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Abstract— Several template models have been developed to
facilitate the analysis of limit-cycles for quadrupedal locomo-
tion. The parameters in the model are usually fixed; however,
biology shows that animals change their leg stiffness according
to the locomotion velocity, and this adaptability invariably
affects the stability of the gait. This paper provides an analysis
of the influence of this variable leg stiffness on the stability of
different quadrupedal gaits. The analysis exploits a simplified
quadrupedal model with compliant legs and shoulder joints
represented as torsional springs. This model can reproduce
the most common quadrupedal gaits observed in nature. The
stability of such emerging gaits is then checked. Afterward, an
optimization process is used to search for the system parameters
that guarantee maximum gait stability. Our study shows that
using the highest feasible leg swing frequency and adopting a leg
stiffness that increases with the speed of locomotion noticeably
improves the gait stability over a wide range of horizontal
velocities while reducing the oscillations of the trunk. This
insight can be applied in the design of novel elastic quadrupedal
robots, where variable stiffness actuators could be employed to
improve the overall locomotion behavior.

I. INTRODUCTION

The interest in legged robots has rapidly increased in the
past decades. They are an interesting solution for executing
dull, dirty or dangerous tasks while operating in rough ter-
rains. The development of such robots is very demanding in
terms of structural design and control complexity, so natural
solutions are often used as a source of inspiration. Animals
display different walking or running behaviors depending on
the velocity of locomotion [1]. The analysis of such gait
selection process according to the natural morphological con-
figurations is still an ongoing research area [2], [3]. Animals
use compliant elements, such as tendons and muscles, to
store and release energy during the stride, thus increasing
locomotion efficiency [4]. This finding inspired a new gen-
eration of robots implementing compliant elements acting
in parallel to the leg actuators, including for instance the
DLR quadrupedal robot Bert (Fig. 1), ANYmal, developed
by ANYbotics [5] and StarlETH, developed by ETH [6].

Different template models implementing compliant legs
have been developed, attempting to explain and reproduce the
gaits observed in nature. The SLIP (Spring Linear Inverted
Pendulum) model, characterized by a point mass attached
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Fig. 1: Quadrupedal robot Bert, developed at DLR.

to a single massless compliant leg, reproduces running and
hopping gaits [7]. Introducing a second massless leg allows
to characterize also the walking gaits [8]. However, the
described models do not include the influence of the leg
swing, but instead, consider an instantaneous return of the leg
to a predefined angle of attack. To characterize the passive
swing of the legs in bipedal gait, a torsional hip stiffness
and a foot mass for each leg were introduced [9]. This model
was extended to the quadrupedal case by introducing another
pair of legs and a rigid trunk [10]. All of the above models
can reproduce the most common bipedal and quadrupedal
gaits observed in nature, without needing an active control
mechanism. Following these ideas, the implementation of
robots with inherent passive locomotion gaits increases en-
ergy efficiency and reduces the effort required for the gait
control [2], [11]. Adopting gaits with higher stability further
simplifies the control problem.

All of the above models utilize a fixed set of parameters
for analyzing the locomotion behaviors. However, empirical
studies in animals have shown that leg stiffness is not fixed,
but it changes with the horizontal velocity, suggesting that
the introduction of variable stiffness could be fundamental
to improve the stability in a wide range of velocities [12].
Furthermore, technology nowadays allows manufacturing of
compliant elements with variable stiffness, which have been
adopted to increase the locomotion efficiency in robots with
different leg configurations, e.g. in a hopping robot using a
segmented leg [13], or in a hexapod robot with C-shaped
legs [14]. However, the gait optimization in those works has
been mostly based on empirical work on the robots.

This paper provides a numerical analysis of the influence
of variable leg elasticity on the stability of quadrupedal gaits.
A simplified quadrupedal model with compliant legs and
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fixed stiffness, initially introduced in [15], is used to obtain
a wide range of emerging gaits. An optimization procedure
is then employed in order to characterize the optimum
parameters for maximizing the stability of the gaits for a
similar model, but now endowed with variable elasticity. The
stability for the models with fixed and variable stiffness is
compared, verifying that the variable stiffness can effectively
improve the stability for quadrupedal gaits.

II. QUADRUPED PASSIVE DYNAMICAL MODEL
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Fig. 2: Quadrupedal model with compliant legs and hips.

To analyze the variable leg stiffness, we start with the
model with compliant legs and hips introduced in [15]. This
planar model, shown in Fig. 2, has a rigid trunk of mass m,
length lb, and rotational inertia Ib. The legs are massless,
with resting length l0, stiffness k, and foot mass mf . Each
leg i is connected to the corresponding hip by a torsional
spring of stiffness ksw. This spring is unloaded with leg
angle αi = 0 when the leg is perpendicular to the trunk.
Here, i ∈ [FR,FL,HR,HL], with FR being the front
right leg, FL the front left leg, HR the hind right leg,
and HL the hind left leg. The robot state is described by
q = [x, y, ψ, αFR, αFL, αHR, αHL] and their corresponding
derivatives q̇, where x and y are the horizontal and vertical
coordinates of the trunk center of mass (CoM), and ψ is
the trunk rotation angle. The hip coordinates are given by
xi,hip and yi,hip. The passive model becomes conservative
by imposing mf −→ 0 and ksw −→ 0, thus avoiding energy
losses from leg impact with the ground. Following [9], to
consider the passive swing for legs not in contact with the
ground, a leg swing frequency is introduced as

ω =

√
ksw
mf l20

, (1)

where ω is a finite constant parameter. Each leg is sequen-
tially changing between two discrete phases:

• In stance phase the leg is in contact with the ground,
can be compressed, and exerts force on the trunk and on
the ground. An ideal foot-ground contact is introduced.
Therefore, the horizontal and vertical position of the
foot are constant during this phase.

• In swing phase the leg is not in contact with the
ground, is uncompressed, and moves due to the passive
dynamics ruled by the trunk motion and by the swing

frequency ω. Swinging legs do not influence the motion
of the trunk, as the leg is massless and the foot mass is
infinitesimal.

The switch from one discrete phase into the other is triggered
by event functions, which monitor two events:

• At touchdown the leg contacts the ground. The swing
phase ends and the stance phase begins when etd =
l0 cos(αi)− y crosses zero.

• At liftoff the leg loses contact with the ground and
switches from stance to swing phase when the event
function elo =

√
(xi,hip − si)2 + y2i,hip − l0 crosses

zero, i.e. when the leg is completely unloaded. Here, si
is the horizontal coordinate of the foot at touchdown..

The hybrid dynamics of the model is characterized by motion
phases with different contact patterns. When an event is
detected for any leg, the leg contact state changes, a tran-
sition between two motion phases happens, and the system
dynamical equations are modified to account for the influence
of the new contact. All system variables are continuous
between two consecutive motion phases, with the possible
exception of the leg angular velocity at touchdown, which
can be discontinuous if the velocity in the swing phase is
not equivalent to the one imposed by the stance phase.

The dynamical equations of the model depend on the
force/torque acting at the CoM. If the ith leg is in swing
phase, it exerts no forces on the trunk. In stance phase,
however, the horizontal and vertical force components Fx,i

and Fy,i, are given by

Fx,i = −k(li − l0) sin(αi)

Fy,i = k(li − l0) cos(αi) (2)

with li the leg length. The forces from the front and hind legs
act on the trunk via the hip joints. The dynamic equations
of the trunk are then

mẍ = Fx,FR + Fx,FL + Fx,HR + Fx,HL

mÿ = Fy,FR + Fy,FL + Fy,HR + Fy,HL

Ibψ̈ = 0.5 lb (mÿ cos(ψ)−mẍ sin(ψ)) (3)

The swing leg dynamics is described by

α̈i = − ẍi,hip cos(αi)

l0
− g + ÿi,hip sin(αi)

l0
− kswαi

mf l0
, (4)

with g the gravitational acceleration. Finally, the angles of
the legs in contact are

αi = atan
(
si − xi,hip
yi,hip

)
. (5)

III. METHODS TO ANALYZE EMERGING GAITS

The conservative model introduced in the previous sec-
tion displays multiple inherent passive gaits. These gaits
are periodic motions, which are defined by their footstep
sequence (FSS). As an example, Fig. 3 shows the sequence
of motions for the first half of a pace stride, and Fig. 4
displays the corresponding FSS. For each leg, the ground
contact during one stride is visualized as a percentage of the



Fig. 3: Visualization of the pace forward gait.

Fig. 4: Footstep sequence of the pace forward gait.

total stride time. This section introduces the method to find
such emergent passive gaits and to assess their stability.

A. Finding Periodic Solutions

The search of passive periodic motions emerging from
the described model is reformulated as a boundary value
problem (BVP), as suggested by [16]. The state variables qj
and their derivatives q̇j at the start of each motion phase j
(see section II) and the phase duration Tj are collected in the
expanded state vector Zj = [qj , q̇j , Tj ], thus the full motion
is specified by Z = [Z0, Z1, ..., Zm] where m is the number
of phases of the stride. For each phase, adimensional time
τj ∈ [0, 1] is introduced as

τj =
tj − tj,start

tj,end − tj,start
=
tj − tj,start

Tj
, (6)

where tj is the time variable of the jth phase and tj,start,
tj,end indicate the corresponding initial and final time. In
dimensionless time, τ = 0 and τ = 1 correspond to the
start and end of each phase, respectively. The state space
formulation Ż = f(Z(τ)) contains the dynamical equation
of each phase with Ṫj = 0. Suitable boundary conditions
G are introduced to impose (i) continuity of the motion
(state space variables are equal at the transition between
phases, i.e., Zj+1(0) = Zj(1), except for the time duration
of the phase), (ii) verification of the transition equations
(Section II), and (iii) the periodicity of the overall motion
(i.e., Z1(0) = Zm(1)). The complete BVP is given by

Ż = f(Z(τ))
G(Z(0),Z(1)) = 0

τ ∈ [0, 1]

. (7)

A shooting method is utilized to solve the BVP. This
method creates a guess for the initial value of the expanded
state vector Z(0), integrates the state space formulation, and
checks if the boundary conditions are satisfied. Solutions

of the BVP correspond to periodic gaits emerging from the
quadrupedal model.

B. Discovering Solution Branches

Periodic solutions of conservative systems are not isolated.
This means that a neighbouring periodic solution, Zn+1, can
be produced with an infinitesimal perturbation of the original
solution Zn. We use a continuation algorithm to formulate a
guess for a neighboring solution Zg

n+1 as

Zg
n+1 = Zn + d

Zn − Zn−1

|Zn − Zn−1|
, (8)

where d is the step length between the two periodic solutions.
The BVP solution of this guess is Zn+1. Repetition of the
continuation algorithm discovers the continuous neighbor-
hood of periodic motions of the conservative system, which
is called a solution branch. All solutions of a branch have
the same FSS, but have different system energies. During
the branch discovery, the step length d is adapted to the
curvature of the branch, increasing or decreasing it for low
or high curvature in the branches, respectively.

C. Searching for Bifurcations

The eigenvalues of the Jacobian matrix J of the con-
straints G are used to discover solutions that belong to
multiple solution branches. The Jacobian matrix J can be
calculated as

J =
dG(Z0,Z1)

dZ(0)
(9)

Applying the chain rule leads to

Jk =
∂G

∂Zk(0)
+

∂G
∂Zk(1)

· ∂Zk(1)

∂Zk(0)
(10)

where k indicates the considered element on the Z state
variable vector and the corresponding column of J. The first
factor ∂G

∂Zk(0)
and the second one ∂G

∂Zk(1)
can be computed

knowing the formulation of G. To calculate the third factor,
we introduce the Λ matrix, defined as

ΛΛΛi(τ) =
∂Zi(τ)

∂(Zi(0))
. (11)

Differentiating with respect to the dimensionless time gives

Λ̇̇Λ̇Λi(τ) =
∂Żi(τ)

∂Zi(0)
. (12)

Note from (7) that the term Żi(τ) is equivalent to fi(Zi(τ)).
Introducing it in (12) and applying the chain rule leads to:

Λ̇̇Λ̇Λi(τ) =
∂fi(Zi(τ))

∂Zi(τ)
· ∂Zi(τ)

∂Zi(0)
=
∂fi(Zi(τ))

∂Zi(τ)
·ΛΛΛi(τ). (13)



Given an initial condition, the matricial equation (13) can be
integrated with respect to τ . Due to the definition of the Λ
matrix (11), its value for τ = 0 is the identity matrix III . To
calculate Λi(1) we must solve the initial value problem{

ΛΛΛi(1) =
∫ 1

0
∂fi(Zi(τ))
∂Zi(τ)

·ΛΛΛi(τ) dτ

ΛΛΛi(0) = III
(14)

The resulting ΛΛΛi(1) term is the searched third factor of (10).

For each periodic solution at least one zero eigenvalue
of J exists. The associated eigenvector is tangential to the
solution branch. If more than one zero eigenvalue is present,
the solution is called a bifurcation point. Each eigenvector
that is associated with a zero eigenvalue is tangential to a
separate solution branch. A monitoring algorithm runs in
parallel to the branch discovery, analyzing the eigenvalues
of J to detect bifurcation points. A bifurcation point is the
origin for a new gait, which displays a new FSS due to a
break in the gait symmetry.

D. Assessing Stability

The stability of the solutions is computed utilizing the
Poincare section, the Poincare Map, and the Monodromy
matrix [17]. The Poincare section X ∈ Rn is the state space
intersection of a periodic orbit with a lower-dimensional sub-
space. In the Poincare section, the gait can be characterized
with a reduced set of parameters, i.e. the n independent pa-
rameters describing this instant of the motion. The Poincare
map P(X) is a function that maps the initial condition X of
the system at the Poincare section to the system state after
one stride. For a periodic orbit, P(X) = X. The Monodromy
matrix M is the Jacobian matrix of the Poincare map with
respect to the corresponding Poincare section,

M =
∂P(X)

∂X
(15)

The eigenvalues of the Monodromy matrix are called Floquet
multipliers, λ. If all Floquet multipliers have absolute values
lower than one, any perturbation of the Poincare section is
attenuated stride after stride and the system is asymptotically
stable. However, if at least one eigenvalue has an absolute
value greater than one, a perturbation drives the system away
from the periodic orbit, i.e. the system is unstable.

IV. EMERGING GAITS: MOTION AND STABILITY

Using the quadrupedal model described in section II and
the methods introduced in section III, it is possible to
characterize several gaits observed in nature. In order to
obtain general results, all variables and model parameters
are adimensionalized with respect to the resting leg length l0,
the gravitational acceleration g, and the body mass m. For
our model, we chose as parameters an adimensional leg
stiffness K = 10, leg swing frequency Ω =

√
5, and body

rotational inertia Ib = 1.2, following the values used in [18].
Table I gives an overview of gaits discovered for this model,
and the attached video shows examples of these gaits.

TABLE I: Overview of passive gaits discovered with the
quadrupedal passive dynamical model.

Acronym Description Bifurcate Symmetrical/
from Asymmetrical

PP Pace in place - sym
P1 Pace forward with positive α̇TD PP sym
W1P1 Walking gait P1 sym
W2P1 Single-foot run P1 sym
P2 Pace forward with negative α̇TD PP sym
W1P2 Walking gait P2 sym
W2P2 Single-foot run P2 sym

H2W Walking pace-like gait with - sym
double humped force profile

TP Trot in place - sym
T1 Trot forward with positive α̇TD TP sym
W1T1 Walking gait T1 sym
W2T1 Single-foot run T1 sym
T2 Trot forward with negative α̇TD TP sym
W1T2 Walking gait T2 sym
W2T2 Single-foot run T2 sym

H2TW Walking trot-like gait with - sym
double humped force profile

PRP Pronk in place - asym
PR Pronk forward PRP asym
B Bound PR asym
HB Half bound B asym
G Gallop HB asym

A. Symmetrical Gaits

A symmetrical gait has the footfalls of the right and left
leg of each pair (front or hind) separated by 50% of the stride
time. Animals usually adopt these gaits for low to medium
velocity locomotion. The simplest of these gaits is the pace in
place (PP ) gait. From this gait, different behaviors emerge,
as visualized in Fig. 5, including the pace gaits P1 and P2,
and also walking gaits W1 and single-foot running gaits W2.

PP

P1

W1P1 W2P1

P2

W1P2 W2P2

Fig. 5: Symmetrical gaits emerging from the pace in place
gait PP .

TP

T1

W1T1 W2T1

T2

W1T2 W2T2

Fig. 6: Symmetrical gaits emerging from the trot in place
gait TP .

From the trot in place branch, TP , the model exhibits trot
gaits T1 and T2. A walking gait with a double-humped force
profile, H2, can also be obtained for the model. The relation
of the gaits that emerge from the trot in place TP gait are
visualized in Fig. 6.



To compare with gaits obtained in nature, we make use
of the Hildebrand plot. This plot characterizes the gaits by
the footstep sequence; similar gaits will belong to the same
region of the graph, thus leading to a visual characterization
of the locomotion gaits. Fig. 7 overlays the symmetrical gaits
that emerge from the quadrupedal model on a Hildebrand
symmetrical gaits plot [1]. The found branches of solution
intersect the regions of the natural gait cloud corresponding
to the most common gaits observed in nature [19]. The
branches extend also to regions corresponding to very short
leg-ground contact time. These are high speed gaits that have
no correlation in nature due to their high instability. Animals
at high speed instead tend to adopt asymmetrical gaits.

Fig. 7: Overlay of the emerging symmetrical gaits on the
Hildebrand symmetrical gait plot. The cyan region of the
plot represents the natural gaits observed in mammals.

B. Asymmetrical Gaits

In asymmetrical gaits, the left and right leg of each pair
have different roles. The first leg of a pair to touch down
is called leading leg, and the other one is the trailing leg.
In a transverse gallop, for instance, the leading legs of each
pair are on the same side. In contrast, in a rotary gallop the
leading legs are on different sides. In bounding gaits, both
legs of each pair move in unison.

With the presented model, different asymmetrical gaits
emerge, including pronk, half bound, bound and gallop.
Fig. 8 visualizes those main natural gaits in a Hildebrand
asymmetrical gaits plot [1]. Note that most of the character-
ized gaits are outside the corresponding regions of the natural
gaits. That difference is related to the very short support time
with respect to the aerial time for the gaits emerging from
the quadrupedal model. This causes the emerging gaits to
appear in the right part of the Hildebrand asymmetrical plot,
while natural gaits are mainly concentrated on the left part,
as they display longer suspension times.

C. Gait Stability

All the emerging passive gaits of the quadrupedal model
are unstable, as for all of them the absolute value of the maxi-
mum Floquet multiplier, λmax, is larger that one (Fig. 9). In

Fig. 8: Overlay of the emerging asymmetrical gaits on
the Hildebrand asymmetrical gait plot. The blue regions
represent natural gaits of mammals.

general, a lower synchronization of the legs improves gait
stability. This means that in general overall gait stability
seems to improve when the number of bifurcations between
the gait and the corresponding in-place gait is higher. For
instance, single-foot gaits are more stable than pace or trot
gaits. Similarly, for asymmetrical gaits the general stability
improves progressively with each bifurcation from the pronk,
to bound, to half-bound, and to gallop gaits. However,
stability highly varies at different horizontal velocities for
the different gaits, as can be noticed by the large variation
of λmax in Fig. 9.

Fig. 9: Comparison of the maximum Floquet multipliers,
λmax, for the emerging gaits.

D. Optimized Stability Through Variable Elastic Parameters

The analysis above showed that the quadrupedal model
with fixed parameters leads to unstable gaits (Fig. 9). In
principle, optimizing the choice of the fixed parameters leads
to an improvement in locomotion stability for a specific
gait at a specific horizontal velocity, e.g. as performed for
trotting using a segmented leg model in [20]. To obtain a
more generic solution, a variable elasticity is now introduced
in the model, by allowing the leg stiffness K to have a
range of variation. We also endow the model with variable
swing frequency Ω, which would correspond to a variable



hip stiffness. The goal is to determine if by adopting such
variable elasticity it is possible to improve the locomotion
stability for a wide range of horizontal velocities and for
different gaits.

Discovered gaits might display large differences in stabil-
ity along the solution branch, as only one solution can be
found for each gait at a specific energy level for a model
with fixed parameters. In other words, the neighborhood of
solutions for one gait is one-dimensional (it lies on one
branch). However, in the case of variable parameters, an
infinite number of solutions of a specific gait can be found at
a given energy level. This means that an optimal parameter
set for maximizing gait stability can be found for every gait
and for every energy level.

System stability is directly correlated to the maximum
absolute value of the Floquet multipliers, λmax, and therefore
this value is used as objective function. For a given solution
branch of the original model, an optimization procedure is
performed using this objective function to find an optimal set
of parameters that maximizes stability. The elastic parameters
(K and Ω) for a fixed point on the original branch at a given
energy level are perturbed, the limit cycle is computed for
this set of parameters, and the process is repeated until a
local minima in λmax is obtained, i.e, until obtaining a set
of parameters that maximize the system stability. The process
is applied to all the original branch. Note that the method
does not guarantee that the local minimum corresponds to
the global minimum at a given energy level.

Fig. 10: Visualization of the optimization procedure of the
pace in place branch for the model with variable stiffness.

Figure 10 shows a visualization of the optimization pro-
cedure for the model with variable leg stiffness during the
pace in place gait. In this case, the optimization method is
employed to search for the optimal stiffness for different
values of the vertical velocity at touchdown. The surface
shows the behavior of λmax using different leg stiffness and
different vertical velocities at touchdown. The solid red curve
represents the resulting optimal value of stiffness and the

corresponding λmax value for each vertical velocity. This
optimization method has been applied to the pace and bound
gaits, as shown in the next subsections. The pace gait shows
the highest stability of all symmetrical gaits, and extends
over a wide range of horizontal velocities. The bound gait
shows the highest correlation of all asymmetrical gaits of
this model with the natural gaits, and is the only emerging
branch of the asymmetrical gaits crossing the corresponding
region of natural gaits in Fig. 8.

E. Improved Pace Stability

The optimization procedure was initially applied to the
pace branch. The optimization results are reported in Fig. 11,
showing that the optimal leg stiffness linearly increases with
the forward velocity, which directly corresponds to system
energy. Note how the variable stiffness greatly improves the
stability of the gait in comparison to the stability of the
pace gait in the model with constant stiffness (black line
in Fig. 11).

Fig. 11: Stability optimization of the pace gait P2 with vari-
able leg stiffness K for different fixed swing frequencies Ω.

These results hold for the analyzed swing frequencies.
Additionally, the results show that higher swing frequencies
are associated with better system stability, as well as a
reduction in the vertical oscillations of the trunk, as observed
in Fig. 12a. Furthermore, it also slightly reduces the max-
imum forces per leg (Fig. 12b). In fact, when considering
a model with variable leg swing frequency Ω, very high
values of Ω are necessary to improve the gait stability.
However, in reality, the presence of a finite foot mass and
leg inertia limit the maximum attainable value of Ω. Our
results indicate that if a maximum value of Ω is introduced
and an optimization with variable leg stiffness and leg swing
frequency is performed, the optimal stability is achieved
using the maximum Ω, and a leg stiffness that increases
with the horizontal velocity (Fig. 11). Therefore, the optimal
results are achieved for a model with variable stiffness K and
constant leg swing frequency Ω, which is set to the maximum
possible value. Finally, Fig. 13 visualizes the optimized
pace gait P2 for different swing frequencies. Note that the
maximum leg angle is smaller for higher swing frequencies.



(a) Vertical displacement and maximum velocity (b) Maximum forces per leg

Fig. 12: Comparison of the optimized BE and P2 gaits with variable stiffness at different leg swing frequencies.

(a) Swing frequency Ω =
√
5

(b) Swing frequency Ω = 5

(c) Swing frequency Ω = 10

Fig. 13: Optimized pace forward gait P2 with variable leg stiffness K for different constant swing frequencies Ω at the
same horizontal velocity of ẋ = 10

√
gl0. The attached video illustrates these gaits.

F. Improved Bound Stability

For the stability optimization of the bound gait, the results
follow the same observations obtained for the pace gait opti-
mization. Highest stability is achieved when the leg stiffness
K is linearly increasing with horizontal velocity. However,
at a certain forward velocity the optimal leg stiffness starts
decreasing with increasing horizontal velocities. On the other
hand, for higher swing frequencies, the overall gait stability
is higher. A higher leg swing frequency reduces both the
rotation and the vertical oscillations of the trunk (Fig. 14
and Fig. 12a).

Furthermore, a higher leg swing frequency is associated
with less leg compression in stance and a corresponding
higher body position during the stride, as observed in Fig. 13.
Finally, a higher leg swing frequency reduces the maximum
force for leg, as shown in Fig. 12b. Note also that the
optimized bound gait has a lower maximum force per leg in
comparison to the pace gait, as a result of the synchronous
motion of the front and hind pair legs.

Fig. 14: Rotational displacement and maximum velocity for
the bound gait.

A comparison of the stability of the optimized pace and
bound gaits is given in Fig. 15. Note that the optimized
bound gaits show higher stability than the pace gaits, but both
gaits exist only for a certain range of horizontal velocities,
low/medium for the pace, and medium/high for bound gaits.



Fig. 15: Comparison of the optimized pace (P2) and bound
(BE) gaits with variable leg stiffness K for different constant
swing frequencies Ω.

V. FINAL DISCUSSION

This paper has analyzed the stability of emerging gaits
for a fully passive quadrupedal model with compliant legs
and hips. The quadrupedal model with fixed parameters
was introduced in [18], where the emerging gaits were
initially studied. The model in fact exhibits the most common
quadrupedal mammalian gaits observed in nature [1]. This
paper extended such results with a stability analysis of the
emerging gaits. We observed that the break of symmetry
associated with the bifurcation of new solution branches im-
proves gait stability. However, high variations in the stability
at different horizontal velocities have been observed.

We had previously demonstrated that tuning the system
parameters improves the gait stability for a specific gait
(trotting) at specific velocities [20]. However, using a model
with fixed parameters it is not possible to optimize the
stability for a wide range of velocities. In this work we
extended the model from [18] with variable leg stiffness and
leg swing frequency (corresponding to variable hip stiffness),
and used an optimization algorithm to find the optimal leg
stiffness and swing frequency for a desired velocity and
gait, thus leading to an enhanced locomotion stability. Our
results show that the adoption of the highest possible leg
swing frequency and of a leg stiffness that increases with the
horizontal velocity significantly improves the gait stability.

The presented approach allows an optimization of the
variable stiffness parameters, which can then be adopted for
the online control of a real robot during locomotion. The
dynamical model utilized here is however highly simplified,
and the obtained results are indicative of a general dynamic
behavior, but the translation of results to the real robot
could be difficult. The adoption of a more detailed model
with segmented legs configuration, more similar to the legs
commonly used in quadrupedal robots (e.g. as in [20]), could
facilitate such translation of results. The accuracy of the
model used here could be increased by introducing a finite
foot mass as well as dampers in parallel to the leg springs,

in order to model the energy losses associated with the foot
impact and the friction. A simple bang-bang actuation, acting
on the leg rest length, could be adopted to reintroduce the
energy lost during the cycle. Further work could improve the
analysis by considering stability in three dimensions, non-flat
ground, and varying forward velocity, and investigating if the
continuation and bifurcation analysis could characterize the
gaits of non-conservative models.
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