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and Kai P. Birke

Precise lifetime predictions for lithium-ion cells are crucial for efficient battery
development and thus enable profitable electric vehicles and a sustainable
transformation towards zero-emission mobility. However, limitations remain
due to the complex degradation of lithium-ion cells, strongly influenced by cell
design as well as operating and storage conditions. To overcome them, a
machine learning framework is developed based on symbolic regression via
genetic programming. This evolutionary algorithm is capable of inferring
physically interpretable models from cell aging data without requiring domain
knowledge. This novel approach is compared against established approaches
in case studies, which represent common tasks of lifetime prediction based
on cycle and calendar aging data of 104 automotive lithium-ion pouch-cells.
On average, predictive accuracy for extrapolations over storage time and
energy throughput is increased by 38% and 13%, respectively. For predictions
over other stress factors, error reductions of up to 77% are achieved.

1. Introduction

The transformation of the automotive in-
dustry towards electric vehicles is inevitable
and needs to progress swiftly to reach the
goal of zero carbon emissions."'*l There-
fore, car manufacturers aim to reduce bat-
tery costs, while meeting regulatory require-
ments and customer needs such as bat-
tery lifetimes of about 300 000 km and
15 years under various operating and cli-
matic conditions.'*#! This optimization re-
quires battery lifetime prediction for typi-
cal customers based on experimental data.
Improvements in its predictive perfor-
mance considerably contribute to a sus-
tainable mass adoption of electric vehi-

Furthermore, the evolutionary generated aging models meet requirements
regarding applicability, generalizability, and interpretability. This highlights the
potential of evolutionary algorithms to enhance cell aging predictions as well

as insights.
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cles as they reduce risks and costs by in-
creasing design competence and develop-
ment efficiency.®*'?l This makes lifetime
predictions a crucial part of vehicle devel-
opment and distinguishes them from re-
maining useful life predictions, which fo-
cus on operational safety by regular on-
board estimations.!*!

Such a lifetime-oriented design of batteries and their operat-
ing strategies requires precise aging models. However, develop-
ing these models is extremely challenging since lithium-ion cell
degradation is very complex. In addition, the high testing effort
only allows for relatively small datasets.*'*'*] Cell capacity fade
characterized by the state of health (SoH) reduces the range of
electric vehicles. It results from calendar aging occurring at all
times and cycle aging due to cell operation.I'®! Therefore, life-
time prediction needs to extrapolate over time (t) and energy
throughput (ETP), respectively. Furthermore, extra- and interpo-
lation over stress factors of both aging types are required in order
to consider differences in user behavior. In summary, cell aging
models need to describe the possibly interdependent influence of
stress factors on capacity fade based on relatively small datasets
and predict long-term aging behavior even for untested storage
and operating conditions.

The challenge for these regression tasks is generalization—
the ability to predict the response to previously unseen inputs.
This robustness requires models to fit the trend in the data avail-
able for learning without describing the noise. While increasing
model complexity makes precise fits on learning data more likely,
it also heightens the risk of low generalizability by not describ-
ing the underlying trends. Consequently, lifetime prediction is a
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multi-objective optimization task, which has to consider model
accuracy and complexity.!'718]

Modeling approaches for lifetime prediction range from
physicochemical to empirical."?l Physicochemical models usu-
ally simulate single aging mechanisms.!'”) Despite expanding the
knowledge about cell aging, their long-term predictions are ad-
versely affected by an insufficient consideration of the interde-
pendency of aging mechanisms and an effortful parameteriza-
tion and computation.!”'?! In contrast, empirical models are data-
driven and do not require knowledge about aging mechanisms.
Common issues are low interpretability and generalizability.! 1]
While recently proposed machine learning approaches such as by
Severson et al.l'l reduce these disadvantages, the black box mod-
els resulting from common machine learning algorithms cannot
substantially enhance the understanding of cell aging.*"! There-
fore, semi-empirical models, a compromise between physico-
chemical and empirical approaches, are still considered state-of-
the-art for predicting the lifetime of lithium-ion cells. These mod-
els usually consist of a single function that is derived from the
main degradation mechanisms and fitted to aging data.®*] How-
ever, these pre-defined functions impair model generalizability
due to limited knowledge about degradation mechanisms.!*!:*!

To overcome the limitations resulting from the current under-
standing of cell aging, we introduce evolutionary algorithms into
lifetime prediction for lithium-ion cells. The use of symbolic re-
gression via genetic programming as core of a machine learn-
ing framework enables a new method of model development. It
combines the advantages of machine learning methods, by in-
ferring model structure and parameters from aging data without
requiring domain knowledge, and semi-empirical approaches, by
providing potentially interpretable mathematical functions, com-
parable to state-of-the-art cell aging models. This novel approach
reliably develops aging models with high predictive accuracy and
low complexity from randomly generated initial models by per-
forming multiple evolutionary processes.

We evaluate this method with case studies, which repre-
sent common tasks of lifetime prediction. In Section 2.1, we
present the data used for this investigation. It comprises two
typical aging experiments with automotive lithium-ion pouch-
cells (graphite/NMC): While calendar aging was examined with
54 high-energy cells, cycle aging was performed with 62 high-
power cells. This is followed by an introduction of established
modeling concepts in Section 2.2 and an overview of the prin-
ciples behind our method in Section 2.3. The subsequent com-
parison with state-of-the-art lifetime prediction models and ma-
chine learning approaches in Section 3 reveals significant im-
provements of predictive accuracy by our algorithm for both ex-
amined cell and aging types. Achieving competitive results in
each category with a unified modeling approach underlines the
versatility and robustness of our method.

Further evaluation of the evolutionary generated aging models
focuses on applicability, generalizability, and interpretability. Sec-
tion 4.1 proves their applicability, which enables a direct replace-
ment of currently used lifetime prediction models while provid-
ing the same functionality. The in-depth analysis of model ro-
bustness in Section 4.2 reveals limits of their generalizability for
datasets not designed for machine learning. However, these are
overcome by a hybrid modeling approach. Finally, Section 4.3
shows their potential regarding interpretability by comparing the
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structure of the evolutionary generated models with established
theories and by using our algorithm to improve already existing
models. This highlights the capability of evolutionary algorithms
to enhance not only predictions but also insights into complex
problems such as cell aging.

For the interested reader, Methods and the Supporting In-
formation contain more details regarding aging data, machine
learning framework, and each investigation.

2. Data and Modeling Approaches for Lifetime
Prediction

2.1. Cell Aging Data

Calendar and cycle aging are usually investigated and modeled
separately and subsequently combined via superposition.”*! To
allow for an exhaustive comparison of modeling approaches, data
is used from experiments with quality and scope representative
for vehicle development.

Calendar aging is influenced by the stress factors state of
charge (SoC) and temperature (T) which are generally agreed not
to be interdependent.|”’! Thus, calendar aging experiments usu-
ally vary each factor with the other held constant to enable indi-
vidual fits of each stress factor's complex dependencies by semi-
empirical models.”*?*l As described in Methods, Hahn et al.[®]
applied this approach in their extensive investigation of 54 high-
energy automotive lithium-ion pouch-cells (Figure S1, Support-
ing Information). In 280 days of effective aging, they obtained
well-resolved C/10 (cf. [25]) capacity data. The different storage
conditions resulted in a wide variety of SoH,. ranging from 96%
to 78% at the end of experiment (Figure S2, Supporting Infor-
mation). However, since the experiment was designed for semi-
empirical models, applying machine learning methods is ex-
pected to be challenging.

In contrast, cycle aging is a multivariate problem for which
the interdependency of several stress factors is not yet fully
understood.!?®! Temperature (T), minimum and maximum state
of charge (S0C,i,/ma), charging power (P,,) and the ratio be-
tween charge depleting and sustaining driving mode (EV,,,,)
are considered especially relevant.[>192227] Therefore, this work
utilizes a statistically designed experiment previously published
by Stadler et al.l?®: The stress factors were varied systematically
from a common center point (Figure S3, Supporting Informa-
tion). This design is particularly well suited for data-driven mod-
eling approaches. In total, 62 high-power automotive lithium-ion
pouch-cells were cycled for roughly 2 years with regular capacity
check-ups. About 1500 C/10 capacity values are available, char-
acterizing a broad range of aging conditions, which resulted in
SoH, between 97% and 90% at the end of experiment (Figure
S4, Supporting Information). For more details, see Methods.

2.2. Established Modeling Concepts for Lifetime Prediction

Our lifetime prediction framework aims to combine the advan-
tages of machine learning and semi-empirical models. A thor-
ough analysis of its predictive performance requires a compari-
son against the best, established approaches for lithium-ion cell
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lifetime prediction applicable to the available aging data. For this,
the main stress factors of calendar and cycle aging as well as cor-
responding state-of-the-art modeling concepts are discussed. In
Section 3, we benchmark our method against the best-in-class
models of this wide array of highly competitive approaches.

For calendar aging, degradation is mainly attributed to a grow-
ing solid electrolyte interface (SEI).[”*] The theories by Brous-
sely et al.l®!l and Ploehn et al.?2l predict the well-known v/t
relationship for passivating SEI growth and thus capacity loss
over time. The addition of an Arrhenius relationship for tem-
perature dependency and a similar exponential dependency on
SoC inspired by the Tafel-equation prevails in the literature.!%!"]
The resulting semi-empirical models describe aging as a func-
tion of time as well as distributions of temperatures and storage
SoCs.®l A wealth of research explores different timel 1912334l and
SoCl?%] dependencies. Recent publications!?** suggested an
anode potential dependency as implemented by Schimpe et al.|?*]
The most competitive modeling approaches are summarized in
Table S1, Supporting Information, and considered for a bench-
mark analysis.

In comparison, cycle aging models are usually more complex
as more factors are relevant. Aging is often cumulated over ETP
or cycle number."*! Temperature and depth of discharge (DoD)
are widely considered as main stress factors.!'>1922:37.38] The effect
of current levels and profiles is discussed more controversially
and seems to be cell dependent.!'**7*] Many try to apply empir-
ically determined relationships such as the Arrhenius tempera-
ture dependency, leading to a large diversity in investigated stress
factors and resulting cycle aging models.!'%1%%73 Since most of
these models are designed for a specific dataset and cannot be ap-
plied to other datasets, a simplistic power law SoH = p, - ETP™
with the fitting parameters p; is used as strong benchmark for
extrapolations over ETP. Another empirical approach, which in a
similar form was already shown to work adequately on the avail-
able data,!?®! additionally enables predictions over operating con-
ditions: Each cell’s aging trend is fitted with SoH. = p, - ETP*’
in combination with multivariate regression to parameterize an
operating condition dependent model of p, (T, SoC,,;,, SoC,,...
P, EV,,.)- Both approaches are chosen for further evaluation
(Table S2, Supporting Information).

Furthermore, a comprehensive selection of established ma-
chine learning approaches is investigated for comparison. Two
forms of linear regression (lasso and ridge) are considered, rep-
resenting the group of white box models, cf. refs. [40-42]. Ad-
ditionally, the ensemble learning techniques extreme gradient
boosting and random forest regression are inspected due to their
state-of-the-art results on structured data.***!l Gaussian process
regression is chosen since its known ability to generalize on
small datasets.|**! For completion, a multi-layer perceptron neu-
ral network and a simple and robust alternative approach for sym-
bolic regression, fast function extraction, are included.[*%47] De-
tails about applied software and hyperparameter optimization are
available in Table S3, Supporting Information.

2.3. Genetic Programming-Based Machine Learning Framework
In order to infer model structure and parameters without requir-

ing prior domain knowledge, this work implements multi-gene
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symbolic regression via genetic programming as core of a ma-
chine learning framework for lifetime prediction. In this section,
we aim to provide a high-level overview of the principles of our
framework and refer to Methods and the Supporting Information
for more detailed information.

Genetic programming is a subclass of evolutionary algorithms,
which are stochastic optimization algorithms inspired by Dar-
win's theory of biological evolution.”'**! Their common concept
is the generation-wise evolution of a population consisting of pos-
sible solutions to the optimization problem—the individuals.[*]
In multi-gene symbolic regression, these individuals are math-
ematical equations typically represented as one or more scaled
trees and a bias term./?l Each tree consists of numerical con-
stants and variables as external nodes and mathematical opera-
tions as internal nodes.**! This concept is exemplarily shown for
a typical semi-empirical calendar aging model in Figure 1.

For its symbolic regression core, this work uses a modified ver-
sion of the GPTIPS 2 framework by Searson et al.l?%l [t starts with
the random creation of an initial population and the subsequent
evaluation of each individual's fitness.[?'**>% In our application,
a fitness function assigns each of the various initial aging mod-
els a numerical value representing their generalizability, that is, a
combination of model accuracy and complexity. This is followed
by a generational loop of evolution, which consists of parent se-
lection, reproduction, fitness evaluation, and survivor selection.

Each iteration of this loop starts with the fitness-based se-
lection of individuals for reproduction. Stochastic choice deter-
mines if recombination, manipulation, or cloning is applied to
these parents in order to produce offspring. After evaluating the
offspring’s fitness, each iteration is concluded by selecting sur-
viving individuals based on their age and fitness to form the suc-
cessive generation. The variation by reproduction combined with
fitness-based selection drives this optimization process.[2148-50]
In the case of lifetime prediction models, this enables an evo-
lution from random combinations of constants, variables, and
mathematical operations towards a pool of generalizable aging
models. A model is considered generalizable if it is capable to cor-
rectly predict the aging behavior of the investigated cell and aging
type for conditions not utilized in the learning process. The gen-
erational loop is iterated until a termination criterion is satisfied
and the final generation’s best individuals are returned.?! 40 [n
our version, only reaching a specific number of generations ter-
minates the evolutionary process. This is one of many hyperpa-
rameters, which define the evolutionary process and require op-
timization by an additional algorithm to ensure an efficient and
reliable development of generalizable models. The evolutionary
process is summarized in Figure S5, Supporting Information.
For a detailed description of all its parts and the adjustments
implemented in the modified GPTIPS 2 framework, we refer to
Note S1.1, Supporting Information.

We embedded this symbolic regression core into a machine
learning framework as shown in Figure 1 and further explained
in Methods. This framework enables the automated inference
of reliable lifetime prediction models from typical aging data.
Its structure mitigates the risk of non-deterministic evolution-
ary processes and thereby provides a robust and efficient method
for an unbiased development of aging models. The framework
consists of "Data Preparation”, "Stage One", and "Stage Two".
Data Preparation serves as interface to cell aging databases by
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Figure 1. Framework structure for the evolutionary generation of lifetime prediction models: After Data Preparation as interface to cell aging data
bases, aging model structures and parameters are inferred without requiring prior domain knowledge by multi-gene symbolic regression via genetic
programming as evolutionary process. This core is embedded into a multi-stage structure ensuring predictive accuracy and reliability of the framework’s
output—the apex model. As exemnplified by a typical semi-empirical aging model, these models are represented as trees.

transforming raw aging data into a training and validation set
used for the learning process as well as a test set reserved for a-
posteriori performance evaluations. Stage One performs multi-
ple separate evolutionary runs starting from randomly generated
initial populations. After optimizing hyperparameters, which de-
fine the evolutionary algorithm’s behavior, Stage One creates a
pool of promising seeding models. Stage Two uses these mod-

Adv. Sci. 2022, 9, 2200630

els as starting point of its evolutionary processes to improve pre-
dictive accuracy and reliability. Stage Two concludes by selecting
one well generalizable model as final output, the apex model. To
further attenuate the risk resulting from non-deterministic algo-
rithms, each stage is evaluated in two independent experiments.
After each stage, a selection mechanism aims at choosing the
more suitable experiment.
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Figure 2. Results of the case studies: Typical tasks of lifetime prediction are investigated with a) extrapolation of calendar aging over storage time,
b) prediction of calendar aging over storage conditions, c) extrapolation of cycle aging over energy throughput, and d) prediction of cycle aging over
operating conditions. A detailed description of all test cases is available in Figures S6-512 and Tables 5S4 and S5, Supporting Information. The genetic
programming framework's predictive error regarding SoH¢ in percentage points (p.p.) is compared against state-of-the-art lifetime prediction and
machine learning approaches. For genetic programming, boxes represent the selection risk via each test case's ten highest ranked models—with a
central mark for median, bottom/top edges for 25" /75" percentiles, and whiskers for best/worst model.

3. Performance Comparison of Modeling
Approaches

The modeling approaches are evaluated in case studies to allow
for an exhaustive and unbiased examination of predictive perfor-
mance. Each case study consists of various test cases, which rep-
resent the main tasks of lifetime prediction for calendar and cycle
aging. For this, the aging data is prepared as explained in Meth-
ods and split into different training, validation, and test sets.
The calendar aging case study examines extrapolation over
storage time (Figure 2a) and predictions over storage conditions
(Figure 2b): While test cases Cal Int; and Cal Int, investigate in-
terpolation between storage conditions, Cal Ext; and Cal Extg, .
look into extrapolation over T and SoC, respectively. For extrap-
olation over time, the test set's share—and therefore the predic-
tive challenge—is increased stepwise from Cal Ext,, with 20%
to Cal Ext,, with 75%. Extrapolation over time and interpolation
between storage conditions are combined in Cal Ext,,/Int,. Sim-
ilarly, the cycle aging case study examines extrapolation over ETP
(Figure 2c) and predictions over operating conditions (Figure 2d):
Interpolation between operating conditions is investigated by Cyc
Int,,p,, Cyc Inty, and Cyc Int,, with focus on the influence of
DoD, T, and EV,_,,,, respectively. Additionally, Cyc Int. interpo-

Adyv. Sci. 2022, 9, 2200630

lates the experiment’s center point. Extrapolations over DoD and
T are investigated by Cyc Exty,, and Cyc Ext,, respectively. Fur-
thermore, Cyc Ext,,-Extg, analyze extrapolation over ETP with in-
creasing predictive challenge. The test case Cyc Ext,,/Int; com-
bines Cyc Ext,, and Cyc Int;. A detailed display of all test cases’
data partitions is available in Figures S6-S12, Supporting Infor-
mation. The resulting predictive tasks and shares of datasets are
summarized in Tables S4 and S5, Supporting Information.

For performance analysis, all modeling approaches are evalu-
ated by their root mean square error RMSE,_, on the test data of
each test case. Since test data is not used for learning and thus
a previously unseen input, the RMSE,,, represents a model’s
ability to predict aging for a specific interpolation or extrapo-
lation task. A definition of this metric is available in Methods.
In Figure 2, the predictive errors of our framework are visual-
ized by crosses for apex models and boxes representing the se-
lection risk. Note the logarithmic scale, which allows for a de-
tailed evaluation of predictions with high accuracy while also in-
cluding results of far less precise models. For most test cases,
the combination of multi-stage algorithm structure and elab-
orate selection mechanisms ensures an almost negligible se-
lection risk and thus high reliability. Exceptions are extreme
extrapolations over storage time (Cal Ext,; with a test data share
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Figure 3. Representation of stress factors: For test case Cal Extgg, the experimental results are compared with the predictions of the evolutionary gen-
erated apex model and the benchmark semi-empirical model for the available learning data (0-140 days of storage) and test data (141-180 days of
storage). The influence of a) temperature and b) SoC is investigated for 50C = 85% and T = 50 °C, respectively. The evolutionary generated model
achieves a significantly more accurate description of the physical correlations than the state-of-the-art.

of 75%, Figure 2a) and cycle aging stress factors (Cyc Ext,,,/Cyc
Ext;, Figure 2d) due to a lack of information in the learning data.
The results of the framework are compared with the state-of-the-
art, which is determined by a benchmark analysis based on the
findings of Section 2.2 and described in Note S2, Supporting In-
formation. According to this analysis, the calendar aging model
by Belt et al.*’l and the cycle aging model inspired by Stadler
et al.I?®] are selected as best applicable (semi-Jempirical models.
Extreme gradient boosting (see ref. [44]) represents established
machine learning approaches. Detailed results are available in
Figures $13-S15 and Tables $§1-S3, Supporting Information.

For a compact quantification of predictive performance, each
test case is evaluated by comparing the predictive errors RMSE,,
of apex model and benchmark approaches (see Figure 2) result-
ing in a relative error. For similar test cases, an average of these
relative errors is calculated as summarized in Tables S6 and S7,
Supporting Information.

The comparison against (semi-Jempirical benchmark models
reveals average improvements of 38% and 13% for extrapolation
over storage time (Figure 2a) and ETP (Figure 2c), respectively. In
addition, moderate interpolation (Cal Int,) and combined predic-
tion (Cal Ext,,/Int,) of calendar aging (Figure 2b) are improved
by 58% and 30%, respectively. These advancements result from a
significantly better consideration of stress factors as exemplarily
shown for Cal Ext., in Figure 3. The apex model of this test case
describes the dependence of SoH. on temperature and SoC—
the main stress factors of calendar aging—drastically more ac-
curate on learning as well as test data than the semi-empirical
benchmark model. This improved representation of stress fac-
tors is further highlighted by the test cases investigating the com-
plex prediction over cycle aging conditions (Figure 2d): Our algo-
rithm achieves RMSE reductions of 56% for interpolation (Cyc
Inty,p/Cyc Int;/Cyc Intg,/Cyc Int.), of 73% for extrapolation
(Cyc Extp,p/Cyc Exty), and of 52% for combined aging prediction
(Cyc Ext,,/Int;). However, for extrapolation over storage condi-
tions (Cal Ext/Cal Extg,) and extreme interpolation (Cal Int,)
(Figure 2b), the RMSE is increased by 38% and 66%, respec-
tively. Most likely, this is caused by insufficient information in
the learning data and can potentially be avoided without affecting
testing effort by a design of experiment optimized for machine
learning.

Adv. Sci. 2022, 9, 2200630

The improvements by our algorithm are even more consistent
in comparison with the benchmark machine learning approach.
Our framework reduces the RMSE for extrapolations over stor-
age time (Figure 2a) and ETP (Figure 2c) by 38% and 57%, re-
spectively. In addition, it achieves much higher reliability for pre-
dictions over stress factors: The average predictive accuracy for
interpolation and extrapolation over aging conditions as well as
combined prediction is improved by 18%, 35%, and 29% for cal-
endar aging (Figure 2b) and by 129, 48%, and 44% for cycle aging
(Figure 2d).

The performance improvements by our approach enable not
only predictions that are more accurate but also a drastically
reduced testing effort. For example, the genetic programming
framework still achieves 19% more precise extrapolations over
storage time than the state-of-the-art while using 140 days instead
of 280 days for learning. Additionally, more sophisticated cell op-
erating strategies become possible by an improved prediction of
the influence of different operating and storage conditions on cell

aging.

4, Evaluation of Evolutionary Generated Aging
Models

To realize these advantages in vehicle development, the apex
models need to meet requirements regarding applicability and
generalizability. Furthermore, they have to show the potential of
interpretability in order to enable new insights into cell aging.
Therefore, the following evaluation of evolutionary generated ag-
ing models focuses on these three aspects.

4.1. Model Applicability

In vehicle development, load collectives of operational profiles
are frequently used for lifetime prediction.l*!) Since this removes
the chronology from aging data, path independency is usually
required for lifetime prediction models to be applicable. While
path independency for calendar aging was proven experimentally
regarding T and SoC,)*” the literature indicates current related
path dependencies for cycle aging.**]

Inspired by Su et al.l*?l, we examine path independency by
generating five random chronological variations of a hypothetical
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Figure 5. Generalizability of calendar aging models: a) Degradation is simulated for hypothetical data at lower temperatures than the available learning
data (0-140 days of storage) and test data (141180 days of storage). b) For test case Cal Extqp, the experimental results are compared with the predictions
of the evolutionary generated apex model, the benchmark semi-empirical model, and a hybrid of both.

calendar aging load collective for each influence factor. While
varying one factor, the others remain constant. A repetition of
these load profiles ensures equal collective loads at 0%, 50%, and
100% testing progress. Degradation is computed by switching be-
tween aging curves for constant conditions (Figure $16, Support-
ing Information).

As exemplarily shown for the temperature dependency of the
apex model of Cal Ext,, in Figure 4, all aging trends converge to
the same SoH_. at points of equal load. This commutative behav-
ior emerges for all stress factors and investigated test cases. Thus,
the models generated by our framework can be considered path
independent and utilized for analyzing load collectives.

4.2. Model Generalizability

The results on the available data indicate that our algorithm can
flexibly develop well-generalizable models for various use cases:
Each test case’s apex model represents general aging trends with-
out describing noise (Figures S17 and S18, Supporting Informa-
tion). For a more detailed analysis of generalizability, degradation

Adyv. Sci. 2022, 9, 2200630

is simulated for hypothetical data beyond the available data (Fig-
ure 5a) and compared with commonly accepted physicochemical
relationships, such as the Arrhenius temperature dependency.!®l
As shown in Figure 5b, the apex model for Cal Exty, accurately
fits the available learning and test data. However, the opposing
trend of the Arrhenius dependency-based semi-empirical model
for temperatures below 40 °C (hypothetical data) proves that ex-
trapolation over aging conditions far beyond learned correlations
can be challenging.

To ensure meaningful predictions for all aging conditions,
we propose a hybridization of evolutionary generated and semi-
empirical models by utilizing our models to expand the learning
data for parameterizing semi-empirical models: The apex model
of the investigated test case predicts aging for multiple artifi-
cial grids. The resulting data is used to train the semi-empirical
benchmark model (Figure $19, Supporting Information). This
enables reasonable predictions for all conditions (Figure 5b) and
thus ensures a generalizable output by our framework even in
cases of insufficient information for the learning process.

The results for the test cases Cal Ext;, Cal Extg ., and Cal
Int, in Figure 6b support this observation. While the original apex
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aging over storage time and b) prediction of calendar aging over storage conditions. A detailed description of all test cases is available in Figures S6-58

and Table 54, Supporting Information.

models provide a lower predictive accuracy than the semi-
empirical benchmark model for these test cases (see also Fig-
ure 2b), the hybrid models improve upon both approaches. For
the remaining test cases in Figure 6a,b, the hybrid models are not
as precise as the original apex models but still significantly better
than the state-of-the-art. In summary, the hybrid approach does
not fully exploit our algorithms’ potential but drastically increases
its robustness.

The presented hybridization approach successfully compen-
sates a lack of information in the learning data by considering
domain knowledge after finishing the evolutionary model gener-
ation. Integrating domain knowledge directly into the evolution-
ary process could achieve the same effect while compromising
less on maximum predictive performance. Furthermore, for cycle
aging, our apex models extrapolate significantly better over aging
conditions than for calendar aging (see Figure 2b,d). Most likely,
this results from a more suitable design of experiment. There-
fore, further enhancements in generalizability are expected from
experiments optimized for machine learning.

4.3. Model Interpretability

Our algorithm shows enormous potential regarding physical in-
terpretation: The calendar aging apex models prevalently con-
sider v/t dependencies as shown in Note $3.1, Supporting Infor-
mation. This conforms with the theories of Broussely et al.*'l and
Ploehn et al.l*?l despite derivation solely from data. These apex
models result from independent evolutionary processes, which
start with randomly generated initial models; nonetheless they
all include the same commonly accepted theoretical dependency.
This highlights the potential of our method to improve the un-
derstanding of cell aging by uncovering currently unknown rela-
tions. However, it has to be noted that so far most evolutionary
generated models are rather complex and partially feature unin-
terpretable correlations. This can likely be overcome by consid-
ering domain knowledge in the evolutionary process. Promising
approaches are constraints, seeding of semi-empirical models, or

Adv. Sci. 2022, 9, 2200630

the definition of physically motivated building blocks for internal
nodes.

First investigations with seeding semi-empirical models in ini-
tial populations of Stage One with proportions ranging from 20%
to 100% for calendar aging test cases are explained in Note §3.2,
Supporting Information. They revealed a similar predictive accu-
racy compared to random initialization but also an increased se-
lection risk (Figure $20, Supporting Information). This can result
from confining the search space too rapidly to local optima due to
seeding. However, this investigation's apex models resemble the
seeded models and thus highlight the opportunity of enhancing
existent theories with our algorithm. Consequently, future work
towards a better integration of domain knowledge could facili-
tate new insights into the influence of various aging conditions
on cell aging.

5. Conclusion

With our framework, we introduce symbolic regression via
genetic programming as a promising approach for lifetime
prediction of lithium-ion cells. Our framework applies evolu-
tionary concepts to generate aging models from randomness.
For this, it uses conventional calendar and cycle aging data of au-
tomotive lithium-ion pouch-cells (graphite/NMC) for conditions
representing typical customer behavior. Case studies, which in-
vestigate relevant tasks of lifetime prediction, reveal significantly
enhanced predictive accuracy compared to state-of-the-art semi-
empirical models and common machine learning approaches.
While the investigated datasets are large for cell aging, they are
unfavorable for machine learning. Still, compared to the best ap-
plicable semi-empirical models predictive accuracy is increased
by 38% and 13% on average for extrapolations over storage time
and ETP, respectively. For predictions over other stress factors,
improvements of up to 77% are achieved. This is possible due
to a better representation of the interdependent influence of
various stress factors. As our data-driven modeling concept
also meets requirements regarding applicability and generaliz-
ability, it enables more efficient battery development and more
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Table 1. Properties of the investigated automotive lithium-ion pouch-cells.

Properties Calendar aging Cycle aging experiment
experiment

Amount tested 54 cells 60 cells

Type High energy High power

Megative electrode Graphite Graphite

Positive electrode Li(Niy;3Mn;3Coy3)O,  Blend of

Li{Nig gMng ;Cop 5)O; and
Li(Nij3Mny 3Coy5) 0,

Mominal capacity Cy, [Ah]  50.8 43

Minimum cell voltage 30 25
Veetimin [V]

Maximum cell voltage 4.2 4.2
Veetimax [V]

sophisticated operating strategies. Furthermore, the inter-
pretability of the evolutionary generated models allows our novel
approach to enhance the understanding of cell aging. In general,
this work highlights the potential of data-driven modeling not
only for aging of lithium-ion cells but also for other complex
problems currently limited by insufficient domain knowledge.

6. Methods
6.1. Cell Aging Experiments

The aging data used in this work was published in detail by
Hahn et al.”® for calendar aging and Stadler et al.l”®! for cycle
aging. They investigated the automotive lithium-ion pouch-cells
described in Table 1. Both experiments were performed in cli-
mate chambers monitored to be within +1 K of the target tem-
peratures.

During both experiments, periodic checkups were performed
at 25 °C beginning with three cycles of constant-current
constant-voltage (CC-CV) charge to V., .., (1C constant current,
C/20 cut-off current) and CC discharge to V., (1C constant
current) with the goal of equilibrating the cells. Following an-
other CC-CV charge to V... and a pause of 1 h, the cells were
discharged with C/10 to V. .,i, to determine the C/10 capacity
degradation used in this work. This measure was shown to be
largely unaffected by overhang effects,I**l which often plague ag-
ing experiments.|??]

As displayed in Figure S1, Supporting Information, the accel-
erated calendar aging experiment was designed to examine the
influence of storage temperature and SoC within 280 days of ef-
fective aging: The temperature was varied between 40 and 60 °C
at SoC = 85% with four cells per condition. Furthermore, two
cells each were tested for SoCs ranging from 0% to 100% at 50 °C.
Two additional cells were aged at SoC = 55% and 55 °C.

The cells were mounted into cell holders at their pouch seams
allowing for unconstrained cell expansion. While the cells were
aged in open circuit condition, they were recharged daily by CC-
CV charging to their storage voltage with 0.06C constant current
and 0.004C cut-off current. The storage voltage was always set
before exposing the cells to the storage temperature.
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Table 2. Design of experiment matrix for cycle cell aging: The stress factors
temperature (T), minimum and maximum state of charge (S0C_/ma)
charging power (P ), and ratio between charge depleting and sustain-
ing driving mode (EV,,;,) were statistically varied between five evenly dis-
tributed levels. Each operating condition was investigated with multiple
cells.

Factor Minimum Low Center High Maximum
T*q 1 21 28 41 50
Py [W] 8 72 136 200 264
50C in [%] 21 25 29 33 37
S0C 4 [96] 81 85 90 95 100
EV raiio [%6] 20 40 60 80 100

The cycle aging experiment was planned according to the
statistical concept of central composite design using the soft-
ware Minitab. Five especially relevant stress factors were selected
based on literature review and expert knowledge. Starting from
a common center point, these factors were varied between five
evenly distributed levels (Table 2 and Figure S3, Supporting In-
formation). While the center point was investigated with eight
cells, the remaining 26 variations of operating conditions were
examined with two cells each.

All cells were tested in a setup that maintains a constant force
of 1.1 kN. Between check-ups, the cells were continuously cycled
for 14 days under constant chamber temperature with a charge
depleting and a charge sustaining profile to mimic real life us-
age of plug-in hybrid electric vehicles. Every cycle consisted of
charging with a constant-power constant-voltage (CP-CV) proce-
dure with P, to SoC,,, and discharging with the charge deplet-
ing profile to SoC, ;. Afterwards, the charge sustaining profile
was repeated until the specified EV,,,, (ratio of ETP in charge
depleting mode vs entire ETP of this cycle) was met.

6.2. Machine Learning Framework

The machine learning framework consists of the blocks Data
Preparation, Stage One, and Stage Two. Furthermore, selection
mechanisms are required to identify the best models out of a vari-
ety of potential solutions. This structure is summarized in Figure
1 and subsequently explained in detail.

6.2.1. Data Preparation

Data Preparation serves as interface to cell aging databases. It
transforms raw aging data into the specified format before par-
titioning it into training, validation, and test set. For this work’s
data, prioritization of aging conditions investigated with differ-
ent amounts of cells was avoided by averaging information of se-
lected cells as shown in Figures S2 and S4, Supporting Informa-
tion. Furthermore, each aging condition’s information was lin-
early interpolated to ensure equal representation independent of
overall storage time or ETP. The selected sample rate for cycle ag-
ing (50 data points equally distributed over each test’s progress)
was significantly lower than for calendar aging (250 data points)
since fewer measurements per test series were available and ex-
cessive interpolation was expected to be ineffective. The data
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was separated into predictor and response variables. Both inves-
tigated case studies utilize the SoH. as response variable. As
shown by Lewerenz et al.**], anode overhang can effect an initial
rise in capacity depending on the storage SoC prior and during
calendar cell aging tests. This effect is reversible and thus detri-
mental to modeling cell aging.*! To decrease its influence, SoH.
is defined as ratio of measured capacity Cy; to maximum mea-
sured capacity Cyy ..

Cu

CM,m:u’.

SoH. = (1)

For the calendar aging case study, storage time, T, and SoC rep-
resented as cell voltage (V) (Figure S$21, Supporting Informa-
tion) are used as predictor variables. The cycle aging case study’s
predictor variables are ETP, T, SoC,,,,, DoD = SoC, ., — SoC,_,.,
P.,, EV .., and time since superposed calendar aging effects are

not subtracted from total aging.

6.2.2. Stage One

The objectives of Stage One are to optimize hyperparameters for
model creation and to generate a pool of promising models for
seeding in Stage Two.

Thus, Stage One begins with optimizing 21 hyperparameters,
which are considered as relevant for the performance and com-
putational effort of the evolutionary process. These hyperparam-
eters define general settings such as the population size and the
number of generations, specify selection and reproduction mech-
anisms of the generational loop, and set boundaries for the struc-
ture of the models. For every hyperparameter, a range of allowed
values is defined in Table S8, Supporting Information.

Since hyperparameters are interdependent and cannot be di-
rectly inferred from the available data, an additional algorithm is
necessary for their optimization.I"®! In order to achieve an effi-
cient and effective optimization of the relatively large amount of
relevant hyperparameters, this framework applies Bayesian opti-
mization via the bayesopt MATLAB function. As further explained
in Note S1.2, Supporting Information, this algorithm iteratively
varies the hyperparameters until a stop criterion is reached. Dur-
ing each iteration, one evolutionary run is performed on training
data and evaluated on validation data. The resulting optimized
settings are used for model creation.

The model creation process comprises 50 evolutionary runs
to account for probabilistic variance in performance. These runs
utilize training and validation data for learning (learning set) to
compensate for the relatively small datasets usually available for
lifetime prediction. This is possible since a separate validation set
is no longer needed after completing hyperparameter optimiza-
tion. The test set remains reserved for a-posteriori performance
evaluations. Each evolutionary run ends after the specified num-
ber of generations with the amount of models defined by the pop-
ulation size. For each of the 50 runs, three champion models are
chosen. Stage One concludes by selecting 25 seeding models out
of the resulting pool of 150 champion models. This selection pro-
cess has a major impact on Stage Two and thus on the output of
the framework.
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6.2.3. Stage Two

Stage Two builds on the results of the previous stage to further
improve predictive accuracy and, most importantly, the reliabil-
ity of the framework’s output. For this, the processes of model
creation and selection are repeated with the same learning set as
used in Stage One. The differences are that the initial population
of each evolution consists of the previously generated 25 seeding
models instead of randomly generated ones and that different
selection algorithms are used to focus on selecting one well gen-
eralizable model as final output, the apex model.

6.2.4. Selection Mechanisms

At multiple stages of the algorithm, mechanisms must select suit-
able models from a large pool of potential solutions. In particular,
these are "Champion Selection" for each evolutionary process,
"Seeding/Apex Model Selection" at the end of each experiment
of Stage One/Two, and "Experiment Selection" in order to final-
ize each stage. The main challenge is to avoid overfitting mod-
els even though model evaluation and selection are solely based
on learning data since test data is reserved for a-posteriori per-
formance evaluations. Reliability and robustness of the selection
process are key besides model accuracy and complexity. The ac-
curacy of a model j is quantified by the root mean square error

(2)

with the predicted (},) and actual values (y,) of the response vari-
able y for a dataset with n values. The RMSE's unit depends on
the investigated predictor variable. Predictions of SoH in per-
cent (%) are evaluated by RMSE in percentage points (p.p.). For
the evaluation of model complexity, expressional complexity is
used. The expressional complexity of mathematical equations
represented as tree structures is the sum of nodes of all possi-
ble subtrees.**]

Champion Selection completes each evolutionary run of the
model creation processes of Stage One and Stage Two by select-
ing three champion models. For this, each run’s final popula-
tion is filtered regarding basic requirements of robustness—as
described in Note S1.3, Supporting Information—and ranked ac-
cording to the multi-objective fitness function

, i .
RMS Eyarning.i Comp;

Fitness, ; = 1 —Jo.zs ; (1 = W) +0.75- (1 ~ ' )
* z ‘.‘a"ﬂl"g.rnax max

(3)

with each model’s error RMSE,.,,.;,, on learning data and expres-
sional complexity Comp set in relative terms to the corresponding
maximum values in the population. To favor rather generalizable
models, the complexity term is given more weight than the error
term. Since each stage consists of 50 evolutionary runs, this pro-
cess results in a pool of 150 champion models per stage.

Out of this pool of models, Seeding Model Selection iden-
tifies 25 seeding models in Stage One and Apex Model Selec-
tion chooses one apex model in Stage Two. For both selection
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processes, only the best 40% of champion models regarding
RMSE,, iy, are considered. Even though the selection processes
are optimized for each stage’s goals, their structure is similar.
Both assume that the majority of evolutionary runs concludes
with reasonable champion models and that overfitting champion
models are outliers. They enhance robustness by reliably elimi-
nating these negative outliers with the drawback of potentially
eliminating positive outliers as well. For this, the crowd error

4)

with the prediction median y; of all evaluated champion mod-
els is introduced as additional reference. While RMSE,_, 4 relies
on test set input data for Stage One, it puts increased focus on
generalizability for Stage Two by analyzing a more extensive arti-
ficial grid of various aging conditions. As described in Note §1.4,
Supporting Information, the crowd error is relevant for adaptive
thresholds, which models need to pass for further evaluation (see
also Figures $22-S24, Supporting Information). In Stage One,
the 25 best remaining models are selected for seeding according
to their weighted relative error

RMS Elearning.i
RMS‘Ele;lrning,max = RMSE]E:lrning,miu

WRE, = %

1 RMSE

+1 crowd,j
3 RMSE,oyg e — RMSE,

‘crowd,min

®)

In contrast, Stage Two requires the selection of a single apex
model. For this, the remaining models are evaluated by the multi-
objective fitness function

Fi 05 RMSElnarning.i ’ 05 Compj
1HNEss, . = o Al ey Lo
4 RMSE]carning_.max 5 ( Compia )

2

(6)

which tolerates high errors and complexities less than Fitness,
(Figure $25, Supporting Information).

To attenuate the risk resulting from non-deterministic algo-
rithms, Stage One and Stage Two are evaluated in two inde-
pendent experiments each. For both stages, Experiment Selec-
tion compares the RMSE,,,;,,, of each experiment’s best-ranked
model according to Fitness, and selects the experiment with the
smaller error. In case of equal errors, lower model complexity is
preferred.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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