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The performance curve of a system during a disruption is widely used in the literature as an illustration of the 
system’s resilience capabilities, especially in socio-technical works. To improve the resilience of a system, an 
important step is to develop methods and techniques to properly quantify relevant resilience metrics. Despite the 
importance, no final consensus has been reached regarding the mathematical definition of the concept of resilience. 
Against this backdrop, this works presents an analytic equation to fit the whole evolution of the system’s 
performance curve during a disruption. This enables a decision maker to determine model parameters that are 
directly linked to the system’s resilience capabilities. It can additionally serve as a base to predict resilience curves 
in future works. We propose to use two sigmoid functions to represent the resilience of a generic system. 
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1. Introduction 

Within the context of protection of critical 
infrastructures, the concept of resilience has 
tremendously gained in importance over the past 
years. This work understands resilience as a 
sequence of different phases visualized by a 
resilience performance curve, which begins 
shortly before a disruption and ends after the 
system has recovered from the associated impacts 
(cf. Fig. 1). There are four phases associated with 
resilience: Prepare and plan, absorb, recover from 
and adapt to adverse events (National Academy 
of Sciences, 2012). 

To improve the resilience of a system, an 
important step is to develop methods and 
techniques to properly quantify relevant resilience 

metrics (Häring, Ebenhöch and Stolz, 2016). This 
supports decision makers to evaluate and compare 
the different options of resilience enhancement 
and to determine the best measures. For this 
purpose, resilience needs to be quantified based 
on the development of the system’s performance 
during a disruption. The equation presented in this 
work is the first to approximate general system 
performance over the whole resilience cycle. 
With this approach it is also possible to describe 
multiple resilience cycles, i.e. the evolution of 
system performance in case of multiple 
consecutive disruptions or in case of a stepwise 
progression of recovery of system performance.  

An important aspect of the analysis of a 
system’s resilience is the consideration of 
uncertainties regarding the examined scenarios. If 
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the system performance drops due to unexpected 
disruptions, it is rational to always include the 
uncertainties about the further course of 
performance when considering countermeasures. 
Thus, during the disruption, a prediction about the 
resilience of the system in the further course 
would be desirable. Here, we demonstrate how 
stochastic system simulations can be used in 
conjunction with our new approach of quantifying 
resilience capabilities in order to estimate realistic 
ranges in which system performance might 
progress. These calculations can help to analyze 
the required intensity of potential 
countermeasures.  

In order to demonstrate the application of our 
findings, we use simulation data of a traffic 
system to calculate the resilience under different 
circumstances and show how future 
developments of the system performance can be 
estimated while taking uncertainties into 
consideration.  

 

2. Background 

The following section presents the necessary 
knowledge and literature for a better 
understanding of the approach. 
 

2.1. Performance-based Resilience Curve 

It has become common practice to represent 
resilience, including its phases, using a curve of 
quality or performance as shown in Fig. 1. This 
was first proposed by Bruneau et al (2003) and 
widely extended by Cimellaro et al. (2009). These 
time-dependent curves describe, that after a 
sudden disruption resulting in a performance loss, 
the performance increases slowly and reaches its 
original level after some time. The more resilient 
a system behaves, the less deep is the dip and the 
faster is the recovery (Pimm, 1984). Some authors 
state that a system can learn from disruptions and 
perform even better afterwards so that the system 
performance after the disruption is corrected to 
above 100% (Francis and Bekera, 2014). 

 
Fig. 1 Resilience performance curve during a disruption 
with related terms and phases. 

Resilience is often approximated by the 
formulation first proposed by Bruneau et al. 
(2003): 

 

Here, R is the “loss of resilience”, Q(t) is the 
performance over time and tb and te are beginning 
and end of one disruption cycle. To enhance the 
resilience the result of this equation needs to be 
minimized. 

The performance curves Q(t), which are used 
to estimate the system’s resilience, are sometimes 
described in a phenomenological manner, mostly 
without a mathematical description. Thierney and 
Bruneau (2007) suggested the simplifying 
assumption that the performance drop can be 
approximated by a triangular-shaped curve (the 
“resilience triangle”) that is defined by the 
performance minimum, the beginning of the 
disruption and the end of the performance loss. 
Other works that try to describe Q(t) using 
mathematical expressions split the curve into a 
disruption and a recovery phase. For example, 
Sharma, Tabandeh and Gardoni (2017) discussed 
which function fits best for the description of the 
recovery phase.  

Cimellaro et al. (2009) analyzed different 
mathematical approaches such as linear, 
trigonometric and exponential expressions and 
state that the recovery phase of resilient systems 
can best be described by an exponential curve. 
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2.2. Uncertainties 

Only few works consider that the resilience 
performance curve is subject to many 
uncertainties. Decò, Bocchini and Frangopol 
(2013) state that every point of the performance 
curve during a disruption is associated with 
uncertainties regarding time of occurrence or 
performance level. Regardless of the method by 
which the data of the performance curve is 
gathered (via simulations or field-tests), there are 
always aleatoric and/or epistemic uncertainties 
that ought to be considered. While epistemic 
uncertainties might decrease with more data 
gathered, aleatoric uncertainties can never be 
reduced (Kiureghian and Ditlevsen, 2009). 

2.3. Traffic System Performance Indicators 

Traffic systems are a type of critical infrastructure 
that is well-suited for the study of general 
resilience properties. To evaluate a system’s 
performance, the first step is to look for indicators 
to rate the system. The choice of indicator has a 
huge impact on the appearance of the 
performance curve. It might also be helpful to 
look at multiple indicators. An example of 
different traffic system indicators is given in 
(Kaparias et al., 2011). They describe an index for 
mobility that is essentially described by the 
average travel time to different destinations, 
normalized by the number of routes: 

 

Here, |R| is the number of routes, r is a route, ATTr 
is the average travel time of route r and Dr is the 
length of the route r. 

3. Approach 

The goal of this work is to identify a simple 
mathematical model that allows to fit the whole 
evolution of the system’s performance curve 
during a disruption and to determine model 
parameters that are directly linked to the system’s 
resilience capabilities. If both these requirements 
are fulfilled, the model is able to describe how the 
resilience capabilities affect the system’s 
performance curve. The model thus allows to 
study how measures that change the resilience 
capabilities will affect the performance curve of 
the system. 

3.1. Analytic Description of Resilience 

This work proposes sigmoid functions 
(sometimes referred to as logistic functions) to 
describe the absorption phase and thereafter the 
recovery phase. It is possible to model the 
resilience cycle with one analytic equation, and it 
is thus not necessary to divide the cycle into 
different phases and use multiple, non-
contiguous, equations: 

 

Fig. 2 shows two different examples of curves that 
were generated using this expression. One 
advantage of using this equation is, that there are 
only six parameters needed to describe the 
process. Another advantage is, that the meaning 
of most of the model parameters has already been 
defined by the scientific community. P is the 
initial performance, mostly close to 100%. L1 
describes the depth of the performance drop and 
it is equal to what is sometimes called the 
vulnerability (Häring, Sansavini et al., 2017) or 
inversed robustness (Shinozuka et al., 2004). k1 
refers to the speed of loss of performance, 
sometimes called rapidity (Pimm, 1984) and t1 is 
the time of the inflexion point. Because 
absorption and recovery phases are considered 
independently of each other but within the same 
mathematical expression, the same description is 
valid for the recovery phase. L2 is the amount of 
recovered performance, k2 characterizes the speed 
and t2 again is the time of the recovery phase 
inflexion point. In spite of its simplicity, this 
expression can be used to approximate a variety 
of performance curves, as Fig. 2 shows. This can 
also be seen in other figures of this work. 

Fig. 2 Resilience performance curve and the equation 
parameters. 
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Fig. 2, Curve 1 is expressed by: 

 

and Fig. 2, Curve 2 is described by: 

 

In contrast to former approaches, this formula 
also enables the user to take the idle time between 
a disruption and the recovery of performance into 
account. This is done by fitting t1 and t2 to the 
available performance data. 

When simulating the implementation of 
potential resilience-enhancing measures, the new 
formula for Q(t) can be fitted to the resulting 
performance curve of each scenario (cf. example 
Fig. 7). Thereby, the system’s resilience in each 
scenario can be characterized through the model 
parameters L1, k1, t1, L2, k2, and t2. This approach 
empowers decision makers to evaluate resilience-
enhancing measures with a quantitative approach. 

 

3.2. Resilience Assessment  

Now that the equation Q(t) is defined, it is 
possible to insert this equation into the 
mathematical definition of the loss in resilience, 
first proposed by Bruneau (2003) and presented in 
Section 2.1. The indefinite integral results in: 

 

 

 

With this information it is possible to calculate the 
loss of resilience instantly.  

 

3.3. Function Extension 

In case of performance curves that display a more 
complex pattern (e.g. due to multiple consecutive 
disruptions or in case of a stepwise progression of 
recovery of system performance), it is possible to 
supplement the formula for Q(t) by additional 
logistic expressions.  

This enables the user to look at multiple resilience 
cycles (Fig. 3, Curve 3) or implement sub-steps 
during the process (Fig. 3, Curve 4). 

 
Fig. 3 More complex performance curves that can be 
fitted through additional logistic terms. 

The amount of resilience cycles or sub-steps 
should be assumed by the operator, because until 
now it is not well-defined what is a complete 
cycle and when is it a sub-step.  

When trying to fit the curve by an algorithm, 
it is important to set adequate boundaries for 
possible model parameter values, as algorithms 
will struggle to find the global optimum with 
more degrees of freedom through more 
parameters. 
 

3.4. Performance Prediction considering 

Uncertainties 

The prediction of a systems performance is 
always fraught with uncertainties as mentioned in 
Section 2.2. Using this approach, it is at least 
partially possible to account for these 
uncertainties because all model parameter values 
can be seen as probability distributions. This is 
especially important when comparing the effects 
of different resilience-enhancing measures. 
Applying the new formula for Q(t), it is possible 
to determine the variability in model parameters 
that represent the system’s resilience capabilities. 
It is thus possible to determine not only a single 
resilience value for each resilience-enhancing 
measure, but to assign a range of possible values 
of resilience capabilities to each measure.
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L1: L2: 

k1: k2:

Fig. 4 Probability density functions of parameter 
values. 

It is more accurate to use the probabilities given 
in Fig. 4, instead of using the expected values 
(L1 ≈ 60, L2 = 40, k1 = 1, & k2 = 0.1). 
Fig. 5 shows the variability in resulting 
performance curves when considering these 
probability density functions of parameter values 
shown in Fig. 4. 

 

 
Fig. 5 Resilience performance curve with uncertainty 
range. 

The expectation values of the model parameters 
yield the expected performance, which is the most 
probable one (Fig. 5, black line), but the figure 
shows how uncertainties regarding model 
parameter values relate to uncertainties associated 
with the progression of the performance curve. 
The best-case curve describes the case at 
minimum possible L1 and maximum possible L2. 
The parameter k1 has a value of 0.8 and k2 is equal 
to 0.11. For the worst-case curve all the 
parameters are inverted. Using the probabilities, it 

is possible to generate an overview over all the 
possible performance outcomes.  
This can be transferred to the calculation of the 
loss of resilience presented in Section 2.1. The 
loss of resilience can also be described with 
another probability density function. This might 
serve as a valuable input for a subsequent decision 
analysis, in which a decision maker might need to 
choose between one option with the highest 
possible resilience but with a high uncertainty 
regarding its actual effect and another option in 
which the resulting resilience is somewhat lower 
but variability and thus uncertainty about 
outcomes is low as well. 

 

4. Application 

In the following, the proposed approach will be 
illustrated with the example of a traffic model. For 
this purpose, the private car traffic for the city of 
Cologne is simulated using “Sumo” (Alvarez 
Lopez, 2018) and the public “Tapas Cologne” 
dataset. The disruption is modeled as a sudden 
closure of the two major bridges, namely the 
Deutz Bridge and the Hohenzollern Bridge. 

 

4.1. Traffic Performance Indicators 

Traffic system performance can be described in 
various ways as described in Section 2.3. With 
Sumo it is easy to measure the performance by the 
time it takes vehicles to reach their destination. 
This work describes the system performance via 
the expected time without a disruption (dexp) 
compared to the real time it takes cars to travel 
from start to destination (dreal). The difference is 
called time-loss. Expressed as a formula that 
means: 

 

In a second step it might be necessary to translate 
the time into a comparable unit. Because this only 
serves as an example, all timescales in this work 
are converted to a dimensionless scale from 
0 to 100. To focus only on data points that are 
affected by the disruption, a filter for the most 
severely affected vehicles is necessary, because 
depending on the system boundaries most of the 
cars are not affected even by heavy interferences. 
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An example result for the given scenario is 
shown in Fig. 6. The “Raw” points represent the 
performances of the individual vehicles based on 
their individual trip duration.  

 
Fig. 6 Raw data and performance curve. 

The resulting performance curve displays a very 
irregular pattern at a microscopic scale, but in 
general roughly follows the expected curve (cf. 
Fig. 1). 

The first step is to look for the resilience 
triangle (Thierney and Bruneau, 2007) defined by 
the performance minimum, the beginning of the 
disruption and the end as shown in Fig. 7. A first 
evaluation can be done using this method. But it 
is more meaningful to fit the new formula for Q(t) 
to the raw data. 
 

 
Fig. 7 Curve fit to raw data performance curve. 

To fit a function to raw data, it is common practice 
to use least squares algorithms. The python 
package ‘scipy.optimize’ is a good choice for this 
because it brings a module for curve fitting using 
non-linear least squares. As the library sometimes 
lacks to find the global optimum, it is helpful to 
consider the resilience triangle and to define some 
boundaries for potential model parameter values. 

This can be done using an algorithm or by looking 
at the chart.  
 
L1 has to be located in between the first two points 
of the resilience triangle in vertical direction and 
t1 has to be between these two points horizontally. 
The same applies for L2 and t2 and the two points 
of the triangle to the right. For the curve presented 
in Fig. 7, the following boundaries can be derived 
from the resilience triangle: 

Table 1 Boundaries for curve fit. 

Parameter Upper 
Bound 

Lower bound 

L1 -40 -60 
t1 50 30 
L2 60 40 
t2 70 50 

 
This ensures that the parameters of the equation 
are inside of these ranges. The final double 
logistic function from this example is: 

 

If a sufficient number of stochastic simulations 
are performed in order to account for aleatoric 
uncertainties, probability density functions of 
parameter values (cf. Fig. 4) can be estimated, in 
order to calculate a range of potential 
performance curves as shown in Fig. 5.  

The model parameters can also be used to 
evaluate resilience-enhancing measures. Fig. 8 
shows the traffic system’s performance as 
presented before (Fig. 7) and also displays the 
performance curve for a scenario in which a 
resilience-enhancing measure has been 
implemented (rerouting of traffic as a response to 
the disruption). Qualitatively, it is easy to evaluate 
the change in resilience based on these 
performance curves. However, a quantitative 
comparison of the system’s resilience in those two 
scenarios is not possible without a descriptive 
equation. With the equation for Q(t) proposed in 
this paper, it becomes better possible to compare 
the different states of the system. 
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Fig. 8 Resilience enhancement. 

The average performance in case of the 
implementation of the resilience-enhancing 
measure is described by: 

 

The following table shows the model parameters 
of the two scenarios that facilitate a quantitative 
comparison. 

Table 2 Parameter changes for enhanced resilience. 

Parameter initial 
condition 

resilience-
enhancing 
measure 

L1 -48 -51 
t1 35 35 
k1 1.1 1.1 
L2 48 50 
t2 62 50 
k2 0.3 1.0 

 
From Table 2 and Fig. 8 it can be seen that the 
disruption phase is nearly the same, resulting in 
similar parameter values L1, t1 and k1. The 
enhanced resilience is reflected by a shorter time 
until half of the recovery is done, resulting in a 
smaller value of t2, and by a higher speed of 
recovery, resulting in a higher value of k2. 

The overall loss of resilience for the initial 
state, calculated with the equation given by 
Bruneau, is: 

 

When implementing the resilience-enhancing 
measure, the value decreases to: 

 

A decision maker is now able to evaluate that the 
resilience loss was reduced by: 

 

However, as described in Section 3.4, this 
evaluation should take uncertainties into 
consideration and the values determined for R1, R2 
and Rges also depend on the choice of the indicator 
as described in Section 2.3. 
 

5. Conclusion 

This work proposes to express the performance of 
a system in the context of resilience using logistic 
functions: 

 

This formulation enables users to describe the 
performance over time with six simple model 
parameters that are already defined by the 
scientific community involved in resilience 
research. P is the initial performance, mostly 
close to 100%. L describes the change in 
performance, k is the speed of the change and t 
sets the time of the performance change. 
Therefore, these model parameters characterize 
important features associated with the system’s 
resilience capabilities. Due to the reduced 
complexity of the model, it might not be possible 
to adequately capture all subtle changes of 
performance during a disruption. But we think 
that it is this reduced model complexity that might 
help to compare a systems resilience in different 
situations (e.g. with or without implemented 
resilience-enhancing measures) in a simple and 
straightforward manner. This work shows how 
curve fitting with this equation and parameter 
boundaries can be executed. It is possible to 
extend this equation for multiple resilience cycles 
or performance sub-steps. Finally, it is also 
possible to take uncertainties regarding disruption 
intensities and effectiveness of counter-measures 
into account in order to predict potential changes 
in the system’s performance and thus to identify 
the most suitable resilience-enhancing measures. 
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