direction r is
equivalent to a rotation of the Earth’s normal vector ne around
the Sun direction. Thus, we describe all possible payload orien-
tations by describing all possible Earth-normal orientations that
lie on a cone around the solar position with the fixed opening
angle αe and an Earth phase angle β, which describes Earth’s
position on the cone. We define β ¼ 0° to be eastwards and
β ¼ 90° to be northwards relative to the solar vector in the payload
coordinate system. The advantage of defining Earth position with
this Earth phase angle is that we only introduce onemore angular

(a)

(b)

Figure 2. a) Simulation of a point source at φ = 180° and θ = 120° with the
corresponding sensor responses. By selecting an interval of �0.01 in the
contour map in Figure 1d, each sensor response ring represents
possible positions of the point source to create this individual response.
At the intersection of sensor response rings, we can allocate the solar
position. b) Model optimization flow diagram. The small selection of
10 frames out of the entire dataset is used to derive pre-trained model
parameters. These parameters are the basis for the stochastic search
of the orientation parameters in all 256 individual frames. These results
enter a gradient-based global optimization run to obtain a consistent
solution for all parameters simultaneously. Starting from this maximum
likelihood estimate, posterior probability distribution sampling is applied
to get parameter uncertainties and correlation (details see text).

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2022, 6, 2200537 2200537 (5 of 13) © 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202200537 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com


parameter for each frame in the later optimization to keep the
model complexity limited. Later back transformation of the
Earth’s normal orientation to the payload coordinate system is
straightforward and computationally fast.

Earth can be treated as a first-order perturbation of the
Sun-only model. To clarify this reasoning, we consider the lim-
iting case from basic radiative concepts. A perfectly white
Lambertian disk covers the semisphere and is illuminated from
a point source that is opposed to it (maximum Lambertian
emission, Sun in disk surface’s zenith). Then the integrated flux
that is reflected from this disk and passes through a unit surface
(the sensor) cannot be larger than the flux passing the surface
from the initial point source. For a lower Earth Albedo and
for a Sun position that is far away from Earth’s zenith, Earth
reflection is reduced and consequently Earth’s contribution.
We can estimate the magnitude of Earth brightness for a typical
Earth Albedo of 0.3 and the projection effect for given geometry
which scales as the sinus of solar angle above the Earth horizon,
Eexp � 0.3 ⋅ sinð10ÞL � 0.05L. In the next step, we estimate the
effective Earth radiation contribution for a sensor measurement
by comparing the maximum normalized sensor response from
Sun (0.93) and Earth (�0.3) from our numerical model, includ-
ing glass reflection effects. In other words, the maximum nor-
malized single sensor response from an extended source of
2π cannot be more than 1/3 of the response from a point source.
Taking these numbers together, we find that solar irradiation is
significantly stronger than Earth irradiation for a single sensor
and dominates orientation determination. However, in phases
where solar illumination of the sensors is weak, we expect the
Earth model to improve the quality of orientation estimation sig-
nificantly, especially since Earth produces a smooth response
curve for multiple light sensors at the same time. Based on
the aforementioned reasoning, we limit the number of icosahe-
dral splitting iterations to two, resulting in 162 Earth points that
are used to model Earth in a reasonable time. In Figure S4,
Supporting Information, we show a 3D visualization of the
resulting Earth radiation model for Earth-normal direction
pointing toward the nadir.

With this, we have defined all the important model compo-
nents and end up with a set of variable global model parameters
that are solar brightness L and cutoff angle αc for the Sun-only
model, plus Earth brightness E for the composite model. The
noise parameter will be introduced in the following. Fixed
parameters are the cutoff slope and relative angle between the
Sun and Earth-normal directions. Each frame is characterized
by the orientation parameters, i.e., the Sun position φ and θ
for the Sun-only model, plus the Earth phase β for the composite
model. The entire calculation of the model is done in a fully
vectorized fashion, meaning that with all model parameters
for all frames in time, we calculate the model predictions for each
sensor simultaneously, which allows us to performantly create a
global residual and optimize the loss function.

4. Bayesian Optimization

The entire optimization routine is implemented in Python using
packages like NumPy, SciPy, pandas, emcee, LMFit, andmatplot-
lib extensively.[37–42] To optimize the model prediction for the

best resemblance of the measurement dataset we use maximum
likelihood estimation (MLE) assuming normally distributed
residuals. This means we assume an independent and symmet-
ric distribution of measurement errors around their expectation
value. This approach is equivalent to solving the ordinary least-
squares minimization problem that also returns the MLE. In the
first step, we obtain the most likely parameter solution for the
employed model for the given data. On top of that, we use
Bayesian posterior sampling as a second step, making use of
the affine invariant MCMC to estimate the posterior probability
distributions of the model parameters.[43,44] These distributions
in turn allow us to consistently infer the uncertainty of the model
parameters. We choose MCMC sampling to construct probability
distributions for the parameters in a robust way. First, nonlinear-
ities in the mathematical model require a careful calculation of
confidence intervals of the parameter estimates. MCMC sam-
pling converges to the true underlying probability distribution
of model parameters, thus it is direct imaging of the desired
objective. Second, the Monte-Carlo sampled high-dimensional
parameter space contains all information required for subse-
quent analysis. The marginalization over certain parameters
allows us to directly obtain the desired value distribution for a
parameter of interest from which confidence intervals can be
read-off. In addition, all model uncertainties, for example,
uncertainties of the estimation of solar position are propagated
automatically, i.e., they enter consistently the derivation of solar
irradiance uncertainty. We do this routine twice, once for the
Sun-only model and once for the model Sunþ Earth as described
below.

Maximizing the likelihood function is equivalent to maximiz-
ing the log-likelihood function

LL ¼ ln LX Λ, σ2ð Þ½ � ¼ � n ln 2πð Þ
2

� n ln σð Þ � 1
2σ2

Xn
i

xi � λið Þ2

(11)

where n is the number of measurement frames, σ is the width of
the presumed normal distribution of the residuals, xi is the light
sensor measurement vector consisting of the 16 measurements
of the ith frame, and λi is the model prediction for the ith frame.
X and Λ contain all the observations and predictions, respectively,
and can be considered as matrices. The sum of the squared resid-
uals in the last term corresponds to the objective function in
least-square minimization. In the present case, the log-likelihood
is the objective function that is to be maximized during the
optimization routine. In practice, we use a minimization of
the negative log-likelihood function, the pedant to a cost
function, or internal energy for simulated annealing methods.
Λ contains the entire model and here enter all parameters of
the optimization. This direct definition of the model for all
frames and all sensors allows simultaneous training of all global
model parameters. The single-frame model prediction for the
orientation, given by φi, θi, and βi for the solar and Earth position,
are independent estimations for each frame. In other words, the
optimizations of the solar position of two different frames are
independent of each other, however, all frames influence the
global parameters with equal weighting and hence influence
each other indirectly.

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2022, 6, 2200537 2200537 (6 of 13) © 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202200537 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com


The parameter σ is a weighting parameter that describes the
uncertainty of the measurements in the dataset. Into such uncer-
tainties, we subsume all deviations from the ideal model, i.e.,
systematic and stochastic measurement noise of individual light
sensors, absolute sensitivity scaling differences of the sensors,
misalignment of the sensor orientation, timing differences
between the measurement times within a single frame, model
imperfections such as sensor sensitivity curve deviations.
Since σ enters the optimization as an unconstrained parameter,
its final value can be considered as an independent measure of
the amount of model-to-measurement deviation that is left over
after optimization, where a lower value signifies better matching.

In the first step of optimization, we aim at finding the global
minimum of the negative log-likelihood function to derive the
MLE for all parameters. To do so, we adopt an optimization
routine that comes in three parts (see Figure 2b). In the first part
(pre-training), we select the first 10 frames of the dataset and
adopt a basin hopping algorithm that explores the high-
dimensional parameter space by executing random walks.[45]

Such a hopping algorithm is required for the given problem
since the loss function is not globally convex and gradient
methods become stuck in local minima. The hopping algorithm
overcomes barriers in the loss function that hinder gradient-
based optimization methods to find global convergence. After
a configuration close to the global minimum of this small
pre-training dataset is found, i.e., we obtained solid estimates
of the model and orientation parameters, we use a gradient-based
minimization method to optimize the parameter values for the
pre-training set. In the second part of optimization, we fix the
pre-trained model parameters and apply the basin hopping algo-
rithm to each frame to obtain orientation parameter estimates
that again are in the vicinity of the global solution of the entire
dataset. Thus, we obtain good start values for the orientation
parameter for each frame. In the third part, we feed the
pre-trained model parameters together with the orientation
parameters from the single frame estimates into a global
gradient-based optimization, where all parameters are released
to settle down at their optimum. Thus, we simultaneously opti-
mize model and orientation parameters and find the MLE for the
given measurement dataset. For this large set of parameters and
iterations, we benefit from the linearity of the LL function that
allows computing the global residual in a vectorized hence
performant fashion.

Here we note that Figure 2b) shows only one possible solution
to achieve global convergence of the optimization routine. Due to
the nonlinearity of the model, in particular, due to the vanishing
gradient for the sun being more than 90° apart from a single
sensor viewing direction, gradient-based methods are prone to
failure for most initial conditions. This is the reason why we
use a stochastic search first to identify good initial conditions
where gradient-based methods likely converge. Acting with such
a stochastic search onto the entire dataset would give rise to
hundreds of parameters which increase computational time
exponentially up to unfeasible times until proper initial condi-
tions would be found. This is the reason why the model training
on a small part of the data is performed first and stochastic
searches are carried out subsequently for roughly correct model
parameters. Other optimization routines that include both sto-
chastic and gradient components and that have an intrinsic

memory for good parameter configurations could potentially
do all these steps at once. In this context, we refer the interested
reader to the methods of simulated annealing or adaptive
memory programming for global optimization that are suited
to solve complex optimization without well-defined gradients.[40]

However, fine-tuning iteration parameters such as stochastic
jump width, temperature decay, or convergence criteria and their
interaction during optimization are hard to control in such a non-
trivial optimization problem. The scheme in Figure 2b) allows
keeping control and test possibilities along the way to the globally
optimized solution.

In the second step, we calculate the posterior probability dis-
tribution using the affine invariant MCMC ensemble sampling
starting from the gradient-optimized result. This method sam-
ples the true posterior probability distribution and asymptotically
becomes the distribution for an infinite number of samples. We
obtain parameter value distributions and correlations for the φ, θ,
and β values of the single frames, i.e., marginalized over the dis-
tributions of the global parameters and independent for every
single frame. As a final remark, we note that the inclusion of
additional prior knowledge, e.g., about the limited pitch and roll
rate of the payload during the μ-gravity time in form of Bayesian
or Kalman filtering could stabilize the predictions and hence
improve the obtained prediction accuracy.[46] However, the focus
of this work is to investigate the solar position determination
method and its accuracy without the use of other refinement
techniques.

5. Results and Discussion

According to the Bayesian optimization method described
earlier, we yield a full and consistent model and orientation
parameter estimates for both, the Sun-only and Sunþ Earth
model for the entire data set as a result of the gradient-based
global optimization. For the Sun-only model, αc stabilized at
around 65° for the pre-training, while it drifted to 90° during
the global optimization. Consequently, we exclude it from the
global optimization, thus the only varied model parameters
are the L, σ, and solar position φi and θi in each frame i. For
the Sun-only model, we attributed the drift of αc toward high val-
ues to the incompleteness of the model. The pretraining data
contains measurements of the phase of solar positions close
to the equator, while the complete dataset also includes measure-
ments during solar positions at high polar angles. In the latter
case, the model sensor estimates underestimate the measured
sensor response, since any additional radiation from Earth is
not covered by the model. This naturally pushes the cutoff angle
toward higher values to minimize residuals and prevented con-
vergence. In Figure 3 we show the results of the MLE estimation
of the Sun-only model (dark-green & red lines) of the complete
dataset. In addition, we show the solar trajectories, which are
once directly derived from the Sun detected on the images of
camera 1 and camera 2 (light green and cyan lines), and once
computed from the integrated orientation solution, which is esti-
mated by fusing the Earth’s horizon and Sun detected on the
camera images and the IMU measurements, and will be referred
to as the fused Deutsches Zentrum für Luft- und Raumfahrt (DLR)
trajectory in the following (dashed-gray lines). Camera 1 sees the
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Sun in the central area of the image only between Tþ 240 s and
Tþ 370 s, and camera 2 between Tþ 170 s and Tþ 255 s.

To summarize the solar trajectory during the flight of
MAPHEUS-8, at the beginning of the dataset the solar position
was located close to the equator and then wandered gradually to a
polar position. It crossed the payload nadir and then wandered
back to an equatorial position of a different azimuth. According
to Braun et al., the error of the estimated orientation of the pay-
load is assumed to be below 1.5° (3σ) in the period between
Tþ 170 s and Tþ 370 s when at least one of the cameras sees
the Sun and the estimated Sun direction vectors are directly used
for aiding. In the initial period between Tþ 60 s and Tþ 170 s,
neither camera sees the Sun, and the orientation is estimated by
backpropagating the orientation solution of Tþ 170 s using the
IMUmeasurements, with the orientation error increasing due to
the integration of IMU measurement errors over time. In the
period between Tþ 370 s and Tþ 445 s, the orientation is
estimated by forward propagating the orientation solution at
Tþ 370 s using IMU measurements. Interestingly, the
OHSCIS result at Tþ 360 s strongly supports the fused DLR
trajectory with low deviation while it does not support the
trajectory as derived from camera 1 only.

On top of the DLR trajectories, we present the OHSCIS solar
positioning determination results from this work. We show the
Sun-only model MLE trajectory and the MCMC sampling
median and the central 1σ sampling distribution in green and
orange for φ and θ respectively. For the MCMC sampling for
the Sun-only model, we use 5 walkers and 10 000 steps and
for the Sunþ Earth model 20 walkers and 20 000 steps to better
capture the richer probability landscape. To determine 1σ or 2σ
from the sampling, we sort the samples along the axis

(parameter) of interest. Then we select the lower and upper
bound of the corresponding central 68% or 95% of the samples.
Interestingly, the frame-to-frame differences for the OHSCIS
determination method are very small for the majority of the data.
This is a very encouraging result since the parameter solutions
are independently estimated for each frame and this underlines
that measurement signal-to-noise is high and the triangulation
method reliable. The trajectory follows the fused DLR trajectory
closely over very large portions of the entire flight with only small
deviations. Focusing first on the phase with camera aiding
between�Tþ 170 s and Tþ 370 s including the solar movement
crossing nadir, the maximum measurement deviations of the
fused DLR trajectory and the Sun-only model are Δθ � 5°. For
Δφ we find deviations that are reaching 30° at Tþ 240-250 s,
however, this is during times where θ approaches 180°, and thus
small angular distances on the unit-sphere surface translate into
large φ differences. The large φ deviations and also the φ uncer-
tainty as derived from MCMC sampling are thus a direct conse-
quence of the choice of the coordinate system and no intrinsic
model weakness to determine the solar position. To underline
this, we show the results of MCMC sampling for a phase of equa-
torial and polar solar position in Figure 4. During equatorial
phases, the distribution width of θ and φ are small, covering
around 3° for the 1 sigma range each. During polar phases,
the θ sampling precision is still high (see also Figure S6,
Supporting Information) but the φ angle distributions blow
up toward the polar region, losing significance. In Figure 5
we show the DLR and OHSCIS solar trajectories on an orienta-
tion sphere surface in Hammer-projection, which is an equal-
area map projection with low distortions in the polar regions.
This representation illustrates the magnitude of effective

Figure 3. Solar position evolution for different models and techniques in the MORABA coordinate system. The solar position as derived from the Sun
detected on the camera images is shown in light green and cyan, and the solar position as derived from the integrated orientation solution is shown as
dashed-gray lines.[32] In the green and orange colors, we show the Sun-only θ and φ estimates and in the purple and blue colors, we show the Sunþ Earth
θ and φ estimates where the darker color depicts the maximum likelihood estimation (MLE) solution and the lighter color the median of the Monte-Carlo
Markow-chain (MCMC) sampling distribution. In the lightly shadowed areas, we show 1-σ errors in the positioning estimation obtained from MCMC
sampling. We note that at angles θ approaching 180°, small changes in solar positions convert into large uncertainties in φ estimations due to the nature
of coordinate representation.
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positioning deviations between the trajectories in a way that
reduces misleading coordinate representation effects, especially
for φ. If focusing on θ, we find exceptional agreement between
the solar position estimates of the fused DLR trajectory and the

OHSCIS model for measurements at times around Tþ 170 s
and Tþ 370 s, i.e., during phases of rather equatorial Sun
positions where the fused DLR trajectory is aided by camera
measurements. In other words, when θ is not more than
�150°, the orientation estimates of both methods are in excellent
agreement. At higher polar angles, the corner plot contours
become spread out toward higher polar angles, and the θ-angle
distribution becomes skewed and generally less peaked. Still, the
MCMC sampling appears to slightly underestimate the model
uncertainty at such high polar angles. Likely, due to the rather
weak sensor response, not-included noise effects or model
imperfections become stronger during these times and cannot
be fully captured by the model. This can be also seen with the
noisy solar position estimates at very high polar angles.
However, in this regard, MAPHEUS-8 produced an untypical
dataset, because it is statistically unlikely that the Sun directly
crosses the nadir.

The deviations outside the camera-aided periods between the
two methods, i.e., in the beginning and end of the selected data-
set appear to grow. For example, between Tþ 60 s and Tþ 120 s,
the OHSCIS model experiences strong solar irradiance and thus
the obtained solar positioning estimates shown in Figure 3a 1σ
uncertainty of 2° and 3° for φ and θ, respectively (see also Figure 4
and Figure S6, Supporting Information for parameter distribu-
tions from sampling results). Here we note that the angle φ can
be determined more precisely than θ at equatorial positions by
the OHSCIS module since the light sensors react more strongly
to a change in azimuthal solar position. The orientation accuracy
of the fused DLR trajectory is expected to decrease with
increasing period of time without camera image aiding due to
the IMU-based backward and forward propagation, respectively.
Thus, it is likely that deviations between the two models at such
phases, especially for φ are dominantly attributed to the
deviations of the fused DLR trajectory rather than deviations
of the OHSCIS trajectory from the real solar trajectory.

To sum up the Sun-only model, the strong deviations in the
orientation estimation of both methods at the beginning and end
of the dataset are likely attributed to cumulative deviations in the
propagation of the fused DLR trajectory. During and in the vicin-
ity of phases that benefit from camera aiding (i.e., during times
from Tþ 100 s until the end of the dataset, where propagation
time is not exceeding around a minute), the maximum deviation
of bothmethods is less thanΔθ � 5° for θ ≲ 150°. Deviations of φ
lie within a similar range, but strongly increase at high polar
angles due to the coordinate system used.

In the refined model, we include a second, extended radiation
source as described in the Radiation Model section to add the
Earth as another component. In Figure 3, we added similarly
the Sunþ Earth model MLE trajectory and the MCMC sampling
median and 1σ sampling distribution in purple and blue for φ
and θ, respectively. In Figure S5, Supporting Information we
show Earth’s normal direction evolution over time as obtained
from the MLE solution. At first sight, the estimated solar position
trajectory from the composite model does not deviate signifi-
cantly from the Sun-only model. Thus, the inclusion of Earth
does not distort the solution for the solar position substantially.
The global model parameter changed slightly (see Table 1). The
solar brightness L is lowered by around 2%. The Earth’s bright-
ness reaches around 10% of the solar brightness, hence the

Figure 4. Corner plots of MCMC ensemble sampling results for the
Sun-only model for: a) an equatorial solar position and b) the Sun in nadir
position. Frame (b) is the darkest frame during the entire dataset. The
MLE solution is shown in blue. For plots of more frames and plots of
the Sunþ Earth model, we refer the reader to Figure S6, Supporting
Information. Note the automatic axes range adaption.
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maximum Earth contribution is �3% of the maximum solar
contribution for a single sensor. We don’t analyze or interpret
absolute brightness values more closely, since this general scal-
ing value does only have a minor influence on the orientation
estimation in single frames. Comparing the Sunþ Earth model
with the Sun-only model, the most pronounced changes are that
differences in φ and θ estimations are largest during polar solar
positions, well visible for θ in Figure 3. This is in agreement with
our expectations since during this phase the solar irradiation
onto the light sensors is weak, and the Earth component gains
relative strength. Thus, the model is expected to be more strongly
influenced by the Earth component. Second, it appears that
corrective changes of the Sunþ Earth model tend to be more
pronounced in moments where the Sun-only model deviation
from the fused DLR trajectory is larger. Interestingly, the
Earth component shifts the estimated solar position systemati-
cally toward the fused DLR trajectory, effectively reducing
deviations. The only exception is the θ estimation while the
Sun crosses nadir, where the inclusion of Earth systematically
increases θ to larger values. This effect is natural since, upon
inclusion of the Earth, the Sun does not need to account for equa-
torial light scattered light from Earth anymore and thus moves
freely to higher θ values. The apparent larger uncertainty of φ
from MCMC sampling stems from the larger θ values. Apart
from that, there is no significant reduction of the 1-σ band visible.
The sigma parameter is reduced by 15%, showing that the inclu-
sion of Earth, although a weak component, effectively reduces
data–prediction discrepancies.

We expect to yield a stable cutoff angle after including the
Earth radiation model. However, this does not turn out to be true:

It still drifts toward higher values, consequently, we decide to
exclude the sensor cutoff also for the Sunþ Earth model.
Possible explanations for the lack of stability for the refined
model are, first of all, that the geometrical shadowing angle is
not a constant value but rather has a directional dependency.
To assess this effect more closely, we analyze the geometrical
shadowing angles in polar and azimuthal directions using the
computer-aided design of the OHSCIS module in Figure S7,
Supporting Information. The geometrical shadowing angles in
the four directions range from 55 to 90° for the sensor and
the incidence angle to the glass normal direction range from
67.5 to 79°. Interestingly, the lower sensor cutoff angles coincide
with higher glass incidence angles, effectively creating a smooth
response leveling-off that renders the geometrical cutoff angle
weakly constrained intrinsically. Second, the cutoff angle shows
degeneration to a certain extent. It cuts off the sensor response at
high angles where the effective response including glass trans-
mission is already strongly reduced, limiting its total influence.
Third, in the radiation model, we do not account for any stray
light reaching the sensors, e.g., reflected from the hatch.
Here, we note that such stray light does not influence the solar
cell measurements since they are placed close to the window and
their aperture masks efficiently shield possible stray light from
entering. Lastly, we do not question our basic assumption of nor-
mally distributed measurement noise. Especially for processes
like photon counting measurements of limited exposure usually
follow Poisson count statistics. However, for sufficient exposure
and count statistics, optimizations based on Poisson or Gaussian
weighting deliver usually similar results. Poisson weighting
would favor low-brightness measurements and thus improve
e.g., the accuracy of Earth position determination. However,
in this work, we set priority to precise Sun position estimation,
i.e., to get reliable estimates for the strong radiation component
that dominates the incident light on the light sensors for reliable
irradiance determination for the solar cells.

From the solar position, we derive the irradiance onto each
solar cell module for each time executing the following steps:
For a given solar position, we calculate the fused silica glass

Figure 5. Hammer projection of the solar trajectories in the MORABA coordinate system. The movement of the solar position is counterclockwise. For
additional orientation, we depict the view direction of the two opposite cameras and the light sensors. The dashed line shows the fused trajectory of Braun
et al., in yellow and green we show their standalone camera-based solar position estimates. On top, we show the Organic and Hybrid Solar Cells In Space
(OHSCIS) Sun-only MLE (blue) and the Sunþ Earth MLE (red). In this representation, absolute trajectory deviations become better visible.

Table 1. Values of global model parameters and log-likelihood function.

Sun brightness Earth Sigma LL

Sun only 33 333 – 1110 32 692

Sunþ Earth 32 703 3251 934 32 170
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transmission for each window. For relative solar angles of less
than 90°, we include the area projection effect as cos(α). In this
work, we use the AM0 irradiation strength of the solar constant
of 1366.1Wm�2 according to the ASTM E-490 standard extrater-
restrial spectrum.[34,35] It scales with fused silica glass transmis-
sion and angular projections, resulting in the effective irradiation
onto each of the eight viewing directions of the different solar cell
types. Note that here we do not include any geometrical shadow-
ing effects that are expected to occur at high relative angles α or
low irradiances (similar reasoning as for the light sensors, cf.
Figure S7, Supporting Information). In Figure 6, we show the
resulting reconstructed irradiance evolution during flight. The
irradiance evolution can be considered as the final result to be
used for further analysis of the solar cell performance
parameters.

As expected from geometrical reasons, significant solar irradi-
ance is present usually only for three segments at the same time.
Comparing the apparent irradiance evolution in Figure 6 with
the short-circuit current evolution of the solar cells in our previ-
ous work, Figure 6 confirms the conclusions drawn about the
payload orientation evolution and the solar cell irradiance.[27]

At the beginning of the μ-gravity phase, segment 6 receives solar
irradiance close to AM0, i.e. 1200Wm�2 and above, and for
segment 7 the solar irradiances are comparable to one sun.
During payload alignment with the sun at around Tþ 250 s,
no direct sunlight irradiates the segments. At the end of the
μ-gravity phase, segment 1 receives strong solar exposure. The
equatorial crossing of the sun at Tþ 420 s shows a special con-
figuration of symmetry. At this crossing, segments 1 and 8, as
well as segments 2 and 7 show the same irradiance values,
respectively, where the latter values of �400Wm�2 correspond
to a relative angle of around 67.5°. Focusing on the 1 and 2σ dis-
tribution bands, it becomes apparent that typically for high irra-
diance values, their uncertainties decrease and the estimates

become more robust. This effect can be understood by having
a closer look at Figure 1d, which shows the effective angular sen-
sor response map including the fused silica glass transmission.
The response map is relatively flat for small relative light source
position angles to the fused silica glass normal, i.e., the sensor
response is weakly sensitive to shifts of the solar position angle.
The other way round, shifts of the solar position angle at
equatorial solar positions do not translate into substantial shifts
of derived irradiance, rendering this solar position estimation
method robust for precise solar irradiance determination,
especially for solar cells oriented in similar directions as the light
sensors.

6. Conclusion

By using measurement data of 16 I2C ambient light sensors
facing in different directions and refining a point source model
to the data we obtain a precise solar positioning estimate for the
entire μ-gravity time of the MAPHEUS-8 mission. Using MCMC
methods, we sample the posterior likelihood distribution of the
model parameters to derive estimates for orientation determina-
tion uncertainties. For equatorial solar positions, the method
provides high accuracy within 3° uncertainty (1σ) that is compa-
rable to or in phases more accurate than the camera-based
estimates of Braun et al. Interestingly, our solution is closer
to the fused trajectory of Braun et al. than to the standalone
camera-based trajectories, validating their model that includes
IMU measurements and propagation methods. Also for high
solar inclinations, the optimized models give reasonable results
with effective angular deviations that are largely below 10°. With
our light sensor geometry, the effective field of view to determine
the solar position encompasses practically the entire sky, even
solar nadir (as well as zenith) crossings are registered by the

Figure 6. Irradiance evolution onto the solar cells during the flight for the eight different segments. The MCMC solar position sampling results are further
processed to obtain the irradiance distributions similarly as in Figure 3. The colored lines represent the median of the irradiance distributions for each
solar cell orientation, color-coded according to the octagonal inset. 1σ and 2σ bands are shown in addition. No geometrical shadowing effect is
considered.
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model. The inclusion of Earth as a second radiation component
improves the model likelihood and estimates, bringing the tra-
jectory closer to the fused trajectory of Braun et al. Our results
show that first, our method is capable of improving the payload
orientation estimation for sounding rocket flights, and second,
that our method gives stable estimates for a broad range of solar
positions with high accuracy in for payload orientations where
the cameras cannot capture the Sun, making this a powerful
complementary method. During flight, the payload covered
many different orientations, making MAPHEUS-8 the ideal test
case for this method. This will help to assess the quality of
attitude determination in potential future flights with different
orientation profiles.

The presented approach of using ambient light sensors
together with light source modeling in combination with
machine learning results in powerful results for simplistic
sensors that are commercially broadly available. The presented
system of light sensor parallelization is capable of predicting
the solar position with comparable accuracy to advanced optical
components and with very low power consumption and data stor-
age requirements. It is not limited to space applications, instead,
the concept can be transferred to terrestrial applications, more
general to applications where attitude determination with respect
to point-like and extended light sources is required. Using the
trained model global parameters, together with a customized
optimization routine, a handful of iteration steps for every single
frame can determine the solar position, rendering these
calculations computationally cheap. Hence, this method prom-
ises real-time solar triangulation with an accuracy of a few
degrees, also with a limited computational effort, and for
arbitrary sensor orientation configurations.

Using this technique and the chosen ambient light sensor
geometry, we obtain highly precise solar irradiance estimates that
allow reconstructing the incident solar power onto the differently
oriented solar cells at each time during flight. Especially for
strong solar illumination, such precise measurements are the
basis for quantitative performance analysis for testing and
qualifying novel thin film solar cell technologies for application
in space and beyond.
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