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A B S T R A C T   

Indonesia and Papua New Guinea (PNG) have 97 active volcanoes with high concentration of human life in the 
very close proximity to them. In case of a volcanic eruption, provision of detailed information on affected regions 
is very crucial to support rescue and humanitarian relief organizations. In this paper, we present a semi- 
automated unsupervised knowledge-based region growing procedure that utilizes Synthetic Aperture Radar 
(SAR) data, from Sentinel-1, and optical data, from Sentinel-2, for mapping land surface changes after volcanic 
eruptions. With initial seed points, being placed on active volcano vents and areas affected by thermal anomalies 
(derived from Sentinel-2), the region growing procedure considers interferometric coherence data in unvegetated 
sites, and radar brightness and polarimetric decomposition features at vegetated sites. We selected five eruptive 
events that occurred between 2018 and 2021 at the Indonesian volcanoes of Karangetang, Semeru, Sinabung and 
at Ulawun Volcano on PNG. The eruption patterns varied with respect to duration, spatial extent and ejected 
volcanic materials. The results indicated that usage of radar brightness features with interferometric coherence 
already gives good change delineation. However, in the Ulawun test case, where heavy ash and scoria fall 
occurred, the addition of polarimetric decomposition features substantially improved the output accuracy due to 
the improved detection of ash deposits. The presented change detection method is straight forward to implement, 
and will strongly improve rapid mapping activities during as well as after major volcano eruptions.   

1. Introduction 

Volcanic eruptions, depending on the volcanic explosivity index 
(VEI), can have devastating impact on human lives and disrupt human 
livelihoods. With the growing concentration of critical infrastructure (e. 
g., submarine communication cables, power plants) and human popu
lation around active volcanoes (Fig. 1), the lower magnitude volcano 
eruptions VEI ≤ 3 would become more hazardous than before (Mani 
et al., 2021). Despite the scientific effort to predict the timing of volcano 
activity, many major eruptions occur unexpected even at well monitored 
volcanoes (Barclay et al., 2019). In such a scenario, acquiring the in
formation on the spatial extent of the hazard area is vital for planning 
and execution of effective and timely followed first response actions. 

Acquiring ground-based information or aerial imagery from active 

hazard zones is often hardly possible. In that respect, satellite remote 
sensing has a unique position by offering time relevant, large-scale, 
regular information over the area of interest from space that enables 
monitoring of the volcanic eruption without imposing danger to human 
lives (Cigna et al., 2020). 

During a volcanic eruption, the land surface change normally occurs 
due to the ejected volcano materials such as lava flows, pyroclastic 
density currents (PDC), primary lahars, volcanic debris avalanches and 
heavy ashfall. Here, by change we imply a long- or short-term transition 
of a pre-eruption land cover land use (LCLU) class to one of the above- 
mentioned post-eruption volcanic deposits classes. Mapping of such 
changes, within remote sensing domain, is normally performed using 
change detection techniques (Hecheltjen et al., 2014). 

Optical and Synthetic Aperture Radar (SAR) data are the most widely 
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used remote sensing datasets for volcano monitoring and post disaster 
impact assessment. Since affected areas from inland volcano hazards 
normally cover small area in the close proximity to the volcanoes, op
tical data are often used for visual interpretation and manual delineation 
of changes (e.g., De Beni et al., 2021; Pallister et al., 2019). Semi- 
automated solutions were presented in recent studies for mapping vol
canic deposits with very high and high spatial resolution optical data 
(Corradino et al., 2019; Rösch and Plank, 2022). However, utility of 
optical data suffers when the spectral response over changed sites does 
not contrast from the background or the information on optical data is 
disrupted due to the presence of clouds, cloud shadows or ash plumes 
(Aldeghi et al., 2019). In that respect, SAR data have clear advantages 
with its all-weather image sensing capabilities as well as by providing 
useful information independently of the sunlight. 

The post-eruption change detection using SAR data mainly relies on 
interferometric coherence and radar intensity information. Interfero
metric coherence, as a by-product of the Interferometric SAR (InSAR) 
technique, is extensively used for change detection on unvegetated 
volcano flanks (e.g., Bignami et al., 2020; Joyce et al., 2009; Jung et al., 
2016). However, its application over vegetated sites is limited due to the 
constant vegetation motion that causes the loss of coherence (Dietterich 
et al., 2012). The usage of the variation of radar intensities between pre- 
and post-eruption scenes (e.g., Bignami et al., 2020; Solikhin et al., 
2015) or manual delineation of disrupted vegetation using optical data 
(e.g., Smets et al., 2010) is used in the literature to overcome this issue. 
While usage of interferometric coherence and radar intensity for map
ping volcano deposits is well established in the literature, the 

application of polarimetric decomposition features is rarely addressed 
despite its proven effectiveness in, for instance, mapping flooded vege
tation (Brisco et al., 2013) or detecting landslide area (Plank et al., 
2016). 

In this study, we propose an unsupervised, knowledge-based seeded 
region growing method for land surface change detection after volcanic 
eruptions using freely available Sentinel-1 and Sentinel-2 data. We also 
test the utility of polarimetric decomposition features together with 
radar brightness information for mapping changes on vegetated areas. 
With the hypothesis that the usage of more than one pre-event scene for 
image difference calculation could reduce the noise in SAR data and lead 
to better accuracies, we examine accuracies acquired based on features 
calculated using one and five pre-event scenes. The workflow is straight 
forward to replicate and can be used for rapid change detection tasks for 
volcanoes in southeast Asia. 

2. Study sites and test cases 

We selected five recent volcanic activities that occurred between 
2018 and 2021 at three Indonesian (Karangetang, Semeru, Sinabung) 
and one Papua New Guinean (Ulawun) volcanoes (Fig. 2). Indonesia and 
Papua New Guinea are among the top five countries in the expected 
fatality rate risk from volcano induced hazards (Pan et al., 2015) due to 
frequent eruption patterns and dense human concentration around 
active volcanoes. Also, as topical countries, they have higher probability 
of experiencing primary lahars, that together with PDCs are the main 
causes of direct fatalities from volcanic eruptions (Auker et al., 2013). 

Fig. 1. Human population within 30 km distance (where large portion of fatalities occur (Auker et al., 2013)) from an active volcanoes in southeast Asia and Papua 
New Guinea (top). The zoomed view on five volcanoes (bottom) provide more details on the number of people and spatial distribution of settlements (Marconcini 
et al., 2021). 
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The considered eruption events substantially differ in their duration, 
ejected volcanic materials and spatial extent. In the following sub- 
chapters, more in depth description of the considered events are given. 

2.1. Karangetang (Indonesia) 

Karangetang (Api Siau) is an active stratovolcano, located on Siau 
Island in Indonesia with the peak reaching 1,827 m. It is one of the most 

active volcanoes of the country. 
We examine two recent eruptions that produced ash plumes, small- 

scale PDCs and lava flows. In both activities, lava flows were the main 
cause for the land cover change on the volcano flanks. The first event 
started at the end of November 2018. The first volcanic thermal 
anomalies, which were identified by the MODVOLC algorithm (Wright 
et al., 2004) analysing thermal imagery of MODIS in near-real-time, 
were detected on 24th of November after increased seismicity in 

Fig. 2. Study sites in Indonesia (a. Sinabung, b. Semeru, c. Karangetang) and Papua New Guinea (d. Ulawun).  

Table 1 
Overview of Sentinel-2 satellite images used in this study.  

Karangetang (N) Karangetang (W) Semeru Sinabung Ulawun 

NDVI comp.*: 
2018–09-01 
2018–09-06 
2018–09-11 
2018–09-21 
2018–09-26 
2018–10-01 
2018–10-06 
2018–10-21 
2018–10-31 
2018–11-05 
2018–11-10 
Thermal anom.**: 
37 scenes from 2018 to 11-20 until 
2019–03-25 

NDVI comp.*: 
2019–04-14 
2019–04-24 
2019–04-29 
2019–05-04 
2019–05-09 
2019–05-14 
2019–05-19 
2019–05-24 
2019–05-29 
2019–06-08 
2019–06-13 
2019–06-23 
2019–06-28 
2019–07-03 
Thermal anom.**: 
47 scenes from 2019 to 07-13 until 
2020–02-28 

NDVI comp.*: 
2021–09-07 
2021–09-17 
2021–09-22 
2021–09-27 
2021–10-02 
2021–10-07 
2021–10-12 
2021–10-17 
2021–10-22 
Thermal 
anom.**: 
2021–12-06   

NDVI comp.*: 
2020–12-07 
2020–12-27 
2021–01-01 
2021–01-11 
2021–01-16 
2021–02-05 
2021–02-10 
2021–02-15 
2021–02-20 
2021–02-25 
Thermal 
anom.**: 
2021–03-02   

NDVI comp.*: 
2019–04-06 
2019–04-21 
2019–04-26 
2019–05-11 
2019–05-16 
2019–05-26 
2019–05-31 
2019–06-25 
Thermal 
anom.**: 
No scenes    

* NDVI comp. – NDVI composite; 
** Thermal anom. – thermal anomalies. 
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previous days. The following lava flow extrusion from the northern 
crater (Kawah Dua) triggered small avalanches and pyroclastic flows. 
The lava flew towards north and small ash plumes continued until the 
end of March 2019. The flow covered the road that were connecting 
several communities on the island and entered the sea on 5th of 
February (Global Volcanism Program, 2019a). 

The second eruption started on mid-July 2019 and continued until 
mid-January 2020 (Genzano et al., 2020). The increased thermal 
anomalies on the southern crater (Kawah Utama) followed by extrusion 
of incandescent avalanche blocks and lava flow on western side of the 
volcano flank. The incandescent blocks travelled down to 1000 – 1500 m 
along the multiple drainages (Global Volcanism Program, 2020). 
Sentinel-2 false colour composite image in Fig. 2.c illustrates land sur
face state of Karangetang during the second eruption event. 

2.2. Semeru (Indonesia) 

With its continuous activity since 1967, Semeru Volcano (Fig. 2.b, 
pre-event image) is known as one of the most hazardous and active 
volcanoes worldwide. Located on the world’s most populated island - 
Java, its explosive eruptions often result into the displacement of com
munities in the close proximity or event fatalities among them. 

During several days of heavy rain, an explosion and a dome collapse 
on 4th of December 2022 produced a 15 km high ash plume and pyro
clastic flow that generated lahars travelling down the Kobokan river 
towards southeast (Global Volcanism Program, 2022). This eruption 
could have been triggered by heavy rains that eroded the lava dome and 
lead to its collapse and consequent major explosion (Handley, 2021). 

Table 2 
Overview of Sentinel-1 satellite images used in this study.  

Karangetang (N) Karangetang (W) Semeru Sinabung Ulawun 

date *rel. 
orbit 

date *rel. 
orbit 

date *rel. 
orbit 

date *rel. 
orbit 

date *rel. 
orbit 

2018–10-07 
2018–10-19 
2018–10-31 
2018–11-12 
2018–11-24 
2018–12-06 2018–12-18 2018–12- 
30 2019–01-11 2019–01-23 
2019–02-04 2019–02-16 2019–02- 
28 2019–03-12 

1631 2019–05-23 
2019–06-04 
2019–06-16 
2019–06-28 
2019–07-10 
2019–07-22 2019–08-03 2019–08-15 2019–08- 
27 2019–09-08 2019–09-20 2019–10-02 
2019–10-14 2019–10-26 2019–11-19 2019–12- 
01 2019–12-13 2019–12-25 
2020–01-18 2020–01-30 2020–02-11 2020–02- 
23 

1631 2021–10- 
08 
2021–10- 
20 
2021–11- 
01 
2021–11- 
13 
2021–11- 
25 
2021–12- 
07  

542 2021–01- 
29 
2021–02- 
04 
2021–02- 
10 
2021–02- 
16 
2021–02- 
28 
2021–03- 
06 

1432 2019–05- 
05 
2019–05- 
17 
2019–05- 
29 
2019–06- 
10 
2019–06- 
22 
2019–07- 
04  

672  

* relative orbit. 
1 descending mode. 
2 ascending mode. 

Fig. 3. Unsupervised, knowledge-based region growing workflow for detecting volcanism-related land surface changes.  
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2.3. Sinabung (Indonesia) 

Located on the northern part of Sumatra Island, Sinabung had its first 
confirmed Holocene eruption in 2010. The elongated stratovolcano had 

several activity phases since 2010 which included lava flows, pyroclastic 
flows, block avalanches and explosions with ash plumes (Fig. 2.a, pre- 
event image). 

The considered activity started in the early morning on 2nd of March 
2021. According to the report from Center of Volcanology and Geolog
ical Hazard Mitigation (CVGHM, also known as PVMBG), 15 pyroclastic 
flows and ash plumes with the height of 12.2 km were recorded on that 
day. The pyroclastic flows and block avalanches travelled down the east 
and south east direction up to 3.7 km (Global Volcanism Program, 
2021). 

2.4. Ulawun (Papua New Guinea) 

The highest volcano (2334 m) on Bismarck Archipelago – Ulawun 
(Fig. 2.d, pre-event image), is one of the most active volcanoes of Papua 
New Guinea. The volcano is located on the north-eastern part of New 
Britain Island. Several large eruptions after 1970 generated pyroclastic 
and lava flows. 

On 26th of June 2019, the sharply increased seismicity was the 
precursor of the eruption that started at early morning with grey ash 
plume. Ash plumes that rose above 8 and 13 km drifted in west, south 
and south-eastern directions and caused substantial amounts of ashfall. 
The lava or pyroclastic flows were reported to reach some of the villages 
around the volcano (Global Volcanism Program, 2019b). No fatalities 
were reported but the eruption forced around 11,000 people flee their 
homes. The heavy ash fall damaged several main roads, houses and 

Fig. 4. Generation of ‘last-available-pixel’ NDVI composite.  

Fig. 5. Calculation of mNDI features.  

Fig. 6. Seeded region growing procedure.  
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schools (Bevege, 2019). 

3. Remote sensing data and its Pre-Processing 

Optical data from Sentinel-2 A/B and SAR data from Sentinel-1 A/B 
satellites were used for the analysis. Sentinel satellites launched within 
European Space Agency’s (ESA) Copernicus program, provide freely 
accessible high spatial and temporal resolution images at global scale. 
Remote sensing images from both satellites were directly downloaded 

from the Copernicus Open Access Hub (URL:). 
In total, 52 Sentinel-2 A/B images with cloud cover less than 80 % 

were acquired for building cloud-free Normalized Difference Vegetation 
Index (NDVI) composites (Table 1). For constructing the pre-event 
cloud-free NDVI composites we used the images acquired within last 
90 days before the start of the considered eruption event. The range of 
90 days was selected empirically based on the quality of output cloud- 
free composites. The threshold was raised up to 120 days for Ulawun, 
due to the absence of sufficient amount of clear sky data. All Sentinel-2 

Fig. 7. Example of region growing iterations of Karangetang (W) test case.  

Fig. 8. Area-based change detection results using combination of radar brightness and polarimetric decomposition features for test cases in a) Karangetang (N) on 16 
February 2019, b) Karangetang (W) on 23 February 2020, c) Semeru, d) Sinabung and c) Ulawun. 
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images were pre-processed from Level-1C Top-of-Atmosphere to Level- 
2A Bottom-of-Atmosphere products using Sen2Corr (v 2.10). NDVI 
bands were then calculated using red (B4) and near-infrared bands (B8) 
for each optical image. 

Optical data for detecting thermal anomalies were directly accessed 
via Google Earth Engine platform (GEE) and run through the Normal
ized Hotspot Indices (Marchese et al., 2019) tool (Genzano et al., 2020) 
(available online at https://nicogenzano.users.earthengine.app/view 
/nhi-tool). The Sentinel-2 A/B Level-1C data sensed during each erup
tion activity were used as input. 

For each test case we acquired Sentinel-1 A/B Interferometric Wide 
(IW) swath, Single Look Complex (SLC) scenes covering the activity 
period and five pre-event scenes (Table 2). The pre-processing of 
Sentinel-1 data was done using Sentinel-1 Toolbox (S1TBX) executed 
using the Graph Processing Tool of the Sentinel Application Platform 
(SNAP) software (v 8.0). 

4. Methodology 

4.1. General workflow 

In southeast Asia, the flanks of volcanoes are typically densely 
vegetated. The unvegetated sites often appear on craters above active 
vents or where vegetation was disrupted due to the previous effusive or 
explosive eruptions. While interferometric coherence is a reliable mea
sure of change on non-vegetated surfaces (Tzouvaras et al., 2020), it has 
less utility for detecting changes on vegetated sites due to constant 
motion of vegetated surfaces. Disruption of dense vegetation by lava 
flows, PDCs or lahars would lead to substantial alteration of surface 
roughness and its dielectric properties that could be captured by radar 
intensity or polarimetric decomposition features. Considering this, we 
set up the change detection workflow that uses the most suitable input 
features for each location, vegetated and unvegetated. The workflow 
consists of three main steps: generation of input features, super-pixel 

segmentation and seeded region growing (Fig. 3). 

4.2. Generation of input features 

4.2.1. NDVI ‘last-available-pixel’ composite 
To separate vegetated from non-vegetated sites we calculated a pre- 

event NDVI last-available-pixel composite. The NDVI composite was 
calculated using the linear forward interpolation of valid NDVI values to 
the last pre-event NDVI layer (Fig. 4). The validity of pixels was defined 
by the quality mask that combined information from cloud probability 
layers and cloud-shadow masks. We used the Sentinel-2 cloud proba
bility data, accessed via GEE platform (Gorelick et al., 2017), which was 
previously reported to perform similar or even better than other state-of- 
the-art cloud detection tools (López-Puigdollers et al., 2021). The cloud 
shadow detection was done using the intersection of cloud shadow 
projection with dark near-infrared pixels that is not water (Braaten, 
2022). Pixels that had cloud probability of 40 % or were marked as cloud 
shadow were labelled as invalid pixels in the quality mask. The lower 
cloud probability threshold was set to avoid under-detection of clouds 
that could substantially worsen the quality of output NDVI composite. 

4.2.2. Interferometric coherence 
For mapping changes on unvegetated surfaces we calculated inter

ferometric coherence layers using the two temporally adjacent complex 
SAR scenes. The coherence layers range from 0 to 1 and describe the 
similarity of the reflected radar backscatter between two scenes ac
quired with the same imaging geometry over the same place but at 
difference time. Values closer to 1 indicate high similarity between the 
two scenes, whereas values closer to 0 indicate low similarity. Before 
calculating coherence layers, several pre-processing steps are required 
such as image calibration, co-registration, coherence calculation, 
debursting and terrain correction using Copernicus Digital Elevation 
Model (DEM) data. 

For the events with a single large eruption (e.g., Semeru, Sinabung, 
Ulawun) we used co-event coherence layers that show low values over 
regions affected by the eruption of interest on unvegetated surfaces. For 
events that continued for several months (e.g., Karangetang (N), Kar
angetang (W)), the mean coherence values since the start of the 
respective event was used as an input. Towards the end of ejection of the 
volcanic materials, the coherence values over unvegetated sites would 
increase indicating the end of the active phase. 

4.2.3. Radar brightness and polarimetric features 
To map the changes on vegetated sites, we used radar brightness at 

the two polarizations VV and VH provided by Sentinel-1 and calculated 
polarimetric decomposition features. SAR data from Sentinel-1 A/B 
were radiometrically calibrated to Beta Naught (β0) values using 
Copernicus DEM data, also called as radar brightness. Radar brightness 
values are independent from the terrain (yet the influence of incidence 
angle is still present) and represent the reflectivity per unit of area in 
slant range. 

Table 3 
Area-based accuracy estimation results.   

VV,VH þ H/A/α VV,VH H/A/α  

1* 5* 1* 5* 1* 5*  

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice 

Karangetang (N)1  0.44  0.61  0.46  0.63  0.45  0.62  0.52  0.69  0.32  0.49  0.44  0.61 
Karangetang (W)2  0.55  0.71  0.56  0.72  0.56  0.72  0.58  0.74  0.51  0.68  0.54  0.70 
Semeru  0.57  0.73  0.63  0.77  0.56  0.72  0.63  0.78  0.30  0.46  0.33  0.50 
Sinabung  0.56  0.72  0.58  0.74  0.60  0.75  0.58  0.74  0.56  0.71  0.56  0.72 
Ulawun  0.47  0.64  0.53  0.69  0.24  0.39  0.31  0.47  0.36  0.53  0.46  0.63  

* number of pre-event scenes; 
1 accuracies calculated based on detected changes on 16th of February. 2019; 
2 accuracies calculated based on detected changes on 23rd of February 2020. 

Table 4 
Point-based accuracy estimation results.   

VV,VH + H/A/α VV,VH H/A/α  

1* 5* 1* 5* 1* 5*  

F1- 
score 

F1- 
score 

F1- 
score 

F1- 
score 

F1- 
score 

F1- 
score 

Karangetang 
(N)1 

0.88 0.91 0.77 0.90 0.65 0.81 

Karangetang 
(W)2 

0.86 0.87 0.86 0.86 0.79 0.82 

Semeru 0.82 0.92 0.80 0.89 0.46 0.49 
Sinabung 0.89 0.87 0.88 0.85 0.82 0.83 
Ulawun 0.57 0.68 0.20 0.32 0.42 0.61  

* number of pre-event scenes. 
1 accuracies calculated based on detected changes on 16th of February. 2019; 
2 accuracies calculated based on detected changes on 23rd of February 2020. 
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Additional to radar brightness, we explored the potential of using 
polarimetric SAR features for rapid mapping of land surface changes. 
Polarimetric SAR data that utilize the information on polarization state 
of emitted and received waves enable inferences on the properties of the 
targets on the ground. The changes of the wave polarization after the 
interaction with the target depend on the properties of the interacting 
surface (e.g., surface roughness, moisture content, reflectivity, orienta
tion, structure). When the properties of the sensed surface change over 
time it leads to change on output polarimetric images. 

The polarimetric decomposition allows to measure the relative 
contribution of scattering mechanisms that occur on the ground such as 
surface, volume, and double-bounce scattering. As Sentinel-1 acquires 
dual-pol data, we performed the dual-pol entropy(H)/anisotropy(A)/ 
alpha(α) decomposition, developed by Cloude and Pottier (1997), that is 
based on eigenvalues of the covariance matrix C2 (Nielsen et al., 2017). 
Three parameters are given as an output of the H/A/α decomposition – 
mean scattering alpha angle (α), polarimetric scattering entropy (H) and 
scattering anisotropy (A). 

The alpha angle corresponds directly to the average scattering 
mechanism. The values vary from 0◦ to 90◦, where values around 
0 indicate surface scattering, around 45◦ volume scattering and around 
90◦ the domination of double-bounce scattering. Entropy contains in
formation about the heterogeneity of the scattering mechanism and vary 
from 0 to 1. Values closer to 0 imply domination of one scattering 
mechanism whereas those closer to 1 indicate complete random scat
tering. Anisotropy provide additional information to entropy and helps 

to differentiate various types of surface scattering and its values vary 
from 0 to 1. 

The radar brightness at the two polarizations (VV, VH) and three 
polarimetric decomposition features have different value ranges. To use 
these variables together and bring them into one value range we adopted 
a normalized difference index (NDI). With the aim of reducing the noise 
that could be the result of short-term atmospheric effects we calculate 
NDI with five pre-event scenes and took the median value (mNDI) 
(Fig. 5). Following equation was used for the calculating the 

mNDI : mNDI = med.
(

pre − event − post − event
pre − event + post − event

)

(1) 

The values vary from − 1 to 1, where values closer to 0 indicate no 
change and those further away from 0 would indicate strong increase or 
decrease of values in the post-event scene. 

4.3. Super-Pixel segmentation 

For segmenting the images we used scikit-image implementation 
(van der Walt et al., 2014) of the Simple Linear Iterative Clustering 
(SLIC) super-pixel algorithm (Achanta et al., 2012) in version 0.19. SLIC 
is a simple pixel clustering algorithm that reported to be fast and well 
performing with the minimal set of input parameters (Clauss et al., 
2018). The two important parameters that could substantially affect the 
quality of the segmentation are the compactness and n_segments. After 
imperative evaluation of various parameters, we set compactness to 0.1 

Fig. 9. Area-based change detection results using three features groups (columns) calculated based on one and five pre-event scenes (rows) for test case 
Semeru Volcano. 
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and the size of the segments to 70x70 pixels for all runs. The segmen
tation was run on multivariate input consisting of NDVI composite, 
mNDI layers of coherence and, depending in the experimental setup, 
radar brightness and/or polarimetric decomposition features. 

4.4. Region growing 

The fundamental postulate of region growing method is that neigh
bouring pixels or objects within the same region have similar values, 
where the growing criteria is defined based on the similarity threshold. 
Introduced by Adams and Bischof (1994), the seeded region growing 
allows controlling the initial formation of the regions by providing the 
location of seeds. We adapted the seeded region growing mechanism to 
fit our application driven needs and constructed knowledge-based 
seeded region growing workflow (Fig. 6). The proposed workflow fol
lows the pre-defined growth criteria based on the multivariate input 
data starting at automatically selected or predefined seed segments. 

The region growing process is first initiated by selecting all segments 
where seed points lay. These segments were defined as a candidate 
segments. The region growing starts by evaluating if the candidate 
segment represents a vegetated or unvegetated area using the ‘last- 
available-pixel’ NDVI composite. Segments with median NDVI value 
above or equal to 0.2 are defined as a vegetated. Consequently, every 
pixel below the threshold was defined as unvegetated. When unvege
tated, if interferometric coherence values in candidate segments were 
below 0.3 this segment is labelled as a change segment. Otherwise, the 
candidate segment is discarded from further evaluation and labelled as 
discarded segment. For vegetated candidate segments we used three 
groups of mNDI features: radar brightness in two polarizations (VV, VH), 

polarimetric features (Alpha, Entropy and Anisotropy) and their com
bination. If vegetated candidate segment’s median values at any feature 
in the group lies outside of two standard deviations due to a strong in
crease or decrease of the radar backscatter, the segment is labelled as a 
change. Otherwise, it is discarded and marked as discarded segment. At 
the end of each loop, all segments lying within 200 m buffer distance 
from the newly added ‘change’ segments are included to the ‘candidate’ 
segments list. The procedure runs until all candidate segments are being 
evaluated (Fig. 7). 

The most critical parts of the seeded region growing is the selection 
of initial seeds. The speckle noise, inherently present in SAR data, often 
leads to the detection of false changes. Whereas, automated seed point 
selection using e.g. thresholding or edge detection techniques may re
sults in detecting changes that are not directly related to the volcanic 
activity. To avoid this, we incorporate expert knowledge into the seed 
selection procedure and tailored it to our application case. 

During a volcanic eruption, craters above the active vents are nor
mally the source of the ejected materials that lead to temporal or per
manent change of land surface. Due to the precursory signs or previous 
activity the location of active vents is typically known. Thus, as a rule of 
thumb the location of active vents are selected as initial seeds. 

Apart from the seeds above active vents, seeds were also placed on 
thermal anomalies detected by the NHI algorithm, which was designed 
to perform on satellite data at mid-high spatial resolution (Marchese 
et al., 2019; Mazzeo et al., 2021). This multi-channel algorithm, running 
operational within the NHI tool, a GEE-App for the active volcanoes 
monitoring (Genzano et al., 2020; Marchese and Genzano, 2022), 
identifies thermal anomalies by exploiting the sensitivity of short-wave 
infrared (SWIR) portion of the electromagnetic spectrum to the high- 

Fig. 10. Change detection results from Karangetang (N) event. Sentinel-2 (a) pre- and (b) post-event images with the (c) consistency of detected changes ranging 
from 1 to 0, where higher values indicate high continuity of detected changes. More detailed change maps show the spatial extent of the changes in each time step 
during the event (c.1, c.2, c.3, c.4). Sentinel-2 images are displayed as false colour composites (R:B12, G:B11, B:B04) where thermal anomalies are visible in red and 
yellow colours. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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temperature features (e.g., lava flows). We used the Sentinel-2 A/B 
scenes acquired during the analysed volcano activity. Detected thermal 
anomalies were selected as seeds along additional to the initial seeds 
above active vents. For long time-series events, such as Karangetang (N) 
and Karangetang (W), the accumulative collection of the detected 

thermal anomalies since the beginning of the event were used to set the 
seed points. The final binary output (change vs no-change) are derived 
after performing morphological operations such as dilation and erosion 
(kernel size of 3x3) on the output of region growing workflow. 

Fig. 11. Change detection results from Karangetang (W) event. Sentinel-2 (a) pre- and (b) post-event images with the (c) consistency of detected changes ranging 
from 1 to 0, where higher values indicate high continuity of detected changes. More detailed change maps show the spatial extent of the changes in each time step 
during the event (c.1, c.2, c.3, c.4). Sentinel-2 images are displayed as false colour composites (R:B12, G:B11, B:B04) where thermal anomalies are visible in red and 
yellow colours. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Interferometric pre-event and co-event coherence of Sinabung activity of 2nd of March 2021. The red dot indicates the vent location. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4.5. Accuracy estimation 

The accuracy of the change maps was assessed in three ways: visual 
evaluation, area-based and point-based accuracy assessment. In visual 
evaluation, we compare the change detection results with the descrip
tion of the corresponding events available via various reporting sources 
(e.g., Global Volcanism Program, news). The area-based assessment was 
carried out using the reference data created by interpreting and manu
ally digitizing the changed areas with the help of the available pre- and 
post-event Sentinel-2, Landsat-8 and Sentinel-1 images. We used Inter
section over Union (IoU) and Dice Coefficient as area-based accuracy 
measures (eq. 2 and 3 accordingly). 

IoU =
area of overlap
area of union  

Dicecoefficient = 2*
areaofoverlap

totalarea
(3) 

Since it is hard to obtain clear boundaries of the changed sites, the 
area-based accuracy assessment can have high uncertainties. The diffi
culty is associated with the constant presence of clouds in optical scenes, 
no contrast of change to the background and fuzzy border (e.g., ashfall) 
of the change, especially on the unvegetated flanks of the volcanoes. To 
obtain another quality measure we perform a point-based assessment, 
where 500 reference points from changed and non-changed area were 
sampled manually. The sites with high uncertainly were left out. Then, 
using total of 1000 samples from change and non-change classes we 
calculated F1-score measures (eq. (4)). The point-based accuracies 
should not be confused with pixel accuracies where the percentage of 
correctly classified pixels are provided. This is not based on pixels of the 
reference file but on randomly distributed points around the volcano 
that were placed in areas with high certainty of change and non-change. 

F1score =
TruePositive

TruePositive + 1
2 (FalsePositive + FalseNegative)

(4)  

5. Results 

We run the change detection workflow using only (1) radar bright
ness, (2) only polarimetric decomposition features and (3) their com
bination in order to examine the added values of polarimetric features to 
the change detection procedure. Also, test runs with one and five pre- 
event scenes for each of the above-mentioned experiments were 
executed. In total, the results of 30 experiments are presented and dis
cussed in the paper. 

5.1. Change detection results 

The test cases considered in this study represent examples of long- 
term or permanent land surface change due to the simultaneous or 
sequential ejection of materials produced during volcanic eruptions. For 
example, during the eruption of Semeru volcano occurring in December 
2021, pyroclastic density currents were followed by lahars. In both ac
tivities in Karangetang, the reports show that before ejection of the lava, 
several pyroclastic density currents were registered. Thus, the changes 
on the volcano flanks are the result of the cascade of events that occurred 
during the volcanic activity. 

5.1.1. Input feature groups 
The highest area-based accuracies were reached using radar bright

ness features for Semeru, Sinabung and for both test cases in Kar
angetang (Fig. 8). But, as shown in Table 3, the difference between 
accuracies based on only radar brightness and its combination with the 
polarimetric decomposition features were small (not more than + 0.06 
IoU and + 0.03 Dice). Apart from Karangetang (N) case, such differences 
were mainly due to the slight over-estimation (false positives) of 
changed area on unvegetated sites very close to volcanoes’ active vents. 
Since reference points were often not placed around volcano vents (re
gion with high uncertainty of change), the point-based accuracies 
showed higher values for runs with the combination of two feature 
groups (Table 4). For Karangetang (N) case, over-estimation of changes 
occurred mainly on vegetated sites along the narrow lava flow channel. 
The detailed maps with area-based accuracies are provided Figs. A.2 to 
A.5. in appendices. 

In contrast to the previous four test cases, polarimetric decomposi
tion features alone performed better than radar brightness features in 
Ulwaun, where heavy ash and scoria fall was reported. The combination 
of both feature groups resulted in the highest area-based (Table 3) and 
point-based accuracies (Table 4). This is mainly due to better detection 
of ashfall deposits on western flank of the volcano. However, radar 
brightness features were able to better map the narrow path of pyro
clastic density current or lahar that occurred in south-eastern site of the 
volcano (see Fig. A.5 in appendices). When combined, it resulted into 
improved detection of land surface changes due to the ashfall and py
roclastic density current or lahar. 

5.1.2. Number of Pre-Event scenes 
Except for Sinabung, the highest accuracies were consistently 

reached with mNDI features that were generated using five pre-event 
scenes (see, Table 3 and 4). The accuracy increase was the highest for 

Fig. 13. Interferometric coherence time-series before and during Karangetang (W) eruption over vegetated and unvegetated surfaces.  
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Fig. 14. RGB image composites of mNDI features from 
radar brightness (first column) and polarimetric 
decomposition layers (second column) of all five test 
cases (rows). Formerly vegetated areas destroyed by 
lava flows can clearly be seen (in yellow) on polari
metric decomposition features from Karangetang (N) 
and (W) events. The footprint of PDCs and lahar de
posits are visible in yellow on radar brightness features 
from Semeru, Sinabung and Ulawun (south-eastern 
side) events. The regions affected by heavy ashfall ap
pears differently on radar brightness features (light 
green appearance on Ulawun events and black on 
Sinabung and Semeru events) and polarimetric decom
position features (blue appearance on Ulawun event and 
yellow colour in Semeru and Sinabung events). (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this 
article.)   
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Ulawun (Δ IoU + 0.10, Δ Dice + 0.10) and Karangetang (N) (Δ IoU +
0.12, Δ Dice + 0.12) when using five pre-event scenes with polarimetric 
decomposition features. Increasing the number of pre-event scenes 
helped to better detect the ashfall deposits for Ulawun and to better map 
the narrow lava channel in Karangetang (N). For Semeru (Fig. 9), it was 
possible to detect the full coverage of lahar deposits, also east of the 
narrow valley through the topographic ridge in the very south-eastern of 
Mt. Semeru (Fig. 9). For test case in Sinabung, the accuracies based on 
one pre-event scene were slightly better (Δ IoU + 0.02, Δ Dice + 0.01) 
than those based on five pre-event scenes. However, the differences of 
the accuracies between runs with one and five pre-event scenes are 
almost negligible, i.e. 0.03 for Δ IoU and ΔDice. 

5.1.3. Time-Series events in Karangetang 
Two lava flow events at Karangetang Volcano lasted for several 

months. When testing the accuracies of the events, we used the changes 
detected on specific dates but also considered the reports from Global 
Volcanism Program (GVP) describing the events (“Global Volcanism 
Program,” 2022). 

The changes were detected around both craters on the image from 30 
of November 2018 (Fig. 10, c.1) but predominantly larger at the 
northern crater than at the southern one. The GVP report suggests that at 
the end of November 2018 after increased seismicity, lava flow extru
sion occurred from the northern crater and triggered series of ava
lanches and pyroclastic density currents. The lava flow headed towards 
northern direction along the deep river channel (see, appendix A.7), 
which was well detected on Sentinel-2 images from December and 
February (Fig. 10, c.2, c.3). Closer to the end of February, lava entered 
the sea (Fig. 10, c.4). The consistency of detected changes (Fig. 10 c) also 
show that changes occurred from northern crater and moved with the 
time towards north. 

Daily incandescent avalanche blocks were reported to be travelling 
on western and north western direction from mid-July 2019 until mid- 
January 2020 from Karangetang’s southern crater (also called as a 
“main crater”). The changes detected on the early stages were mainly 
covering unvegetated sites (Fig. 11, c.1), but in October 2019 lava 
entered the forested area on the western flank (Fig. 11, c.2). Ejection of 
incandescent avalanche blocks continued throughout the following 
three months, and ended approximately at the end of January 2020. 

5.2. Descriptive capabilities of input features 

Interferometric coherence layers were capable of capturing the 
changes on unvegetated sites. This can be well seen in the test case of 
Sinabung, where large part of the volcano’s eastern flank is unvegetated 
due to the previous explosive eruptions (Fig. 12). The coherence sub
stantially drops on the unvegetated area along the reported PDCs path, 
where previously high coherence was observed. 

Also, the time-series of coherence layers indicated the drop of 
coherence values to the levels of vegetated sites (Fig. 13) during the 
activity on Karangetang from August 2018 until March 2020. The 
duration of the lowered coherence values fits to the duration of reported 
activity on the southern (main) crater of Karangetang. 

While coherence showed a good performance in detecting the 
changes on unvegetated sites, mapping of the changes on vegetated sites 
were more complex with SAR data. Among all the tested features, radar 
brightness features were best capable of showing narrow structural 
changes on volcanic flanks (Fig. 14). Yet, polarimetric decomposition 
features shows better the changes due to the heavy ashfall. 

Fig. A1. The ‘last-available-pixel’ NDVI composites of a) Karangetang (N), b) Karangetang (W), c) Semeru, d) Sinabung, and e) Ulawun. White color represent 
‘no data’. 
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6. Discussion 

In this paper, we propose a semi-automated unsupervised, 
knowledge-based seeded region growing procedure for land surface 
change detection after volcanic eruptions based on freely available SAR 
data from Sentinel-1 supported by optical data from Sentinel-2. The 
method, based on five test cases in Indonesia and Papua New Guinea, 
showed promising results in detecting changes using the first available 
post-event Sentinel-1 data. Usage of freely available remote sensing 
datasets within the workflow supports the reproducibility of the 
method, by removing the constrains associated with data acquisitions 
costs. 

Radar brightness features alone with interferometric coherence data 
was enough to detect the changes at the acceptable accuracy in all test 
cases except for Ulawun. Similar results were reported in the previous 
studies (Bignami et al., 2020; Smets et al., 2010; Solikhin et al., 2015). 
Complementary to the existing knowledge, we found that addition of 
polarimetric decomposition features improves the discrimination of 
heavy ashfall deposits. The combination of radar brightness and polar
imetric decomposition features could improve the change detection 
accuracy in such complex eruption cases as Ulawun. 

Using five pre-event scenes instead of only one allowed to better 
delineate the destruction of vegetation cover caused by volcanic activ
ities. This consequently resulted in higher change detection accuracies. 
Such accuracy improvements could be due to the elimination of the 
random amplitude fluctuations that are not related to the changes from 
the target event. However, when most of the affected area is unvege
tated, as it is in the Sinabung example, increasing the number of pre- 
event scenes has almost no impact on the change accuracies. 

As for any seeded region growing procedure, the initial location of 
seeds has a substantial effect on the quality of the output change mask. 
The results from Sinabung and Semeru, where thermal anomalies were 
detected only around the crater, have illustrated that the presented 
approach is capable of delivering promising results even with the few 
initial seeds on the crater and in its close surroundings. However, in
clusion of detected thermal anomalies as seed point substantially facil
itated the multi-temporal change detection in both eruption events in 
Karangetang. Addition of thermal anomaly information into the work
flow could also assist if new vent opening occurs, as recently happened 
in La Palma (Canary Islands) end of 2021 (Walter et al. in press). 

The presented change detection method is an unsupervised method, 
as the majority of approaches presented in the literature on the subject. 

Fig. A2. Area-based change detection results using three features groups (columns) calculated based on one and five pre-event scenes (rows) in Karangetang (N).  
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The absence of representative reference data, which are required for 
training the machine learning models, are among the main reasons for 
domination of unsupervised approaches over supervised once. Addi
tionally, in case of ashfall or PDCs, defining the spatial boundaries of 
‘change’ is challenging due to the gradual fading of the ‘change’. In such 
cases, spatial border of effected sites may vary depending on the deci
sion of each individual. Despite these challenges, recently published 
papers on supervised classification of volcanic deposits (e.g., Corradino 
et al., 2021, 2019) illustrate the growing effort to move towards su
pervised machine learning solutions. 

In future, further developments should aim to overcome following 
limiting factors of the current version of the presented algorithm. Firstly, 
NDVI ‘last-available-pixel’ composite may inherit a short-term pre- 
eruption vegetation disturbance, which result in false assignment of the 
segment to unvegetated region. Additionally, the quality of the com
posite heavily relies on the quality of the used cloud masks. Secondly, 
due to its side-looking image acquisition geometry, SAR data may 
contain substantial image artefacts that could be detected as change (e. 
g. Karangetang (N)). In complex topographic conditions, the continuity 
of the signal alteration due to the real change could be disrupted (e.g. 
Semeru). Thirdly, segments overlapping inland water bodies should be 

filtered out since there segments would be marked as change when 
considered by region growing rules. Currently, the workflow consists of 
separately executed three modules. One of the priority future objective 
is to move from semi-automated to fully automated procedure that could 
require only information on volcano location and event dates. 

7. Conclusions and outlook 

Volcano induced hazards are one of the major threats to densely 
populated communities around active volcanoes. When volcanic erup
tion occurs, the timely delivered information on impacted areas is crit
ical. This study presents a semi-automated approach on land surface 
change detection after volcanic eruptions and examines the added value 
of polarimetric decomposition features and increased number of pre- 
event SAR scenes to the change detection accuracies. 

The proposed semi-automatic change detection method showed 
promising results for all five eruption cases that considerably differ from 
each other by their spatial extent, duration of eruption, topography of 
affected sites and volcanic deposits that caused the land surface change. 
The workflow jointly utilizes freely available Sentinel-1 and Sentinel-2 
data. With the consistent pattern across all test cases, we illustrated 

Fig. A3. Area-based change detection results using three features groups (columns) calculated based on one and five pre-event scenes (rows) in Karangetang (W).  
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that using more than one pre-event SAR scene for calculating mNDI 
features helps to improve the change detection accuracies. Also, addi
tion of polarimetric decomposition features improves mapping of ashfall 
deposits (e.g., Ulawun). However, in test cases where no heavy ashfall 
was reported usage of only radar brightness data in vegetated sites was 
enough to reach the maximum accuracies. 

In the future, we consider including post-event cloud-free and cloud- 
shadow-free optical data to enhance the detection of changes in vege
tated regions. This implies that the decision on segment’s status would 
not be purely based on SAR data but also on optical, if available. Also, 
instead of defining a concrete buffer size for searching candidate seg
ments, a self-adjustable scheme should be implemented that is positively 
correlated with the topographic complexity of the area. With the 
increasing topographic complexity, the buffer size should increase (to 
avoid stopping the workflow due to the increased geometric distortions 
present in SAR) and vice versa if complexity decreases (to avoid inclu
sion of too many candidate segments that slows down the process). 

The change detection workflow is specifically tailored to the vol
canoes in Southeast Asia, where volcano flanks are typically densely 
vegetated. However, it can be adjusted to other volcanic regions where 
the separation between two or more land cover classes (e.g., snow, bare 
soil and vegetation) could be of interest. 
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Fig. A4. Area-based change detection results using three features groups (columns) calculated based on one and five pre-event scenes (rows) in Sinabung.  
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Fig. A5. Area-based change detection results using three features groups (columns) calculated based on one and five pre-event scenes (rows) in Ulawun.  

Fig. A6. Point-based change detection results using three features groups calculated using five pre-event scenes in Ulawun.  

A. Orynbaikyzy et al.                                                                                                                                                                                                                          



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103166

18

Appendix 

See Figs. A1-A7. 
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