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ABSTRACT
In ureteroscopy a flexible ureteroscope is used to inspect the kidneys and the ureters.
In this context, we investigate robotic solutions that leverage recent developments
from Simultaneous Localization and Mapping (SLAM) to provide a 3D map of the
organ to be explored, as well as an estimate of the pose of the ureteroscope. With this
aid, the surgeon can navigate through the organ more precisely. Additionally, for the
final organ inspection, the risk of missing certain regions of the organ is minimized.
In this paper we propose a visual, monocular SLAM system based on ORB-SLAM3
that is able to estimate the pose of the ureteroscope’s tip. In order to fulfill this task,
we introduce two preprocessing steps. The first one aims at increasing the contrast
of the image and the second one helps to avoid detecting features in non-desired
regions (e.g., reflections). Additionally, we extend ORB-SLAM3 with A-KAZE and
SuperPoint features and compare their performances to ORB features. The proposed
method is evaluated in two experiments. The first experiment shows that we are able
to estimate the trajectory of the ureteroscope and the map of a synthetic kidney
with low errors. The second experiment shows that the method also gives promising
results in cystoscopy, where we evaluated it with videos captured during a polyp
removal procedure in a real bladder.
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1. Introduction

Surgery is evolving – from open surgery to minimally invasive surgery (MIS) to robotic
surgery – in order to generally improve the patient outcome. The driving force of these
developments are technological advances such as the miniaturization of mechanical
components and endoscopic imaging (Rassweiler et al. 2017), (Klodmann et al. 2021).
In laparoscopic MIS, one or more small incisions are made and an endoscope and tools
are introduced to the patient’s body to allow the surgeon to perform the procedure.

Endoluminal interventions can even further decrease the trauma of the patient.
In this types of procedures the whole intervention takes place inside hollow organs
(e.g., lung, stomach, colon, urethral tract). To this end, mostly flexible endoscopes
are introduced through natural orifices, such as mouth, anus or urethra to inspect the
organs, to take biopsies or to treat the tissue from the inside. A special treatment
of Urolithiasis (stone formation in the urinary tract) to remove small kidney stones
and inspect the renal collecting system is flexible ureteroscopy (fURS), where flexible
endoscopes are inserted into the upper urinary tract via ureteral access sheats.
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Even though, the use of fURS increases due to technical improvements of flexible
endoscopes and few contraindications (Geraghty et al. 2017), it imposes several chal-
lenges for the surgeon. These challenges entail, among others, a steeper learning curve,
a smaller field of view, and the difficulty of remote spatial awareness inside the organ
by watching endoscopic live video alone (Bergen and Wittenberg 2014). In order to
deskill this procedure, computer vision methods based on Simultaneous Localization
and Mapping (SLAM) would be useful since they provide a 3D map of the organ that
is being explored together with the relative pose of the camera’s tip. This is done in
a passive way and without the need of other sensors. Utilizing this information, the
navigation through the organ is facilitated for the surgeon, minimizing the risk of not
inspecting all renal cavities in fURS to finally guarantee that no stone fragments are
left, which cannot pass through the urinary tract.

The use of SLAM in fURS is, however, especially challenging (Bergen and Witten-
berg 2014). Endoscopic video suffers from fast camera motion, sudden illumination
changes, reflections, lack of texture, low image quality and a small field of view. These
are challenges for visual SLAM systems, which is the 2D tracking on the image feed of
unknown yet salient, distinct regions of the scene called features. Hence the need of a
SLAM system that is robust to the frequent loss of features or to fast camera motion.
This is typically achieved by a relocalization module that recognizes regions that have
been observed in the past and seamlessly registers back to them.

ORB-SLAM3 (Campos et al. 2021) is a visual SLAM system for monocular, stereo,
and RGBD cameras that excels in its place recognition module. It also features a map
merging capability, which means that every time that the system gets lost, it will start
a new map and, when it eventually detects common regions between the active map
and the stored maps, it will fuse them to create a new complete map.

The contribution of this paper is a monocular SLAM system extending the state-
of-the-art ORB-SLAM3 system that is able to simultaneously estimate the 3D map of
the main compartments of the urinary tract, i.e. bladder and kidney, and the pose of
the ureteroscope in fURS procedures. To this end, we enhance the state of the art im-
plementation by adding a pre-processing step to increase the contrast of the image to
make the system more robust against illumination changes. In this pre-processing step
we also compute a dynamic mask to avoid detecting keypoints in specular reflections
and the padding borders of the image. Furthermore, we adapted some hyperparame-
ters (e.g., thresholds) for this type of fURS scenarios. Finally, we provide an evaluation
for different feature detection and description methods – ORB (Rublee et al. 2011),
A-KAZE (Alcantarilla and Solutions 2011), and SuperPoint (DeTone et al. 2018) –
in order to increase the accuracy and robustness of the system as well as to retain
real-time performance. To evaluate the new SLAM system we recorded different se-
quences using a kidney phantom, together with the corresponding 3D ground truth
(including the camera motion and the 3D model of the kidney). We also evaluate its
generic applicability for the compartments of the urinary tract, in sequences from a
real bladder polyp removal procedure.

2. State of the Art

In this section we first reviewed the main approaches to visual mapping and localiza-
tion, and then focus on the optimal choice of features for fURS.

2.1. Mapping: In the field of urology (involving bladder and kidney) (Bergen and
Wittenberg 2014) and (Pentek et al. 2018) reconstruct the 3D model of the bladder
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Table 1. Most representative monocular SLAM systems.

Name Features
Data

association
Relocalization

Loop
closure

Map
merging

MonoSLAM Shi-Tomasi Correlation - - -
PTAM FAST Correlation X - -

ORB-SLAM ORB Descriptor X X -
ORB-SLAM3 ORB Descriptor X X X

stiching the images captured by the endoscope and using structure from motion (SfM)
to estimate a 3D model of the bladder. In our work we furthermore aim at assisting
the surgeon in navigating within the organs, hence a localization routine must be
considered.

2.2. Simultaneous Localization And Mapping: SLAM is a technique to esti-
mate the 3D map of the environment that surrounds the camera and at the same time
the pose of the camera relative to this map. Visual SLAM (vSLAM) uses only the infor-
mation captured by passive cameras to estimate the map and the poses. MonoSLAM
(Davison et al. 2007) was the first system that solved the monocular SLAM problem,
using an extended Kalman filter (EKF) and Shi-Tomasi features for tracking.

Accumulating the information of all frames, however, is challenging for long-term
computation and accuracy. Likewise, the gold standard bundle adjustment (BA) is
computationally unfeasible in real time. The use of a sparse set of representative
frames (called keyframes) for BA makes it possible to boost both efficiency and accu-
racy. PTAM (Klein and Murray 2007) introduced this keyframe Bundle Adjustment
approach (kBA), running two threads in parallel to perform local tracking and map-
ping. It uses FAST (Rosten and Drummond 2006) features and matches them using
correlation patches. A more current approach of kBA is ORB-SLAM (Mur-Artal et al.
2015), which uses ORB features instead (Rublee et al. 2011). It has map reusability,
loop closure and relocalization capabilities. In particular, (Mur-Artal et al. 2015) only
considers monocular cameras, yet ORB-SLAM2 (Mur-Artal and Tardós 2017) allows
for stereo and RGB-D cameras. Lastly, ORB-SLAM3 (Campos et al. 2021) included
visual-inertial SLAM as well as multiple maps, to eventually merge maps after loop
closure. Furthermore, ORB-SLAM3 is thoroughly researched for use in laparoscopy
(Mahmoud et al. 2016, 2017, 2018; Song et al. 2018). These approaches focus on in-
creasing the number of features for SLAM tracking; however, in our work, we focus
on their quality and recognition rate by additional image pre-processing steps and the
use of more advanced feature descriptors.

Another major challenge when using SLAM in soft tissue surgery (e.g., MIS, fURS)
is the expected deformation of organs due to manipulation or the breathing and heart-
beat motions. Most SLAM systems assume a rigid environment. The methods DefS-
LAM (Lamarca et al. 2020) and SD-def-SLAM (Rodŕıguez et al. 2020) judiciously
combine Shape-from-Template (SfT) (Bartoli et al. 2015) and Non-Rigid Structure-
from-Motion (NRSfM) techniques to model the deformations and will be considered
by us in future work.

In this paper we propose a monocular SLAM system enhancing ORB-SLAM3 to
aid the surgeon to navigate in fURS procedures without the need of any extra sensors.
As it can be seen in Table 1, ORB-SLAM is one of the most comprehensive monocular
SLAM systems. We decided to use (Campos et al. 2021) as base to our system since it
is an open source state-of-the-art SLAM system, that works in real time and is robust
in rigid environments. Besides, it includes the map merging capability to recover from
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getting lost after a sudden movement of the camera.
2.3. Salient Points of Interest to Track: A core method to SLAM is detection

and tracking of natural, salient points or regions that are rigidly attached to the scene,
which are called features. Due to their proven performance, in this work we focus on
the three following implementations:

ORB (Oriented FAST and Rotated BRIEF) features (Rublee et al. 2011) are a
fusion between the FAST detector (Rosten and Drummond 2006) and the BRIEF
descriptor (Calonder et al. 2010). First, FAST corners are detected in each level of
the image pyramid using a Harris Corner score to sort the detected features. Then,
a modified version of the BRIEF algorithm is used to compute rotation invariant
descriptors. ORB is in theory invariant to scale, rotation, and limited affine changes.
This is the feature originally used in (Campos et al. 2021).

A-KAZE features (Alcantarilla et al. 2012), (Alcantarilla and Solutions 2011) are
detected in a non-linear scalar space in which the noise is reduced in each scale such
that distinct points are selected. Then, the Modified-Local Difference Binary (M-LDB)
descriptor is used. This is based on LDB (Yang and Cheng 2012), which follows the
same principle as BRIEF, except for using the average of areas instead of the binary
test between single pixels. A-KAZE is in theory invariant to scale, rotations, and
limited affine transformations. Furthermore, it is more distinctive at varying scales
due to the non-linear scalar space used (Tareen and Saleem 2018). We expect this
to be useful in fURS sequences since the non-linear scalar space will make blurring
adaptive to image features, reducing the noise of the image but keeping the object
boundaries. We utilize a fast CPU A-KAZE implementation based on https://github.
com/h2suzuki/fast akaze.

SuperPoint (DeTone et al. 2018) is a self-supervised, learned framework for de-
tecting and describing points of interest. It consists of a fully convolutional network
architecture including two heads: an interest point decoder and a descriptor decoder.
In order to obtain training data without the need of manual labeling, the authors
optimize it for a simple set of basic shapes with known expected feature locations;
they then distort these and their locations (typically with planar homographies) such
that the network learns detection and correspondence search for all distorted and
augmented shapes. In literature, SuperPoint has been able to obtain a high number
of matches in laparoscopic sequences (Barbed et al. 2021). The input for SuperPoint
is the pre-processed image (CLAHE) since after testing both inputs (gray scale and
pre-processed image) SuperPoint is able to extract more features in the pre-processed
image.

3. The Extended ORB-SLAM3 for Ureteroscopy

As discussed in Sec. 2, we identified ORB-SLAM3 as the most promising SLAM system
to solve the challenges of endoscopy in the urinary tract. In this section we detail on
the extensions that we realize for ORB-SLAM3 to deliver seamless tracking in this
challenging scenario. First, we include a pre-processing step to increase the contrast of
the images as well as to compute an image mask to avoid detecting features in potential
regions of reflections and to avoid the padding borders of the image. Furthermore,
we critically adapt parameters on ORB-SLAM3 (e.g., by decreasing the keypoints
thresholds in a ratio of 0.6) to cope with the challenging scenario of tracking the low
amount of features typical in fURS. Finally, we evaluate the features types detailed in
Sec. 2 to increase the accuracy and robustness of the system.

4

https://github.com/h2suzuki/fast_akaze
https://github.com/h2suzuki/fast_akaze
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Figure 1. (a) Original image I, (b) mask against reflections and padding, (c) I in grayscale, (d) I after

applying CLAHE (ICLAHE) in grayscale, (e)-(g) red, green, and blue channels of ICLAHE.

For pre-processing we apply Contrast Limit Adaptive Histogram Equaliza-
tion (CLAHE) (Zuiderveld 1994) in the L channel of the Lab color space of the
image due to the non-uniform illumination typical of fURS – parts of the frame are
overexposed, causing reflections, and others are too dark. CLAHE effectively yields a
more uniform illumination and improves its contrast (Fig. 4b).

After applying CLAHE, we use the green channel of the RGB color space, since it
best preserves contrast in fURS images (cf. Figs. 4c, 4d and 4e). This pre-processing
step makes the system more robust against sudden illumination changes typical of
fURS procedures due to the proximity of the endoscope’s light to the organ walls and
the fast motion of the endoscope.

Next, we compute and apply a mask to avoid detecting features on reflections
as well as on the padding borders of the endoscopic image (Fig. 1b). This mask is
computed using a threshold on the green channel of the image to detect bright pixels
which value is between 200 and 255 for specular reflections and darker pixels which
value is between 0 and 10 for image padding. It is critical to avoid matching points in
such regions since these are not valid 3D quasi-static points. Note that in the context
of SLAM these would not only endanger mapping accuracy but also the estimation of
the camera pose.

The major modification of the standard ORB-SLAM3 pipeline has been the replace-
ment of the feature detector and descriptor module with the different implementations
introduced in Sec. 2. To recap, we decided to evaluate this features since ORB (Rublee
et al. 2011) is the one used in ORB-SLAM3, A-KAZE (Alcantarilla and Solutions 2011)
uses a non-linear scalar space to make blurring adaptive to image features that can be
beneficial in fURS, and SuperPoint (DeTone et al. 2018) since it is a learned feature
detector and descriptor which has been proven to deliver a high amount of features in
laparoscopic sequences (Barbed et al. 2021).

Lastly, we tackle the lack of natural features typical of ureteroscopy. First, the
endoscope has a small field of view; second, its working distance is very short w.r.t. the
tissue due to the narrowness of the urinary tract; third, some organs lack of features
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Figure 2. (a) Tip of the endoscope with the monocular camera, the two light sources, and a working channel.

Upper (b) and lower (c) halves of the kidney phantom. (c) 3D model of the kidney’s phantom.

(a) (b) (c) (d) (e)

Figure 3. Images from the kidney phantom dataset.

or texture. We therefore had to adapt the parameters of ORB-SLAM3 to ensure a
minimum of features that enable seamless tracking of the endoscope pose. Specifically,
we reduced the thresholds related with the amount of matched points.

4. Experimental Results and Discussion

A dataset has been recorded using a commercially available flexible ureteroscope Olym-
pus URF-V1 and a kidney phantom2(60mm×100mm×20mm). To obtain ground truth
data, the ureteroscope is electromagnetically tracked in 6 degree of freedom by the NDI
Aurora system3. Furthermore, a laser scan was conducted to obtain a 3D model of the
kidney phantom.

The dataset consists of five video sequences (Fig. 3). Four of them – k 01, k 02,
k 03 and k 04 – are exploration sequences in which the endoscope is introduced in
all the cavities of the kidney phantom. The velocity at which the endoscope is moved
increased sequentially with the sequences and hence, the difficulty. The sequence k 05
is captured to evaluate the relocalization module. In this sequence, the endoscope is
extracted and re-inserted several times after a small exploration. Additionally, two
bladder sequences were recorded by surgeons in a bladder polyp removal procedure
(Fig. 4). In these sequences, the bladder is explored and tools, polyps, bubbles and
impurities floating in the water can be seen. All experiments were performed with a
Intel(R) Core(TM) i7-10700 CPU @ 2.90Hz, 16 cores and 32GB RAM.

For the kidney phantom sequences the following measurements have been evalu-
ated: tracking update rate ftrack in [fps], Absolute Trajectory Error (ATE) εtraj in

1Olympus Deutschland GmbH, Hamburg, Germany
2SAMED GmbH, Dresden, Germany
3NDI, Waterloo, Ontario, Canada
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Figure 4. Images from the bladder dataset.

Table 2. Median of ftrack, nkpts and rmatched over 5 runs of the SLAM system.

ORB-SLAM3
(Campos et al. 2021)

PA
(ORB)

PA
(A-KAZE)

PA
(SuperPoint)

ftrack 63 fps 35 fps 33 fps -
nkpts 2214 3303 1723 745
rmatched 5.50% 7.94% 21.58% 7.24%

[mm], average number of keypoints detected per image nkpts, Root-Mean Square Er-
ror (RMSE) of the map εmap in [mm] and ratio of frames providing tracking over the
total number of frames in the sequence rtrack. A requirement for a frame to provide
tracking is to be able to find matches between the keypoints detected in the current
frame and the map points projected on the current frame and to be able to estimate a
pose with those matches. Besides, to evaluate the matching, the ratio rmatched between
the projected map points successfully matched with the detected keypoints in a new
frame over nkpts is calculated. For the bladder sequences b 1 and b 2, only rtrack has
been computed due to the lack of ground truth. Each experiment has been executed
5 times to compensate for RANSAC by eventually taking the median. In general all
performance metrics will be evaluated corresponding to the used features (cf. Sec. 2)
and to the original implementation of ORB-SLAM3.

In Table 2, ftrack, nkpts and rmatched are presented. In this case, the goal is to have
a high number of keypoints nkpts but not too high since it would in turn decrease
ftrack. Finding a balance between this two values depends the application. Comparing
PA(ORB) (Proposed Approach) and ORB-SLAM3, it can be seen that due to the
use of the pre-processing step, PA(ORB) is able to detect more features. Also the
adaptation of the ORB-SLAM3 parameters, together with the pre-processing step,
allows ORB to have higher rmatched. On the other hand, ftrack is lower. PA(A-KAZE)
is able to match the highest percentage of features at a similar ftrack as PA(ORB). The
ftrack of PA(SuperPoint) is not shown in this table since it is not a fair comparison
since the features are computed offline and it is not able to run in real time.

To evaluate the accuracy of the estimated map, first the point cloud of the ground
truth (cf. Fig. 2d) and the estimated 3D sparse map are manually aligned to get an
initial seed for the iterative closest point (ICP) algorithm to refine this alignment. Then
the RMSE error εmap between the matched 3D points is computed. Furthermore, the
ATE εtraj is computed to evaluate the trajectory as proposed in (Sturm et al. 2012).
The ATE calculates the RMSE of all global positions xt of the frames of the estimated
trajectory w.r.t. the ground truth correspondences x̃t, after both trajectories have been

aligned (εtraj =
√∑N

t=0(xt − x̃t)2/N , being N the number of frames of the trajectory).

For fair comparison, these errors have been computed only for those trajectories with
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Table 3. Median of rtrack over 5 runs of the SLAM system.

Seq. ORB-SLAM3 PA(ORB) PA(A-KAZE) PA(SuperPoint)
k 01 67.61% 80.97% 96.50% 80.60%
k 02 27.22% 75.52% 87.92% 55.72%
k 03 40.65% 51.00% 90.21% 71.34%
k 04 4.28% 52.42% 88.63% 21.27%
k 05 11.00% 22.20% 76.10% 30.77%
b 01 42.50% 60.17% 82.83% 45.33%
b 02 14.14% 49.90% 70.88% 53.37%

Table 4. Median of εmap and εtraj over 5 runs of the SLAM system.

Seq. PA(ORB) PA(A-KAZE) PA(SuperPoint) GT
εmap εtraj εmap εtraj εmap εtraj l

k 01 1.96 1.84 1.3 1.13 1.56 2.58 1185.83
k 02 1.92 2.42 1.46 1.74 - - 987.95
k 03 - - 2.17 2.48 2.38 4.48 1250.53
k 04 - - 2.53 1.74 - - 1490.15
k 05 - - 2.02 1.89 - - 2547.99

rtrack ≥ 70%. Table 2 shows rtrack and 4 shows εmap and εtraj together with the length
l in [mm] of each trajectory. Utilizing A-KAZE shows that rtrack is always highest for
all the sequences whereas εmap and εtraj remain lowest. One of the main reasons is
its higher robustness due to a higher rmatched, allowing it to continue tracking during
longer trajectories. Also for real bladder sequences the extended SLAM system, using
A-KAZE features, is capable of a high tracking coverage of over 70%.

In figure 5 a comparison of the estimated trajectories (rtrack ≥ 70%) and the ground
truth are shown. The straight horizontal lines represent the frames of the sequences in
which the system was lost. In sequence k 05 (relocalization sequence) it can be seen
when the endoscope is extracted (low coordinate Y values) and how using A-KAZE
features the system is able to relocalize once that the endoscope is re-inserted.

5. Conclusions

In this paper we propose to track the pose of an endoscope during minimally invasive
surgery (MIS), specifically flexible ureteroscopy (fURS), using its own video feed. In
addition, we generate a sparse 3D model of compartments of the urinary tract for 3D
inspection. This is realized by a vSLAM system.

We choose the state-of-the-art ORB-SLAM3 software and first extend it by a pre-
processing step in which we apply CLAHE to increase the contrast of the image, we
compute and apply a mask to avoid detecting features on reflections and padding
borders, and we adapt the parameters of ORB-SLAM3 to cope with less features
typical of fURS sequences. We show that with these pre-processing steps ORB-SLAM3
is able to detect and match more features.

The main extension of ORB-SLAM3 has however been the modification of its fea-
ture detector and descriptor module with other modern approaches. We have evaluated
ORB, A-KAZE, and SuperPoint features. The evaluation has shown that the substi-
tution of ORB features by A-KAZE features increases the accuracy of ORB-SLAM3
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(a)

Figure 5. Trajectory comparison.
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in fURS sequences Also it allows ORB-SLAM3 to track longer trajectories without
losing track.

We recorded two novel datasets for ureteroscopy (using a kidney phantom, its 3D
model, and ground-truth endoscope pose) and bladder polyp removal. With these
datasets we were able to evaluate our work.

Future work will include designing an AR based user interface aiding the surgeon
navigating through the urinary tract and exploiting the real-time capability to enhance
the control of a robotic assistance system, which is under development (Schlenk et al.
2022). Besides, deformable SLAM will also be taken into account.

References

Alcantarilla PF, Bartoli A, Davison AJ. 2012. Kaze features. In: European conference on
computer vision. Springer. p. 214–227.

Alcantarilla PF, Solutions T. 2011. Fast explicit diffusion for accelerated features in nonlinear
scale spaces. IEEE Trans Patt Anal Mach Intell. 34(7):1281–1298.

Barbed OL, Chadebecq F, Morlana J, Montiel JM, Murillo AC. 2021. Superpoint features in
endoscopy.

Bartoli A, Gérard Y, Chadebecq F, Collins T, Pizarro D. 2015. Shape-from-template. IEEE
transactions on pattern analysis and machine intelligence. 37(10):2099–2118.

Bergen T, Wittenberg T. 2014. Stitching and surface reconstruction from endoscopic image
sequences: a review of applications and methods. IEEE journal of biomedical and health
informatics. 20(1):304–321.

Calonder M, Lepetit V, Strecha C, Fua P. 2010. Brief: Binary robust independent elementary
features. In: European conference on computer vision. Springer. p. 778–792.
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