
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Engineering and Design

Infrastructure and Traffic Monitoring in Aerial Imagery
Using Deep Learning Methods

Seyedmajid Azimi, M.Sc.

Vollständiger Abdruck
der von der TUM School of Engineering and Design

der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
genehmigten Dissertation.

Vorsitz:
Prof. Dr. rer. nat. Martin Werner

Prüfer*innen der Dissertation:
1. Hon.-Prof. Dr.-Ing. habil. Richard H. G. Bamler
2. Prof. Dr.-Ing. Peter Reinartz

Universität Osnabrück
3. Assoc. Prof. Dr.techn. Friedrich Fraundorfer

Technische Universität Graz, Österreich

Die Dissertation wurde am 17.03.2022 bei der Technischen Universität München eingere-
icht und durch die TUM School of Engineering and Design am 24.06.2022 angenommen.

i

Abstract

I nfrastructure and traffic monitoring are two of the most innovative applications for au-
tomatically extracting semantic information from aerial images. These applications also

include urban and city planning, High-Definition (HD) mapping, parking lot usage map-
ping, and disaster management mapping for search and rescue operations, among others.
HD mapping is also used in autonomous driving as an additional source of information, as
it provides fine-grained information about the location of objects.

The best way to publicly disseminate spatial details about infrastructure components such
as buildings, roads, parking lots, lane markings, and vegetation is through maps. The neces-
sary data collection in the field (on the ground) for a larger area is costly because terrestrial
imagery requires the cartographer to visit the area in question. On the other hand, aerial
photography offers a wealth of opportunities to remotely observe and map a large area in
a short time. With appropriate camera configuration and flight altitude, the resolution of
aerial imagery is a few centimeters. Infrastructure and traffic monitoring is an application
of aerial image analysis that has emerged in recent decades. For example, aerial imagery
can monitor traffic flow to quickly detect potential bottlenecks, accidents, congestion, and
other features of interest in a large area. Additionally, automatic detection of dynamic ob-
jects can help build more efficient roads, intersections, and highways to reduce congestion
and eliminate hazardous areas. The application is not limited to land transportation but can
also be extended to maritime transportation. Other dynamic objects in mobility applications
include bicyclists, motorcyclists, and pedestrians. A dynamic map and a static map can be
combined using automatic aerial imagery analysis, resulting in a comprehensive map called
a hybrid map.

Initially, image analysis algorithms relied mainly on feature-driven methods. This work fo-
cuses on data-driven algorithms such as deep-learning methods that extract information
with high accuracy while being transferable to other regions of interest. Objects with few
pixels, complex backgrounds, different scales, low resolution, different view angles, shad-
ows and occlusions make this task very challenging.

This work aims to develop new deep learning methods to automatically extract infrastructure
and traffic monitoring information from aerial images. A total of five problems are addressed
in this context. Two problems are related to automatic segmentation from aerial imagery,
e.g., roadway markings and other infrastructure-related objects for generating fine-grained
HD maps. The other three problems are related to detecting and tracking vehicles in aerial
imagery. The present work is cumulative in nature. All five problems are described in six
peer-reviewed articles summarized below.

Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-
Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks (CNNs): Conven-
tional maps describe infrastructure mainly from the perspective of the road. In order to
achieve comprehensive monitoring of the infrastructure, a detailed map is required, includ-
ing, for example, detailed information about lane markings. These represent an essential
and inseparable component of the road infrastructure. By automatically locating lane mark-
ings, it is possible to define road boundaries, analyze traffic behavior, and create HD maps
for autonomous vehicles. A proposed method combines the wavelet transform (WT) with
CNN and enables direct extraction of lane markings with high accuracy and precision at
high computational speed without additional information or intermediate processing.

SkyScapes – Fine-Grained Semantic Understanding of Aerial Scenes: A detailed map contains
information about the different categories of infrastructure components such as buildings,
sidewalks, and road markings. A new approach based on deep learning methods is pre-

ii

sented that automatically extracts all relevant objects with pixel-level accuracy without any
additional information. The algorithm is a cross-class and cross-task dense pixel-wise se-
mantic segmentation for dense and angular segments. This work also presents a concept for
the direct classification of road markings in multiple classes from aerial imagery, which is
also applicable to satellite imagery. In addition, proof of concept is also provided to extract
entrances, exits, and hazardous areas. The proposed method outperforms many state-of-the-
art algorithms at this time.

Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery: EAGLE: Large-
scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery: In these two pa-
pers, a high-precision vehicle detector based on aerial imagery data is presented in con-
junction with a robust dataset for detecting vehicles under realistic conditions. Vehicles are
annotated in different classes with driving directions and are also detected automatically
using the algorithm. The proposed method is a novel deep learning architecture that can
localize objects with horizontal and rotated bounding boxes to determine the exact position
of objects of interest. The algorithm can also be applied to other objects such as boats and
ships for maritime applications. In addition to the traffic monitoring problem, the localiza-
tion of individual infrastructure objects such as bridges, ports, traffic circles, tank farms,
and several other classes is also demonstrated.

ShuffleDet: Real-Time Vehicle Detection Network in Onboard Embedded UAV Imagery: Based on
the previous work, a new algorithm for vehicle detection based on deep learning is pro-
posed, with low computational cost and comparable performance to other complex and
heavy models. The processing method must be fast enough to run on an onboard comput-
ing platform, such as Unmanned Aerial Vehicle (UAV).

AerialMPTNet: Multi-Pedestrian and -Vehicle Tracking in Aerial Imagery, Using Temporal and
Graphical Features: These two papers address the problem of pedestrian and vehicle tracking
in aerial sequences. The task is to determine pedestrians’ and vehicles’ position, speed, and
acceleration for a comprehensive traffic monitoring system based on aerial image data. For
this last chain of a traffic monitoring system, this paper presents a new multi-object tracking
algorithm that tracks single objects in aerial images and provides the position information
in the current image from which the speed and orientation of each vehicle or pedestrian can
be extracted.

iii

Zusammenfassung

D as Infrastruktur- und Verkehrsmonitoring ist einer der innovativsten Anwendun-
gen der automatischen Extraktion von semantischer Information aus Luftbildern.

Zu diesen Anwendungen zählen auch Stadt- und Stadtplanung, HD-Kartierung, Kartierung
der Parkplatznutzung, sowie Kartierungen für Katastrophenmanagement u.a. bei Such- und
Rettungseinsätzen. HD-Kartierung wird auch beim autonomen Fahren als zusätzliche Infor-
mationsquelle eingesetzt, da sie feinkörnige Informationen über den Standort von Objekten
liefert.

Der beste Weg zur öffentlichen Verbreitung von räumlichen Details über Infrastrukturkom-
ponenten wie Gebäuden, Straßen, Parkplätzen, Fahrbahnmarkierungen und Vegetation ist
die Karte. Die notwendige Datenerfassung vor Ort (am Boden) für ein größeres Gebiet ist
aufwändig, da der Kartograph bei terrestrischer Aufnahme das betreffende Gebiet besichti-
gen muss. Luftgestützte Aufnahmen hingegen bieten eine Fülle von Möglichkeiten, ein
großes Gebiet in kurzer Zeit aus der Ferne zu beobachten und zu kartieren. Bei entsprechen-
der Konfiguration der Kamera und Flughöhe beträgt die Auflösung von Luftbildern wenige
Zentimeter. Das Infrastruktur- und Verkehrsmonitoring ist eine in den letzten Jahrzehn-
ten entstandene Anwendung der Luftbildanalyse. Zum Beispiel kann der Verkehrsfluss mit
Luftbildern überwacht werden, um potenzielle Engpässe, Unfälle, Staus und andere inter-
essante Merkmale in einem großen Gebiet schnell zu erkennen. Die automatische Erken-
nung dynamischer Objekte kann zusätzlich dazu beitragen, effizientere Straßen, Kreuzun-
gen und Autobahnen zu bauen, um Staus zu reduzieren und Gefahrenstellen zu beseitigen.
Die Anwendung ist nicht auf den Landverkehr beschränkt, sondern kann auch auf den Seev-
erkehr ausgeweitet werden. Andere dynamische Objekte in Mobilitätsanwendungen sind
Radfahrer, Motorradfahrer und Fußgänger. Eine dynamische Karte, die mit einer statischen
Karte kombiniert wird, kann mit Hilfe der automatischen Analyse von Luftbilddaten kom-
biniert werden, wodurch eine umfassende Karte, die so genannte Hybrid-Karte, entsteht.

Ursprünglich stützten sich die Algorithmen zur Bildanalyse hauptsächlich auf merkmals-
gesteuerte Methoden. Diese Arbeit konzentriert sich auf datengesteuerte Algorithmen wie
Deep-Learning-Methoden, die Informationen mit hoher Genauigkeit extrahieren und dabei
auf andere Regionen von Interesse übertragbar sind. Objekte mit wenigen Pixel, komplexe
Hintergründe, unterschiedliche Maßstäbe, geringe Auflösung, verschiedene Blickwinkel,
Schatten und Verdeckungen machen diese Aufgabe zu einer großen Herausforderung.

Ziel dieser Arbeit ist es, neue Deep-Learning-Methoden zu entwickeln, um automatisch Infor-
mationen zum Infrastruktur- und Verkehrsmonitoring aus Luftbildern zu extrahieren. Insgesamt
werden fünf Probleme in diesem Zusammenhang behandelt. Zwei Probleme beziehen sich
auf die automatische Segmentierung aus Luftbildern, z.B. von Fahrbahnmarkierungen und
anderen infrastrukturrelevanten Objekten für die Erstellung von feinkörnigen HD-Karten.
Die anderen drei Probleme beziehen sich auf die Erkennung und Verfolgung von Fahrzeu-
gen in Luftbildern. Die vorliegende Arbeit ist kumulativ angelegt. Alle fünf Probleme wer-
den in sechs begutachteten Artikeln beschrieben, die im Folgenden zusammengefasst wer-
den.

Aerial LaneNet: Semantische Segmentierung von Fahrbahnmarkierungen in Luftbildern mit
Wavelet-verstärkten, kostensensitiven, symmetrischen „Fully-Convolutional“ neuralen Netzw-
erken (CNN): Herkömmlichen Karten beschreiben die Infrastruktur meist aus der Perspek-
tive der Straße. Um eine umfassende Überwachung der Infrastruktur zu erreichen, ist
eine detaillierte Karte erforderlich, die z.B. auch detaillierte Informationen über Fahrbahn-
markierungen enthält. Diese stellen eine wesentliche und nicht trennbare Komponente der
Straßeninfrastruktur dar. Durch die automatische Lokalisierung der Fahrbahnmarkierun-
gen kann man Straßenbegrenzungen definieren, das Verkehrsverhalten analysieren und

iv

HD-Karten für autonome Fahrzeuge erstellen. Es wird eine Methode vorgeschlagen,
welche die Wavelet-Transformation (WT) mit CNN kombiniert und eine direkte Ex-
traktion von Fahrspurmarkierungen mit hoher Genauigkeit und Präzision mit hoher
Rechengeschwindigkeit ohne zusätzliche Informationen oder Zwischenverarbeitung er-
möglicht.

SkyScapes - Feinkörniges semantisches Verständnis von Luftbildszenen: Eine detaillierte Karte
enthält Informationen über die verschiedenen Kategorien von Infrastrukturkomponenten
wie Gebäuden, Gehwege und Fahrbahnmarkierungen. Es wird ein neuer Ansatz auf der
Grundlage von Deep-Learning-Methoden vorgestellt, der automatisch alle relevanten Ob-
jekte mit einer Genauigkeit auf Pixelebene ohne jegliche zusätzlichen Informationen ex-
trahiert. Bei dem Algorithmus handelt es sich um eine klassen- und aufgabenübergreifende
dichte, pixelweise semantische Segmentierung sowohl für dichte als auch für kantige Seg-
mente. In dieser Arbeit wird außerdem auch ein Konzept für die direkte Klassifizierung von
Fahrbahnmarkierungen in mehreren Klassen aus Luftbildern vorgestellt, das auch auf Satel-
litenbilder übertragbar ist. Zusätzlich wird auch Machbarkeitsnachweis für die Extraktion
von Ein- und Ausfahrten sowie für Gefahrenbereiche erstellt. Die vorgeschlagene Methode
übertrifft viele state-of-the-art Algorithmen zu dieser Zeit.

Mehrklassige Objekterkennung in Fernerkundungsbildern: EAGLE: Datensatz zur Erkennung
von Fahrzeugen unter realistischen Bedingungen basierend auf Luftbilddaten: In diesen bei-
den Arbeiten wird ein hochpräziser Fahrzeugdetektor auf der Grundlage von Luftbild-
daten in Verbindung mit einem mächtigen Datensatz zur Erkennung von Fahrzeugen
unter realistischen Bedingungen vorgestellt. Fahrzeuge werden in verschiedenen Klassen
mit Fahrtrichtung annotiert und werden mit Hilfe des Algorithmus auch so automa-
tisch erkannt. Bei der vorgeschlagenen Methode handelt es sich um eine neuartige Deep-
Learning-Architektur, die Objekte nicht nur mit horizontalem Begrenzungsrahmen, son-
dern auch rotiert lokalisieren kann, um die genaue Position von Objekten von Interesse zu
ermitteln. Der Algorithmus kann auch auf andere Objekte wie Boote und Schiffe für mar-
itime Anwendungen übertragen werden. Neben dem Problem der Verkehrsüberwachung
wird auch die Lokalisierung von einzelnen Infrastrukturobjekten wie Brücken, Häfen,
Kreisverkehren, Tanklagern und mehreren anderen Klassen demonstriert.

ShuffleDet: Echtzeit-Fahrzeugerkennungsnetzwerk aus UAV-Bildern: Basierend auf den
vorhergegangenen Arbeiten, wird ein neuer Algorithmus für die Fahrzeugerkennung
auf der Grundlage der Deep-Learning-Methode vorgeschlagen, der einen geringen
Rechenaufwand und eine vergleichbare Leistung wie andere komplexe und schwere Mod-
elle aufweist. Das Verarbeitungsverfahren muss schnell genug sein, um auf einer On-Board-
Computerplattform, z. B. auf einem UAV laufen zu können.

AerialMPTNet: Simultane Fußgänger- und Fahrzeugeverfolgung in Luftbildsequenzen mit Hilfe
von zeitlichen und bildbasierten Merkmalen: Diese beiden Arbeiten widmen sich der Prob-
lematik der Fußgänger- und Fahrzeugverfolgung in Luftbildsequenzen. Aufgabe ist es, für
ein umfassendes Verkehrsüberwachungssystem basierend auf Luftbilddaten, die Position,
die Geschwindigkeit und die Beschleunigung von Fußgängern und Fahrzeugen zu bestim-
men. Für diese letzte Kette eines Verkehrsüberwachungssystems wird in dieser Arbeit ein
neuer Multiobjektverfolgungsalgorithmus vorgestellt, der Einzelobjekte in Luftbildern ver-
folgt und die Positionsinformationen im aktuellen Bild liefert, aus denen Geschwindigkeit
und Orientierung jedes Fahrzeugs bzw. Fußgängers extrahiert werden können.

ACKNOWLEDGMENTS v

Acknowledgments

The completion of this thesis could not have been feasible without the support and help
of several generous people. Firstly, I would like to express my gratitude to my beloved

parents: my mother Ziba and my father Razi. My father and my mother, thank you so much!
I wish I could be able to give equal thanks to your all efforts in raising me despite all chal-
lenges in each second of life. I will not forget your sacrifice in your life because of me. I
cannot find a suitable word to thank you. I would also express my gratitude to my beloved
sister Sedigheh and my brothers Mohsen and Meysam. You have always supported me in
my life and took care of tasks, even sometimes those handed over to me. May God give my
parents and siblings health, happiness and salvation. You always backed my efforts toward
the next step giving me the courage to take it while giving invaluable suggestions. During
my Ph.D., the main reason that kept me working on this topic was to make you happy, and
I hope the successful completion of this thesis will do so.

Mainly, I would like to thank Prof. Dr. Peter Reinartz. Peter supported me during my Ph.D.
all the time in the German Aerospace Center (DLR). You were like my second father giv-
ing me support and valuable suggestions, which I am thankful for. I hope the completion
of this thesis will make you also satisfied. This thesis would serve as founding for future
development in our department PBA, making it maintain being a pioneer in this area of
work.

I show my gratitude to Prof. Dr.-Ing Richard Bamler, who, during my Ph.D., was always
helpful and supportive. And allowed me to explore the unknown, to try realizing impossi-
bilities and helped me not give up on my efforts. I would like to thank Dr. Marco Körner
gratefully as my mentor, who always supported me and corrected my mistakes by notifying
me during my Ph.D.

I would also like to show my gratitude and thank all my colleagues in DLR, especially in the
department of photogrammetry and image analysis (PBA). Without your support and the
friendly and supportive environment in our department, I would not have been successful in
finishing this thesis. I would like to thank Dr. Thomas Krauss, Dr. Franz Kurz, Dr. Dominik
Rosenbaum, Dr. Pablo D’Angelo, Dr. Daniele Cerra, Dr. Reza Bahmanyar, Dr. Nina Merkle,
Corentin Henry and Jens Hellekes. Thank you all for your support during my Ph.D. I thank
my DLR colleague Thorsten Hoeser for his excellent review of deep learning algorithms,
which helped me immensely in the state-of-the-art section. I give credit to Thorsten in this
chapter, even to those rephrased sentences.

I thank students and personnel in the chair of remote sensing at the Technical University of
Munich (TUM). I was always welcomed there, and being there gave me the feeling of being
a student still in the university to explore the unknowns and continue learning.

I would also like to thank my friends and relatives in Iran and Germany, especially in Tehran
and Munich and mainly the warm-hearted locals in the beloved village of my parents: Jaz-
inan in Taleghan. The mountains and rivers of Taleghan always gave me the impression
of fighting through difficulties, not stepping back and looking up. Seeing water can pierce
through stone proved that hardworking, persistent trying and learning from mistakes and
failure is the key to success.

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1
1.1 Goals 6

1.1.1 General Objectives 6
1.1.2 Methodological Objectives 6

1.2 Reader’s Guide 9

2 Basics and State of the Art 11
2.1 Image Analysis Fundamentals 11
2.2 Supervised Machine Learning 13

2.2.1 Classical Methods 15
2.2.1.1 Support Vector Machines (SVMs) 15

2.2.2 Deep Learning (Neural Network) Methods 17
2.2.2.1 Deep Learning (DL) 17
2.2.2.2 Short neuroscience background 18
2.2.2.3 Deep Neural Networkss (DNNs) 18
2.2.2.4 Convolutional Neural Networks (CNNs) 21
2.2.2.5 Evolution of CNN Architectures in Computer Vision (CV) 22

2.3 Object Detection 27
2.3.1 Two-Stage Detectors 29
2.3.2 Single-Stage Detectors 31

2.4 Semantic Segmentation 32
2.4.1 Pixel-wise semantic segmentation 32

2.4.1.1 Naïve Decoder 34
2.4.1.2 Encoder–Decoder Models 35

2.5 Single- and Multi-Object Tracking 38
2.6 Earth Observation Advances 40

3 Towards Multi-class Object Detection in Unconstrained Remote Sensing
Imagery 43

3.1 Introduction 43
3.2 Related Work 44
3.3 Proposed Method 45

3.3.1 Image Cascade, Feature Pyramid, and Deformable Inception Subnetworks 45
3.3.2 Rotation Region Proposal Network (R-RPN) 47
3.3.3 Rotated Region of Interest Network (R-ROI) 48

3.4 Experiments and Discussion 49
3.4.1 Datasets 49
3.4.2 Evaluation 50

3.5 Conclusion 54

4 EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios
using Aerial Imagery 55

4.1 Introduction 55
4.2 EAGLE dataset 57

ACKNOWLEDGMENTS vii

4.2.1 Image annotation 58
4.2.2 Annotation method 58
4.2.3 Dataset splits 59
4.2.4 Contributions over the existing datasets 59

4.3 Evaluation 61
4.3.1 Image splitting 61
4.3.2 Horizontal Bounding Boxes (HBB) baselines 61
4.3.3 Rotated Bounding Boxes (RBB) baselines 62
4.3.4 Oriented Bounding Boxes (OBB) baselines 62
4.3.5 Experimental analysis 64
4.3.6 Impact of data-related factors on the performance 64
4.3.7 Cross-dataset validation 64

4.4 Conclusion 65

5 ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded
UAV Imagery 66

5.1 Introduction 66
5.2 Method 67
5.3 Experiments and Discussion 70

5.3.1 Experimental Setup 70
5.3.2 Ablation Evaluation 70
5.3.3 Comparison with the benchmark 71

5.4 Generalization Ability 72
5.5 Conclusions 73

6 Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery
Using Wavelet-enhanced Cost-sensitive Symmetric Fully Convolutional
Neural Networks 74

6.1 Introduction 74
6.1.1 Challenges 75
6.1.2 Related work 77
6.1.3 Our contribution 79

6.2 Arial LaneNet: Wavelet-enhanced Cost-sensitive Symmetric Fully
Convolutional Neural Network 80
6.2.1 Discrete Wavelet Transform (Background) 82

6.3 Experiments 86
6.3.1 AerialLanes18 Dataset 86
6.3.2 Annotation of AerialLanes18 87
6.3.3 Implementation Details 87

6.4 Results and Evaluation 88
6.4.0.1 Different Base Network Investigation 90
6.4.0.2 The Effect of Lambda 91
6.4.0.3 The Importance of Symmetric fully convolutional neural

network (FCNN) 92
6.4.0.4 The Effect of DWT 92
6.4.0.5 The Effect of DWT Components 93
6.4.0.6 Varied Possible Fusions 93
6.4.0.7 Confusion Matrix Investigation 94
6.4.0.8 Comparison with the state-of-the-art 95
6.4.0.9 Qualitative Analysis 95
6.4.0.10 Cross-domain Generalization 96

6.5 Conclusions 96

7 SkyScapes: Fine-grained Semantic Understanding of Aerial Scenes 101
7.1 Introduction 101
7.2 The SkyScapes Dataset 102

viii

7.2.1 Classes and Annotations 103
7.2.2 Dataset Splits and Tasks 103
7.2.3 Statistical Properties 104

7.3 Semantic Benchmarks 105
7.3.1 Metrics 105
7.3.2 State of the Art in Semantic Segmentation 105

7.4 Method 106
7.5 Evaluation 108

7.5.0.1 SkyScapes-Dense – 20 main classes: 108
7.5.0.2 SkyScapes-Lane – multi-class lane prediction: 109
7.5.0.3 SkyScapes-Dense – auxiliary tasks: 109

7.6 Generalization 110
7.7 Conclusion 111

8 Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a
Convolutional Neural Network 113

8.1 Introduction 113
8.2 Related Works 116
8.3 Various Categorizations of Visual Object Tracking (VOT) 117
8.4 Single-Object Trackings (SOTs) and Multi-Object Trackings (MOTs) 118

8.4.1 SOT Methods 118
8.4.2 MOT Methods 119

8.5 Tracking in Satellite and Aerial Imagery 120
8.5.1 Tracking by Moving Object Detection 120
8.5.2 Tracking by Appearance Features 121

8.6 Datasets 121
8.7 KIT AIS 122
8.8 AerialMPT 123

8.8.1 AerialMPT vs. KIT AIS 124
8.9 DLR-ACD 125
8.10 Evaluation Metrics 125
8.11 Preliminary Experiments 127
8.12 From Single- to Multi-Object Tracking 127
8.13 Multi-Object Trackers 129

8.13.1 DeepSORT and SORT 129
8.13.2 Tracktor++ 132
8.13.3 SMSOT-CNN 132
8.13.4 Euclidean Online Tracking 133

8.14 Conclusion of the Experiments 133
8.15 AerialMPTNet 135
8.16 Long Short-Term Memory Module 136
8.17 GraphCNN Module 137
8.18 Squeeze-and-Excitation Layers 137
8.19 Online Hard Example Mining 138
8.20 Experimental Setup 138
8.21 Evaluation and Discussion 139
8.22 SMSOT-CNN (PyTorch) 140
8.23 AerialMPTNet (LSTM Only) 140
8.24 AerialMPTNet (GCNN Only) 142
8.25 AerialMPTNet 143

8.25.1 Pedestrian Tracking 144
8.25.2 Vehicle Tracking 146
8.25.3 Localization Preciseness 147

8.26 AerialMPTNet (with Squeeze-and-Excitation Layers) 148
8.27 Training with OHEM 149
8.28 Huber Loss Function 149
8.29 Comparing AerialMPTNet to Other Methods 150
8.30 Pedestrian Tracking 150

ACKNOWLEDGMENTS ix

8.31 Vehicle Tracking 150
8.32 Conclusions and Future Works 151

9 Summary and Conclusion 153
9.1 Improvements and future work 154

List of Abbreviations 156

References 157

Appendices 177

A Azimi, S., Vig, E., Bahmanyar, R., Körner, M. and Reinartz, P., Towards
Multi-class Object Detection in Unconstrained Remote Sensing Imagery,
Asian Conference of Computer Vision (ACCV), 2018 177

B Azimi, S., Bahmanyar, R., Henry, C. and Kurz, F., EAGLE: Large-scale
Dataset for Vehicle Detection in Aerial Imagery. IEEE International
Conference on Pattern Recognition(ICPR), 2020 203

C Azimi, S., ShuffleDet: Real-Time Vehicle Detection Network in On-Board
Embedded UAV Imagery. IEEE European Conference on Computer Vision
Workshop (ECCVW), UAV Vision, 2018 213

D Azimi, S., Fischer, P., Körner, M. and Reinartz, P., 2018, Aerial LaneNet:
Lane-marking Semantic Segmentation in Aerial Imagery Using Wavelet-
Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks,
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2018 225

E Azimi, S., Henry, C., Sommer, L., Schumann, A. and Vig, E., Skyscapes
- Fine-Grained Semantic Understanding of Aerial Scenes, IEEE
International Conference on Computer Vision (ICCV), 2019 245

F Azimi, S., Kraus, M., Bahmanyar, R. and Reinartz, P., Multiple Pedestrians
and Vehicles Tracking in Aerial Imagery Using a Convolutional Neural
Network, Remote Sensing MDPI (RS-MDPI), 2021 273

1 Introduction 1

1 Introduction

The spatial connections of objects in the universe around us are represented with maps.
Either static or dynamic, maps present the status of an area in different levels of detail.
Nowadays, the fine-grained description of the transportation network is crucial for accu-
rate road maps and lane-based model generation. More accurate and comprehensive maps
for today and upcoming technological demands appear unavoidable, while current maps
are generated chiefly through manual labor and reflect a form of human understanding.
Monitoring both infrastructure and traffic lead to static and dynamic maps, which are used
to design and maintain infrastructure and monitor traffic status. They can be used either
offline for applications such as urban planning or right-away as online for disaster manage-
ment scenarios. These days, modern life can hardly be conceived without accurate and pre-
cise maps. A broad range of services, e.g., from navigation systems, assisted or autonomous
driving, infrastructure monitoring to urban planning, rely on such information. At present
autonomous vehicles (AV) is a research focus in both computer vision and remote sensing
communities.

Fig. 1. Autonomous Driving Applications (left) (source: BMW). High-Definition (HD)-mapping sample (right) (source:
HERE).

Maps, particularly infrastructure and traffic-related maps, contain valuable information on
fundamental elements such as roads, parking places, lane-markings, vehicles, and so on that
can help people navigate from one location to another. Since prehistoric times, maps have
been used by humankind, and with increasing technology, emerging maps are extended and
improved to fulfill new requirements, including new regions or information layers. This
evolution is an ongoing process even today.

Nowadays, the data collection for generating high definition (HD) maps is mainly carried
out by the so-called mobile mapping systems, which comprise a vehicle equipped with a
broad range of sensors (e.g., Radar, LiDAR, and cameras). However, this approach has mul-
tiple disadvantages; for instance, the ground-based systems cover a small part due to the
line-of-sight of sensors. global positioning system (GPS)-shadows or sensor drift in urban
canyons lessens the spatial accuracy. Also, traffic flow leads to partial occlusions in the col-
lected data. This approach is very time and cost demanding and requires heavy manual
work. By considering handheld GNSS devices, one might achieve exact maps, but at the cost
of several times more manual work, and therefore it is even a more costly method.

The mentioned issues can be addressed by remote sensing imagery. In this work, the focus
is on using aerial imagery, which is intrinsically motivated by the need for extensive area
mapping in a short time. Observation of large regions by aerial images goes along without
ground data collection, making them an essential element since the advent of aerial pho-
tography for maps and geospatial data. The accuracy of georeferenced aerial images is also
not affected in urban areas. The most common platforms of airborne cameras are aircraft.
Recently, UAVs are turning into a more efficient and low-cost alternative. Remote sensing or

2

Fig. 2. Infrastructure monitoring using aerial imagery versus ground imagery (source: Ternow AI GmbH).

Earth Vision (remote vision) is important for authorities for cadastral administration as well
as for other applications in intelligence agencies and the military. Currently, nearly every

Fig. 3. HD-Mapping using mobile mapping approach (source:Google).

megacity or capital has datasets of aerial images which are partly publicly available. Per-
forming manual observation for mapping or surveillance applications using airborne data
is a rigorous and often repetitive task, often costly. Thus, automatically processing aerial
images could be far more time and cost-efficient. During disasters and emergencies, where
power shortages, blackouts or disturbances in connectivity among rescue forces arise, detec-
tion of infrastructure and traffic elements using an airborne platform can yield live status
of the area to support decision-makers with detailed information on the current situation
in the affected zone. Ideally, a map should be derived from an aerial acquisition without
human interference. However, that would be indeed a challenging mission. There are par-
tially automated systems for some specific functions, but a completely automatic mapping
generation program is not in many places operational.

To extract a precise and detailed map, we need to have a fine-grained understanding of an

1 Introduction 3

Fig. 4. Sample of traffic monitoring scenario using in-situ sensors vs. airborne ones (source: MDR (left) and Haarlem(right)
processed in this work).

Fig. 5. Aerial cameras can be mounted on different flying platforms (Source: DLR).

area. Such maps containing the location of infrastructures such as streets, sidewalks, traffic
lights and even lane markings are necessary to reach the goal of fully autonomous driving.

Knowing the location of lane-markings is required to create detailed maps among the men-
tioned infrastructure elements. They convey roads rules to drivers, which they learn, while
an autonomous driving vehicle shall be taught to understand them to localize itself. Hence,
a precise and reliable lane-marking map is required. Advanced vehicle assistance system
(ADAS) comprising features like vehicle navigation and lane departure warning modules
requires the road model data and the road lane marking data, e.g., the lane marking types
and their locations. Despite mainly having the same color, lane-markings are divided into
several categories, each conveying a special message. To have a comprehensive, detailed
map, lane-markings shall be localized and classified into different classes. In addition to
the current omnipresent topic of autonomous driving, several more urgent topics can be
addressed by HD maps. For instance, the localization of lane markings as the base map
could benefit the traffic monitoring systems. Such a map could lead to further map com-
pletion and, therefore, more efficient parking lot utilization. In addition, more applications
can arise which will use high precision maps as the intelligent and efficient management of
transportation systems is one of the main topics of the 21st century.

As another critical infrastructure element, roads play an essential role in the transportation
systems. They allow us to go from point A to B with our vehicles quickly. Parking lots allow
us to park our vehicles when not needing them. Entrance/exit regions let us know which
area connects parking places to roads which are sometimes shared with sidewalks and bike-
ways. Bike-ways play a similar role as roads, but for cyclists. Speaking of bikeways, danger
areas, as shared areas between cyclists and vehicles, are an essential surface to be mapped,
allowing autonomous vehicles to know the potential presence of a cyclist in that area. Side-
walks can connect us to our houses, buildings, stores, parks, or any surface which we can

4

put our foot on the ground. Buildings are important places, and knowing their location and
footprint helps officials have better and more effective urban monitoring and management.
We need to breathe oxygen, and therefore trees and vegetation help produce this valuable
element. They are vital infrastructure elements, especially in our urban lives, where cities
suffer from heavy air pollution. Therefore, knowing the location, number and density of
trees and vegetated regions are crucial for healthy weather in our cities. On the other hand,
mapping impervious surfaces let us know how much space has been changed by humans in
an area. Worth mentioning, clutter objects as trash bins or any dynamic object essential for
urban management shall be mapped to allow residents to be aware of the closest trash bin
around their houses and ensure municipalities of enough of them, adequately distributed
in an area.

Monitoring the traffic flow is necessary to control the traffic, schedule an optimum route for
the current road usage, and predict the arrival times. To achieve this goal, recognition and
localization or, in one term, detection of traffic-related participants is essential. These par-
ticipants include vehicles, motorcyclists, cyclists and pedestrians. In this work, we focus on
the first category. The sole detection of vehicles is not sufficient. They must be followed in
a few image frames to extract required traffic flow information such as driving trajectories,
velocity, and acceleration. To achieve this goal, we shall design an algorithm to automati-
cally detect different types of objects in an unconstrained scenario regardless of resolution,
multispectral or panchromatic images. The algorithm shall also be capable of differentiating
the head from the tail of vehicles as a critical hint for vehicle tracking algorithms. In this
work, one algorithm for multi-class object detection under no controlled environment and
one method to differentiate the head from the tail of vehicles have been developed. The most
significant benchmark, called EAGLE to this date, has also been created in this framework.

Precise automatic detection of infrastructure elements such as roads, parking places, and
buildings in airborne data is challenging. Multiple issues increase the level of difficulty
when it comes to automatic HD mapping from aerial imagery. Some of them are already
well-known problems in the computer vision domain, for instance:

� Tiny size and large scale range - Compared with their appearances in in-situ images, ob-
jects appear to be very small in aerial images. This challenge is even more pronounced
when it comes to lane-markings. They appear in a very tiny size of even 1× 1 px, de-
pending on the resolution and ground sampling distance (GSD).

� Different classes - Aerial images contain multiple objects classes with different prop-
erties and appearances. Different lane-marking classes alone pose another challenge in
achieving a precise, detailed HD-map. Lane-markings can be divided into even up to
30 classes in some countries, such as single and double lane-boundary, the disabled
parking-place, etc.

� Washed out lane-markings - Some lane markings appear washed out partially or en-
tirely, which imposes another challenge for accurate localization.

� Rare lane-marking cases - Lane-marking categories are of highly unbalanced distribu-
tion such as Speed limit bus/bike signs.

� Complex background - It represents an additional hindrance to inaccurate localization
of objects.

� Unbalanced training datasets - Lane-marking extraction is a heavily unbalanced prob-
lem considering the number of lane-marking pixels versus the background pixels.

� Partial or complete occlusion - It changes the appearance of objects. Complete occlusion
can be caused by dense objects such as bridges, trees, buildings and so on, while partial
occlusion often occurs due to transparent roofs or tree branches.

� Shadow - It causes different illuminations over objects leading to changes in their ap-
pearance, which sometimes makes it very hard to see objects.

� low-resolution - More and more airborne- and spaceborne sensors collect data with the

1 Introduction 5

very-high-resolution, e.g., GSD of 30 cm is the best resolution in the satellite imagery.
Regarding the aerial imagery, GSD is mostly between 10 and 20 cm. These resolutions
are still not cm-level, marking objects to appear as small objects.

� Fog, haze -These factors make the task even more cumbersome by lowering the image
quality.

� No specific background - It shall also be noted that the lane-markings can be found
in any areas; private or public, roads or backyards, over buildings (multi-level parking
stories), schoolyards or even in sport complex fields.

The above challenges are not limited to the lane-markings but most of the objects in the
aerial images. When it comes to detecting vehicles in different categories, the first point that
comes to mind as the first challenge is the tiny sizes. However, they are more significant
than lane-markings but still smaller than several other infrastructure elements, which of-
ten are confused with clutter objects such as small or large trash/construction debris bins.
Moreover, similar to the infrastructure element extraction, one must deal with a complex
background, shadow, occlusion, etc.

In recent years, deep learning has grabbed much attention in both practical applications,
and scientific research [22, 184]. Deep learning-based algorithms have shown remarkable
effectiveness in computer vision tasks and have increasingly become a reliable means of
responding to emerging problems in Earth Observation (EO) or Earth Vision. They have
performed significantly better than traditional machine learning and signal processing
methods, e.g., handwritten digit image recognition or speech recognition. Deep learning
algorithms, mainly Convolutional Neural Networks (CNNs), were started in 1998 by the
LeNet [185] network architecture designed by Yan LeCun. However, due to the high com-
putational cost and the scarcity of large-scale annotated datasets, they were replaced by
other algorithms, mainly Support Vector Machines(SVM)-based [65] algorithms. This trend
continued until 2012 when the most popular deep learning model for natural image recog-
nition was proposed by Alex Krizhevskly [177], who introduced a new CNN architecture,
called ALexNet and won the prize of 2012 the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [81].

AlexNet is a deep convolutional neural network (CNN), which extracts deep features from
RGB images to predict the image labels from 1000 categories. As optical data is essential for
Earth Observation research, the applicability of deep learning after its emergence seemed to
be unavoidable. Today, the efficiency improvement of AlexNet during ILSVRC can be seen
as a starting point for recent innovations in deep learning [81]. There are mainly two reasons
for the success of AlexNet: the availability of large-scale training datasets and the significant
improvement of the computational power in processing devices, especially of GPUs [177] or
later TPUs.

Researchers can now present working deep learning algorithms, which outperform previous
non-deep learning methods. The rapidly evolving concepts are incorporated into other do-
mains and applications, constantly creating independent research fields such as GANs with
significant impacts on science and practice today. One application field is earth observation
with superb data usability. The availability of large-scale labeled high-resolution optical
and multispectral remote sensing images has created a new trend of open access to earth
observation data repositories. This trend has facilitated the propagation of profound learn-
ing principles from computer vision tasks to remote sensing ones, such as the detection or
segmentation of vehicles, roads, buildings from airborne images. The deep learning proofs-
of-concept for earth observation applications are widely spread and no longer constrained
to RGB images. The number of deep learning implementations continues to evolve, showing
new patterns and opportunities for analyzing data from remote sensing [17, 270, 377, 395].
The publications in EO with the usage of deep learning cover a broad range of applications
such as land cover classification, object detection, denoising, super-resolution, data fusion,

6

Fig. 6. Illustration of a sample AeroSat HD-Map created solely based on airborne and spaceborne data. This sample is the
results of several AI algorithms developed by the department of IMF-PBA in DLR and TerNow GmbH and the author of
the work. With the OpenDrive format, AeroSat HD-Map is usable for self-driving vehicles and other applications requiring
cm-level fine-grained maps.

weather forecast using different modalities such as optical, multispectral, hyperspectral, and
SAR imagery in various resolutions.

1.1 Goals

1.1.1 General Objectives

The purpose of this work is to present new scientific methods to automatically increase in-
formation on aerial scene understanding for detailed mapping i.e., HD-Mapping for infrastruc-
ture monitoring including road, lane-marking, parking-place mapping, etc called AeroSat HD-
Mapping and the detection and tracking of dynamic objects such as vehicles etc to create dynamic
maps called Hybrid-Mapping

The result of this work and later developments of more advanced algorithms by the author
of this thesis and the team of Photogrammetry and Image Analysis(PBA) department in
DLR and TerNow GmbH 1 has led to the creation of the first generation of cm-level fine-
grained AeroSat HD-Map which can be delivered in OpenDrive 2 format for self-driving
and several other practical applications.

1.1.2 Methodological Objectives

The aim is to accomplish five scientific objectives, including novel approaches to address
five different problems.

1 https://ternow.ai
2 https://www.asam.net/standards/detail/opendrive

1.1 Goals 7

Objective 1: Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

Objective 2: EAGLE-Net and ShuffleDet

Fig. 7. Illustration of objectives 1 and 2. Multi-class vehicle detection (large vehicle red, small vehicle blue) with different
types of localization: top left: horizontal bounding box (HBB), top right: rotated bounding box (RBB). Bottom: vehicles with
colored bounding boxes; purple for small vehicle and yellow for large vehicles. Cyan color indicates the heading direction
of the vehicle.

Objective 1:

Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery The objective
is to develop a multi-class dynamic object detection from aerial and satellite images using
deep learning as a more reliable, faster object detector for extracting traffic information on
land and sea. Static infrastructure information and dynamic characteristics such as road us-
age traffic flows are obtainable from aerial and satellite images. The key to extracting these
dynamic characteristics is to accurately, reliably and automatically identify the dynamic ob-
jects in the image. Different types of vehicles should be detected for land traffic monitoring
and maritime traffic monitoring, boats and ships. The algorithm should be able to process
large remote sensing images quickly, providing the location of objects with HBB or RBB. See
an illustration of the task in Figure 7.

Objective 2:

EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery
ShuffleDet: Real-Time Vehicle Detection Network in Onboard Embedded UAV Imagery The ob-
jective is to develop an unconstrained multi-class vehicle detector using deep learning, a
reliable object detector for extracting traffic information from aerial images with precise
localization. The algorithm should identify the heading direction and orientation of vehi-
cles with oriented bounding box (OBB) to be used in traffic monitoring. The orientation
information is helpful for vehicle tracking algorithms that track each vehicle to estimate the
speed and acceleration to provide a dynamic traffic flow map or surveillance. The algorithm
should be invariant to different factors such as GSD, illumination, camera angle, panchro-
matic or multispectral, camera sensor, weather, i.e., no prior knowledge on the imaging.
Particularly challenging is the large size of aerial images that need additional computa-
tion, e.g., 5616× 3744 px image size and the small target object size varying from 5× 2 px
to 500× 250 px, making it hard to separate objects from the background. This algorithm
should handle different real-world scenarios often faced in disaster management situations
in which imagery is unknown in advance. Figure 7 shows an illustration of this objective.

8

Objective 3: Aerial LaneNet

Objective 4: SkyScapes – Fine-Grained Semantic Understanding of Aerial Scenes

Fig. 8. Illustration of the objectives 3 and 4. The top images show a map with extracted lane-markings using aerial images.
All types of lane-markings, regardless of their classes and locations, are extracted as single-class lane-marking. The bot-
tom images show a detailed mapped area classified into SkyScapes classes (bottom middle). The classification results are
converted to a digital vectorized map used in infrastructure and road mapping (bottom right).

Objective 3:

Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-
Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks. Lane-markings are
fundamental objects in the current modern road maps for different applications. A detailed
map without a lane-markings layer is no longer considered as detailed. To realize a detailed
and precise map for infrastructure monitoring and HD-mapping, lane-markings must be
extracted and localized. Unlike previous works, which are either dependent on 3rd-party
information such as OpenStreet Maps/Google Earth or have to use intermediate approaches
such as road extraction to localize lane-markings, the aim is to develop a deep-learning-
based algorithm independent of any 3rd-party information, i.e., it should not require any
intermediate step to localize lane-markings. Lane-markings, regardless of their class and
location, have to be extracted. The algorithm should be robust to different illuminations,
camera angles, and the presence of similar objects to lane-markings. It should have a very
high recall and precision altogether. In this step, the objective is to extract binary lane-
markings. Figure 8 illustrates this objective.

Objective 4:

SkyScapes – Fine-Grained Semantic Understanding of Aerial Scenes. Detailed maps contain dif-
ferent layers of information. Such maps should contain the location of several objects with
cm-level accuracy. HD-maps, as an example, contains information about the road surfaces,
road widths, lane-markings, lanes and more objects related to driving with high precision.
Maps for urban management and infrastructure monitoring contain objects such as build-
ings, vegetation, sidewalks. The objective is to extract the location of these objects of interest
altogether, leading to a fine-grained understanding of an aerial scene that was impossible

1.2 Reader’s Guide 9

Objective 5: AerialMPTNet

Fig. 9. Illustration of objective 5: multi-object tracking in aerial imagery using deep learning methods. The image shows
multi-pedestrian tracking in which each circle indicates one index associated with an individual person. The same algo-
rithm was used for multi-vehicle tracking with some necessary adjustments.

before. The algorithm should be able to distinguish several different lane-markings at once.
Besides, entrance/exit areas, danger areas, sidewalks, bikeways, buildings, vegetation (tree,
grass), roads, parking lots and more classes should be localized. Given the extensive range of
scales, sizes, and complex backgrounds, this objective poses a challenging task. Some classes
like entrance/exit regions have no specific appearance and are only recognizable by humans
based on their context. See an illustration of the task in Figure 8.

Objective 5:

Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a Convolutional Neural
Network and AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and
Graphical Features. As the last chain of a traffic monitoring system, dynamic objects are
tracked to extract their velocity, acceleration, and trajectory to better understand the traf-
fic status, notice hazardous areas, improve the transportation infrastructure, and identify
hazardous driving behaviors. In order to achieve this goal, AerialMPTNet was designed to
detect not only vehicles but also people despite the high number of objects. The algorithm
is based on two streams CNN, graph convolutional neural network (GCNN) and recurrent
neural network (RNN), to build a graph around an object of interest, not to confuse it with
neighboring objects and to predict its trajectory. Figure 9 illustrates this objective.

In all of these objectives, we use primarily aerial images, acquired by 3K aerial camera sys-
tem designed by the German Aerospace Center (DLR), composed of 3 cameras with the
resolution of 4K, designed for real-time traffic monitoring or disaster management applica-
tions 3 .

1.2 Reader’s Guide

This work is written based on a cumulative dissertation; the five objectives above are ad-
dressed one-by-one in the following peer-reviewed papers:

� Seyed Majid Azimi, Eleonora Vig, Reza Bahmanyar, Marco Körner, and Peter Reinartz:
Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery, Asian
Conference of Computer Vision (ACCV), [13].

� Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, and Franz Kurz: EAGLE: Large-
scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery, submitted to
IEEE International Conference on Pattern Recognition(ICPR), [9]

� Seyed Majid Azimi: ShuffleDet: real-time vehicle detection network in on-board embedded
UAV imagery, IEEE European Conference on Computer Vision Workshop (ECCVW),
UAV Vision, [8]

3 https:/ww.dlr.de/eoc/

https:/ww.dlr.de/eoc/

10

� Seyed Majid Azimi, Peter Fischer, Marco Körner, and Peter Reinartz: Aerial LaneNet:
lane marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive
symmetric fully convolutional neural networks, IEEE Transactions on Geoscience and Re-
mote Sensing (TGRS), [10]

� Seyed Majid Azimi, Corentin Henry, Lars Sommer, Arne Schumann and Eleonora Vig:
Skyscapes fine-grained semantic understanding of aerial scenes, IEEE International Confer-
ence on Computer Vision(ICCV). [11]

� Seyed Majid Azimi, Maximilian Kraus, Reza Bahmanyar, and Peter Reinartz: Multiple
Pedestrians and Vehicles Tracking in Aerial Imagery Using a Convolutional Neural Network,
Remote Sensing (MPDI). [12]

� Maximilian Kraus, Seyed Majid Azimi, EmecErcelik, Reza Bahmanyar, Peter Reinartz,
and Alois Knoll: AerialMPTNet: Multi-Pedestrian Tracking in AerialImagery Using Tem-
poral and Graphical Features, IEEE International Conference on Pattern Recogni-
tion(ICPR). [176]

The papers are included in the appendix A, B, C, D, E and F.

The thesis is structured as follows:

� Chapter 2 gives a short guide to the fundamentals of deep learning. Further, the object
recognition, detection and pixel-wise/instance image segmentation tasks are explained
in the second half of this chapter and corresponding state-of-the-art algorithms. The
subsequent chapters present more tasks specific related work.

� Chapters 3-8 It deals with the five objectives in the mentioned papers.
� Chapters 9 provides a summary of this thesis, followed conclusion and a view on the

possible future works.

2 Basics and State of the Art 11

2 Basics and State of the Art

This thesis deals with the systematic processing and analysis of aerial images. Therefore,
in this section the fundamentals of computer vision and machine learning applied to auto-
mated image processing and perception are discussed. This part is followed by the funda-
mentals of deep learning and image recognition. The second chapter of this section covers
the state of the art and problem description three areas: object detection, semantic segmen-
tation, and single-/multi-object tracking. At the beginning of each chapter, more detailed
related works are presented.

2.1 Image Analysis Fundamentals

Optical images are a valuable source of knowledge about our surroundings and the uni-
verse. The most essential sense for humans is being able to see. The introduction of digital
imagery initiated the need to analyze images through a computer program automatically.
Automatic image analysis can be applied to every area with digital images, for instance
medical imagery, quality control, and remote sensing, including images from satellites and
airborne platforms. With the easy access to inexpensive digital cameras and increasingly
growing amount of photos, the focus of automated processing of visual knowledge often
lays on interpreting everyday pictures, such as the identification of faces in family portraits,
the perception of the environment and the detection of geolocation in a holiday picture.
Due to these unregulated settings, images are captured by many sensors, which result in
a much more significant variation of the image content, e.g., the same building can appear
differently depending on the resolution, lightning condition, and angle view.

The interpretation of image contents was soon realized to be challenging. It turned out that
these tasks being very trivial for humans, are very complex for a computer to carry out. Even
the assessment of the problem is complex because human are outstanding in such tasks, and
the concern seemed straightforward or even already clear. The 1966 MIT Summer Vision
Project proposal [256], which was intended to address core vision problems, such as back-
ground separation and object characterization, is a clear example of the under-estimation of
the perception problem. After years of research, these challenges are now being addressed
efficiently to a reasonable degree by using enormous amounts of data and computational
tools for creating models having millions of parameters. Image analysis is essential for many
applications, and this is true for any task in which humans also use visual information. Sev-
eral sciences utilize this approach e.g., medical, robotics, remote sensing, mainly with a par-
ticular application of interest. A newer subtopic is called computer vision, where the focus
is not on the specific application but more on the approaches. Computer vision typically ad-
dresses datasets and problems which are easy (sometimes trivial) for humans, e.g., to detect
a person in an image.

Basic tasks are sorting images into different categories and extracting discriminative
features by encoding the image contents, which are essential for image processing systems
to evaluate remote sensing images. Unlike image processing systems, feature extraction
is carried out in computer vision systems. An vast amount of training data can be used
during the learning phase, while image processing systems have no learning phase in
which discriminative, informative and sparse features extracted during the encoding phase
are used. Therefore, a significant amount of effort has been devoted to develop automatic
feature extraction approaches[99].

Initially, simple descriptors like color histograms were extracted as features[99, 154].

12

Then, other methods based on a visual dictionary, the so-called Bag of Words(BoW), were
proposed, gaining state-of-the-art results for several years[40]. Later, more attention was
given to methods that extract sparse and discriminative features in one module and feature
learning in another module to develop more accurate image classification systems.

Mainly, there are two feature extraction approaches. Either one engineers discriminative
features or learns them by the algorithms themselves using large-scale training datasets.
This thesis focuses on the second approach.

Many databases have been created for the mentioned approach to allow accurate and repro-
ducible analyses.For instance, KITTI [101] or CityScapes for autonomous driving, ImageNet
for image classification, Pascal Visual Object Classes (PascalVOC) [92] or MSCOCO for pixel-
wise/instance segmentation and object detection. These datasets play a crucial part in the
recent progresses in computer vision tasks. In particular, it was essential to construct mas-
sive and deep neural networks with millions of parameters that outperformed other meth-
ods in multiple vision tasks using the large dataset of ImageNet [279] (1000 classes and 1000
images per class).

Early approaches sought simple mathematical models in order to solve the vision problem.
These strategies mainly led to heuristic rules and manual feature design, which iterated
these parameters (mainly manually) until satisfactory results were achieved on relatively
small datasets. The main problem is that these heuristics are often domain-specific, and
specific data usage is not obvious in advance or involves a manual process.

Methods based on a learning phase can generate substantially improved outcomes for high-
level image processing tasks e.g., object detection with a well-defined new data adaption
primarily automated for new images. The physical appearance of objects depends on multi-
ple factors, such as the illumination, angle view, context. Furthermore, the observer typically
does not know the status of these factors in advance. This fact results in a very high appear-
ance variation which leaves the issue vague and ill-posed as for the interpretation, a priori
knowledge is required. Training-based approaches can integrate a priori knowledge much
better than heuristics given enough training data.

For some simple vision tasks, the role of a priori knowledge, and thus learning-based pro-
cedures, is not critical or frequently used. As an instance, one can consider the 3D geom-
etry, which is defined by both epipolar geometry and the pinhole camera model [119]. Al-
though in problems which appear to be low-level tasks e.g., edge detection, the learning-
based methods [86, 191] using datasets purely annotated by humans have outperformed
the performance of pure algorithmic approaches [44].

For a wide variety of computer vision tasks, learning-based methods, also known as data-
driven methods, are conceived as a means to estimate the unknown and dynamic underlying
function which relate the input data to a semantically valuable output via a function (this
function can contain multiple variables such as physical illumination properties, object ap-
pearances, background, content). This methodology is fundamental in mainly supervised
machine learning, where human-annotated data is required.

In this chapter, we highlight the significant milestones and the state-of-the-art algorithms
in computer vision tasks. As the focus of the thesis lies in object detection, semantic seg-
mentation, and object tracking, this chapter provides a more comprehensive view of the
developments mainly by focusing on related works in Computer vision and earth observa-
tion from the year 2012 until early 2022. The main different tasks in computer vision are
illustrated in Figure 10.

Normally, there are two categories of how features are extracted and classified in computer
vision, including classical (or traditional) and deep learning methods; both are considered

2.2 Supervised Machine Learning 13

Fig. 10. Samples for computer vision tasks: image recognition (classifies the whole image with single label); image segmen-
tation (classifies each pixel with single label densely); object detection (localizes and classifies objects via bounding box);
and instance segmentation (provides unique classes for each instance of specific object); edge detection (classifies object
boundaries which is done either binary or multi-class). Example image is taken from the SkyScapes dataset, an image
semantic segmentation dataset of high-resolution airborne RGB images.

supervised machine learning approaches. The following sections describe machine learning
concerning supervised learning and one of its main fields, "Deep Learning," and explore
some theoretical insights to clarify the methods utilized in this work.

2.2 Supervised Machine Learning

Machine learning is described on Wikipedia as:“Field of study that gives computers the
ability to learn without being explicitly programmed". It uses a variety of approaches taken
from other domains such as estimation theory and stochastic signal processing and can be
considered as a branch of pattern recognition.

In the context of this work, supervised learning was primarily used, where both the in-
put data and the corresponding output data are available, which are referred to as training
datasets. If input data but no reference output is available, analyzing and learning patterns
in the data from another type of learning called unsupervised learning. Latter is a challeng-
ing problem since large input datasets without outputs are available. However, supervised
learning is the focus of research in this thesis. The reader is referred to [27] for learning
more on the basics of machine learning.

Generally, the purpose of supervised learning is usually to establish a function:

y = F(x,w) (1)

to convert the x input into the y output through the set w parameters. y and x can be rep-
resented by a scalar, an array, a matrix, or a higher dimension format. If x and y have a
higher dimension e.g., a matrix, they are kept digitally as vectors or scalars, and the vector
w represents the F() trainable function parameters.

For instance, let us consider an image recognition task in which a class is given to an image
with the size of rows × cols with three red, green, and blue channels. In this case, the input
vector x would be of size rows × cols × 3, and it contains image pixels intensities, while a
single scalar as output would define the actual class id.

The first step in designing the F(x,w) function is to create a functional structure. The crit-
ical step is the definition of F, which determines how the training can be addressed, what
processes can be approximated, the computational costs.

The trainable parameters of w have to be set after the configuration of the function F(x,w)
is defined. This setting is performed with data knowing both input and ground truth out-
put. This process is called a training dataset, essential for supervised learning. Ideally, the
training data should represent the actual distribution of the data, but this is not practically

14

feasible. The collection of training data takes tremendous efforts e.g., manual image annota-
tion. If the variables of the real problem are constant, endless amounts of training examples
are needed.

The training dataset is only used to estimate the actual data distribution. If the training
set is independent and identically distributed (IID), the actual distribution of data could be
estimated by a training dataset interpolation. As an excellent prior knowledge criterion,
smoothness could be considered. If the training dataset is not consistent with the accurate
data and hence not IID, then there is a need to extrapolate other specific aspects of the distri-
bution rather than to interpolate, which introduces more unpredictability. The training set
is composed of N training instances ŷn,xn,n = 1, . . . ,N , where ŷn denoting the ground truth
labels for input data xn. The prediction of the same input data using the trained function
with adapted parameters is yn = F(xn,w).

A loss function (also referred to as error/cost function)

L(ŷn,yn) =
{

0 if ŷn = yn

> 0 otherwise
(2)

must be defined in advance, which provides a criteria about the quality of the performance.
The loss will be zero if the output predictions and ground-truth are the same, otherwise it
will be a positive number.

The function parameters w is trained (learned) by minimizing the loss function w.r.t them.

w∗ = argmin
w

N∑
n=1

L(ŷn, f (xn,w)) (3)

The performance of the training data can be well predicted by solving Equation 3, but the
aim of a machine learning system is to forecast results on previously unknown data. The
training aims to establish a function that correctly predicts outputs on unknown data. This
capability is called generalized learning and is critical in machine learning. It represents the
ability to recognize certain (such as insight) features in the results. The best form of training
would require very little preparation and has a high generalization ability to a wide variety
of inputs.

A system that relies only on training data, on the other hand, is not beneficial in practice.
This method might provide a performance of 100% based on the training data which is
called overfitting, but it is simple to realize that even the slightest change in the data will
create a failure (for instance, by modifying multiple pixel values, scaling or transforming
the image).

This situation implies that the generalization potential of the system is close to zero, and it
cannot be used for real applications.If the trainable function parameters w have the dimen-
sionN , thenN points (samples) would be sufficient for fitting the function, but a reasonable
approximation could not be given beyond these N samples. Overfitting can be prevented
if the amount of training data is increased and prior information is given as input to the
method.

Regularization is the method of adding prior knowledge to avoid overfitting. There are sev-
eral regularization methods, for instance, data augmentation. Here, one way is to have the
objective function be minimized Equation 3 equipped with another concept as an additional
term, a so-called regularizer function. If the functions have trainable weights, usually the
regularizer has the term of a L1 or L2 norm to suppress weights e.g., R(w) = ||w||2. This is
also referred to as a weight decay, as it suppresses weights for which the data contains no

2.2 Supervised Machine Learning 15

Fig. 11. Illustration of classical methods. First, engineered features e.g., SIFT, HOG or LMP are extracted and then feature
classification approaches e.g., Support Vector Machine (SVM) are performed.

evidence. This would result in an optimization problem, formulated as Equation 4 or as a
energy minimization task, where λ is responsible to govern the degree of influence of the
regularizer function.

w∗ = argmin
w

N∑
n=1

L(ŷn, f (xn,w)) +λR(w) (4)

Supervised learning can be divided into various categories depending on the output func-
tion. If the output function yields a constant value y ∈ R

d where d is the output dimen-
sion, the problem is known as regression. The least-squares approach is a simple single-
dimensional case for fitting a function.

The problem is called the classification if the output has discrete values. One instance is the
problem of recognizing a single number in an input image. Here, the data input of high-
dimensional features is converted to y ∈ [0,1, ,̇9], which is the digit class of the input image.
In the field of image analysis, several tasks are formulated as classification. For instance, the
identification of cars in an image is formulated to classify the potential car positions as car
or background, and semantic segmentation as a classification for each input pixel.

Nowadays, machine learning algorithms are divided into two main categories: classical
methods or non deep-learning methods and deep-learning methods.

2.2.1 Classical Methods
In classical supervised learning methods the feature extraction and classification modules
are isolated from each other. Figure 11 illustrates this concept that these two modules are
not carried out simultaneously.

2.2.1.1 Support Vector Machines (SVMs)

Support Vector Machines (SVMs)[112] is one of the most well-known classical classifiers
which has shown excellent performance in various applications. SVM is a linear classifier
seeking to find the decision boundary to maximize the margin between samples of two
classes. The points on the margins are called support vectors as illustrated in Figure 12.

A dataset includes training data (x1, y1), ..., (xm, ym) with xi ∈ RN and yi ∈ {−1,+1} where N
is the dimension of the feature vector. Therefore, a linear classifier can be represented as a
mapping of f : RN → {−1,+1}:

f (x) = sgn(w · x+ b)
{

+1, if w · x+ b ≥ 0
−1, if w · x+ b < 0

(5)

Equation 2.2.1.1 is the formulation of the constrained minimization problem which SVM
classifier seeks to solve for linearly separable case. In this problem, the purpose is to max-

1 https://www.bogotobogo.com/python/scikit-learn/scikit_machine_learning_Support_Vector_Machines_SVM.php -
Accessed on 20.11.2016

16

Fig. 12. Support Vector Machine (SVM) classifier which tries to minimize the misclassification error by maximizing the
margins, which is specified as the distance between decision boundary and the closest samples from each class. The left
image illustrates a binary linear classification before training SVM and the right image shows the same classification after
the training:c.f. 1

imizing the distance of training sample for different classes as much as possible which is
equivalent to this minimization problem:

minimize
w,b

1
2
‖w‖2+C

n∑
i=1

ξi

subject to yi(w · · ·xi + b) ≥ 1− ξi
ξi ≥ 0∀i = 1, . . . ,n

slack variables ξi allow the data points to enter between the margins, but with a proper
penalty. The problem can be considered as quadratic programming with linear inequality
constraints. In this case, the problem would be a convex optimization problem and is
solved using Lagrange multipliers. By taking the derivation of the corresponding Lagrange
function, putting it to zero concerning w,b,ξ, and plugging the results into the original
Lagrange function, the Equation 2.2.1.1 known as primal problem describes a second con-
strained optimization problem known as Lagrange dual objective function or dual problem
in Equation 2.2.1.1:

minimize
α∈Rn

n∑
i=1

αi +
1
2

n∑
i=1

αiyiyj(xi · · ·xj)

subject to 0 ≤ αi ≤
C
n
,i = 1, . . . ,n

n∑
i=1

αiyi = 0

The solution of this problem represents a lower bound for the first problem. As the problem
is a convex optimization, it is feasible to validate the so-called Slater’s condition by com-
puting the maximizer of the dual problem, which should be equal with the minimizer of
the primal problem. This solution is precisely the optimal solution to both primal and dual
problems and also follows the Karush-Kuhn-Tucker (KKT) conditions:

αi[yi(w · xi + b)− (1− ξi)] = 0 (6)

2.2 Supervised Machine Learning 17

which means:

αi = 0 when αi[yi(w · xi + b)− (1− ξi)] > 1
0 ≤ αi ≤ C when αi[yi(w · xi + b)− (1− ξi)] = 1
αi = C when αi[yi(w · xi + b)− (1− ξi)] = 1− ξi

(7)

αi = 0 indicates the points laying outside of the margin and correctly classified. 0 ≤ αi ≤ C
represents the data points laying on the margin and only these data points have non-zero
weights which specify the decision boundary. This is the why they are called support vector.
αi = C are those points which are the margin or in the wrong side of the margin which are
wrongly classified. These points are penalized by C parameter.
Kernel Trick the original SVM considers only the linear separable case. In order to expand
the capability of SVM classifiers for non-linearity, we can use kernel method. The funda-
mental notion is to embed the data into a space where the data becomes linearly separable
as illustrated in Figure 12. This is done by replacing the xi · · ·xj with a kernel k(xi ,xj). The
kernel can for example be linear k(xi ,xj) = xTi xj or Gaussian known as Radial Basis Func-

tion (RBF) k(xi ,xj) = exp(
−‖xi−xj‖2

2σ2). SVM was used widely until 2012 where attentions were
drawn by deep neural network’s extraordinary performance.

2.2.2 Deep Learning (Neural Network) Methods
Biological and neuroscience research has encouraged the introduction of artificial neural
networks [39] by solving complex problems across a structure of nonlinear functions. This
inspiration results basically from the biological findings assuming a hierarchical structure
in the brain for understanding the environment. Hierarchy is characterized by layers where
each layer takes the input from the previous layer(s); the input values are weighted using
trained weights, and afterward, a nonlinear transformation is applied. The input and output
layers are referred to as input and output layers, respectively, while the layers not directly
visible (utilized for internal computations) are considered hidden layers. Neural networks
with several (hidden) layers define highly complex nonlinear functions that are particularly
successful. This sub-field of machine learning is called Deep Learning. It uses neural net-
works with multiple layers. In the following, the fundamentals for Deep Learning (neural
networks) are described. For more details, the reader is referred to the book [146].

2.2.2.1 Deep Learning (DL)

Designing high-level discriminative features and complex feature extraction approaches de-
fined by engineering techniques take much effort. These issues encourage a learning ap-
proach from raw data by letting the machines learn the features themselves rather than
hand-crafted features. Deep learning methods have grabbed lots of attention during the last
several years. They can extract and learn high-level discriminative features from raw data
end-to-end.

Fig. 13. Feature extraction and classification are performed together in the deep learning systems by end-to-end training
of the neural networks.

Unlike classical methods, the feature extraction from raw input data and the classification
process are performed simultaneously, and the training stage is end-to-end, as shown in
Figure 13. Various (nonlinear) transformation layers can be applied to learn discriminative

18

features during the feature extraction stage and leverage a simple classifier Softmax during
the classification step, which promises to replace hand-crafted features for good.

DL contains different methods, and it is generally a broad name for all algorithms using
neural networks. Among them Deep Neural Networkss (DNNs), Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) and Generative Adversarial Networks
(GANs) are very well-known in different domains such as CV, Speech Recognition, Natural
Language Processing, etc. DNNs and CNNs will be explained in this work.

Deep learning method have gained the state-of-the-art performance in several computer
vision tasks such as image recognition [122, 177, 292, 311], semantic segmentation [50,
283, 388], object detection [41, 273], action recognition [107, 308, 326], visual geolocation
[343, 346] and more. It is also not limited to vision tasks only and is being applied in other
fields like voice recognition [5, 68, 117], natural language processing or even in games [242]
against humans in an ancient board game called GO[291].

A deep neural network can generate an abstract and efficient functional representation with
several hidden layers which effectively represent extremely nonlinear functions and con-
vert nonlinear data clusters into a functional field that simple classification modules can
segregate.

It has been proved[18] that an arbitrary accuracy (i.e., integrated quadrant error as an ap-
proximation of a general function) is feasible using a network with a hidden layer and an
appropriate nonlinear function e.g., sigmoid, but without restricting the number of the hid-
den units. This proof means that a single hidden layer network with ample internal (open)
variables is sufficient for any problem. The concern is that such an approach becomes highly
inefficient due to the number of required processing units, while a larger-depth approxima-
tion (which needs fewer variables) would generate features with high efficiency, which are
much simpler to understand. There is no comparable evidence for general processes, nor
those used in cognitive machine processing, yet several studies suggest that deeper networks
produce successful results, for example, in image recognition [122, 177, 292, 311].

The Deep Learning theory is used for the end-to-end training of the prediction function
y = f (x,w). The features the network has found in the deeper layers become increasingly
high-level, as displayed in Figure 18.

2.2.2.2 Short neuroscience background

Figure 14 shows a sample drawing of a biological neuron and its standard mathematical
model. In the computational neuron model, the signals are received by dendrites repre-
sented by xi and multiplied by the strength of the synapse wi on that dendrite which is rep-
resented by w0x0. The idea behind this computational model is that the strength of synapses
(the weights w) can be learned. After multiplications, all results are added, the neuron can
so-called fire and give a positive output if the final sum is above a threshold. The threshold
can be determined by an activation function f . b as bias is added just a constant in the end.
A common activation function is the sigmoid function σ (x) = 1

1+e(−x)
, as it takes the summed

value and press it to the range of between 0 and 1. The idea behind neural networks is that
by stacking neurons together and building a multiple-layer system containing those neu-
rons, hierarchical features from the input data can be extracted as illustrated in Figure 15.

2.2.2.3 Deep Neural Networkss (DNNs)

A Deep Neural Network (DNN) is an artificial neural network with multiple hidden layers
of neurons between the input and output layers. The traditional neural networks have only

2.2 Supervised Machine Learning 19

(a)
(b)

Fig. 14. A drawing of a biological neuron and its mathematical model (a) A biological neuron consists of the units such
as dendrites and the axon that transfers the electrical signals to other neurons, (b) the mathematical model for the same
neuron. Inputs xi and weights of a neuron wis. The summation of the multiplication of weights and inputs with b as bias
is the input to f as activation function. The output of activation function is the output of the neuron:c.f.[93]

Fig. 15. Illustration of a simple neural network and a deep neural network. Typically for more than three layers, the term
"deep" is utilized.c.f. 2

one hidden layer, but in DNNs, there are more hidden layers. Typically, one utilizes stacked
layers of fully connected layers where each layer contains a set of neurons connected to their
in- and outputs. Neurons in the layers between the input and output layers are so-called
hidden layers. The output of the last layer, called the output layer, is the whole network’s
output. See also Figure 15 for an illustration of this architecture.

There are many weights in the network to be learned which makes it infeasible to find the
optimal value for each weight. Instead this optimization problem is solved by gradient de-
scent [186] and by a well-known process called Backpropagation (BP) [186]. The loss func-
tion L is the base of the optimization, which measures the distance between the processed
outputs and the correct output. BP is an efficient approach to compute the loss function gra-
dient δL

δwij
for one training sample. Then, the optimization (gradient descent) is performed.

This operation is done by adapting the weights to lower the loss function value by changing
the weights in the direction of decreasing gradient:

∆wij = −η δL
δwij

wnewij = woldij +∆wij

where η represents the gradient descent step size. Usually the gradient is averaged over a
set of training samples to make it more stable, before performing the first gradient descent
operation.

2 http://i.stack.imgur.com/OH3gI.png - Accessed on 04.01.2022

20

DNNs have different components described in the following parts.

Fully-connected layer is a layer in which all of input data is multiplied with all of the
weights associated with each neuron. It does computation to produce outputs by:

yk =
∑
h

Wkhxh + bk (8)

where yk indicates the output of k−th neuron,Wkh is the kh−th element of the weight matrix
W between input xh and output yk. bk represents the bias term and xh is the h − th input
neuron. The weight matrix W and bias vector b are the parameters of the fully-connected
layers which require a fixed numbers of inputs and produce an output of a fix size.

Activation function inserts nonlinear activation operations on input data. Common non-
linearities are step, sigmoid, hyperbolic tangent and rectified linear unit (ReLU), which are
illustrated in Figure 16. Nowadays, the rectifier function (ReLU) is mostly used for compu-
tational reasons.
The nonlinear Rectified Linear Unit (ReLU) is commonly used in deep networks where out-

Fig. 16. Deprecated and current popular non-linear neural network functions. Hyperbolic Tangent and Sigmoid are mostly
deprecated. Rectified linear unit (ReLU), ELU, Leaky ReLU are currently common c.f. [157].

puts of hidden units are zero, making the network sparse and linear on active units. This
function helps train neural networks with the BP algorithm since the gradients do not dis-
appear or burst on specific paths, and also, the computational execution is normally more
effective. Here, the gradient can become very high or low when many nonlinear functions
are constructed. This phenomenon is called vanishing or exploding gradient problems dur-
ing the training of neural networks. Although ReLU functions at zero are not differentiable,
and the gradient of the functions in the negative part is zero, in practice, it does not pose a
severe problem. Functions like Leaky ReLU, ELU, and SeLU have tried to address this issue.

Classifier layer is the last layer of the network and is used to compute the class probabil-
ity. The famous classifier is softmax, which is a multinomial logistic function. This func-
tion generates a vector of real values between (0,1), which denotes a categorical probability
distribution. Equation 9 denotes the probability for the j − th class and an input vector X
calculated by the softmax function

P (y = j |X;W,b) =
expX

TWj∑K
k=1 exp

XTWk
(9)

where j is the index of the class and W ,x, and b are weight, input and bias terms. During
the training phase, the loss function, e.g., cross-entropy is utilized as the loss of the objective

2.2 Supervised Machine Learning 21

function, which is appropriate for binary classification problems like object classification
and semantic segmentation, however in the testing phase, instead of the loss function, a
softmax layer is applied to compute the output scores of the network.

In order to prevent overfitting, regularization techniques are used in several ways. The
dropout procedure [302] is an extra regularization and avoids co-dependencies of weights
from training data patterns by arbitrarily disabling units. As another regularization method,
one can consider the augmentation of training data. Here, the images are converted by spon-
taneous shifts and transformations e.g., rotating or flipping airborne data, so that the main
task remains unchanged.

2.2.2.4 Convolutional Neural Networks (CNNs)

CNNss were developed basically for vision tasks. The basic concept dates back to 80s[164,
186], but due to more powerful computational resources, theoretical advances, and also
larger training datasets, they have grabbed much attention in recent years as they are now
the state-of-the-art systems for many vision applications. The main problem of using deep
neural network (DNN)s with visual data is because the images are of high dimensionality.
DNNs are fully-connected networks and have a vast number of trainable parameters. Fur-
thermore, DNNs cannot exploit the natural structures in the images, like high-correlated
neighboring pixels and the repeating patterns in most images. Therefore, CNNs were intro-
duced to address these issues.

If the data structure let, the sharing of network parameters will potentially minimize the
number of parameters and computation time effectively. Specific characteristics e.g., image
edges, are spatially restricted while higher-level features in most tasks are location agnostic.
The convolution operations and spatial data aggregation via layers can generate invariance
and weight sharing. CNNs contains convolutional and max-pooling layers for weight shar-
ing and translation of invariance, respectively.

[186] proposed a CNN in 1986 with five layers known as LeNet, which is illustrated in
Figure 17. It was constrained due to the lack of available training datasets and low compu-
tational power.

Fig. 17. Illustration of LeNet5 network architecture as the first introduced CNN network proposed by [186] in 1998 for
digit classification. It has five convolutional, two pooling, and one fully connected layer. It uses RBF as classifier instead of
a logistic regression.c.f.[186]

The Deep Learning tsunami was initiated with the forward leap of Alex Krizhevsky’s [177]
by training of a deep CNN with eight layers and many parameters on the ImageNet dataset
[79] with around one million training pictures and taking advantage of a powerful GPU
hardware. Typical convolutional neural networks contain convolutional, pooling, fully
connected, and classifier layers plus activation functions.

Convolutional layer convolves the input data with a linear convolutional filter which is
represented by Equation 25:

(hl)ij = (Wl ∗ x)ij + bl (10)

22

where l = 1, . . . ,L is the index of l − th feature map in convolution layer and (i, j) is the index
of neuron in the l − th feature map. x represents the input data. Wl and bl are the trainable
parameters (weights) of the linear filter (kernel) and the bias for the neurons in l−th feature
maps. (hl)ij is the neuron output in the l − th feature map at position (i, j). The spatial 2-D
convolution operation between input data and feature map is represented by "∗". In the VGG
network [292] as another architecture proposed after AlexNet, for instance, three channels
e.g., RGB and the first convolutional layer contain 64 feature maps. The various layers 19
reveal different features of the CNN.

Pooling layer decreases the number of parameters and the feature maps size as well as
to reduce the computation costs. Besides, the pooling layer is a technique to control over-
fitting. A nonlinear down-sampling layer yields maximum or average values in each sub-
region of input data based on this gradient. This operation can be considered aggregating
extracted features in the spatial space [−P , . . . , P]. The most well-known version of pooling
is the max-pooling layer which allows the maximum value in its window to flow into the
subsequent layers, as described by equation 11.

pti,j = max
m∈[i−P ,i+P],n∈[j−P ,j+P]

htm,n (11)

Convolutional and max-pooling layers can be seen as operations to convert the information
into a higher dimension, in which data are easier to distinguish while the spatial precision
is reduced. There are multiple types of convolutions such as atrous convolution, deformable
convolution, separable convolution or depth-wise convolution.

Generally, there are three feasible techniques of using CNNs for image classification: (I)
full-trained (from scratch) CNNs, (II) Fine-tuning CNNs and (III) feature extraction from
pre-trained CNNs[153].
The (I) approach is a trained network without any pre-training. The architecture and pa-
rameters can be fully controlled with this approach, resulting in a more efficient network,
but it requires many input data. Due to the excellent convergence of the network, it can be
easily overfitted by utilizing tiny datasets.

The (II) strategy depends on using pre-trained CNNs, i.e., networks trained on a different
but sometimes very huge dataset can be utilized for another application. The weights are
more efficiently initialized in this case as it is assumed visual data share common data, no
matter in which tasks there are being employed. In addition to that, we can assume the
model is already in the vicinity of the best local minimal and requires far less time and less
training data to converge. The training with this technique is called fine-tuning or transfer
learning to adapt the network parameters to the task of interest using its data domain. The
(III) takes advantage of an already trained CNN like for (II), but here, the network only plays
the role of feature extractor by removing the last classification layer i.e., the layer output
prior to the classifier is the extracted feature vector from the input data. For example, in
VGG16 architecture, illustrated in Figure 19, the fully connected layer before the softmax
layer with the size of 1x1x4096 can be seen as the feature vector. This feature is also called
the DeCAF feature introduced in [153].

2.2.2.5 Evolution of CNN Architectures in Computer Vision (CV)

Convolutional Neural Networks (CNNs) have evolved significantly when AlexNet was pro-
posed during the ImageNet Large Scale Vision Recognition Challenge (ILSVRC) 2012. In
this part, a quick review of the significant milestones on CNN architectures that have been

3 https://bdtechtalks.com/2019/06/10/what-is-transfer-learning/neural-networks-layers-visualization/ - Accessed on
8th February 2022

2.2 Supervised Machine Learning 23

Fig. 18. Visualization of multiple levels of a deep neural network. The images on the left display restored patterns that
contribute to high feature map activations, and corresponding image patches can be noticed at right taken from [371]. The
restored patterns are projected into pixel space using the deconvolution network method. Simple features e.g., edges, lines,
and corners, are extracted in the first layers while higher-level and complex features are extracted in the upper layers c.f. 3 .

24

used for image recognition on well-established datasets, mainly ImageNet, is provided.
Knowing and understanding these networks is necessary as they play the role of a back-
bone architecture for most other CNN algorithms for object detection and image segmenta-
tion. Generally, CNNss are divided into five categories: Prime Designs (including AlexNet,
ZFNet, and VGG versions), Inception Variants, the ResNet Family, the MobileNet series as
well as Efficient designs (architectures designed for network architecture search to be more
efficient).

In order to compare CNNs performances, two factors should be taken into account. The
acc@5 accuracy of the ImageNet dataset challenge provided by ILSVRC indicates the prob-
ability of the first five predictions for an image. A second factor is several parameters. The
acc@5 shows how well the network classifies an image, and the number of parameters shows
the efficiency of the process i.e., higher accuracy and lower number of parameters is sought.

Prime Architectures

AlexNet [177], named after Alex Krizhevsky, ZFNet [371] proposed by Zeiler and Fergus,
and VGGNet [292] developed by Visual Geometry Group were the beginning three prime
architectures which are very similar in their designs, as they contain stacked convolution
layers with max-pooling.

Fig. 19. Illustration of VGG-16 architecture proposed by [292] for image recognition. It composed of 13 convolutional, 5
max-pooling, and 3 fully connected layers with softmax as the classifier layer and ReLU as activation function. The input
size is 224× 224× 3. WxHxD indicates width, height and number of feature maps for each layer.

All extract deep feature maps by subsequent layers while decreasing the resolution and
increasing the number of neurons. Finally, a fully-connected layer with a softmax is used
as the final classifier to predict the probability of each class. AlexNet uses kernel sizes of
11×11 and 5×5 with 62millions parameters and achieves 81.8% acc@5. It contains 650000
neurons organized in eight layers. This architecture improved ILSVRC-2012 challenge by
10%. ZFNet utilizes smaller kernels of 7× 7 and 5× 5 to achieve 83.5% acc@5, arguing that
smaller kernel sizes make the receptive field smaller leading to more information extrac-
tion. The smaller kernel also helped to create the network even deeper. VGGNet caused a
significant leap in the accuracy performance. Simonyan and Zisserman proposed a network
of 19 layers starting with four stacked convolutional layers followed by max-pooling. They
used an even smaller kernel size of 3 × 3, still being used in the latest architectures. VGG
won ILSVRC-2014 challenge, similarly trained with ImageNet dataset, and there are two
variants of it, the VGG-16 and a bit more accurate variant VGG-19. VGG16 illustrated in
Figure 19 contains 13 convolutions, five pooling and three fully-connected layers with an
input image size of 224x224x3.

The main contributions of prime architectures are:

� high number of stacked convolutions to make the network deep by using pooling with
stride 2.

� Using ReLU [] activation function after convolutional layers to avoid vanishing and
exploding gradients during BP.

2.2 Supervised Machine Learning 25

� Using constant kernel sizes in the stacked convolutions enlarges the receptive field and
let the network to be deeper as used in VGG-19.

Inception Family Contemporary to VGG-19, the GoogLeNet [311] architecture with In-
ception modules was proposed by Google. Later, other variants of this architecture were
introduced so that the first version with 21 convolutional layers is called Inception-V1. The
main idea is to use inception modules after the first convolution layers as repeated build-
ing blocks with max-pooling layers to decrease the spatial resolution. An Inception block
comprises parallel convolution layers with various kernel sizes and max-pooling, leading
to higher feature representation variation from the same input layer. Another idea is the
introduction of so-called bottleneck layers to avoid a surge in the number of parameters by
using a 1× 1 convolutional layers before the parallel convolutions to reduce the number of
the input feature maps, which helps to reduce parameters while extracting richer features.
Another contribution is the introduction of two middle classifiers as auxiliary classifiers to
avoid gradient vanishing due to the deep structure. Here early layers with additional gra-
dients are provided during the training phase only. Inception V1 achieved acc@5 of 89.9%,
having only 6.8 million compared to 144 million parameters of VGG-19 with acc@5 score
of 92%.

Shortly afterwards, [151] adapted the Inception-V1 with a novel implementation by intro-
ducing Batch Normalisation (BN) layers after convolution and before the activation func-
tion. In addition, the authors also added as a minor adaption 3×3 kernels similar to VGG19.
BN was proposed as a solution to address vanishing and exploding gradients. As the net-
works become deeper in-depth, this issue gets more important for the convergence of the
network during the training phase, which led Inception-V1 with BN to surpass VGG19. The
same author improved the idea of inception modules in Inception V2 and V3 [312] by ap-
plying factorization on convolutions with the same 3 × 3 kernels. Factorization can split a
kernel of k × l into a stack of 1× k and n× 1 kernels leading to 1× l × c + k × 1× c parameters
compared to k × l × c which is more efficient. This idea was further improved by Inception
V4 [309].

The concept of convolution feature map factorization can also be transformed into depth-
wise factorization. [63] proposed this extreme approach by mentioning “[. . .] that cross-
channel and spatial correlations can be mapped completely separately” in his work. Further,
a new network called Xception was presented, which used exclusively depth-wise separable
convolutions in addition to the main stem. Depth-wise separable convolutions are consist
of 1×1 point-wise convolutions after 3×3 depth-wise convolution for each channel without
activation functions in the middle. The performance of Xception is similar to Inception
V3 but has roughly fewer parameters. To summarize, the inception family of architecture
contributes to the DL with different cornerstones for state-of-the-art (SOTA) CNNs: complex
building blocks and bottleneck designs, BN to address gradient issues in Stochastic Gradient
Descent (SGD), and depth-wise separable convolutions using factorization in both spatial
and depth domain.

ResNet Family In addition to inception blocks, Xception is also utilizing often-called resid-
ual connections, which are related to another family of CNN architectures, the ResNet Fam-
ily. Simultaneously to Inception V2, in late 2015, the first ResNet [122] was introduced,
having its name from the residual connections in its building blocks. The input depth is
technically reduced by 1× 1 in the main trunk of the block, and after feature extraction by
3× 3 convolution, the feature map depth is optionally increased by a 1× 1 convolution.

In the ResNet block, the input is branched away from the main block trunk and then appears
after 1 × 1 convolution, and this branch is called residual connection or, in case of no data
manipulation, an identity connection.

The reasons for the very good performance of ResNets are that the ResNet building blocks

26

are less complex than the inception ones and can be stacked deeply. Nevertheless, this will
also lead to gradient degradation. Instead of using auxiliary classifiers like in Inception
models, ResNet formulated the problem differently. ResNet considersH(x,Wi) as the convo-
lution function and formulated this function as H(x,Wi) := F(x,Wi) + x where Fis the main
trunk function and x is the layer input. In this way, the approximation is more straight-
forward, with residues as known input. Even if F becomes zero, the residue as an identity
function can be learned, letting the gradient to flow to a deeper layer without degradation
and the need for auxiliary classifiers. ResNet-32, -55, and -152 are variants of ResNet models
with different depths. ResNeXt [352] is also a variation of the ResNet family, which proposed
cardinality as parallel convolutions with fewer feature maps which are implemented with a
group of convolutions as well as ShuffleNet [379] and with the redesign of 3×3 convolutions
as it was introduced in the ResNeXt-101 version. Another variant of ResNets is DenseNet
[158]. It used the residual connection idea and extended it to several previous layers mak-
ing multiple residual connections for each single convolution layer. It was introduced in the
DenseNet-264 version and achieved relatively similar performance to ResNeXt or ResNet
with significantly fewer parameters. Worth mentioning is Squeeze and Excitation Network
(SENet) [139] module as an improvement module for different architectures based on the
idea of feature map weighting.

Efficient Designs It is essential to define the CNNs modular principle, including building
blocks for the next generation of CNNs. A significant milestone in 2017 has resulted in
today’s state-of-the-art algorithms in image recognition which is the self-design by neural
networks so-called Neural Architecture Search (NAS) [313, 400].

As mentioned, the main research goals are to improve the accuracy and efficiency of DL
algorithms. In order to improve the efficiency, the parameters shall be chosen carefully. The
first design focused on this aspect was the MobileNet family achieving an outstanding per-
formance of acc@5 89.9% with only 4.2M parameters using the MobileNet-224 variant. The
design includes an excellent idea of depth-wise separable convolution using 3× 3 convolu-
tion for each feature map and applying a 1×1 convolution for each output point. MobileNet-
V2 [281] improved this idea by using the inverted version achieving acc@5 of 92.5 with only
6M parameters. An overview of the performance is listed in table 32.

After the first version, NasNet [400] was introduced. NasNet automates the task of CNN
network design with the same approach of [177], but instead of learning features, this time
the architecture is learned by CNNs themselves. In NasNet, only a search space composed
of fundamental building blocks were specified and controlled by a network such as RNN
to look for the best configuration or so-called child network using reinforcement learning,
which tries to maximize the accuracy of the network for the defined dataset iteration-wise.

However, as the target dataset might be significant, like ImageNet, it needs many compu-
tation costs. Instead, a small dataset like Cifar is used first and then gradually scaled up
to meet the more significant variance of larger datasets. PNASNET-5 adapted the NAS ap-
proach by gradually changing the children’s training and search space procedure. Similar to
MobileNet, the approach of NAS was adapted to introduce MobileNasNet (MnasNet).

EfficientNets proposed by [314] in late 2019 with different versions from B0 to B7 together
with its variation EfficientNets [321] represent at the moment the state-of-the-art in image
recognition task. They used the same search space as in MnasNet, and therefore, as an opti-
mization rule, they utilized a scaling approach in the dimensions width, depth, and resolu-
tion of the network. They reach 97.1% acc@5 using EfficientNet-B7 having only 66M param-
eters. The evolution of CNNs from AlexNet until EfficientNet involved different but main
components forming characteristics of CNNs: residual connections, factorizations, search
space, and bottleneck designs. Although NAS, together with the scaling approach, presents
how flexible CNN design can be, the structure of CNNs stays still the same: input, stacked

2.3 Object Detection 27

Table 1. Overview of progress in image recognition task by CNNs. Bottleneck and factorization describe ideas primarily
proposed by the Inception models, while Residual refers to the residual connections developed in the ResNet models. The
NAS stands for network architecture search, as the latest approach introduced in the CNN architectures. (M) stands for
millions and acc@5 for the ImageNet dataset accuracy.c.f.[129, 130]. ∗: The reported accuracy is acc@1. State-of-the-art
results as of 1st January 2022.

Architecture Year Bottleneck Factorization Residual NAS M Parameters acc@5 [%]
AlexNet [177] 2012 62 81.8
ZFNet [371] 2013 62 83.5

VGG-19 [292] 2014 144 91.9
Inception-V1 + BN [151] 2015 X 11 92.2

ResNet-152 [122] 2015 X X 60 95.5
Inception-V3 [312] 2015 X X 24 94.4
DenseNet-264 [142] 2016 X X 34 93.9

Xception [63] 2016 X X X 23 94.5
ResNeXt-101 [352] 2016 X X 84 95.6

MobileNet-224 [135] 2017 X X X 4.2 89.9
NasNet [400] 2017 X X X X 89 96.2

MobileNet V2 [281] 2018 X X X 6.1 92.5
MnasNet [313] 2018 X X X X 5.2 93.3

EfficientNet-B7 [314] 2019 X X X X 66 97.1
FixEfficientNet-B7 [321] 2020 X X X X 66 98.2

Florence-CoSwin-H [368] 2021 637 99.02
CoAtNet-7 [72] 2021 X X 2440 90.88∗

convolutional backbones and the head classifier. At the moment of writing this report, the
state-of-the-art architecture is CoAtNet-7 [72] from 2021 with 90.88% acc@1 without re-
ported acc@5. This algorithm is based on Conv+Transformer and JFT-3B with two main in-
sights: unified depthwise convolution and self-Attention, vertically stacked convolution and
attention layers. At the moment, Transformers are the new frontier in the recent advances in
computer vision tasks. Currently, Florence-CoSwin-H [368] has reported the highest acc@5
of 99.02%. The acc@1 of Florence-CoSwin-H is 90.05% which is slightly less than CoAtNet-
7.

2.3 Object Detection

Object detection term is used in computer vision as a task of joint object localization and clas-
sification. Depending on the implementation, localization can vary, but the most common
approach for localization is using aligned rectangles or Horizontal Bounding Box (HBB).
The approaches described in this section fall into the category localization and classification
of objects, e.g., vehicles in aerial images. This part provides preliminary information on the
object detection task and the state-of-the-art algorithms.

Object detection is an approach that generates possible object locations called object pro-
posals as a regression task, and secondly, another part classifies each object proposal as an
object of a specific class or background as a classification task. This procedure poses sev-
eral challenges. First, the design of a fast and reliable algorithm is required, which proposes
enough objects covering all different possible object sizes, scales, and aspect ratios, i.e., the
number of possible object proposals is usually very high. Secondly, a highly accurate object
proposal classifier is required. Traditionally, sliding window fashion did the object proposal
step in several previous works[32, 328, 329] before the deep learning era, which has restric-
tions regarding the size, scale, and positions of objects. On the other hand, the algorithm
is fast for binary classification combined with hand-crafted features such as Haar-like or
other more advanced features such as Histogram of Oriented Gradients (HOG) [73] ones
and boosting algorithms. HOG features in combination with a SVM classifier was the state
of the art object detector for several years, particularly after applying it to Deformable Part
Models (DPMs) [85, 94].

28

The rule of DPMs was over after Ross Girschik proposed Region-based convolutional neural
network (RCNN) [106] method in 2014, based on the deep-learning approach. RCNN used
the selective search [322] approach as object proposal module and a combination of deep
learning neural network features and SVM as object classification step outperforming all
previous object detection algorithms with a large margin.

Several benchmarks are available to compare the performance of computer vision algo-
rithms on object detections and to train deep learning models. One of the most well-known
is Microsoft-Common Object in Context (MS-COCO) [202]. The criterion is the Maximum
a prosteriori (MAP) for general cases, but only Average Precision (AP) is used in the MS-
COCO. Here according to the definitions, they are the same.

The AP used in MS-COCO is also called AP[0.5 : 0.05 : 0.95] which is an average across
all classes over ten Intersection over Union (IoU) levels which we compute between the
ground truth label and the model output. AP must then be calculated according to MS-
COCO guidelines. For the AP of IoU the average of interpolated precisions for 101 recall
values r ∈ {0.0, ...,1.0} with equal distance is used. Precision and recall are defined by:

P recision =
T P

T P +FP
= p (12)

Recall =
T P

T P +FN
= r (13)

where TP are true positives, FP false positives and FN false negatives. The precision recall
curve p(r) is defined by

pinterp(r) =max
r>r

p(r)

with pinterp(r) as the interpolated values. In the end, AP is calculated by

AP =
1

101

∑
r∈0.0,...,1.0

pinterp(r)

For AP with IoU values of 0.75 and 0.5, also the terms AP − 75 and AP − 50 are used.

PASCAL-VOC [92] is a well-known benchmark for object detection. In the Pascal-VOC 2007
test set, MAP is used instead of AP with the difference of 11 instead of 101 bins and a fixed
IoU. As mentioned, object detection is a multi-step task. Whether we address these two tasks
separately or together, deep learning-based object detection algorithms have two categories:
1) two-stage object detectors and 2) single-stage object detectors. Generally, two-stage de-
tectors have higher MAPs demonstrated from late 2013 until 2020. On the other hand, one-
stage detectors have lower MAPs but are lightweight models with fewer parameters making
them faster and more efficient, measured in frames per second (metric) (FPS).

Two-stage detectors localize the objects via a class-agnostic region proposal network as the
first stage and then classify the objects inside potential proposal regions in the second stage.
We perform a second bounding box regression to refine the object proposal during the object
classification phase. On the contrary, one-stage detectors simultaneously perform bounding
box regression and class prediction from the input image in a single shot. These are critical
approaches and significant contributions to the progress of CNNs in object detection. The
focus of this thesis is on two-stage object detectors, but we explore one-stage object detectors
for the onboard UAV edge computing.

2.3 Object Detection 29

2.3.1 Two-Stage Detectors
Ross Girschik[106] introduced Region based CNN (R-CNN) in 2013, which uses CNN as
backbone to classify each region proposal generated by a traditional class-agnostic algo-
rithm called Selective-Search [322]. The backbone CNN used here was AlexNet. In another
version, VGG16 is used as a backbone to generate discriminative features from each region
proposal. These features are given to binary SVM classifiers separately for each class predic-
tion. A class-sensitive bounding box regressor is applied initialized with the region proposal
to improve the object localization. With R-CNN, the PASCAL-VOC benchmark improved
significantly, achieving MAP of 66%. However, R-CNN is suffering from several drawbacks.
We have to perform different tasks repetitively and separately, e.g., we carry out feature
extraction for each region proposal or SVM classifier. Therefore, no end-to-end training is
feasible, as the region proposal has to be done first, then CNN and finally, SVM is applied.

As the successor of R-CNN, Spatial Pyramid Pooling Network (SPPNet) [121] inspired by
the R-CNN methodology was introduced, which fixes some of the R-CNN issues. SPP was
not a new concept, but it was a new application in the CNN context. SPP is available in
various scales and input variables, resulting in a fixed output length of 4096. It allows object
detection to be more robust because objects typically appear at various sizes in images, and
it enables an analysis of many different sizes. The SPP layer removes the last pooling step
inside the convolution backbone. Another improvement in SPPNet’s overall architecture
was a significant speed boost of a hundred times better than the initial R-CNN. Instead of
processing each region proposal by a selective search, the feature extraction from the whole
image for all region proposals is done by applying the convolution backbone with the SPP.
SPPNet also uses a fast version of ZFNet as a backbone. Although, MAP is less than R-CNN,
it is 38 times faster.

Fast R-CNN: Ross Girshick implemented R-CNN + RoI pooling based CNN (Fast R-
CNN)[278] as well. It applies the SPP layer for the selective search of region proposals,
making it a standard for two-stage detectors. The pooling layer of Regions of Interest (RoI),
which links the convolutional backbone with RoI classification and bounding box regres-
sion, is another similarity between Fast R-CNN and SPPNet. The RoI applies max-pooling
to the backbone feature map. The result is divided by the value given by selective search,
and it outputs a fixed resolution feature map. One of the main differences between Fast
R-CNN and SPPNet is that a multi-task head performs classification and regression simul-
taneously in fully connected layer feature maps. Like for R-CNN, a selective search is used,
but feature extraction and classification are unified, and there is no SVM required because
of summing the classification and regression losses. Thanks to this new approach, the train-
ing gets faster and more efficient, but there is still no end-to-end training feasible due to the
selective search usage. Fast R-CNN uses VGG-16 as convolutional backbone.

Faster R-CNN: Faster R-CNN[273], proposed in 2015, is a next descendant of the R-CNN
family. With the implementation of the Region (RoI) Proposal Network (RPN) module, the
two-stage detectors became end-to-end trainable as they are centralized in a single network
and perform the object detection task as a whole. RPN is a small, fully convolutional net-
work that is inserted after the convolutional backbone. The translation-invariant anchor
boxes for different scales and aspect ratios are generated for each sliding window location.
The proposed algorithm used nine anchor boxes with three scales and aspect ratios. As mul-
tiple anchors are produced at each location, a large overlap and many noisy proposals are
caused. For selecting fewer, but more valid region proposals, an anchor with a IoU score
higher than 0.7 is considered as a positive anchor and the one with less than 0.3 as negative.
Then, each positive anchor is regressed and classified as to whether it contains an object
of interest by using another multi-task loss function. Finally, the result is sent to the RoI
module. Besides, the rest of the model is the same as Fast R-CNN. If VGG-16 is changed to
ResNet-101, R-CNN + RPN + RoI pooling based CNN (Faster R-CNN) achieves 27.2% MAP

30

compared to 21.9% using VGG-16.

Higher AP on MS-COCO are achieved by addressing the following problem. High-level se-
mantic features are desirable for classification but have a lack of localization. On the other
hand, object detection requires precise localization information to find objects in various
scales and appearances. Similar problems occur in the image segmentation task.

FPN: The bottom-up feature pyramid structure in the convolutional backbone can be uni-
fied with a parallel top-down module to combine extracted features in different scales. This
idea was proposed by Feature Pyramid Network (FPN) [385]in 2016. The proposed top-
down path upsamples the backbone feature maps by using nearest-neighbor interpolation.
It adds them starting from the last layer of the bottom-up path with lateral connections
from the corresponding bottom-up layer. Thus, fine-grained low-level features with high
spatial information are fused with the rich and deep semantic but coarse features maps, al-
lowing combining the advantages of features maps from both groups in different sizes and
scales. In total, three feature pyramid levels are considered. The first stage of the backbone
is ignored due to the demanding computational cost. Then, at each top-down level, feature
maps are inserted to separate RPN with three aspect ratios. It is worth noting that no scales
are provided by the FPN. The FPN improved the performance of Faster R-CNN with the
same backbone model by 8.6% AP reaching up to 35.8% AP in MS-COCO. The last feature
maps from each convolutional backbone stage are coupled with the upsampled feature maps
from the top-down path to augment the semantically high-level feature maps with precise
location information. The Path Aggregation Network (PANet) [211] and Bi-directional FPN
(BiFPN) [315] are two versions of the FPN enhancing the original FPN structure with extra
bottom-up paths and skip connections, respectively.

In 2017, Lin et al.[201] proposed a new loss function called Focal Loss to address the com-
mon issue of unbalanced datasets specifically for object detection, defined as

FL(pt) = −(1− pt)γ log(pt) (14)

Essentially, it acts by adding a parameter (1−pt)γ to the standard CE criterion. Setting γ > 0
decreases the relative loss for correctly detected objects pt > 0.5, while putting more stress
on difficult, FP examples. Here the tunable parameter for focusing is γ ≥ 0. Focal Loss causes
the underrepresented classes to have a higher chance to be included in the training batch.

Mask R-CNN: In 2017, He et al. [120] introduced an end-to-end trainable model, for in-
stance semantic segmentation combining both object detection and image segmentation.
The third head with instance mask segmentation performs the semantic segmentation task
using the features from RoI and FCN proposed by [218] in addition to the already existing
two heads for object classification and bounding box regression in the original Faster-RCNN.
The third head generates binary class-specific masks for each object as output.

By using max-pooling inside RoI, the precise sub-pixel location of objects in the regions is
lost. To address this issue, RoI align is applied instead of Discretised pooling of Regions of
Interest (RoI pooling) to achieve a higher spatial localization precision. Instead of quantizing
the RoI coordinates to a distinct granularity, they are processed as floating-point numbers.
The values are sampled at four uniformly spaced points to get features for each RoI bin. The
values are interpolated bilinearly and aggregated using average or max pooling. Regular
object detection is still possible with instance segmentation architectures. Here, 39.8% AP
is achieved by Faster R-CNN + FCN based instance segmentation (Mask R-CNN) as output.

In 2018, Cai et al.[42] suggested an additional optimization of Faster R-CNN. For RPN
methodology, which is still the state-of-the-art two-stage detector, a positive anchor is pre-
dominantly described by an IoU from 0.5 to 0.7 during training. Due to this trade-off, more
interesting areas are identified as positive anchors, which leads to small IoU differences to

2.3 Object Detection 31

noisy region proposals. On the other hand, high IoU values lead to many false negatives,
which are caused by the potential decline of the bounding boxes after RPN. Thus, to resolve
this problem, a cascade of increasing IoUs is proposed. In the beginning, the proposals of
RPN are extracted in RoI with 0.5 IoU and the classification and regression are carried out
as before. The results are now again inserted to RoI as if they were RPN outputs. However,
this time an IoU of 0.6 is applied. Afterward, again RoI is applied, which is repeated up to
an IoU of 0.7 to produce the final predictions. Similar to Mask R-CNN, later Cascade Mask
R-CNN was proposed by [43].

After reconsideration of the FPN, it is recognized that no highly spatial information will
be passed to the last bottom-up path. PANet [211] introduces another lateral path, the so-
called low-level bottom-up path, to the first level of top-down in FPN, which combines
both informative spatial features and rich semantic features. It reaches 45% AP using the
ResNeXt-101 backbone.

FPN demonstrates the variation of scale approach during training. Besides, other ap-
proaches such as SNIP and its newer version SNIPER [293] (Scale Normalisation for Im-
age Pyramids with Efficient Resampling) also propose multi-scale training. The scale-aware
TridentNet [190] is another example of how to handle the scale by using atrous convolu-
tions. They utilize Trident blocks, which have the form of three atrous convolution branches
with different atrous rates sharing weights for overfitting prevention, but with the cost of
tripling the number of parameters. This approach is very beneficial for the detection of
small objects. The branch with the lowest atrous rate has the best activation and suppresses
the other branches. The method is aggregated with Non-Maximum Suppression (NMS).

Despite the success of FPN based methods, the backbone remains almost untouched, as it
was mostly designed and pre-trained for image recognition tasks. To address this problem,
Composite Backbone Network for R-CNN based networks (CBNet) [214] proposed a method
to change a few layers in the single backbone as the assistant backbone while having one
main leading backbone as a specific novel backbone. It extracts features in the assistant
backbone and passes them to the leading backbone to process multi-scale features using
Adjacent Higher-Level Composition. After this, the extracted features are handed over to
the detector. Using the CBNet backbone and Triple-ResNeXt-152 Cascade Mask R-CNN, the
authors achieve 53.3% AP on MS-COCO.

The majority of the object detectors are inspired by the R-CNN family. However, one-stage
object detectors are also less complex, using predefined anchor boxes to extract features
from backbone networks and then pass the features to the detector head, which leads to
more efficient models. A quick description of one-stage detectors is given in the next part.

At the time of writing this work, Florence-CoSwin-H [368] has the state-of-the-art perfor-
mance of 62.4% mAP on the COCO test set and is based on Swin-Transformer [216]. The
authors introduce a new computer vision foundation model to extend the coarse represen-
tation, i.e., scene to the fine representation, i.e., object and other larger extensions. Their
model can be used in different tasks, including object detection. Also, at the moment, Cas-
cade Eff-B7 NAS-FPN[103] has the state-of-the-art mAP of 89.3% in the PASCAL-VOC 2007
benchmark, which is based on a simple copy-paste approach as strong data augmentation.

2.3.2 Single-Stage Detectors
As the first single-stage detector, YOLO (You Only Look Once) [267] was proposed 2015,
to be called YOLO-v1. The methodology of YOLO is to provide lightweight models which
run in real-time or faster on mobile platforms but at the expense of performance. YOLO-v1
divides the image into different cells. The model tries to find object centers by simultaneous
object classification and bounding box coordinate regression, all in one stage. By NMS, the

32

resulting boxes are sorted using a class-agnostic objectness score. YOLO-v1 is able to achieve
36.4% AP in PASCAL-VOC 2007 dataset, a bit behind Faster R-CNN, but running at 45 FPS
significantly faster than Faster R-CNN at 7–18 FPS depending on the used backbone. YOLO-
v2 [268] proposed new approaches such as multi-scale training, a customized, fast backbone
called DarkNet-19, a fully convolutional architecture, a batch normalization directly after
convolution, and, more importantly, the usage of anchor boxes. Unlike Faster R-CNN, the
anchors are chosen using a clustering algorithm called K-means, having five bins. This step
proved crucial as the anchors define the resulting object size. For each pixel of the last
feature map of the backbone, five boxes are predicted, which will be refined by NMS. The
largest model has 17× 17 px in the last feature map. The method achieved 78.96% MAP on
PASCAL-VOC, achieving the state-of-the-art performance and 21.6% AP in MS-COCO on
par with the state-of-the-art models at that time.

As another member of the YOLO family, YOLO-v3 [269] was proposed using residual blocks
inspired by ResNet for its backbone DarkNet-53 and by FPN module, which combines low-
level spatial features with rich deeper semantic features. This version works better on small
objects as it uses multi-scale feature maps and nine anchors determined by K-means, i.e.,
three anchors for each scale makes it similar to Single Shot MultiBox Detector (SSD) [212],
which was proposed in 2016 and performed a various-scale training. However, still, the
anchors are set manually. SSD was able to achieve 26.8% AP using VGG-16.

In 2019, Tan et al. [315] proposed EfficientDet, a one-stage detector that further closed the
gap towards the performance of two-stage detectors. Using the EfficientNet family as a back-
bone, they further use its compound scaling approach. Instead of using FPN at the end of the
EfficentNet, they redesigned it to BiFPN. Here, they use the improvements of PANet [211]
like an additional bottom-up and orthogonal path to both top-down and bottom-up streams,
which are proposed in NAS-FPN [105] firstly. Feature connectivity across the FPN block is
hence improved by a bidirectional flow inside the feature pyramid. The best performance
with the EfficientDet-D7 variant using auto-augmentation is reached 52.2% AP. By replac-
ing the current backbones with a stronger one, the state-of-the-art performance of 55.1%
AP up to now was achieved. An overview of the evolution of CNNs for object detection is
shown in Table 2. In 2020, YOLO-v4 [28] was proposed, achieving 43.5% mAP. Its scaled
version Scaled-Yolov4, based on the CSP [331] approach, has achieved 55.8% mAP in 2021.
As the latest model in 2022, YOLOR [332] has the mAP of 55.4% in the YOLO family, which
is slightly less than Scaled-Yolov4.

2.4 Semantic Segmentation

2.4.1 Pixel-wise semantic segmentation
As mentioned in the last part, the features extracted by a convolutional network carry high-
level semantic information to predict classes in the whole image. On the other hand, for
the image semantic segmentation task, also these features are used to predict the classes,
but this time on the pixel-level which results in the challenge that feature maps are usually
down-sampled during the backbone convolutional networks in order to increase the seman-
tic information. Hence, the spatial information is lost during this resizing operation. As a
result, there is a confrontation between extracting high-level features and high-resolution
features for which a trade-off has to be found.

In addition, to predict the class of pixels, we should note that contextual information is
essential. This information is observed in both local and global regions around each pixel,
depending on the continuity and size of the context of the pixel and other classes. Hence,
pixel-wise semantic segmentation is considered a multiscale context task, although single

2.4 Semantic Segmentation 33

Table 2. This table shows a summary of the evolution of deep learning algorithms for object detection with their milestones,
categorized into main two- and one-stage detectors. Backbone is the used CNN for feature extraction; RPN shows whether
a region proposal network is utilized; RoI indicates the type of pooling for the RoI; Anchors shows whether initialized
anchor box sizes are used; NAS indicates whether neural design search is used; Multi-scale Feature indicates if multi-scale
feature extraction is utilized, and finally, AP shows the MS-COCO dataset performance.c.f. [129, 130]. State-of-the-art
results as of 1st January 2022.

Two-Stage Detector
Architecture Year Backbone RPN RoI Multiscale Feature AP [%]
R-CNN[106] 2013 AlexNet -

Fast R-CNN [371] 2015 VGG-16 pooling 19.7
Faster R-CNN [292] 2015 VGG-16 X pooling 27.2

Faster R-CNN+FPN [151] 2016 ResNet-101 X pooling FPN 35.8
Mask R-CNN [120] 2017 ResNeXt-101 X align FPN 39.8

Cascade R-CNN [42] 2018 ResNet-101 X align FPN 50.2
PANet [211] 2018 ResNeXt-101 X align FPN 45

TridentNet [190] 2019 ResNet-101-Deformable X pooling 3xAtrous 48.4
Cascade Mask R-RCNN [215] 2019 CBNet (3xResNeXt-152) X align FPN 53.3O

Swin-Transformer [216] 2021 Swin-L(HTC++) 58.7
Florence-CoSwin-H [368] 2021 CoSwin-H pooling 62.4

Single-Stage Detectors
Architecture Year Backbone Anchors NAS Multiscale Feature AP [%]

YOLO-V1 [267] 2015 custom -
SSD [212] 2015 VGG-16 X X 26.8

YOLO-V2 [268] 2016 DarkNet-19 X 21.6
RetinaNet [201] 2017 ResNet-101 X FPN 39.1
YOLO-V3 [269] 2018 DarkNet-53 X FPN-like 33

EfficientDet-D7 [315] 2020 EfficientNet-B6m X X BiFPN 52.2
YOLO-v4 [28] 2020 CSP-Darknet53 X FPN-like 43.5

Scaled-Yolov4 [331] 2021 CSP-P7 X FPN-like 55.5

pixels are classified. The recent advances are more focused on exploiting contextual infor-
mation in different stages of the network to extract high-level features and reconstruct the
high-resolution spatial output in the last prediction layer.

As semantic segmentation predicts on the pixel level, the benchmark dataset and the evalua-
tion metrics to evaluate different architecture have to vary from those in image classification
or object detection tasks. In this chapter, we select the PASCAL-VOC 2012 benchmark test
in the Computer Vision community as it is the fundamental benchmark in evaluating image
segmentation tasks with a long tradition compared to the new and more challenging bench-
marks like CityScapes datasets. As a result, the Earth Observation semantic benchmarks
also use the metric of the PASCAL-VOC dataset. The most used metric in this benchmark is
mean intersection over union (mIoU) as defined:

mIoU =
1
C

C∑
c=1

| yct ∩ ycp |
| yct ∪ ycp |

(15)

where C is the class number, | yct ∪ ycp | is the union of true class for pixel y, as yct and
its prediction ycp per class and | yct ∩ ycp | is their intersection per class. mIoU is then the
average of intersection over union (IoU) for each class which is between 0 and 1, and the goal
to reach one or 100%. Different benchmarks have established benchmark tables indicating
which algorithm has achieved the higher mIoU so far, which has been increasing over the
years. In the rest of this chapter, the main focus is on the FCNN notion. There are, however,
other approaches using LSTMs or GANs, which are not the mainstream of the state-of-the-
art algorithms. The reader can refer to Minaee et al.[240], and Garcia-Garcia et al.[100]
works for more information. The pixel-wise semantic segmentation was initiated and still is
heavily influenced by the work of Long et al.[218], who proposed FCNs in 2014 for the first.
The following two groups are discussed as the evolved architectures of FCNs, naïve-decoder
and encoder-decoder architectures.

Chen et al.[50] introduced the term of naïve-decoder concerning the upsampling of features

34

maps by only bilinear interpolation without using any information from the down-sampling
part of the backbone network. The general process of such models, is to use a convolu-
tional backbone to extract high-level semantic features, followed by one upsampling layer
to reconstruct the spatial resolution of input using bilinear interpolation. In the last step,
pixel-wise classification, mainly by the softmax function, is applied to obtain the final seg-
mentation output. Optional post-processing can also be used before this step, such as CRF
proposed by the same author in [48].

On the other hand, in encoder-decoder architectures, the encoder can be similar to the one
used in the naïve-decoder models to extract feature maps from the input image. However, in
the decoder part, more than one upsampling layer is deployed, combined with information
more spatially accurate from earlier stages in the encoder part. One can see the upsampling
part as a deconvolution operation enriched by information from a more spatially accurate
layer in the encoder stage transported via skip connections. After recovering the original res-
olution, the pixel-wise prediction is carried out to generate the segmentation mask. For the
following part of this section, we discuss the original FCN and the state-of-the-art model of
the DeepLab family, naïve decoder and encoder-decoder models. Among the naïve decoder
models, DeepLabV1 [50] has been selected, which deploys atrous convolution in its last
layers of the encoder and bilinear interpolation as an upscaling method, followed by fully
connected Conditional Random Field (CRF) for output refinement of the upsampling layer.
Regarding the encoder-decoder model, one can name U-Net [277] which has to skip con-
nections integrated into its architecture to transport feature maps from the encoder stage to
the corresponding layer in the decoder one, providing more feature localization information
while upscaling the output of the encoder stage.

2.4.1.1 Naïve Decoder

Long et al.[218] in 2014 proposed Fully Convolutional Networks (FCN) for pixel-wise se-
mantic segmentation. They used the VGG-16 network as the backbone one to extract feature
maps. Fully connected layers are replaced with upsampling or deconvolution layers to in-
crease the resolution of the last feature map in the decoder to the original resolution in the
input image. FCN-8s variant of their network is the best variation with the mIoU of 62.2%
for PASCAL-VOC. This architecture provided a combination of high-level features and spa-
tially accurate outputs.

Influenced by the FCN model, Chen et al. [50] proposed DeeplabV1. The main differences
are the usage of atrous convolution in the model and bilinear interpolation for a naïve
decoder stage. Atrous or also called dilated convolutions, are intensively deployed in the
DeepLab architectures, which is inspired by the algorithm á trous [132]. In the atrous con-
volutions, “holes” are put in the convolutional kernel in order to increase the receptive field
while maintaining the resolution, which leads to gaining dense and high-resolution feature
maps [49, 51]. Therefore, upsampling can now be carried out with more computational effi-
ciency in the bilinear interpolation than the original FCN. Still, refinement of the output is
required, which is done by a CRF [175]. DeepLabV1 achieves the mIoU of 66.4%. There is,
however, the disadvantage of not being an end-to-end trainable model when CRF is used.
Later, DeepLab-LargeFOV [255] was proposed, which uses 3 × 3 kernels only with 12 as a
more significant rate of dilation for the atrous convolution to obtain a larger receptive field.
After the CRF stage, they achieve a significantly higher mIoU OF 72.7%. DeepLabV2 [51]
deploys ResNet-101 instead of VGG-16 as the backbone with the novel Atrous Spatial Pyra-
mid Pooling (ASPP) block to exploit multiscale features.

Motivated by SPPNet, which was discussed in the object detection chapter, ASSP is de-
scribed to be a parallel multiscale module to process the feature maps of atrous convolu-
tions with varied rates. Therefore, multiscale information is extracted efficiently instead of

2.4 Semantic Segmentation 35

a heavy computational scheme of the so-called image pyramid to process images in multi
scales. DeepLabV2 comprises an enhanced ResNet-101 backbone with atrous convolution
and the ASPP module with different dilation rates of 6, 12, 18, and 24. The upsampling
operation is applied to the output of ASPP to the original input image by bilinear interpola-
tion, and then pixel-wise classification is carried out. With the CRF refinement, DeepLabV2
achieves the mIoU of 79.7% mIoU. Although multiscale processing using ASPP is practical,
it has some issues. For instance, by using the large atrous rate of 24, one can consider that
boundary cells of the kernel lie outside of the input layer. Therefore, this atrous convolu-
tion becomes a 1 × 1 convolution of the center. Hence, the aim to extract extensive contex-
tual information when using large dilation maps is inverted[53]. As another contributor to
the large context pixel-wise segmentation, one can name ParseNet [213]. ParseNet can be
considered another option to large atrous rates in which global average pooling fused by
standard features extracted by convolution leads to a global image context. This network
achieves 69.8% mIoU without CRF, and it is end-to-end trainable.

PSPNet [385] or Pyramid Scene Parsing Network improves this performance further by in-
troducing Pyramid Pooling Module, which can pool the input feature map on different scales
and uses 1 × 1 convolution plus upsampling in order to concatenate contextual features in
different scales together with the feature maps from the original input image. After fusing
those features maps, the last convolutional layer is applied, followed by the final pixel-
wise prediction. Hence, one can exploit local contextual features in different scales with
better classification. PSPNet powered by ResNet-101 backbone achieves 82.6% mIoU even
without any CRF refinement. All the described advances, including exploitation of con-
textual information in both global and local scales, feature map extraction from multiple
scales and focusing on the usage of only one CNN model, are all aggregated into one design
called DeepLabV3 [54]. The architecture of DeepLabV3 is similar to the V2. However, some
changes are made in the ASPP module by removing the largest atrous rate because of the
issue above and introducing feature extraction as image-level by applying global average
pooling. Hence, the idea of long-distance context information, which was used in ParseNet
and PSPNet, is successfully incorporated into the module of ASPP in version 3. Still, bilinear
interpolation is done for upsampling, but CRF is no longer needed after the last convolu-
tional layer to produce the segmentation mask. Therefore, one can consider the DeepLabV3
design to be the first end-to-end trainable version in the DeepLab family achieving the state-
of-the-art result of 85.7% mIoU.

As another yet important naïve decoder model, one can name HRNetV2 [307] which was
published in 2019. The author did not report any metrics on the PASCAL-VOC but instead
on the CityScapes dataset. One shall note that HRNetV2 cannot be directly compared to the
other models mentioned before. The performance of DeepLabV3 on the Cityscapes test set
is reported to be 81.3% mIoU which we use for comparison. Both V1 [306] and V2 [307]
versions of HRNet apply four levels of fixed convolutional modules. From the second level,
authors use parallel convolutions in varied resolution, and in the end, upsampling is used to
merge with the output of the fifth convolution. In the second and fourth level or stage, fea-
tures from varied resolutions and any other resolution in a block are called multi-resolution
blocks. There are a few differences between V1 and V2; first, in V1, only the highest res-
olution blocks are used for final prediction, while in V2, all resolutions in all blocks are
combined by concatenation and better upsampling of feature maps with low-resolution. Bi-
linear interpolation is used to further upsampling to reach the final input resolution in the
prediction layer. HRNetV2 achieves 81.6% mIoU, which is slightly higher than DeepLabV3.

2.4.1.2 Encoder–Decoder Models

So far, the reviewed models except FCN apply comparably naïve decoders meaning that
bilinear interpolation is applied to upsample the output extracted feature maps to the res-

36

olution of the original input image. However, the encoder-decoder models are more com-
plex with different decoders. The fundamental notion is to apply shortcuts or so-called skip
connections to bridge the gap among corresponding layers in both encoder and decoder to
transport information. In addition, one can fuse high-level rich semantic feature maps from
the last layers of the encoder with high-level spatial features from early layers of the encoder
together while upsampling.

Noh et al. [251] introduced DeconvNet in 2015, using the VGG-16 encoder backbone and
another VGG-16 as the decoder. Instead of pooling, the authors have applied unpooling
layers within the decoder, which use the recorded spatial localization information during
pooling, called pooling indices. This information allows one to restore a higher resolution
for a sparse feature map that becomes denser by an adjacent deconvolution layer. Therefore,
the decoder has the exact spatial resolution as the input before the pixel-wise prediction
is applied. DeconNet obtains 69.6% mIoU, comparable with DeepLab even without using
CRF. Badrinarayanan et al. [14] proposed SegNet, which uses a roughly similar approach
but deploys batch normalization with ReLuU activation function for each single convolu-
tion layer both in encoder and decoder stages. By comparison, SegNet slightly outperforms
DeconvNet but on the CamVid dataset [34].

U-Net is proposed in 2015 by Ronneberger et al. [275]. It has an encoder-decoder archi-
tecture whose architecture has been used in many other works and domains since it was
introduced. It was originally designed for the medical domain for the cell tracking applica-
tion. It has a similar design to SegNet and ConvNet, which have five building stages in its
encoder where each consists of two 3 × 3 convolutions to increase the number of features
maps to 1024 from 64. 2 × 2 max-pooling layers apply downscaling with a stride of 2. As
for the decoder uses deconvolution layers to upsample the output of the decoder with five
blocks; each is connected to the encoder path of the same resolution, receiving the whole
feature maps and not only the pooling indices. Skip connections are deployed as usual to
transport the feature maps. The corresponding layer in the decoder is concatenated with
the features maps from the decoder. It will lead to high-level semantic feature maps com-
bined with higher precise spatial information but poor semantic meaning. In the last layer,
when original input resolution has been achieved, a 1× 1 convolution is applied for predic-
tion. As mentioned, U-Net was designed for medical applications. In addition to that, no
results were provided on the PASCAL-VOC benchmark. Zhang et al. [382] used a vanilla
version of U-Net and reported 72.7% mIoU on the PASCAL-VOC benchmark. Different de-
signs have used U-Net with modifications. For instance, Tiramisu [158] combines U-Net and
DenseNet [142], or in U-Net++ [390] on the skip connection, authors perform nested dense
building blocks. RefineNet [198] uses an encoder-decoder architecture that deploys residual
connections in its ResNet-152 encoder with RefineNet blocks in the decoder, which also use
residual connections combined with a sparse non-linear activation function. In addition to
that, a direct flow of feature maps was focused within the decoder, reaching 83.4% mIoU.

The convincing results of the encoder-decoder designs convinced the DeepLab family
authors to modify their naïve decoder models to an encoder-decoder design, proposing
DeepLabV3+ [55]. DeepLabV3+ uses the Xception model as the backbone in its encoder.
The depth-wise separable convolutions [63] are deployed, except for the last convolutional
layers for which separable atrous convolutions are deployed, achieving computational effi-
ciency, due to this modification in depth. The overall stride of the encoder is 16. The decoder
applies a bilinear upsampling layer first to upsample the output of the encoder by 4. Then,
concatenation of corresponding feature maps in the encoder is applied via skip connection.
With additional convolutional layers and a bilinear upsampling with the factor of 4, the
original input resolution is restored, followed by the final prediction to generate the seg-
mentation mask. This modified encoder inserted into the DeepLabV3 gains 87.8% mIoU.

Similar to image recognition, architectures were initially designed and optimized by

2.4 Semantic Segmentation 37

hand. However, to search for higher performance and computational efficiency, NAS [399]
was used to search for better architecture in image segmentation. Dense Prediction
Cell (DPC) [47], which one can consider to be in the DeepLab family and also Auto-
DeepLab [204] both use NAS. DPC mainly focuses on optimizing the ASPP modules to
search for the best dilation rate and the average spatial pyramid pooling grid size. DPC
reaches 87.9% mIoU performance with a modified Xception backbone. On the other hand,
Auto-DeepLab mainly focuses on finding an optimized backbone overall, including the net-
work structure and operations inside the building modules. Therefore, not a fixed struc-
ture is considered like the one used in DPC or MNAS [313] search space. We refer to Liu
et al. [204] for further information. Auto-DeepLab-L version achieves 85.6% mIoU; how-
ever performed relatively better on Cityscapes benchmark, reaching mIoU of 82.1% as
DeepLabV3+.

While reviewing the mentioned progress in CNNs for the image semantic segmentation
task, it was mentioned that exploitation of multiscale features and image context while hav-
ing high-resolution maintenance with fused features of different levels between decoders
and encoder is currently underway the cornerstones of the state-of-the-art designs. In naïve
decoder models, mostly atrous convolutions and encoder-decoder designs, skip connections
are typically used. These are the significant concepts established during the evolution of
algorithms for image segmentation.

At the latest state-of-the-art model to mention on 1st January 2022, one can name HRNet +
OCR + SegFix [369] which, although published in 2019, is still the state-of-the-art design on
the Cityscapes test dataset. This model, which can be seen as a segmentation transformer,
proposes to compute object-contextual representations for semantic segmentation. The au-
thors have focused on the context aggregation problem in semantic segmentation. They pro-
posed a simple yet effective approach with the motivation of the pixel category which be-
longs to that pixel. They name their approach as object-contextual representations in which
a pixel is characterized by characterizing a pixel with its corresponding object class. Firstly,
they train the network to learn object boundaries. Then the representation of the pixels in
each object region is aggregated to compute the representation of object regions. Finally,
the relation between each object region and a pixel is computed with further augmentation
of pixel representations. This approach achieves the state-of-the-art performance on multi-
ple benchmarks, including Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff. It
achieves 84.5% on the Cityscapes test benchmark. One can think of this model as a trans-
former encoder-decoder framework. The first two steps are combined as the cross-attention
module in the decoder. As the last step, the cross-attention module is added to the encoder.

The results are not provided on PASCAL-VOC. Currently, the state-of-the-art model on
PASCAL-VOC is EfficientNet-L2+NAS-FPN [398] which investigates self-training as another
method rather than ImageNet pre-training to use additional data. Their study reveals in-
teresting insights on the generality and flexibility of self-training, such as more robust data
augmentation and the usefulness of self-training when more vital data augmentation is used
in both regimes of low-data and high-data and when pre-training is helpful. On PASCAL-
VOC, this approach achieves 90.5% mIoU. Other yet important works in image segmenta-
tion that are still among the best models are, for instance, Lawin+ [357] which uses a trans-
former for the cityscapes benchmark and other designs such as EfficientPS [243], Panoptic-
DeepLab [57], HRNetV2 + OCR [369], DeepLabv3+ with Xception-65-JFT [56].

Table 3 summarizes the mentioned evolution of algorithms in image segmentation and
demonstrates the decreasing usage of CRFs as a refinement step and increasing usage of
dilated or atrous convolution as well as multiscale feature extraction concept.

It should be noted that we did not cover instance-wise or panoptic semantic segmentation
tasks in this work.

38

Table 3. Summary of the progress of convolutional neural networks (CNNs) for semantic image segmentation. The back-
bone is the used CNN for feature extraction; CRF uses the conditional random field for refinement step; Dilated indicates
the usage of dilated convolution, and multiscale refers to if a module extracts features from multiscale, e.g., ASPP. NAS
means that if some or all model parts are selected by neural network search. mIoU is described as the performance metric
on the PASCAL-VOC 2012 dataset in image segmentation.c.f. [129, 130]. State-of-the-art results as of 1st January 2022.

Architecture Year Backbone Type Atrous CRF NAS Multiscale mIoU [%]
FCN-8s [218] 2014 VGG-16 encoder–decoder 62.2

DeepLabV1 [50] 2014 VGG-16 naïve decoder X X 66.4
DeconvNet [251] 2015 VGG-16 encoder–decoder 69.6

U-Net [275] 2015 dedicated encoder–decoder 72.7
ParseNet [213] 2015 VGG-16 naïve decoder X 69.8

DeepLabV2 [51] 2016 ResNet-101 naïve decoder X X X 79.7
RefineNet [198] 2016 ResNet-152 encoder–decoder 83.4

PSPNet [385] 2016 ResNet-101 naïve decoder X 82.6
DeepLabV3 [54] 2017 ResNet-101 naïve decoder X X 85.7

DeepLabV3+ [55] 2018 Xception encoder–decoder X X 87.8
DensePredictionCell [47] 2018 Xception naïve decoder X X X 87.9

DeepLabv3+ [56] 2018 Xception-65-JFT encoder–decoder X X 89.0
Auto-DeepLab [204] 2019 dedicated naïve decoder X X X 82.1

EfficientNet-L2+NAS-FPN[398] 2020 EfficientNet-L2 encoder–decoder X X 90.5

2.5 Single- and Multi-Object Tracking

So far, we have covered state-of-the-art algorithms in image recognition, object detection
and image segmentation tasks. As the last task, but yet important one, in this section, at
a general level, we cover the state-of-the-art methods in single- and multi-object tracking
shortly. Tracking object is another step to grasp the awareness of the state of objects inside
a region of interest. Unlike other previous tasks, we work with video or image sequences
rather than images to track objects. One must detect an object and keep its index, ID or
identity during the whole sequence. Tracking algorithms are divided into different cate-
gories such as single-object (SOT) or multi-object trackers (MOT) or short or long-trackers
or single-class or multi-class trackers, or detect-and-track or track-by-detect. In the latter
part, to be more specified, if an algorithm is a two-stage method, consisting of separate ob-
ject detection and tracking modules, or the whole algorithm is one stage. We consider the
MOT17, the well-known dataset for multi-object tracking algorithms, as the benchmark.

As one of the essential algorithms, one can name Recurrent YOLO or (ROLO) [250]. It is a
single object tracking approach in which object detection networks, YOLO as detector and
recurrent neural networks, LSTM as a tracker, are combined. The object detection module
extracts the visual features and the object’s location. At each frame or time step, the tracker
module gets an input feature of 4096 from the detector module and returns the position of
the tracked object of interest.

As another algorithm, one can name SiamMask [337] which is an excellent algorithm. It is
based on siamese neural networks [264]. It got popular with the introduction of FaceNet
by Google. It can produce rotated bounding boxes in 55 frames per second and class-
agnostic segmentation masks. It requires a single bounding box as initialization, meaning
that MOT is not viable, leading to a very slow object detector inside the whole process.
DaSiamRPN [396] won the VOT-18 challenge using siamese neural networks as well as
SiamDW [381]. It is also worth mentioning MDNet [247] which is consists of online visual
tracking and pre-training models.

In 2016, a simple online and real-time tracking algorithm (SORT) [25] to track multiple
objects in image sequences was proposed. It is based on rudimentary data association and
state estimation techniques producing object identities on the fly with high accuracy. How-
ever, it cannot handle occlusion or re-entering objects. For this algorithm, both current and
past frames are available. A significant portion of SORT’s performance gets back to its de-
tector. For instance, in the initial version of SORT, Faster RCNN was used, but it can be
replaced with any other object detectors. As the successor of SORT, Deep SORT [344] was

2.5 Single- and Multi-Object Tracking 39

proposed to improve SORT, in which the association metric is replaced by a novel cosine
metric learning where the cosine similarity is effectively refined via reparametrization of
softmax to learn a feature space. Kalman filtering and track handling are still similar to the
original SORT. However, in the DeepSORT implementation, the bounding boxes are calcu-
lated using a deep pre-trained convolutional neural network. It is one of the fastest tracking
algorithms to produce 16 frames per second output while maintaining good accuracy.

Track R-CNN [330] is a multi-object tracking and segmentation algorithm. Mask-
RCNN [120] is utilized inside the object detection module with ResNet-101 backbone. 3D
convolutions are integrated to create tracks applied to the backbone network via which the
temporal context of videos is incorporated. One can use convolutional LSTMs as well, but
no gain is achieved. In Track R-CNN, Mask R-CNN is extended with an association head to
associate bounding boxes inspired by siamese networks over time. It uses batch hard triplet
loss compared to the original triplet loss. The Hungarian algorithm does the matching of de-
tections. Because it creates segmentation as a bonus, it is hard to achieve a real-time tracker.

In 2019, Tracktor++ [23] dominated the leaderboard of the MOT17 benchmark with its
simple yet effective approach. The position of an object is predicted for the next frame by
computing the bounding box regression. Therefore, it omits the need to train on tracking
datasets. Faster RCNN with ResNet-101 and FPN used as the object detector. The main idea
is to exploit the regression head of Faster RCNN for tracking, which is realized by extracting
features of the current frame and then utilizing the object locations of the previous frame
as RoI pooling input to regress the locations for the current frame. It should also be noted
that camera motion compensation based on image registration is used and short-term re-
identification as another motion model. A siamese neural network is used to measure the
distance between tracks. One of the disadvantages of this approach is that it is not viable for
real-time tracking with a speed of 3 frames per second on average.

As another yet important algorithm, Joint Detection and Embedding (JDE) [342] can be
mentioned. JDE uses Darknet-53, used in the YOLO family, as the backbone. By using up-
sampling and residual connections, the extracted features are fused. Yolo, as mentioned
earlier, is designed to tackle anchor classification, embedding learning and bounding box
regression. To achieve an object tracker, JDE also outputs vectors of appearance embedding
while frames are processed. Then embedding of the current frame is compared with the ones
from the previous frame using an affinity matrix. In the last step, the old but still effective
Hungarian algorithm and Kalman filter are utilized to predict the location and smooth out
the trajectories in the current frame. JDE achieves 12 frames per second on average on the
input size of 1088× 608px.

As the last but yet important algorithm, we can name GOTURN [126] which this algorithm
has inspired the tracking approach in this. GOTURN’s approach is straightforward yet prac-
tical and fast. In GOTURN, the previous and current frames are given to two parallel steam
of dedicated CNNs. Then the extracted feature maps are fused. In the next step, the fused
feature is further processed to gain higher and richer feature maps with extra convolutional
layers. In the last layer, a fully connected layer produces the object’s location in the current
frame. It follows the objects in the following frames. One of the disadvantages of GOTURN
is that it requires the object’s location in the first frame. It does not handle lost objects and
cannot detect entered objects entering the scene or occluded or re-rentering objects. How-
ever, it can handle heavy occlusion and is also swift, achieving a speed of 100 frames per
second.

Further information on object tracking can be found in the section F.

40

2.6 Earth Observation Advances

Designing deep learning algorithms for the Earth Observation applications requires tools
like frames and training datasets and appropriate hardware similar to computer vision ap-
plications.

To develop deep learning algorithms similar to Earth Observation applications, we require
the necessary frameworks as essential tools to design and train neural networks similar to
other computer vision applications. Currently, the two most common frameworks, Tensor-
Flow [1], and Pytorch [257] are constantly being developed by Google and Facebook have
given the possibility of implementing new ideas in a short time without having to deal with
the complicated GPU programming languages such as CUDA. It is relatively easy to feed
labeled data to these frameworks efficiently while the training is ongoing.

When it comes to training datasets, unlike in the computer vision community, which enjoys
the availability of large-scale training datasets, the training datasets are small and scarce
still after several years of constant contribution by various groups around the globe in the
EO domain. In the beginning days of the deep learning era, it was a question of whether
architectural designs for computer vision applications will also perform well on the EO
data. Due to the recent works in this domain, we can prove the answer to this question
is affirmative. However, one shall note the differences between computer vision and Earth
Observation, including 1) different perspectives as in the EO domain, images are primarily
over-head images, unlike the so-called natural in-situ images. 2) in computer vision, images
are primarily three-channel RGB ones, but in EO, images can be with more channels. 3) in
computer vision, data and platforms are often single, but in EO, data could come from dif-
ferent sensors and platforms, and their fusion would be necessary. 4) Orientation of objects
is different in that they appear in the natural images with the rotation of 360°. 5) Objects are
located in the center of images in natural images with large sizes. However, in EO, objects
could be located on the image boundary, and their size might be as small as a few pixels. 6)
The number of objects might also be very high and dense compared to the natural images.
7) The training dataset in EO is small compared to those in computer vision.

Due to these differences, all tasks of image recognition, object detection, image segmentation
and object tracking are more challenging. Networks are often pre-trained with computer vi-
sion datasets to handle these differences and fine-tuned with Earth Observation datasets
which can be considered domain transfer. Although fine-tuning could achieve better per-
formance, it does not rule out the need to have high-quality Earth Observation datasets. Ta-
ble 4 shows some of the milestone and essential datasets in the Earth Observation domain.
One can see in the same table that multispectral sensors in the space-borne platforms have
low resolution are primarily used for image recognition of the entire image or image chips.
However, object detection and image segmentation are done using higher resolution sen-
sors mostly mounted on airborne platforms. Concerning the architecture of models, those
in the previous sections are mostly modified partially or significantly, or completely new
architectures are designed, which is not often the case.

In image recognition tasks, mainly, the architectures of the ResNet family have been used.
Their shallow variant of 18 or 101 is mainly used compared to the deeper versions, such
as those with 152 layers. Image recognition is applied on image chips or a small portion
of large remote sensing images to classify them with one or multiple labels. The dataset of
BigEarthNet, composed of Sentinel-2 image tiles, is one of the example datasets in this case.
Sumbul et al. [305] applied ResNet-59 and VGG-19 on these image tiles, achieving AP of
74.78% and 64.87%, respectively.

The same situation on modifying computer vision architectures for object detection in Earth
Observation applications is ongoing. However, gradually more novel algorithms are pro-

2.6 Earth Observation Advances 41

posed. Currently, two-stage object detectors, due to their more complex and higher accu-
racy, are more prevalent in the EO community. At the moment, some of the state-of-the-art
algorithms are [83, 115, 193, 354, 358, 360, 364, 365]. The main focus in the state-of-the-
art algorithms has been to adapt region proposals to rotated or orientated objects while
intuitively choosing the anchors. However, the primary focus is to extract rotated region
proposals in RPN and RoI modules. The focus is on anchors to adapt to small sizes and the
extensive range of scales. Also, rotated Non-Maximum-Suppression (NMS) is deployed in
rotated objects, which is more suitable to disregard duplicate and overlapping bounding
boxes.

For Earth Observation data and the usage of CNNs for image segmentation tasks, encoder-
decoder designs are popular. There are not many datasets for this task in the EO domain.
The ISPRS dataset, which is often called Potsdam and Vaihingen dataset [152] is widely
used, which consists of digital surface model and multispectral aerial imagery with the very
high ground spatial resolution of 5cm. Wang et al. [341] has done an investigation of this
dataset, demonstrating the usage of DeepLabV3+ with ResNet-101 backbone. They modi-
fied this model with an auxiliary loss function after the ASPP block, followed by CRF re-
finement. Therefore, they demonstrated the applicability of a state-of-the-art CNN model
from the computer vision domain to the Earth Observation data. Apart from this dataset,
the SkyScapes dataset, introduced in this work, is the best in this domain in several factors.

Unfortunately, as for object tracking, there are not many datasets available. Currently, there
are mainly two datasets for object tracking called KIT-AIS-Person 4 , and KIT-AIS-Vehicle 5

containing images from DLR’s aerial imagery platform for the person and vehicle tracking
applications. Currently, the state-of-the-art algorithm on these two datasets is the developed
algorithm in this thesis. Please note that datasets such as VisDrone [393] are with drone
imagery which is simpler and easier to create.

We should also mention that there are also other algorithms like DeepRoadMapper [231],
RoadTracer [19], PolyMapper [192], Sat2Graph [123], Deep Structured Crosswalk [195],
Deep Boundary Extractor [194], and DAGMapper [133], and Sparse-HD-Maps [225] focus-
ing on developing algorithms for HD-mapping with vectorized outputs.

4 https://www.ipf.kit.edu/code_1844.php
5 https://www.ipf.kit.edu/code_1846.php

42

Ta
bl

e
4:

O
ve

rv
ie

w
of

de
ep

le
ar

ni
ng

da
ta

se
ts

fo
r

Ea
rt

h
O

bs
er

va
ti

on
ap

pl
ic

at
io

ns
is

ca
te

go
ri

ze
d

ba
se

d
on

th
e

ta
sk

:i
m

ag
e

re
co

gn
it

io
n

(I
R

),
im

ag
e

se
gm

en
ta

ti
on

(I
S)

,o
bj

ec
td

et
ec

ti
on

(O
D

)
an

d
ob

je
ct

tr
ac

ki
ng

(O
T

)
w

it
h

an
ab

br
ev

ia
ti

on
of

lo
ng

na
m

es
.L

U
LC

in
th

e
co

lu
m

n
To

pi
c

m
ea

ns
La

nd
U

se
La

nd
C

ov
er

cl
as

si
fic

at
io

n.
∗ :

pa
pe

r
is

no
tp

ub
lis

he
d

ye
t.

A
ll

da
ta

se
ts

ar
e

or
w

ill
be

av
ai

la
bl

e
un

de
r

so
m

e
co

nd
it

io
ns

,f
or

w
hi

ch
on

e
ne

ed
s

to
co

nt
ac

tt
he

co
rr

es
po

nd
in

g
au

th
or

.c
.f.

[1
29

,1
30

].

D
at

as
et

Ta
sk

To
p

ic
P

la
tf

or
m

Se
ns

or
R

es
ol

u
ti

on
E

xa
m

p
le

A
p

p
li

ca
ti

on
by

A
rc

hi
te

ct
u

re
s

N
W

P
U

R
E

SI
SC

45
[5

8]
IR

LU
LC

m
u

lt
ip

le
p

la
tf

or
m

s
op

ti
ca

l
hi

gh
V

G
G

-1
6

[5
8]

B
ig

E
ar

th
N

et
[3

04
,3

05
]

IR
LU

LC
Se

nt
in

el
2

m
u

lt
i-

sp
ec

tr
al

m
ed

iu
m

R
es

N
et

-5
0

[3
05

]
So

2S
at

LC
Z

42
[3

94
]

IR
lo

ca
lc

li
m

at
e

zo
ne

s
Se

nt
in

el
1+

2
m

u
lt

i-
sp

ec
tr

al
+

SA
R

m
ed

iu
m

C
BA

M
+

R
es

N
eX

t-
29

[3
94

]
Eu

ro
SA

T
[1

25
]

IR
LU

LC
Se

nt
in

el
2

m
u

lt
i-

sp
ec

tr
al

m
ed

iu
m

In
ce

p
ti

on
-V

1
an

d
R

es
N

et
-5

0
[1

25
]

Sp
ac

eN
et

1
[2

98
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
s

-
m

u
lt

i-
sp

ec
tr

al
lo

w
V

G
G

-1
6

+
M

N
C

[6
9,

29
8]

Sp
ac

eN
et

2
[2

99
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
s

W
or

ld
V

ie
w

3
m

u
lt

i-
sp

ec
tr

al
hi

gh
U

-N
et

(m
od

ifi
ed

:i
np

u
td

ep
th

=
13

)[
29

9]
Sp

ac
eN

et
3

[3
00

]
IS

ro
ad

ne
tw

or
k

W
or

ld
V

ie
w

3
m

u
lt

i-
sp

ec
tr

al
hi

gh
R

es
N

et
-3

4
+

U
-N

et
[3

00
]

Sp
ac

eN
et

4
[3

01
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
s

W
or

ld
V

ie
w

2
m

u
lt

i-
sp

ec
tr

al
hi

gh
U

-N
et

+
SE

-R
es

N
eX

t-
50

/1
01

[3
01

]
Sp

ac
eN

et
5

[8
9]

IS
ro

ad
ne

tw
or

k
W

or
ld

V
ie

w
3

m
u

lt
i-

sp
ec

tr
al

hi
gh

R
es

N
et

-5
0

+
U

-N
et

[1
64

],
U

-N
et

+
SE

-R
es

N
eX

t-
50

[8
9]

Sp
ac

eN
et

6
[2

86
,2

97
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
W

or
lv

ie
w

2
+

C
ap

el
la

36
m

u
lt

i-
sp

ec
tr

al
+

SA
R

hi
gh

V
G

G
-1

6
+

U
-N

et
[2

86
]

IS
P

R
S

2D
Se

m
.L

ab
.[

15
2]

IS
m

u
lt

ip
le

cl
as

se
s

p
la

ne
m

u
lt

i-
sp

ec
tr

al
ve

ry
hi

gh
U

-N
et

,D
ee

p
L

ab
V

3+
,P

SP
N

et
,L

A
N

et
(p

at
ch

at
te

nt
io

nm
od

u
le

)[
84

],
M

ob
il

eN
et

V
2(

w
it

h
at

ro
u

s
co

nv
)+

SE
m

od
u

le
s

+
D

u
al

p
at

h
en

co
d

er
[3

73
]

D
ee

p
G

lo
be

-R
oa

d
[7

8]
IS

ro
ad

ne
tw

or
k

W
or

ld
V

ie
w

3
m

u
lt

i-
sp

ec
tr

al
hi

gh
D

-L
in

kN
et

(U
-N

et
+

R
es

N
et

-3
4

w
it

h
at

ro
u

s
d

ec
od

er
)[

38
9]

,R
es

N
et

-3
4

+
U

-N
et

[3
7]

D
ee

p
G

lo
be

-L
C

C
[3

33
]

IS
LU

LC
W

or
ld

V
ie

w
3

m
u

lt
i-

sp
ec

tr
al

hi
gh

D
en

se
Fu

si
on

C
la

ss
m

at
e

N
et

w
or

k
(D

en
se

N
et

+
FC

N
va

ra
in

t)
[3

18
],

D
ee

p
A

gg
re

ga
ti

on
N

et
(D

ee
p

L
ab

V
3

+
R

es
N

et
+

va
ri

an
t)

[1
79

]
D

ee
p

G
lo

be
-B

u
il

d
in

g
[7

8]
IS

bu
il

d
in

g
fo

ot
p

ri
nt

s
W

or
ld

V
ie

w
3

m
u

lt
i-

sp
ec

tr
al

hi
gh

R
es

N
et

-1
8

+
M

u
lt

it
as

k
U

-N
et

[1
14

],
W

id
eR

es
N

et
-3

8
+

U
-N

et
[1

50
]

IN
R

IA
[2

26
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
s

m
u

lt
ip

le
p

la
tf

or
m

s
m

u
lt

i-
sp

ec
tr

al
ve

ry
hi

gh
R

es
N

et
-5

0
+

Se
gN

et
va

ri
an

t
[6

],
U

-N
et

va
ri

an
t

[8
7]

W
H

U
B

u
il

d
in

g
[1

59
]

IS
bu

il
d

in
g

fo
ot

p
ri

nt
s

m
u

lt
ip

le
p

la
tf

or
m

s
op

ti
ca

l
hi

gh
V

G
G

-1
6

+
A

SP
P

+
FC

N
[1

60
]

D
L

R-
Sk

yS
ca

p
es

[1
1]

IS
m

u
lt

ip
le

-c
la

ss
es

he
li

co
p

te
r

op
ti

ca
l

ve
ry

hi
gh

Sk
yS

ca
p

es
N

et
in

th
is

w
or

k
(c

u
st

om
d

es
ig

n
[1

1]
)

D
L

R-
Sk

yS
ca

p
es

-S
ha

d
ow
∗

IS
m

u
lt

ip
le

-c
la

ss
es

he
li

co
p

te
r

op
ti

ca
l

ve
ry

hi
gh

Sk
yS

ca
p

es
N

et
-S

ha
d

ow
(c

u
st

om
d

es
ig

n)
N

W
P

U
V

H
R-

10
[5

9]
O

D
m

u
lt

ip
le

-c
la

ss
es

ai
rb

or
ne

p
la

tf
or

m
s

op
ti

ca
l

ve
ry

hi
gh

D
ar

kN
et

+
YO

LO
(m

od
ifi

ed
:V

ar
yB

lo
ck

)[
37

5]
,R

es
N

et
-1

01
+

FP
N

(m
od

ifi
ed

:D
en

se
ly

co
nn

ec
te

dt
op

-d
ow

n
p

at
h)

+
fu

ll
y

co
nv

ol
u

ti
on

al
d

et
ec

to
r

he
ad

[3
17

]
C

A
R

P
K

[1
37

]
O

D
ve

hi
cl

e
d

et
ec

ti
on

d
ro

ne
op

ti
ca

l
ve

ry
hi

gh
V

G
G

16
+

L
P

N
(L

ay
ou

t
P

ro
p

os
al

N
et

[1
37

]
C

O
W

C
[2

44
]

O
D

ve
hi

cl
e

d
et

ec
ti

on
ai

rb
or

ne
p

la
tf

or
m

s
op

ti
ca

l
ve

ry
hi

gh
SS

D
+

V
G

G
16

+
co

rr
el

at
io

n
al

ig
nm

en
t

d
om

ai
na

d
ap

ta
ti

on
[1

74
]

D
L

R
3K

M
u

ni
ch

[2
05

]
O

D
m

u
lt

ip
le

-c
la

ss
es

ai
rb

or
ne

p
la

tf
or

m
s

op
ti

ca
l

ve
ry

hi
gh

Sh
u
ffl

eD
et

(S
hu

ffl
eN

et
+

m
od

ifi
ed

SS
D

)[
8]

D
O

TA
[3

49
]

O
D

m
u

lt
ip

le
-c

la
ss

es
m

u
lt

ip
le

p
la

tf
or

m
s

op
ti

ca
l

ve
ry

hi
gh

to
hi

gh
R

es
N

et
-5

0+
im

p
ro

ve
d

C
as

ca
d

e
R

2C
N

N
se

e
le

ad
er

bo
ar

d
of

[3
49

],
R

es
N

et
-1

01
/F

P
N

+
Fa

te
r

R-
C

N
N

O
B

B
+

R
oI

tr
an

sf
or

m
er

[8
3]

D
IO

R
[1

16
]

O
D

m
u

lt
ip

le
-c

la
ss

es
m

u
lt

ip
le

p
la

tf
or

m
s

op
ti

ca
l

hi
gh

to
m

ed
iu

m
R

es
N

et
-1

01
+

PA
ne

t
an

d
R

es
N

et
-1

01
+

R
et

in
aN

et
[1

16
]

D
L

R-
A

C
D

[1
6]

O
D

p
er

so
n

he
li

co
p

te
r

op
ti

ca
l

ve
ry

hi
gh

M
R

C
N

et
[1

6]
D

L
R-

E
A

G
L

E
[9

]
O

D
m

u
lt

ip
le

-c
la

ss
ve

hi
cl

es
he

li
co

p
te

r
op

ti
ca

l
ve

ry
hi

gh
m

od
ifi

ed
C

as
ca

d
ed

M
as

-R
C

N
N

[9
]

D
L

R-
M

P
T

[1
76

]
O

T
p

er
so

n
he

li
co

p
te

r
op

ti
ca

l
ve

ry
hi

gh
A

er
ia

lM
P

T
N

et
in

th
is

w
or

k
[1

76
]

D
L

R-
M

V
T

[1
2]

O
T

m
u

lt
ip

le
-c

la
ss

ve
hi

cl
es

he
li

co
p

te
r

op
ti

ca
l

ve
ry

hi
gh

A
er

ia
l-

M
V

T
N

et
(c

u
st

om
d

es
ig

n)
[1

2]

3 Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery 43

3 Towards Multi-class Object Detection in Un-
constrained Remote Sensing Imagery

This chapter describes the paper Seyed Majid Azimi, Eleonora Vig, Reza Bahmanyar, Marco
Körner, and Peter Reinartz: Towards Multi-class Object Detection in Unconstrained Remote
Sensing Imagery, Asian Conference of Computer Vision (ACCV) 2018, (Azimi et al.,2018).
The published paper can be found in the Appendix A.

Automatic multi-class object detection in remote sensing images in unconstrained scenarios
is of high interest for several applications including traffic monitoring and disaster manage-
ment. The huge variation in object scale, orientation, category, and complex backgrounds,
as well as the different camera sensors pose great challenges for current algorithms. In this
work, we propose a new method consisting of a novel joint image cascade and feature pyra-
mid network with multi-size convolution kernels to extract multi-scale strong and weak
semantic features. These features are fed into rotation-based region proposal and region of
interest networks to produce object detections. Finally, rotational non-maximum suppres-
sion is applied to remove redundant detections. During training, we minimize joint horizon-
tal and oriented bounding box loss functions, as well as a novel loss that enforces oriented
boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP
on oriented bounding box detection tasks on the challenging new DOTA dataset, outper-
forming all published methods by a large margin (+6% and +12% absolute improvement,
respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-
AOD, and achieves competitive results with the baselines even when trained on DOTA. Our
method can be deployed in multi-class object detection applications, regardless of the im-
age and object scales and orientations, making it a great choice for unconstrained aerial and
satellite imagery.

3.1 Introduction

The recent advances in remote sensing (RS) technologies have eased the acquisition of very
high-resolution multi-spectral satellite and aerial images. Automatic RS data analysis can
provide an insightful understanding over large areas in a short time. In this analysis, multi-
class object detection (e.g., vehicles, ships, airplanes, etc.) plays a major role. It is a key
component of many applications such as traffic monitoring, parking lot utilization, disaster
management, urban management, search and rescue missions, maritime traffic monitoring
and so on. Object detection in RS images is a big challenge as the images can be acquired in
different modalities (e.g., panchromatic, multi- and hyper-spectral, and Radar) with a wide
range of GSD, e.g., from 10 cm to 30 m. Furthermore, the objects can largely vary in scale,
size, and orientation.

In this paper, we focus on improving the object localization of region-based methods applied
to aerial and satellite images. We propose a new end-to-end CNN to address the aforemen-
tioned challenges of multi-class object detection in the RS images. The proposed method
is able to handle images with a wide range of scales, aspect ratios, GSDs, and complex
backgrounds. In addition, our proposed method achieves accurate object localization by
using OBBs. More specifically, the method is composed of the following consecutive mod-
ules: image cascade network (ICN), deformable inception network (DIN), feature pyramid
network (FPN), multi-scale rotational region-proposal network (R-RPN), multi-scale rota-
tional region of interest network (R-ROI), and rotational non-maximum suppression (R-
NMS). The main contributions of our work are the following:

44

� We propose a new joint image cascade and feature pyramid network (ICN and FPN)
which allowed extracting information on a wide range of scales and significantly im-
proving the detection results.

� We design a DIN module as a domain adaptation module for adapting the pretrained
networks to the RS domain using deformable convolutions and multi-size convolution
kernels.

� We propose a new loss function to enforce the detection coordinates, forming quadrilat-
erals, to shape rectangles by constraining the angles between the edges to be 90 degrees.
This augments object localization.

� We achieve significant improvements on three challenging datasets in comparison with
the state of the art.

In addition, we employ rotational region proposals to capture object locations more ac-
curately in RS images. Finally, in order to select the best localized regions and to remove
redundant detections, we apply R-NMS which is the rotational variant of the conventional
NMS. Furthermore, we initialize anchor sizes in R-RPNs with clustered data from rotated
ground truth bounding boxes proposed by Redmon and Farhadi [268] rather than manual
initialization used in Faster-RCNN. In order to evaluate the proposed method, we applied
it to the DOTA [348] dataset, a recent large-scale satellite and aerial image dataset, as well
as the UCAS-AOD and NWPU VHR-10 datasets. Results show that the proposed method
achieves a significantly higher accuracy in comparison with state-of-the-art object detection
methods.

3.2 Related Work

In recent years, deep learning methods have achieved promising object detection results for
ground imagery and outperformed traditional methods. Among them, deep convolutional
neural networks (DCNNs) have been widely used [122, 177, 292]. In the RS domain, newly
introduced large-scale multi-class image datasets such as DOTA [348] have provided the
opportunity to leverage the applications of deep learning methods. The majority of cur-
rent deep learning-based methods detect objects based on HBBs, which are appropriate
for ground-level images. However, in the RS scenarios, objects can be arbitrarily oriented.
Therefore, utilizing OBBs is highly recommended, especially when multiple objects are lo-
cated tightly close to each other (e.g., cars in parking lots).

RCNNs such as (Fast(er))-RCNN [106, 273, 278] and Mask-RCNN [120] have achieved state-
of-the-art object detection results in large-scale ground imagery datasets [92, 202]. Fast-
RCNN [278] improves the detection accuracy of RCNN [106] by using a multi-task loss
function for the simultaneous region proposal regression and classification tasks. As an
improvement, Faster-RCNN integrates an end-to-end trainable network, called region pro-
posal network (RPN), to learn the region proposals for increasing the localization accuracy
of Fast-RCNN. To further improve Faster-RCNN, one could perform multi-scale training
and testing to learn feature maps in multiple levels; however, this will increase the memory
usage and inference time.

Another alternative is image or feature pyramids [104, 134, 200, 249, 259, 361]. Recently, Lin
et al. [200] proposed FPN which extract feature maps through a feature pyramid, thus facil-
itating object detection in different scales, at a marginal extra computation cost. Although
using joint image and feature pyramids may further improve the results, this is avoided due
to its computation cost.

Object detection in RS images has been investigated by a number of works in the recent
years. The majority of the proposed algorithms focus on object detection with a small num-
ber of classes and a limited range of GSDs. Liu and Mattyus [206] proposed histogram of

3.3 Proposed Method 45

Fig. 20. Overview of our algorithm for (non-)rotated multi-class object detection.

oriented gradients (HOG) features and the AdaBoost method for feature classification to
detect multi-class oriented vehicles. Although this approach achieves a fast inference time,
it does not have high detection accuracy as it lacks high-level feature extraction. Sommer
et al. [294] and Tang et al. [316] proposed RCNN-based methods using hard-negative min-
ing together with concatenated and deconvolutional feature maps. They showed that these
methods achieve high accuracies in single-class vehicle detection in aerial images for HBBs
task. Liu et al. [210] proposed rotated region proposals to predict object orientation us-
ing single shot detector (SSD) [212] improving the localization of the OBBs task. Yang et
al. [362] improved [210] by integrating FPNs.

3.3 Proposed Method

Figure 20 gives a high-level overview of our joint horizontal and oriented bounding box
prediction pipeline for multi-class object detection. Given an input image, combined im-
age cascade and feature pyramid networks (ICN and FPN) extract rich semantic feature
maps tuned for objects of substantially varying sizes. Following feature extraction, a R-
RPN returns category-agnostic rotated regions, which are then classified and regressed
to bounding-box locations with a R-ROI. During training, we minimize a multi-task loss
both for R-RPN and R-ROI. To obtain rectangular predictions, we further refine the output
quadrilaterals by computing their minimum bounding rectangles. Finally, R-NMS is applied
as post-processing.

3.3.1 Image Cascade, Feature Pyramid, and Deformable Inception Sub-
networks

In order to extract strong semantic information from different scales, this work aims at lever-
aging the pyramidal feature hierarchy of CNNs. Until recently, feature extraction was typi-
cally performed on a single scale. Lately, however, multiple-scale approaches became feasi-
ble through FPN [200]. As argued in [200], the use of pyramids both at the image and the
feature level is computationally prohibitive. Nevertheless, here we will show that with ap-
propriate weight sharing, the combination of ICN (Figure 21) and FPN (Figure 22) becomes
feasible. ICN and FPN jointly output proportionally-sized features at different levels/scales
in a fully-convolutional manner. This pipeline is independent of the backbone CNN (e.g.
AlexNetVGG [292], or ResNet [122]). Here, we use ResNet [122]. In the ICN, as illustrated

46

Fig. 21. Illustration of the Image Cascade Network (ICN). Input images are first up- and down-sampled. Then they are fed
into different CNN cascade levels.

in Figure 21, we use ResNet to compute a feature hierarchy C1,C2,C3,C4,C5, which corre-
spond to the outputs of the residual blocks conv1, conv2, conv3, conv4, and conv5 (blue
boxes in Figure 21). The pixel strides for different residual boxes are 2, 4, 8, 16, and 32
pixels with respect to the input image.

To build our image cascade network, we resize the input image by bilinear interpolation
to obtain four scaled versions (1.5×,1×,0.75×,0.5×) and extract the feature hierarchy using
ResNet subnetworks. For example, while all five residual blocks are used for the upsampled
input (1.5×), for the half-resolution version (0.5×), only C4 and C5 are used. The cascade
network is thus composed of different subnetworks of the ResNet sharing their weights with
each other. Therefore, apart from resizing the input image, this step does not add further
computation costs with respect to the single resolution baseline. ICN allows combining the
low-level semantic features form higher resolutions (used for detecting small objects) with
the high-level semantic features from low resolutions (used for detecting large objects). This
helps the network to handle RS images with a wide range of GSD. A similar definition
of ICN was proposed for real-time semantic segmentation in [383], but without taking into
account different scales in the feature domain and using a cascaded label for each level
to compensate for the sub-sampling. Such a cascaded label is more suitable for semantic
segmentation.

FPNs [200] allow extracting features at different scales by combining semantically strong
features (from the top of the pyramid) with semantically weaker ones (from the bottom) via
a top-down pathway and lateral connections (cf. Figure 22). The original bottom-up path-
way of FPN (i.e. the feed-forward computation of the backbone CNN) is here replaced with
the feature hierarchy extraction of ICN, more specifically with the output of their residual
blocks C1,C2,C3,C4,C5. The top-down pathway upsamples coarse-resolution feature maps
(Mi) by a factor of 2 and merges them with the corresponding bottom-up maps Ci−1 (i.e. the
lateral connections). The final set of feature maps Pi , i ∈ {1,2,3,4,5} is obtained by appending
3×3 convolutions to Mi ’s to reduce the aliasing effect of upsampling. We refer the reader to
the work of Lin et al. [200] for more details on FPNs. In the original FPN, the output of each
Ci goes through a 1 × 1 convolution to reduce the number of feature maps in Mi . Here, we
replace the 1×1 convolution with a DIN to enhance the localization properties of CNNs, es-
pecially for small objects which are ubiquitous in RS datasets. Figure 22 illustrates the DIN.
Although Inception modules [311] have shown promising results in various tasks such as

3.3 Proposed Method 47

Fig. 22. Illustration of the ICN and FPN subnetworks with deformable inception network (DIN). DIN is the modified
Inception block to learn features of objects including geometrical features in flexible kernel sizes with stride 1. “defconv”
stands for deformable convolution.

object recognition, their effectiveness for detection has not been extensively studied. While
most current state-of-the-art methods, such as Faster-RCNN, R-FCN [70], YOLOv3 [268],
and SSD [212], focus on increasing the network depth, the benefit of Inception blocks lies
in capturing details at varied scales which is highly desirable for RS imagery.

Deformable networks aim at overcoming the limitations of CNNs to model geometric trans-
formations due to fixed-size convolution kernels. When applying models pretrained on
ground imagery (such as our ResNet backbone) to RS images, the parameters of traditional
convolution layers cannot adapt effectively to the new views of objects leading to a degra-
dation in localization performance. Using deformable convolutions in DIN helps accommo-
dating such geometric transformations [71].Furthermore, the offset regression property of
deformable convolution layers helps localizing the objects even outside the kernel range.
Here, we train the added offset layer from scratch to let the network adjust to the new do-
main. Conv layers with 1× 1 kernels reduce dimensions by half for the next def-conv layer.
The channel input to DIN is divided equally by 4 among DIN branches. In our experiments,
we did not observe an improvement by using 5 × 5 def-conv layers, hence the use of 3 × 3
layers.

3.3.2 Rotation Region Proposal Network (R-RPN)
The output of each Pi block in the FPN module is processed by multi-scale rotated region
proposal networks (R-RPN) in order to provide rotated proposals, inspired by [224]. More
precisely, we modify RPN to propose rotated regions with 0, 45, 90, and 135 degrees rota-
tion, not distinguishing between the front and back of objects. For initializing the anchors,
we cluster the scales and aspect ratios using K-means++ with the intersection over union
(IoU) distance metric [268]. We assign anchors with four different orientations to each level
P2 through P6

6 . As in the original RPN, the output feature maps of FPN go through a 3× 3
convolutional layer, followed by two parallel 1×1 fully-connected layers: an objectness clas-
sification layer (obj) and a box-regression layer (reg) (cf. Figure 34). For training, we assign
labels to the anchors based on their IoUs with the ground-truth bounding boxes. In con-
trast to the traditional RPN, we use the smooth L1 loss to regress the four corners (xi , yi),
i ∈ {1,2,3,4} of the OBB instead of the center (x,y), and size (w and h) of the HBB. In this
case, (x1, y1) indicate the front of objects which allows to infer the object’s orientation. As in

6 P6 is a stride 2 sub-sampling of P5 used to propose regions for large objects. P1 is not computed due to its large memory
footprint.

48

Faster-RCNN, we minimize the multi-task loss

L ({pi}, {ti}) =
1
Nobj

∑
i

Lobj(pi ,p
∗
i) +λ

1
Nreg

∑
i

p∗iLreg
(
ti , t
∗
i

)
, (16)

where, for an anchor i in a mini-bath, pi is the predicted probability of it being an object
and p∗i is its ground-truth binary label. For classification (object/not-object), the log-loss
Lobj(pi ,p∗i) = −p∗i logpi is used, while we employ the smooth l1 loss

Lreg(ti , t
∗
i) = lsmooth

1 (ti − t∗i) with lsmooth
1 (x) =

{
0.5x2 if |x|< 1
|x|−0.5 otherwise

(17)

for bounding box regression. Here,

txi = (xi − xi,a)/wa, tyi = (yi − yi,a)/ha (18)
t∗xi = (x∗i − xi,a)/wa, t∗yi = (y∗i − yi,a)/ha (19)

are the four parameterized coordinates of the predicted and ground-truth anchors with xi ,
xi,a, and x∗i denoting the predicted, anchor, and ground-truth, respectively (the same goes for
y), and wa and ha are width and height of the anchor. Nobj and Nreg are normalizing hyper-
parameters (the mini-batch size and number of anchor locations), and λ is the balancing
hyper-parameter between the two losses which is set to the default 10.

3.3.3 Rotated Region of Interest Network (R-ROI)

Similar to [200], we use a multi-scale ROI pooling layer to process the regions proposed by
R-RPN. Because the generated proposals are rotated, we rotate them to be axis-aligned. The
resulting fixed-length feature vectors are fed into sequential fully-connected (fc) layers, and
are finally sent through four sibling fc layers, which – for each object proposal – output the
class prediction, refined HBB and OBB positions, as well as the angles of OBBs.

As seen for R-RPNs, OBBs are not restricted to be rectangular: R-RPN predicts the four cor-
ners of quadrilaterals, without any constraint on the corners or edges. However, we observed
that annotators tend to label rotated objects in RS images with quadrilaterals that are close
to rotated rectangles. In order to enforce a rectangular shape of OBBs, we propose a new
loss that considers the angles between adjacent edges, i.e. we penalize angles that are not
90◦.

Let us consider Pij a quadrilateral side connecting the corners i to j, where i, j ∈ {1,2,3,4}
and i , j. Then, using the cosine rule, we calculate the angle between adjacent sides (e.g. θ1
between P12 and P13) as:

θ1 = arccos((|P12|2+|P13|2−|P23|2)/(2 ∗ |P12|∗|P13|)), (20)

where |Pij | is the length of the side Pij . There are multiple ways to constrain θl , l ∈ {1,2,3}
to be right angles. (Note that θ4 can be computed from the other three angles). We experi-

3.4 Experiments and Discussion 49

mented with the following three angle-losses:

Tangent L1 : Langle−OBB(θ) =
3∑
l=1

(|tan(θl − 90)|)

Smooth L1 : Langle−OBB(θ) =
3∑
l=1

smoothL1(|θl − 90|)

L2 : Langle−OBB(θ) =
3∑
l=1

‖(θl − 90)‖2

(21)

Our final loss function is a multi-task loss consisting of four losses that simultaneously pre-
dict the object category (Lcls), regress both HBB and OBB coordinates (Lloc−HBB and Lloc−OBB),
and enforce OBBs to be rectangular (Langle−OBB):

L(p,u, tu ,v) = Lcls(p,u) +λ[u ≥ 1]Lloc−HBB(tu ,v)+
λ[u ≥ 1]Lloc−OBB(tu ,v) +λ[u ≥ 1]Langle−OBB(θ) (22)

where Lcls(p,u) = −u logp and Lloc−OBB(tu ,v) is defined similar to Lreg as in R-RPN above.
u is the true class and p is the discrete probability distribution for the predicted classes,
defined over K + 1 categories as p = (p0,,pK). Class “1” is for the background category.
tu = (tuxi , t

u
yi) is the predicted OBB regression offset for class u and v = (vxi ,vyi) is the true OBB

(i ∈ {1,2,3,4}). Lloc−HBB(tu ,v) is defined similar to Lreg in Faster-RCNN in which instead
of OBB coordinates, {xmin,ymin,w,h} of tu and v for the corresponding HBB coordinates
are utilized. In case the object has been classified as background, [u ≥ 1] ignores the offset
regression. The balancing hyper-parameter λ is set to 1. To obtain the final detections, we
compute the minimum bounding rectangles of the predicted quadrilaterals. As final post-
processing, we apply R-NMS in which the overlap between rotated detections is computed
to select the best localized regions and to remove redundant regions.

3.4 Experiments and Discussion

In this section, we present and discuss the evaluation results of the proposed method on
three RS image datasets. All experiments were conducted using NVIDIA Titan X GPUs.
The backbone network’s weights were initialized using the ResNet-50/101 and ResNeXt-
101 models pretrained on ImageNet [80]. Images were preprocessed as described in base-
line [348]. Furthermore, the learning rate is 0.0005 for 60 epochs with the batch size of 1
using flipped images as data augmentation. Additionally, during training, we apply online
hard example mining (OHEM) [289] to reduce false positives and we use Soft-NMS [29] as
a more accurate non-maximum suppression approach only for the HBB benchmark.

3.4.1 Datasets
The experiments were conducted on the DOTA [348], UCAS-AOD [391], and NWPU VHR-
10 [60] image datasets which all have multi-class object annotations.

DOTA is so far the largest and most diverse published dataset for multi-class object de-
tection in aerial and satellite images 7 . It contains 2,806 images from different camera sen-
sors, GSDs (10 cm to 1 m), and sizes to reflect real-world scenarios and decrease the dataset

7 http://captain.whu.edu.cn/DOTAweb/index.html

http://captain.whu.edu.cn/DOTAweb/index.html

50

bias. The images are mainly acquired from Google Earth, and the rest from the JL-1 and
GF-2 satellites of the China Center for Resources Satellite Data and Application. The image
sizes vary from 288 to 8,115 pixels in width, and from 211 to 13,383 pixels in height. In this
dataset, there are 15 object categories: plane, baseball diamond (BD), bridge, ground field
track (GTF), small vehicle (SV), large vehicle (LV), tennis court (TC), basketball court (BC),
storage tank (SC), soccer ball field (SBF), roundabout (RA), swimming pool (SP), helicopter
(HC), and harbor. DOTA is split into training (1/2), validation (1/6), and test (1/3) sets.

UCAS-AOD contains 1,510 satellite images (1000 × 1000 pixels) with 14,595 objects anno-
tated by OBBs for two categories: vehicles and planes. The dataset was randomly split into
1,110 training and 400 testing images.

NWPU VHR-10 contains 800 satellite images (1000 × 1000 pixels), in which 3651 objects
were annotated with HBBs. This dataset contains 10 object categories: plane, ship, storage
tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge,
and small vehicle. For training on this dataset, we used non-rotated RPNand region of in-
terest (ROI) networks with the default loss functions.

3.4.2 Evaluation
In order to assess the accuracy of our detection method and the quality of region propos-
als, we adapt the same mean average precision (mAP) and average recall (AR) calculations
as for the DOTA dataset [348]. We provide ablation experiments on the validation set of
the DOTA dataset. Furthermore, we compare our method to the ones mentioned in Xia et
al. [348] work for HBB and OBB prediction tasks as well as Yang et al. [363] for OBB task
based on the test set whose ground-truth labels are undisclosed. The results reported here
were obtained by submitting our predictions to the official DOTA evaluation server 8 . We
used 0.1 threshold for R-NMS and 0.3 for Soft-NMS. The impact of ICN: Table 5 shows the
evaluation results of ICN. According to the table, adding OHEM to ResNet-50 improved the
accuracy by a narrow margin. Using a deeper network such as ResNet-101, further improved
the accuracy. As a next step, adding a 1.5× cascade level increased mAP by around 2% in-
dicating that the up-sampled input can have a significant impact. Based on this, we added
smaller cascade levels such as 0.75× and 0.5×, which, however, increased the accuracy to a
lesser extent. This could be due to the fact that the majority of objects within this dataset
are small, so reducing resolution is not always optimal. Further increasing the cascade lev-
els (e.g., 1.75× and 2×), degraded the accuracy, which is due to the lack of annotations for
very small objects such as small vehicles. In another word, we argue that extracting ResNet
features on upsampled images (1.5×) is beneficial for the many small objects in the DOTA
dataset, whereas doing this on downsampled input (0.75×,0.5×) brings smaller improve-
ments because of the lower number of large objects in the dataset. We observed that replac-
ing ResNet-101 with ResNeXt-101 causes a small drop in accuracy which could be due to the
shallower architecture of ResNeXt-101. Results indicated that using a higher number of pro-
posals (2k) increases the accuracy to a small degree, which however came with an increased
computation cost; thus, we considered 300 proposals for the rest of our experiments. The
impact of DIN: Table 6 shows results using DIN. According to the table, replacing the 1×1
convolution after the residual blocks Ci by DIN can augment mAP by more than 2%. More
specifically, using DIN after lower level Ci ’s resulted in slightly higher accuracy than using
it after higher levels (e.g., mAP for C4 > mAP for C5). In addition, employing DIN after
multiple Ci ’s can further improved model performance (e.g., mAP for C4 < mAP for C4—
C5 < mAP for C3—C5). Kernel size strongly affects the high resolution (semantically weak)
features. Thus, applying DIN to the low-level Ci ’s enriched the features and adapts them to

8 http://captain.whu.edu.cn/DOTAweb/evaluation.html

http://captain.whu.edu.cn/DOTAweb/evaluation.html

3.4 Experiments and Discussion 51

Table 5. Evaluation of (1) the impact of ICN with different cascade levels, (2) the effect of the backbone network
(ResNet50/101, ResNeXt101), and (3) the influence of the number of proposals for the OBB prediction task. The mod-
els were trained on the DOTA training set and results are on the validation set.

Cascade level Proposals Backbone OHEM mAP (%)
1 300 ResNet-50 — 63.35
1 300 ResNet-50 X 64.61
1 300 ResNet-101 X 65.37

[1.5,1] 300 ResNet-101 X 67.32
[1.5,1,0.75] 300 ResNet-101 X 68.06

[1.5,1,0.75,0.5] 300 ResNet-101 X 68.17
[1.5,1,0.75,0.5] 300 ResNeXt-101 X 68.09
[1.5,1,0.75,0.5] 2000 ResNet-101 X 68.29

[1.75,1.5,1,0.75] 2000 ResNet-101 X 67.36
[2,1.5,1.5,1,0.75] 2000 ResNet-101 X 66.86

Table 6. Evaluation of employing DIN after certain residual blocks Ci with and without deformable convolutions on the
validation set of DOTA.

DIN Def. conv. mAP (%)

- - 65.97
C4 - 66.24
C5 - 66.28

C4—C5 - 66.41
C3—C5 - 66.75
C2—C5 - 67.47
C2—C5 X 68.17

Fig. 23. Sample OBB predictions in the DOTA test set.

the new data domain. Comparing the last two rows of Table 6 shows that deformable con-
volutions also have a positive impact on performance, however the improvement is smaller.

Rotated RPNand ROI modules: Using clustered initialized anchors with rotation, we ob-

52

Fig. 24. Outputs of HBB (left) and OBB (right) prediction on an image of DOTA.

Table 7. Evaluation of (1) the impact of rotated RPN and RoI and (2) the effect of the loss functions enforcing the rectan-
gularity of the bounding boxes.

Angle Loss functions Rotated BBs in RPN & RoI mAP (%)

- - 64.27
- X 65.67

Tangent L1 X 66.91
Smooth L1 X 67.41

L2 X 68.17

tained an additional 0.7% mAP. To initialize anchors, we selected 18 anchors compared to
15 in Faster- RCNN in clustering ground truth OBBs. We observed no significant increase
in IoU with higher number for anchors. Furthermore, we considered each anchor at four
different angles (0, 45, 90, 135 degrees rotation). The total number of anchors is thus 18×4.
Table 7 demonstrates that using rotated proposals in the R-RPN and in the R-ROI layers
improves mAP by 1.4%, indicating that these proposals are more appropriate for object
localization in RS images than the horizontal ones.

In addition, we notes that using a joint loss function (for HBB and OBB prediction) can in-
crease the prediction of OBBs by 0.81% mAP. We believe that HBBs provide useful “hints”
on the position of the object for regressing OBBs more accurately. This is not the case for HBB
prediction: here, using only the HBB regression loss achieves 3.98% higher mAP as com-
pared to the joint loss function. This could be due to the complexity that OBB imposes on
the optimization problem. Thus, we apply our algorithm on the HBB benchmark without
the OBB loss.

Enforcing rectangular bounding boxes: We investigate three different loss functions to en-
force the rectangularity of the quadrilateral bounding boxes. Results in Table 7 show that
all three angle losses improve the output accuracy and angle L2 performs the best. The
reason behind the lower performance of angle tangent L1 could be the property of the
tangent function: it leads to very high loss values when the deviation from the right an-
gle is large. Angle smooth L1 performs marginally worse than angle L2 which could be due
to its equal penalization for deviations larger than 1 degree from the right angle. By study-
ing recall-IoU curve, we noticed very small and very large objects (e.g., small vehicles and
very large bridges) have the lowest localization recall and medium-sized objects have the
highest recall. Overall AR for the proposals on DOTA is 61.25%. A similar trend is observed
for precision-recall curves. On False Positives: To investigate false positives, we use the
object detection analysis tool from [131]. For the sake of brevity, we merge the bridge and
harbor as the long objects class; the LV, SV, and ship classes as the vehicles class. Similar
observations was made for the rest of the classes. The large blue area in Figure 26 indicates
that our method detects object categories with a high accuracy. Moreover, recall is around
80% (the red line) and is even higher with “weak” (10% overlap with the ground truth) lo-

3.4 Experiments and Discussion 53

Fig. 25. Sample outputs of our algorithm on the NWPU VHR-10 (three right columns – different camera sensors) and
UCAS-AOD (two left columns – different weather conditions, camera angles, and GSDs) datasets.

Fig. 26. False positive trends. Stacked area plots show the fraction of each type of false positive by increasing the number of
detections; line plots show recall for the weak localization with more 10% overlap with ground truth (dashed line) and the
strong one with more than 50% overlap (solid line). Cor: correct, Loc: localization, Sim:similar classes, Oth: other reasons,
BG: background.

Table 8. Quantitative comparison of the baseline and our method on the HBB task in test set of DOTA dataset. FR-H stands
for Faster R-CNN[273] trained on HBB. TV stands for ‘trainval’ and T for ‘train’ subsets.

method data mAP plane BD bridge GTF SV LV ship TC BC ST SBF RA harbor SP HC

Yolov2-[268] TV 39.20 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61
R-FCN[70] TV 52.58 81.01 58.96 31.64 58.97 49.77 45.04 49.29 68.99 52.07 67.42 41.83 51.44 45.15 53.3 33.89
SSD[212] TV 29.86 57.85 32.79 16.14 18.67 0.05 36.93 24.74 81.16 25.1 47.47 11.22 31.53 14.12 9.09 0.0
FR-H[273] TV 60.64 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85

ours T 70.54 89.54 73.48 51.96 70.33 73.39 67.91 78.15 90.39 78.73 78.48 51.02 59.41 73.81 69.00 52.59
ours TV 72.45 89.97 77.71 53.38 73.26 73.46 65.02 78.22 90.79 79.05 84.81 57.20 62.11 73.45 70.22 58.08

calization criteria (the dashed red line). The figure illustrates that the majority of confusions
are with the background (the green area) while the confusion with similar object classes is
much smaller (the yellow area). This issue is more severe for long objects. Although using
only down-sampled levels in the image cascade alleviates this issue, it lowers the perfor-
mance for small objects. Since the proposals are not able to capture long objects effectively,
they cause a large localization error. Additionally, the false positives for similar-classes often
occur for vehicles: small and large vehicles are mistaken for each other.

Comparison with the state of the art: Tables 8 and 9 show the performance of our algorithm
on the HBB and OBB prediction tasks of the DOTA dataset. Since we are reporting all of
the results (including ours) based on the official evaluation of the methods on the test set
with non-disclosed ground-truth, we believe that our comparison is fair. We evaluate our

54

Table 9. Quantitative comparison of the baselines and our method on the OBB prediction task in test set of DOTA dataset.
Abbreviations are the same as in Table 8. Note that only FR-O[273] is trained with OBB.

method data mAP plane BD bridge GTF SV LV ship TC BC ST SBF RA harbor SP HC

Yolov2-[268] TV 25.49 52.75 24.24 10.6 35.5 14.36 2.41 7.37 51.79 43.98 31.35 22.3 36.68 14.61 22.55 11.89
R-FCN[70] TV 30.84 39.57 46.13 3.03 38.46 9.1 3.66 7.45 41.97 50.43 66.98 40.34 51.28 11.14 35.59 17.45
SSD[212] TV 17.84 41.06 24.31 4.55 17.1 15.93 7.72 13.21 39.96 12.05 46.88 9.09 30.82 1.36 3.5 0.0
FR-H[273] TV 39.95 49.74 64.22 9.38 56.66 19.18 14.17 9.51 61.61 65.47 57.52 51.36 49.41 20.8 45.84 24.38
FR-O[273] TV 54.13 79.42 77.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.3 52.91 47.89 47.4 46.3

R-DFPN[361] TV 57.94 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88
Yang et al.[362] TV 62.29 81.25 71.41 36.53 67.44 61.16 50.91 56.60 90.67 68.09 72.39 55.06 55.60 62.44 53.35 51.47

ours T 64.98 81.24 68.74 43.36 61.07 65.25 67.72 69.20 90.66 71.47 70.21 55.41 57.28 66.49 61.3 45.27
ours TV 68.16 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23

method in two scenarios: training only on the ‘train’ subset, and training on the training and
validation sets (‘trainval’). Our method significantly outperforms all the published methods
evaluated on this benchmark, and training on ‘trainval’ brings an additional 2-4% in mAP
over training only on ‘train’. Looking at individual class predictions, only the mAP of the
helicopter, bridge and SBF classes is lower than the baseline, possibly due to their large
(and unique) size, complex features, and low occurrence in the dataset. Generalization on
the NWPU VHR-10 and UCAS-AOD: As shown in Although, the main focus of this work
is DOTA dataset as the largest available dataset, we show in Table 15 that our algorithm
significantly improves upon the baseline also on two additional datasets, NWPU VHR-10
and UCAS-AOD. The results demonstrate the good generalization of our approach to other
datasets. Results are competitive even when the method is trained on the DOTA dataset.

Table 10. Comparison of results on NWUH VHR-10 and UCAS-AOD datasets.
method train data test data mAP

Cheng et al.[60] NWUH VHR-10 NWUH VHR-10 72.63
ours NWUH VHR-10 NWUH VHR-10 95.01
ours DOTA NWUH VHR-10 82.23

Xia et al.[348] UCAS-AOD UCAS-AOD 89.41
ours UCAS-AOD UCAS-AOD 95.67
ours DOTA UCAS-AOD 86.13

3.5 Conclusion

In this work, we presented a new algorithm for multi-class object detection in uncon-
strained RS imagery evaluated on three challenging datasets. Our algorithm uses a combi-
nation of image cascade and feature pyramids together with rotation proposals. We enhance
our model by applying a novel loss function for geometric shape enforcement using quadri-
lateral coordinates. Our method outperforms other published algorithms [348, 363] on the
DOTA dataset by a large margin. Our approach is robust to differences in spatial resolu-
tion of the image data acquired by various platforms (airborne and space-borne). For future
work, we plan to further explore Inception modules in order to improve performance.

4 EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery 55

4 EAGLE: Large-scale Vehicle Detection Dataset
in Real-World Scenarios using Aerial Imagery

This chapter describes the paper Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, and
Franz Kurz: EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using
Aerial Imagery, submitted to IEEE International Conference on Pattern Recognition(ICPR)
2020, (Azimi et al., 2020). The submitted paper can be found in the Appendix B.

Multi-class vehicle detection from airborne imagery with orientation estimation is an im-
portant task in the near and remote vision domains with applications in traffic monitoring
and disaster management. In the last decade, we have witnessed significant progress in ob-
ject detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due
to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different
applications, current airborne datasets only partially reflect the challenges of real-world sce-
narios. To address this issue, we introduce EAGLE (oriEnted vehicle detection using Aerial
imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection
with object orientation information in aerial imagery. It features high-resolution aerial im-
ages composed of different real-world situations with a wide variety of camera sensor, res-
olution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion,
and camera angle. The annotation was done by airborne imagery experts with small- and
large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding
boxes defined by four points and orientation, making it by far the largest dataset to date
in this task. It also supports researches on the haze and shadow removal as well as super-
resolution and in-painting applications. We define three tasks: detection by (1) horizontal
bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried
out several experiments to evaluate several state-of-the-art methods in object detection on
our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects
real-world situations and correspondingly challenging applications.

4.1 Introduction

Automatic vehicle detection based on aerial imagery is crucial for a variety of applications
such as large-scale traffic monitoring, parking lot utilization, urban planning, disaster man-
agement, as well as search and rescue missions. Aerial images, with their wide field of view,
provide valuable information over large open areas in a short time [2]. Due to the steep
rise in the number of vehicles, traffic monitoring and management has become tremen-
dously more complex, especially in urban areas. The major socio-economic impacts of the
traffic-related problems such as air pollution, time loss in traffic jams, and health issues
have increased the demand for developing novel automatic algorithms and adequate traffic
data [188]. It has been shown that vehicle detection algorithms based on aerial imagery can
provide frequent and cost-efficient information about the location, number, and the types
of vehicles in different traffic scenarios such as congestion caused by infrastructure bottle-
neck, accidents, or even lack of parking spaces [2]. Due to the dynamic nature of traffic,
the availability of large-scale information through aerial images can make traffic manage-
ment more adaptive to the changing traffic conditions and help predicting infrastructure
bottlenecks [296]. In disaster management, vehicle detection based on aerial imagery al-
lows rapid localization of traffic congestion and abandoned vehicles to determine routes
for effective search and rescue activities. Furthermore, in the case of natural disasters such
as floods and earthquakes, aerial imagery is the most efficient means for detecting the af-
fected vehicles [228]. Recently, a large number of studies have focused on object detection

56

Fig. 27. Sample annotations in EAGLE: (a-b) car and trucks in purple and yellow respectively, (c-d) sunny and cloudy
illumination, (e-f) cars partly occluded by buildings, (g-h) cars partly occluded by vegetation, (i-j) cars in shadowed areas,
(k-l) hard to identify cars orientations, (m) difficult car example, (n) car with weak orientation, (o-p) trucks with weak
orientations.

(including vehicles) in aerial imagery [104, 134, 200, 249, 259, 361]; however, despite the
pronounced differences between ground and aerial images, most of the proposed methods
are based on transferring object detection algorithms developed for natural-scene images to
the aerial ones due to the scarcity of the large-scale aerial image datasets. For instance, to
apply deep learning detection algorithms to aerial images, previous works usually relied on
fine-tuning networks pre-trained on large-scale natural-scene datasets (e.g., ImageNet [80],
MSCOCO [202], PASCAL VOC [92]). As it can be seen in Figure 27, the scale of the objects
varies widely in aerial images due to not only the differences in spatial resolution , but also
in the size of objects from the same category. In addition, aerial images usually contain a
large number of small objects distributed and oriented differently over the scene (e.g., from
sparse density of moving vehicles in highways to tightly packed ones in parking lots). In
addition, the number of the object instances in aerial images is unbalanced, from a few to
thousands of objects per image.

Object detection in ground imagery owes its significant promotion to the large datasets such
as MSCOCO, ImageNet, and PASCAL VOC. However, for aerial imagery, similar datasets
in terms of image number and annotation details are scarce, which has highly limited the
progress in developing methods for aerial images.The current available aerial image datasets
e.g., [124, 207, 266, 350, 392] suffer from either low number of images and annotated in-
stances or low-quality annotations. The largest currently available aerial image dataset for
object detection is DOTA [350] which comprises 2,800 images with fifteen categories and
about 188,000 bounding box annotations using already processed Google Earth and satel-
lite images; however, it contains only 43,462 vehicles. Other datasets such as TAS [124],
VEDAI [266], COWO [245], DLR-3K-Munich-Vehicle [207], and UCAS-AOD [392] which
mainly focus on vehicle detection also contain very limited number of annotated vehicles:
TAS (1,319), VEDAI (3,270), COWO (32,716), DLR-3K-Munich-Vehicle (14,235), and UCAS-
AOD (2,819). In addition to the number of instances, the inadequate diversity and complex-
ity of the images used (e.g., clear background and limited object distribution heterogeneity)
in these datasets prevents them from representing real-world situations. Table 30 shows
detailed statistics from the current major aerial image datasets for object detection. To pro-
mote research on vehicle detection including vehicle detection, counting, and tracking, we
propose a new and yet largest aerial image dataset for vehicle detection in real-world aerial
imagery scenarios, called oriEnted object detection using Aerial imaGery in real-worLd scE-
narios (EAGLE).

4.2 EAGLE dataset 57

Table 11. Comparison between EAGLE and datasets for object detection in aerial images. BB is short for bounding box.
One-dot refers to annotations with only the center coordinates of an instance provided. Fine-grained categories are not
taken into account. For example, EAGLE features 2 different categories with additional difficulty flags with respect to the
class and orientation.

Datasets # Vehicle # Vehicle # All # Images # All Image Annotation Year
Instances Categories Categories Instances Width (px) Approach

TAS [124] 1,319 1 1 30 1,310 792 HBB 2008
NWPU-VHR-10 [61] 232 1 10 800 3,775 1000 HBB 2014

VEDAI [266] 3,270 6 9 1,210 3,640 1024 OBB 2015
UCAS-AOD [392] 2,819 1 2 910 6,029 1280 HBB 2015

DLR-3K-Vehicle [207] 14,232 2 2 20 14,235 5616 OBB 2015
COWC [245] 32,716 1 1 53 32,716 2000-19,000 One-Dot 2016

HRSC2016 [217] 0 0 1 1,070 2,976 1000 OBB 2016
RSOD [219] 0 0 4 976 6,950 1000 HBB 2017
DOTA [350] 43,462 2 15 2,806 188,282 300-4000 RBB 2017

EAGLE (ours) 215,986 2 2 8,280 215,986 936 OBB 2020

Fig. 28. Distribution of image acquisition locations over central Europe, as well as the statistics on camera parameters,
image, and scenery properties.

Altogether, the main contributions of this paper are:

� EAGLE, which is to the best of our knowledge the largest aerial image dataset for vehi-
cle detection and the first dataset of its kind addressing real-world scenarios.

� Its high-quality annotations can contribute to the development and evaluation of prac-
tical airborne vehicle detection systems as well as haze, shadow, in-painting and super-
resolution applciations.

� Benchmarks of state-of-the-art object detection algorithms as baseline for future works
by defining benchmarks for all three possible detection possibilities and two dataset
split approaches.

4.2 EAGLE dataset

The EAGLE dataset consists of 8,820 aerial images with size of 936× 936 px, acquired dur-
ing several flight campaigns carried out between 2006 and 2019 in various time of day and
year with different weather and illumination conditions. The images were taken under dif-
ferent traffic conditions and situations involving vehicles such as motorways, urban/rural
areas, industrial districts, floods, wildfires, earthquakes, as well as search and rescue mis-
sions over multiple locations in five countries (see Figure 28). The images contain a large di-
versity of vehicle orientation angle and number of objects per image as shown in Figure 29
with a higher number of vehicle instances compared to previous datasets (see Figure 30).
Figure 31 showcases some example image patches from the dataset. We acquired the images
using a camera system comprised of three standard DSLR cameras (Canon EOS cameras)
mounted on an airborne platform with different looking angles, a nadir-looking (top-down
vertical) and two side-looking cameras. According to the conditions of the flight campaigns,
the camera setups such as aperture size, image size, and ISO were adjusted differently. The

58

Fig. 29. Statistics of annotated vehicles with respect to vehicle orientation (top) and instances per image (bottom).

platform was installed either on an airplane or on a helicopter flying at altitudes between
300 m and 3000 m, resulting in a range ofGSDs, or spatial resolution, from 5 cm to 45 cm
per pixel. The images were taken from early in the morning until the evening in various
weather conditions (e.g., sunny, snowy, rainy, and foggy) with different illumination levels.
Altogether, the variability in image parameters and scenes allows our dataset to cover a wide
range of real-world situations involving vehicles. Figure 28 represents further statistics on
the EAGLE dataset.

4.2.1 Image annotation
Taking into account the relevance of the vehicle categories for the real-world applications of
aerial imagery according to experts in the domain, we decided on two main categories for
our dataset, namely small vehicles (cars, vans, transporters, SUVs, ambulances, police cars)
and large vehicles (trucks, large-trucks, minibuses, buses, firefighter trucks, construction
vehicles, trailers). The annotation contains the coordinates of all four vehicles corners hav-
ing right angle between sides as well as orientation degree between 0° to 360° indicating the
angle of vehicle head with respect to the trigonometric circle. Table 30 shows a comparison
between EAGLE and other existing aerial imagery datasets for vehicle detection. The EA-
GLE contains 215,986 annotated vehicles, ranging from 1 to 3,567 annotations per image in
all possible orientations (see Table 12), making it the largest aerial image dataset for vehicle
detection by a large margin (5× more vehicle instances than in the current largest dataset).
Furthermore, for each instance, the visibility condition (totally/partly/hardly visible) and
orientation clarity (clear/unclear) of the vehicle were provided. Stitched images with orig-
inal sizes are 345 ones of 5616× 3744 px size. As visible in Table 12, the EAGLE dataset
contains 208,963 small and 7,023 large vehicles. A category-wise comparison is provided in
Figure 30.

4.2.2 Annotation method
We have addressed various challenges during the annotation of the vehicles in our aerial im-
ages. Due to the diversity of the scene locations, the acquisition time, as well as the weather
and illumination conditions, precise annotation of the vehicles could be a very challenging
task. For example, in an image taken over a flooded area when haze is present with low il-
lumination or resolution, the visibility of the vehicles gets limited considerably. In addition,
the occlusion due to other objects or strong shadow could cause difficulties in finding the
vehicles. Furthermore, spotting vehicles in large aerial images of remote places (e.g., moun-
tains) is not trivial. Moreover, categorizing the vehicles into either small or large vehicles
could be sometimes tricky due to the uncertainty about the category of some borderline
cases such as large transporters or buses. To ease the latter situation, we assumed the one-
cabin vehicles with a width or a height smaller than a specific threshold (specified by an
expert) as small vehicles and otherwise as large vehicles. We also assigned a difficulty flag
for the occluded vehicles which can help to better train algorithms to overcome occlusion.
Detecting the occluded vehicles is very important in real-world scenarios such as in disas-

4.2 EAGLE dataset 59

Fig. 30. Comparison between the number of annotated small and large vehicles in the EAGLE dataset and the vehicle sets
of other aerial image datasets.

Small vehicles Large vehicles
Annotations 208,963 7,023
Weak orientation 311 10
Partly visible 18,188 184
min/max/avg 1/3,567/630 0/140/16
objects per image

Table 12. Category-wise statistics in EAGLE.

ters like flood when the vehicles are trapped or partially under water. In the ground imagery
, objects are usually annotated byHBB, where an HBB can be defined by its top-left (TL) and
bottom-right (BR) vertices, (xT L, yT L,xBR, yBR); or by its center point (xc, yc) together with the
width w and height h, (xc, yc,w,h). HBB is an efficient object annotation approach; however,
it does not consider the objects’ orientation, which can lead to imprecise outlines of arbitrary
oriented objects. Moreover, HBBs considerably overlap when objects are tightly packed,
which can confuse even state-of-the-art algorithms trying to distinguish them. An approach
toward alleviating the limitations of HBB is using arbitrary quadrilateral bounding boxes,
the so-calledRBB [350], which can be described by {(xi , yi), i = 1,2,3,4}, where (xi , yi) are the
vertex coordinates which can be with a clockwise order [350]. A specific case is a rotated rect-
angle when the sides make right angle with each other. Inspired by [288, 350] and the anno-
tations in the common object detection benchmarks such as MSCOCO and PASCAL VOC,
we propose a right-angle constrainedOBB which can be described as {(xi , yi), i = 1,2,3,4;θ},
where (xi , yi) are the vertex coordinates and θ indicates the bounding box orientation. OBB
can be also represented as (xc, yc,w,h,θ), where the bounding box edges are oriented accord-
ing to θ. This approach ensures the precision of the object outlines.

4.2.3 Dataset splits
We split the dataset into training, validation, and test sets based on two approaches. In the
first approach, we randomly assign 1/2, 1/6, and 1/3 of the images respectively. In this case,
images from similar flight campaigns can be present in both train and test sets, which makes
the detection task easier and similar to DOTA.Thus, in the second approach, we split the
dataset so that the images from the same flight campaigns are either in the training or test
set. This approach is similar to the real-world scenarios in which there is no prior knowledge
about future flight missions and their locations, weather or illumination conditions.

4.2.4 Contributions over the existing datasets
The existing datasets containing vehicle instances (e.g. DOTA) suffer from inconsistent or
inaccurate annotations, low degree of diversity and a small number of vehicle instances,
limiting their practical applications. Therefore, vehicle detection datasets such as EAGLE

60

Fig. 31. Examples of annotated images (left to right, top to bottom): low sun, rural scene, industrial scene, parking space,
mixed illumination, snow, mega city, mixed parking, flood scene, oblique view, highway scene, service area, suburban area,
festival scene, haze, motorway. Magenta: small vehicles. Yellow: large vehicles. Cyan triangle: driving direction.

Fig. 32. High-quality EAGLE labels (left column) and incomplete DOTA labels (right column).

with thorough annotations even for tiny yet visible vehicles (see Figure 32) are lacking in
the community. Moreover, EAGLE enables researchers to do research on haze and shadow
removal as well as super-resolution, in-paining and instance segmentation. Our dataset is
featuring major differences compared to the DOTA dataset:

� EAGLE focuses on vehicle detection in real-world and practical scenarios with images
of diverse location, time, resolution, weather and illumination conditions while DOTA
is a multi-class general-purpose detection and classification dataset.

� DOTA suffers from incomplete and noisy annotations (see Figure 32) especially for
small vehicles [13], whereas EAGLE provides precise and comprehensive annotations
(even for partially visible vehicles).

� Due to overlaps between the training and test sets in DOTA, the task is less challenging
than EAGLE in which two training/test splits are proposed: (1) a random patch-based
split, and (2) a more realistic and challenging campaign-based split, where the test set
contains locations and adverse conditions unseen during training.

4.3 Evaluation 61

4.3 Evaluation

We assess the performance of state-of-the-art object detection methods onEAGLE.
ForHBB object detection, we choose Cascade (Mask-)RCNN [43], Mask-RCNN [120] 9 ,
FPN [200], Faster RCNN [273], FCOS [319] 10 , TridentNet [190], SNIPER [293] 11 , R-
FCN [70] 12 , YOLOv3 [269], RefineDet [378], and SSD [212] 13 having ResNet101 [122],
ResNext101 [352], Triple-ResNeXt152, InceptionV2 [252] or VGG16 [292] backbone-
networks as our baseline benchmark algorithms on the test set for their excellent perfor-
mance in object detection on ground images byHBBs. Furthermore, we modify the original
Cascade Mask-RCNN to detect objects withRBBs described by {(xi , yi), i = 1,2,3,4}. We fur-
ther adapt the algorithm to able to detect objects with OBBs denoted as (xc, yc,w,h,θ), as θ
means the vehicle head angle. In order to evaluate the benchmark algorithms on EAGLE, we
propose three different tasks including detection by HBB, RBB, and OBB.As the evaluation
metric, we employ mAP similar to PASCAL VOC. The image patches are stitched to form
the original image before the evaluation step. In order to remove the redundant detected
boxes in the overlapping regions as well as the patches themselves, we apply non-maximum
suppression (NMS) with a threshold of 0.3 for HBB and 0.1 for both RBB and OBB.

4.3.1 Image splitting
In the training phase, due to the large size of the images (5616×3744 px) in the EAGLE
dataset which cannot be fitted into the object detectors for the training process, we crop
them into 1024×1024 px patches with a 50% overlap in a sliding window fashion, resulting
in 70 patches per image leading to 12075, 4025, and 8050 patches of training, validation
and test respectively. The overlaps of the patches allows keeping all the objects, even if
partially clipped at image boundaries. Patches thus ending up partially outside the image
are shifted back into the image window. Patch-wise predictions are stitched into full images
and overlaps were merged using NMS. This process could cut some vehicles into two parts.
In this case, we compute the ratio between the area covered by each part (Ai , i = 1,2) and
that of the complete vehicle (AO) as Ui = Ai/AO similar to [350], but with the difference that
we adapt the parts’ ground truths to the image boundaries to have the highest intersection
with the original object. After that, forUi > 0.7, the attribute of the part remains unchanged,
for 0.1 ≤Ui < 0.7, the attribute of the part is changed to "difficult", and for Ui < 0.1, the part
is ignored. Moreover, the part which does not include the front part of the vehicle (depicting
the orientation) is assigned a "difficult" flag to its orientation attribute. For the testing step,
we crop the images, but with a stride of 912 px (10% overlap to ensure the coverage of the
vehicles in their full appearance as well.

4.3.2 Horizontal Bounding Boxes (HBB) baselines
We generate the ground truth forHBB by calculating the center coordinates of the mini-
mum and maximum in x and y coordinates in the original rotated bounding box ground
truth. We train the baseline algorithms with their default settings and hyper-parameters for
a fair comparison. Table 13 shows theHBB detection results which indicates how challeng-
ing this dataset is for the-state-of the-art methods, with Cascade Mask-RCNN achieving the
best performance of 39.29% mAP. SSD and Yolov3 have very low performance compared

9 https://github.com/facebookresearch/Detectron
10https://github.com/tianzhi0549/FCOS
11https://github.com/MahyarNajibi/SNIPER
12https://github.com/msracver/Deformable-ConvNets
13https://github.com/tensorflow/models/tree/master/research/object_detection

62

Table 13. Benchmark of the state of the art on the horizontal bounding box (HBB) and the rotated bounding box (RBB)
detection task; mAP means mean Average Precision, higher is better. Mask-RCNN-H means trained on horizontal bounding
box. Mask-RCNN-R means trained on rotated bounding box.

Method Backbone AP [%] (HBB) AP [%] (RBB)
Mean SV LV Mean SV LV

Yolov3 [269] Darknet-53 20.29 30.45 10.13 13.28 21.34 5.23
SSD [212] InceptionV2 12.06 20.67 3.45 7.31 12.34 2.28

RefineDet [378] VGG16 22.23 32.25 12.21 14.78 22.67 6.89
R-FCN [70] ResNet101 30.61 46.85 14.37 21.06 35.56 6.56

Faster-RCNN [273] ResNet101 31.84 48.34 15.34 23.15 39.29 7.02
Mask-RCNN [120] ResNet101 30.81 46.51 15.11 22.54 36.65 8.43

Cascade-RCNN [42] ResNet101 33.49 49.65 17.34 23.58 38.97 8.19
SNIPER [293] ResNet101 30.74 48.34 13.14 21.97 38.23 5.72

FPN [200] ResNet101 37.10 50.76 23.45 27.11 39.78 14.45
TridenNet [190] ResNet101 30.53 47.16 13.91 22.53 37.16 7.91

FCOS [319] ResNeXt101 38.80 52.94 24.67 27.67 41.24 14.10
Cascade Mask-RCNN-H [43] Triple-ResNeXt152 39.29 53.45 25.14 30.22 43.84 16.60

Cascade Mask-RCNN-R [Ours] Triple-ResNeXt152 - - - 37.23 51.27 23.19

to the others. This could be due to the random crops during data augmentation suggested
by [350]. Furthermore, the results depict a considerable difference between the ground-level
and aerial objects concerning their size, scale and appearance.

4.3.3 Rotated Bounding Boxes (RBB) baselines
Since most of the state-of-the-art algorithms are designed for non-oriented objects, direct
application of the algorithms for detecting the oriented-objects is not efficient which makes
the benchmark of the existing algorithms forRBB challenging. We select and modify the Cas-
cade Mask-RCNN [43] algorithm for predicting rotated bounding boxes, due to its accuracy
on theHBB task of the EAGLE dataset. For the rest of algorithms, we train the algorithms
on theHBB annotations of our dataset and test them on theRBB annotations.Cascade Mask-
RCNN is composed of oneRPN and three detection and segmentation heads with thresh-
olds U = {0.5, 0.6, 0.7}. WhileRBB ground truth is defined by {(vxi ,vyi), i = 1,2,3,4} ver-
tices,RPN generates horizontal rectangles denoted by their top-left (TL) and bottom-right
(BR) vertices RoI = (xT L, yT L,xBR, yBR). Therefore, we adapt the ground truth to rectangles
by xT L = vx1 = vx4, xBR = vx2 = vx3, yT L = vy1 = vy4, and yBR = vy2 = vy3, similar to [350]. An
alternative would be using rotatedRPN as mentioned in [13]. However, we try to preserve
the structure of the algorithm as much as possible. In the detection heads, the output target
T = {(txi, tyi), i = 1,2,3,4} for each RoI and its ground truth G = {(gxi , gyi), i = 1,2,3,4} are
defined as:

txi = (gxi − vxi)/w, tyi = (gyi − vyi)/h (23)

where w = xBR − xT L and h = yBR − yT L, similar to [196]. We consider the coordinates of each
ground truth G as the object mask to prepare the mask for the segmentation head. Table 13
shows the results of the modified Cascade Mask-RCNN trained and tested onRBB compared
with other baselines trained onHBB and tested based onRBB ground truth. We denote the
modified method as Cascade Mask-RCNN-Rotated. The results show that by adapting the
algorithm to rotated bounding box detection, we can achieve an improvement of about 7%
mAP points. It also indicates that RBB task is a more difficult task than general HBB.

4.3.4 Oriented Bounding Boxes (OBB) baselines
For the benchmark based onOBB, we modify the detection heads of Cascade Mask-RCNN
to predict the bounding box angles, and denote it as Cascade Mask-RCNN-Oriented. To this

4.3 Evaluation 63

Fig. 33. Test prediction samples of Cascade Mask-RCNN trained on the EAGLE dataset. The first row is the result of
horizontal bounding box (HBB), the middle row for rotated quadrilateral bounding boxes (RBB), and the bottom row is
the result of oriented bounding boxes (OBB). Magenta is for small-vehicle and yellow for large-vehicle. The orientation is
depicted in cyan.

end, We regress over T = (xc, yc,w,h,θ) instead of (xT L, yT L,xBR, yBR). Other possibilities are
regression over T = {(xi , yi), i = 1,2,3,4; θ)} , or considering the clockwise order of bounding
box vertices. The angle regression is defined as:

tθ = tan(gθ − vθ), (24)

where tangent function is used to ensure the periodicity of the angle regression, but other
regression approaches can be considered. Similar to the Fast-RCNN [278] algorithm, we use
the smooth L1 loss for bounding box regression and Cross-entropy loss for classification.
We evaluate the performance of the algorithm on theOBB task by comparing the center
coordinates, angle, width and height of predicted oriented bounding box. For orientation
estimation, we divide the angles in the range of (−180,180) into 16 output bins and we con-
sider an angle prediction to be correct if it falls into the same bin as the ground truth. Cas-
cade Mask-RCNN-Oriented achieves 43.87%mAP which is 59.45%average precision (AP)
and 28.29%AP for small and large vehicle and with the angle accuracy of 67.34%.

64

Table 14. Benchmark of the best method from benchmark on the second split approach by splitting based on flight camp-
gain. Cascae Mask-RCNN-O, -H, and -R means Cascade Mask-RCNN trained on oriented, horizontal, and rotated bounding
boxes respectively.

Method Task mAP [%] AP [%]
small-vehicle large-vehicle

Cascade Mask-RCNN-H HBB 33.54 50.16 16.92
Cascade Mask-RCNN-R RBB 30.18 46.82 13.54
Cascade Mask-RCNN-O OBB 32.02 48.13 15.91

Table 15. Comparison of results on EAGLE and DOTA using Cascade Mask-RCNN.The comparison is based on mAP. SL
and LV stand for small-vehicle and large-vehicles respectively. (scores in mAP)

Training set Test set Avg. SV LV
DOTA DOTA 59.95 61.23 58.67
DOTA EAGLE 28.23 38.89 17.57
EAGLE DOTA 53.25 57.34 49.16
EAGLE EAGLE 39.29 53.45 25.14

4.3.5 Experimental analysis
By analyzing the results shown in Table 13, we observe that the HBB detection is still chal-
lenging with respect to very small size objects, densely crowded regions, and occlusions in
aerial images. In Figure 33, we provide a comparison of small and large vehicle detection
methods ofHBB,RBB, andOBB. As shown in Figure 33, for areas in which vehicles are parked
tightly , we observe thatHBB is less accurate thanRBB andOBB in precise localization of ve-
hicles in which several detection results are suppressed byNMS and other post-processing
steps. Furthermore, we see that some vehicles do not have right-angle detections for the RBB
task leading to mistakes in the localization whileOBB does not have this issue, resulting in
a better performance. ThereforeOBB is the more accurate way in oriented object detection
in aerial images.As for false positives, some non-vehicles objects appear similar to vehi-
cles, confusing detectors as shown in the left column of Figure 33, showing false positives
over the roofs. Also in the results of RBB in the middle column, a trash bin was detected as
small vehicle. The less accuracy of the detector in large-vehicle detection compared to small-
vehicle is the higher number of small-vehicle instances compared to large-vehicle ones lead-
ing to an unbalanced dataset. Also, in highly dense areas, results of bothRBB andOBB are
not satisfying implying the high difficulty of this task.

4.3.6 Impact of data-related factors on the performance
The smallerGSD is already known to improve performance drastically [13, 287], but re-
quires very-high resolution image acquisition, which may not always be possible. Smaller
size and scale can also degrade the performance. The segmentation of objects down to 2px-
wide at different scales was already successfully presented [11]. Experiments on EAGLE
indicates other challenges such as low-illumination, haze, shadow and occlusion as criti-
cal factors preventing state-of-the-art object detectors from performing well. EAGLE will
support future works aiming at solving these real-world issues.

4.3.7 Cross-dataset validation
We do a cross-dataset generalization to evaluate the generalization capability of EAGLE
dataset. We select DOTA for comparison and its validation set for testing. We choose Cas-
cade Mask-RCNN for validation experiments with HBB ground truth. Table 15 shows that
a model trained on EAGLE generalizes well to DOTA, scoring only 6% mAP below a model
trained on DOTA, indicating that EAGLE contains features of DOTA to a large extend. More-
over, as the annotation quality in EAGLE is significantly higher than in DOTA specially with
respect to very small vehicles (as mentioned in Section 4.2.1), a portion of false positives in
this comparison is due to the detection of vehicles which are generally not annotated and ig-
nored in DOTA, due to their small size. As for DOTA, the model trained on it only achieves

4.4 Conclusion 65

28.23% mAP on EAGLE (-11% mAP of the model trained on EAGLE) reflecting that EA-
GLE is significantly more diverse and challenging than the current available datasets which
makes it appropriate for real-world vehicle detection scenarios.

4.4 Conclusion

We present EAGLE, a large-scale dataset for the task of vehicle detection in aerial im-
agery, which is multiple times larger than existing datasets. Unlike common object detection
datasets, we provide a high number of annotated instances with oriented bounding boxes.
We build a dataset specifically focusing on real-world scenarios which includes a variety
of situations in aerial photography such as time, weather, and places. The detection of ve-
hicles in any situation regardless of their size and appearance with arbitrary orientations
contains useful information for different applications, making it useful for many practical
applications. Our benchmarks show EAGLE is a very challenging dataset for the current
state-of-the-art object detection algorithms. We also showcase a general method on object
detection which can be modified to detect oriented objects. We believe EAGLE addresses
the task of vehicle detection in remote vision bringing it to the next practical level. It also
introduces interesting challenges to object detection domain in computer vision.

66

5 ShuffleDet: Real-Time Vehicle Detection Net-
work in On-board Embedded UAV Imagery

This chapter describes the paper Seyed Majid Azimi: ShuffleDet: real-time vehicle detection
network in on-board embedded UAV imagery, IEEE European Conference on Computer Vi-
sion Workshop (ECCVW), UAV Vision 2018, (Azimi et al.,2018). The published paper can
be found in the Appendix C.

On-board real-time vehicle detection is of great significance for UAVs and other embedded
mobile platforms. We propose a computationally inexpensive detection network which we
call ShuffleDet for vehicle detection in UAV imagery. In order to enhance the speed-wise
performance, we construct our method primarily using channel shuffling and grouped con-
volutions. We apply inception modules and deformable modules to consider the size and
geometric shape of the vehicles. ShuffleDet is evaluated on CARPK and PUCPR+ datasets
and compared against the state-of-the-art real-time object detection networks. ShuffleDet
achieves 3.8 GFLOPs while it provides competitive performance on test sets of both datasets.
We show that our algorithm achieves real-time performance by running at the speed of 14
frames per second on NVIDIA Jetson TX2 showing high potential for this method for real-
time processing in UAVs.

5.1 Introduction

On-board real-time processing of data through embedded systems plays a crucial role in
applying the images acquired from the portable platforms (e.g., unmanned aerial vehicless
(UAVs)) to the applications requiring instant responses such as search and rescue missions,
urban management, traffic monitoring, and parking lot utilization.

Methods based on CNNs, for example, FPN [200], FasterRCNN [273], R-FCN [70],
SSDs [212], and Yolov2 [268], have shown promising results in many object detection tasks.
Despite their high detection precision, these methods are computationally demanding and
their models are usually bulky due to the deep backbone networks being used. Employing
CNNs for the on-board real-time applications requires developing time and computation ef-
ficient methods due to the limited processing resources available on-board. A number of net-
works have been developed recently such as GoogleNet [311], Xception [62], ResNeXt [353],
MobileNet [135], PeleeNet [338], SqueezNet [147], and ShuffleNet [379] which have less
complex structures as compared to the other CNNs while providing comparable or even su-
perior results. For the real-time object detection applications (e.g., vehicle detection), there
are a few recent works proposing the methods such as MobileNet [135] with SSD [212],
PVANET [169], and Tiny-Yolo [268]. They have shown computational efficiency to be de-
ployed in mobile platforms.

Zhang et al. [379] employed ShuffleNet as the backbone network, which uses point-wise
grouped convolutions and channel shuffle to greatly reduce the computations while main-
taining the accuracy. The authors reported a better performance compared with MobileNet
using Faster-RCNN detection approach. Kim et al. [169] developed PVANET by concate-
nating 3 × 3 conv layer with its negation as a building block for the initial feature extrac-
tion stage.Recently, Wang et al. [338] proposed PeleeNet that uses a combination of parallel
multi-size kernel convolutions as a 2-way dense layer and a similar module to the Squeeze
module. They additionally applied a residual block after feature extraction stage to improve
the accuracy using the SSD [212] approach. The authors reported more accurate results com-
pared to MobileNet and ShuffleNet on the Pascal VOC dataset despite the smaller model

5.2 Method 67

size and computation cost of PeleeNet. Redmon and Farhadi [268] proposed Yolov2, a fast
object detection method, but yet with high accuracy. However, their method is still com-
putationally heavy for real-time processing on an embedded platform. Tiny Yolov2 as the
smaller version of Yolov2, although it is faster, but it lacks high-level extraction capability
which results in poor performance. In the work of Huang et al. [144], they showed the SSD
detection approach together with SqueezeNet and MobileNet as the backbone networks. Al-
though, SSD with SqueezeNet backbone results in a smaller model than MobileNet, its re-
sults are less accurate and its computation is slightly more expensive. In general, replacing
the backbone network with SqueezeNet, MobileNet, or any other efficient network - though
enhancing computational efficiency - can degrade the accuracy if no further modification is
performed.

In this paper, we propose ShuffleDet, a real-time vehicle detection approach to be used on-
board by mobile platforms such as UAVs. ShuffleDet network is composed of ShuffleNet and
a modified variant of SSD based on channel shuffling and grouped convolution. We design
a unit to appropriately transfer the pretrained parameters of pretrained model on terrestial
imagery to aerial imagery domain. We call this unit domain adapter block (DAB) which in-
cludes deformable convolutions [71] and Inception-ResNetv2 units [310]. To the best of our
knowledge, group convolution and channel shuffling have not been used before in real-time
vehicle detection based on UAV imagery. ShuffleDet runs at 14 frames per second (FPS) on
NVIDIA Jetson TX2 while having computational complexity of 3.8 giga floating point oper-
ations (GFLOPs). Experimental results on the CARPK and PUCPR+ datasets [136] demon-
strates that ShuffleDet achieves a good trade-off between accuracy and speed for mobile
platforms while it is comparably computation and time efficient.

5.2 Method

In this section, a detailed description of the network architecture is presented. We use Shuf-
fleNet [379] which is designed for object recognition to extract high-level features as our
backend network.

Fig. 34. Illustration of ShuffleDet architecture. The backbone network is ShuffleNet. Modified inception layers are applied
as extra layers. C stands for channel. DAB unit is deployed to adapt to the new domain of UAV imagery using a residual
block containing deformable convolution layers 14 .

68

ShuffleNet[379] shows that by utilizing grouped or depth-wise separable convolutions, one
can reduce the computational demand, while still boosting the performance through a de-
cent representation ability. A major bottleneck can arise by replacing 1×1 convolution layers
with stacked grouped convolutions which can degrade the accuracy of the network. This is
due to the fact that a limited portion of input channels are utilized by the output channels.
In order to solve this issue channel shuffling was proposed in [379] which we also use inside
ShuffleDet architecture. Figure 34 illustrates the network architecture of ShuffleDet. In stage
1, a 3×3 convolutional layer is applied on the input image with stride of 2 which downsam-
ples the input by a factor of 2. This layer is followed by a maxpooling layer with stride of 2
and kernel of 3× 3. This maxpooling operation destroys half of the input information. This
is critical as vehicles in our case are small objects. Having said that without this operation,
computation cost will be multiplied. Therefore, we keep the maxpooling layer and we try to
enhance the performance especially via DABs units which will be discussed later. After the
maxpooling three stages containing multiple units from ShuffleNet are performed. Stage 2
and 4 contain 3 ShuffleNet units while stage 3 in the middle is composed of 7 units. The
whole stage 1 to 4 leads to 32x down-sampling factor. ShuffleUnit illustrated in Figure34
acts as residual bottleneck unit. Using stride 2 in ShuffleUnit, an average pooling is applied
on the primary branch parallel with depthwise convolution with stride 2 in the residual
branch. To ensure that all of the input channels are connected to the output channels, chan-
nel shuffling is performed before the depthwise convolution. A 1× 1 grouped convolutions
is applied before the channel shuffling as a bottleneck in order to reduce the number of
feature maps in the output for the efficient computation. It has been shown [347, 379] that
the group convolutions also improve the accuracy. The second grouped convolution brings
back the number of feature maps or channel to the number of input channels for a more
accurate representation capability. Using a stride of 2, the features of average pooling and
second grouped convolution is concatenated while having stride of 1, maxpooling is omitted
and depth-wise convolution is performed. Moreover, the outputs are summed up instead of
using concatenation. Figure 34 shows the detailed structure of ShuffleNet units with and
without stride of 2.

Stage 1, 2, 3 and stage 4 are employed to enhance the heat map resolution as input interme-
diate layers. In the detection module, we primarily inspire from SSD approach. In order to
enrich the extracted features from the intermediate layers, we perform extra feature layers
in stage 5. In our case, the output from stage 4 is passed through stage 5 as illustrated in
Figure 34 This is compatible with using multi-box strategy explained in the SSD method. In
total, we extract 7 feature maps of different sizes from the backbone network.

To enhance the performance, instead of employing conventional convolution layer simi-
lar to SSD method for each extra layer, we use a modified module of Reduction-B from
Inception-ResNet-v2 [310] in stage 5. Unlike ResNet and VGG, inception modules have not
been explored enough in object detection task due to their higher computation cost. We
stack 4 modified inception modules as stage 5 for feature map extraction at different levels.
Unlike original Inception-ResNet-v2 work, we add 1 × 1 conv layers after maxpooling and
concatenation layer. The maxpooling layer reduces spatial-resolution and dimension as bot-
tleneck. 1 × 1 convolution in return expands the dimension to insert further non-linearity
to the network resulting in a better performance. The same philosophy was used in the lat-
ter 1 × 1 conv layer. Applying the inception module adds more computational cost to the
network. To compensate its load, we replace 3 × 3 convolution layers with 3 × 3 depthwise

convolutions. Depth-wise convolution improves the performance slightly, yet it has
1
N

+
1
k2

times less computation cost compared with regular conv layers. N is the number of output
channels and k is the kernel size. Furthermore, we divide the input channels equally among

14UAV photo is from https://www.quantum-systems.com/tron

https://www.quantum-systems.com/tron

5.2 Method 69

the branches. The output number of channels for each layer is an equally concatenation of
output channels from each branch. These modifications keep the model size as well as com-
putational complexity small. We observe using this modified inception modules enhances
the performance. We conjecture unlike the original SSD which uses 1×1 and 3×3 conv layers
in series as extra layers, multi-size kernels parallel in inception modules capture features in
different sizes simultaneously e.g. 1×1 kernels to detect small vehicles and 3×3 kernels for
bigger ones which could be the reason for this enhancement. This shows by widening the
network and augmenting the cardinality, we can achieve better results. This comes only with
a marginal increase in computational complexity. Moreover, by using multi-size kernels, one
does not need to worry which kernel size is more appropriate.

In order to regress bounding boxes and predict object classes from extra layers as illustrated
in Figure 34 , the base-line SSD processes each feature map by only a single 3 × 3 convo-
lution layer followed by permute and flatten layers in multi-box detection layer. This
includes feature maps only from one of high-resolution layers. This leads to a weak perfor-
mance in detecting small scale vehicles. The feature maps from higher-resolution layers e.g.
in our case stage 2 and 3 are responsible to detect small scale vehicles. Stage 1 is ignored
due to its high computational complexity. Those corresponding feature maps are seman-
tically weak and not deep enough to be capable of detecting small scale vehicles. ResNet
and VGG19 works denote that employing deeper features enhances the object recognition
accuracy. However, those backbone networks are computationally heavy to be deployed on
on-board processors in UAVs which work under strict power constraints. As an alternative,
we propose using a residual module which we call DAB as shown in Figure 34. Combination
of 1×1 convention and 3×3 deformable convolution operations enrich the features further,
but still introducing low computation burden. We choose a portion of input channels to
keep the computation cost low. 1/8,1/8,1/8,1/4,1/2,1/2,1 are used as the portion of input
channels of output layers from stage 2 to the last extra layer and inside DAB unit we assign
1/5,4/5,4/5 portion of input channels to each branch as illustrated in Figure 34. The output
channels remains similar to the original SSD. The only difference is the introduced extra
multi-box feature map from stage 2. SSD calculates the number of default boxes per class
byW ×H×B in whichW andH are input width and height and B is from the set of 4,6,6,4,4
for each feature map. We choose B = 4 for the stage 2 leading to 28642 boxes per class.

In aerial imagery, vehicles appear to be very small and almost always in rectangle geometric
shape. On the other hand, the pre-trained ShuffleNet has been trained on ground imagery
while our images are in another domain of aerial imagery. Therefore pre-trained weights
should be adapted to the new domain. We use deformable convolution as introduced in
[71] to take into account the new domain and the geometric properties of the vehicles. De-
formable convolution adds an offset to the conventional conv layer in order to learn from
geometric shape of object. They are not limited to a fix kernel size and offset is learned
during training by adding only an inexpensive conv layer to compute the offset field. De-
formable conv layer shows considerable improvement in case of using images acquired from
low-flying UAVs. However, the impact is less by using images from high-altitude platforms
such as helicopter or airplanes. According to [71] the computation cost of deformable con-
volutions is negligible. Finally, we apply ReLU layer to element-wise added features in the
DAB to add more non-linearity. In general naive implementation of ShuffleNet with SSD has
2.94 GFLOPs while ShuffleDet has 3.8 GFLOPs. Despite an increase in the computation cost,
ShuffleDet has considerable higher accuracy. As vehicles appear to be small objects in UAV
images, we choose default prior boxes with smaller scales similar to [13]. Eventually, NMS is
employed to suppress irrelevant detection boxes. It is worth mentioning that during train-
ing hard negative mining is employed with the ratio of 3 : 1 between negative and positive
samples. This leads to more stable and faster training. We also apply batch normalization
after each module in DAB as well as extra feature layers.

70

Table 16. Evaluation of modified inception module (mincep) in the stage 5 on the CARPK dataset. The DAB units are in
place. Smaller the RMSE, better the performance.

method RMSE small scales mincep-1 mincep-2 mincep-3 mincep-4

ShuffleNet-SSD-512 63.57 - - - -
ShuffleDet 52.75 - - - -
ShuffleDet 45.26 X - - -
ShuffleDet 41.89 X X - - -
ShuffleDet 40.47 X X X - -
ShuffleDet 39.67 X X X X -
ShuffleDet 38.46 X X X X X

5.3 Experiments and Discussion

In this section, we provide ablation evaluation of our proposed approach and compare it to
the state-of-the-art CNN-based vehicle detection methods. The experiments were conducted
on the CARPK and PUCPR+ datasets [136], which contain 1573 and 125 images of 1280×720
pixels, respectively. The vehicles in the images are annotated by horizontal bounding boxes.
To have a fair comparison with different baseline methods, we follow the same strategy as
theirs for splitting the datasets into training and testing sets. Moreover, we train ShuffleNet
as the backbone network on the ImageNet-2012 [79] dataset achieving similar performance
compared to the original ShuffleNet work. The results are compared to the benchmark using
MAE and RMSE, similar to the baseline [136]. In addition, we use data augmentation in a
similar way to the original work on SSD.

5.3.1 Experimental Setup
We use Caffe to implement our proposed algorithm. It is trained using Nvidia Titan XP GPU
and evaluated on NVIDIA Jetson TX2 as embedded edge device. For the optimization, we
use stochastic gradient descent with the base learning rate 0.001, gamma 0.1, momentum
0.9 to train the network for 120k iterations. The learning rate is reduced after 80k and 100k
by a factor of 10. Moreover, the images are resized to 512 × 512 pixels along with their
annotations. Additionally, we initialize the first four layers with our pre-trained ShuffleNet
weights and the rest with Gaussian noise. For the grouped convolutions, we set the number
of groups to 3 throughout the experiments. Furthermore, NMS of 0.3 and confidence score
threshold of 0.5 are considered.

5.3.2 Ablation Evaluation
In this section, we present an ablation study on the effect of the submodules in our approach.
Table 16 shows the impact of the modified inception module compared to the original base-
line. According to the results, introducing the first modified inception module (small scales)
decreases RMSE by about 4 points indicating the importance of wider networks in first lay-
ers as the critical layers of the network for small object detection. Replacing the baseline’s
extra layers with more modified inception models further improves the performance. This
highlights the role of higher-resolution layers in the vehicle detection tasks.

Table 22 represents the evaluation of DAB unit in which we observe a significant reduction
in RMSE (almost 5 points) even by the first DAB unit on the stage 2. This further indi-
cates the significance of including higher-resolution layer. Furthermore, the results show
that adding DAB modules to the extra layer can additionally enhance the performance to a
lesser degree. This performance indicates that applying the DAB unit in the high-resolution
layers can lead to a significant improvement on detecting small vehicles allowing a better
utilization of the deformable convolution to adapt to the vehicle geometries.

5.3 Experiments and Discussion 71

Table 17. Evaluation of using DAB unit on the CARPK dataset. We refer to modified inception layers as mincep. The
modified inception modules and small scales are in place.

method RMSE DAB-stage2 DAB-stage3 DAB-stage4 DAB-mincep-1 DAB-mincep-2 DAB-mincep-3

ShuffleNet-SSD-512 63.57 - - - - - -
ShuffleDet 49.26 - - - - - -
ShuffleDet 44.17 X - - - - -
ShuffleDet 42.02 X X - - - -
ShuffleDet 40. 75 X X X - - -
ShuffleDet 39.81 X X X X - -
ShuffleDet 39.14 X X X X X -
ShuffleDet 38.46 X X X X X X

Table 18. Evaluation of ShuffleDet with the benchmark on the PUCPR+ dataset. The less is better.
method backbone GFLOPs MAE RMSE

YOLO[267] custom 26.49 156.00 200.42
Faster-RCNN[273] VGG16 118.61 111.40 149.35

Faster R-CNN (RPN-small)[273] VGG16 118.61 39.88 47.67
One-Look Regression[246] - - 21.88 36.73

Hsieh et al.[136] VGG16 - 22.76 34.46
SSD-512[212] VGG16 88.16 123.75 168.24

MobileNet-SSD-512[144] MobileNet 3.2 175.26 225.12
our ShuffleDet ShuffleNet 3.8 41.58 49.68

We choose smin = 0.05 and smax = 0.4 as minimum and maximum vehicle scales with ratio of
2,3,1/2,1/3 as hyper-parameters in the original SSD. This improves the performance signif-
icantly according to Table 16 by almost 7 RMSE points. It is worth noting that ShuffleNet-
SSD-512 has 2.94 GFLOPs as complexity cost while ShuffleDet has 3.8 GFLOPs. This shows
ShuffleDet adds only a marginal computation cost while achieving a significant boost in
the accuracy. Figure 35 shows sample results of ShuffleDet on the CARPK and PUCPR+
datasets.

(a) (b)

Fig. 35. Sample vehicle detection results using ShuffleDet on the CARPK(a) dataset and the PUCPR+ dataset(b).

5.3.3 Comparison with the benchmark
In this part, compare our method with the benchmark. Tables 18 and 19 show that our
method can achieve competitive performance while having significantly less computation
cost compared with the state of the art. In comparison with the original implementation of
Faster-RCNN [273] and Yolo [267], our method achieves significantly better results. Shuf-
fleDet achieves comparative result with the state of the art with only about less 2 RMSE
points in the CARPK dataset. The reason for the big gap between SSD-512, MobileNet-SSD-
512 and shuffleDet is mostly due to our tuned scales and aspect ratios. This effect can also be
observed between original implementation of Faster-RCNN with and without small RPNs.

Moreover, ShufflDet achieves its superiority to Faster-RCNN and Yolo while it is signifi-

72

Table 19. Evaluation of ShuffleDet with the benchmark on the CARPK dataset. The less is better.
method backbone GFLOPs MAE RMSE

YOLO[267] custom 26.49 48.89 57.55
Faster-RCNN[273] VGG16 118.61 47.45 57.39

Faster R-CNN (RPN-small)[273] VGG16 118.61 24.32 37.62
One-Look Regression[246] - - 59.46 66.84

Hsieh et al.[136] VGG16 - 23.80 36.79
SSD-512[212] VGG16 88.16 48.02 57.42

MobileNet-SSD-512[144] MobileNet 3.2 57.34 65.24
our ShuffleDet ShuffleNet 3.8 26.75 38.46

cantly more computation efficient, 3.8 GFLOPs compared to 118 and 26.49 GFLOPs. While
Faster-RCNN runs at Jetson TX2 with 1 FPS, tiny Yolov2 at 7 and Yolov2 at 3 FPS, and origi-
nal SSD with 88.16 GFLOPs at 4 FPS, our ShuffleDet network runs at 14 FPS showing a great
potential to be deployed in real-time on-board processing in UAV imagery. In addition, our
approach achieves almost 70% and 50% better performance than MobileNet-SSD-512 and
the naive implementation of ShuffleNet-SSD on the CARPK dataset, relatively.

5.4 Generalization Ability

To evaluate the generalization ability of our method, we train it on the 3K-DLR-Munich
dataset [208]. This dataset contains aerial images of 5616×3744 pixels over the Munich city.
Due to the large size of each image similar to [13], we chop the images into the patches of
512×512 pixels which have 100 pixels overlap. To prepare the final results, for each image,
we merge the detections results of the patches and then apply none-maximum suppression.
Figure 36 illustrates a detection result of our algorithm for the 3K-DLR-Munich dataset.

Fig. 36. Vehicle detection result using ShuffleDet on the 3K-DLR-Munich dataset.

Table 20 compares the performance of ShuffleDet and two implementations of Faster-RCNN
on the 3K-DLR-Munich dataset. According to the table, ShuffleDet not only outperforms
the Faster-RCNN methods, but also its inference is much more time efficient. The consis-
tent behavior of our proposed approach on the 3K-DLR-Munich dataset indicate that it
could be generally applied to different datasets. ShuffleDet is capable of 2 FPS processing of

5.5 Conclusions 73

Table 20. Evaluation of ShuffleDet on 3K-DLR-Munich dataset. Inference time is computed in Jetson TX2 as an edge device.
method backend GFLOPs mAP inference time

Faster-RCNN [273] VGG-16 118.61 67.45% 7.78s
Faster-RCNN [273] ResNet-50 22.06 69.23% 7.34s

our ShuffleDet ShuffleNet 3.8 62.89 524ms

high-resolution aerial imagers in Jetson TX2 platform while Faster-RCNN with VGG16 and
ResNet-50 takes a couple of seconds.

5.5 Conclusions

In this paper, we presented ShuffleDet, a real-time vehicle detection algorithm appropriate
for on-board embedded UAV imagery. ShuffleDet is based on channel shuffling and grouped
convolution in its feature extraction stage. To evaluate the effect of different modules of
ShuffleDet, an ablation study is performed to discuss its accuracy and time-efficiency. Joint
channel shuffling and grouped convolution significantly boost the inference time. Inception
modules with depthwise convolutions enhance the accuracy while introducing a marginal
computation burden. Moreover, we show residual modules with deformable convolutions
are effective modules for semantic representation enhancement in small number of layers
as well as domain adaptation. Experimental results on the CARPK and PUCPR+ datasets in-
dicate that ShuffleDet outperforms the state-of-the-arts methods while having significantly
better time and computation efficiency. Additionally, the consistent behavior of ShuffleDet
on the 3K-DLR-Munich dataset demonstrate its generalizability. Furthermore, the imple-
mentation of ShuffleDet on Jetson TX2, which runs at 14 FPS, showing a great potential of
our approach to be used in UAVs for on-board real-time vehicle detection.

74

6 Aerial LaneNet: Lane Marking Semantic Seg-
mentation in Aerial Imagery Using Wavelet-
enhanced Cost-sensitive Symmetric Fully Con-
volutional Neural Networks

This chapter describes the paper Seyed Majid Azimi, Peter Fischer, Marco Körner,and Pe-
ter Reinart: Aerial LaneNet: lane marking semantic segmentation in aerial imagery us-
ing wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks, IEEE
Transactions on Geoscience and Remote Sensing (TGRS) 2018, (Azimi et al.,2018). The pub-
lished paper can be found in the Appendix D.

The knowledge about the placement and appearance of lane markings is a prerequisite for
the creation of maps with high precision, necessary for autonomous driving, infrastructure
monitoring, lane-wise traffic management, and urban planning. Lane markings are one of
the important components of such maps. Lane markings convey the rules of roads to drivers.
While these rules are learned by humans, an autonomous driving vehicle should be taught to
learn them to localize itself. Therefore, accurate and reliable lane marking semantic segmen-
tation in the imagery of roads and highways is needed to achieve such goals. We use airborne
imagery which can capture a large area in a short period of time by introducing an aerial
lane marking dataset. In this work, we propose a Symmetric Fully Convolutional Neural
Network enhanced by Wavelet Transform in order to automatically carry out lane marking
segmentation in aerial imagery. Due to a heavily unbalanced problem in terms of number of
lane marking pixels compared with background pixels, we use a customized loss function
as well as a new type of data augmentation step. We achieve a high accuracy in pixel-wise
localization of lane markings compared with the state-of-the-art methods without using
3rd-party information. In this work, we introduce the first high-quality dataset used within
our experiments which contains a broad range of situations and classes of lane markings
representative of today’s transportation systems. This dataset will be publicly available and
hence, it can be used as the benchmark dataset for future algorithms within this domain.

6.1 Introduction

Nowadays, the detailed description of the public transportation network is essential for the
generation of accurate road maps and lane based models. A broad range of current ser-
vices, e.g., navigation systems and assisted driving rely on such information. Future appli-
cations like automated lane-wise traffic monitoring, urban management and city planning
are also asking for high precision maps at centimeter-level accuracy, particularly built for
autonomous driving applications which are called HD maps. At present AV are a research
focus in computer vision and remote sensing. In order to achieve autonomy in AVs, one key
factor is to localize the vehicle precisely. Very accurate maps containing the location of in-
frastructures such as streets, sidewalks, traffic lights and even lane markings are a necessity
for reaching the goal of fully autonomous driving. ADAS comprising features like vehicle
navigation and lane departure warning requires not only the road model information, but
also the precise road lane marking data, e.g., the lane marking types and their locations.

Besides the current omnipresent topic of autonomous driving, many more urgent topics
can be addressed by HD maps. For instance the traffic monitoring systems could benefit
from the localization of lane markings as the base map. Information about lane marking
locations in open-space parking lots could also result in a more complete and therefore
more efficient parking lot utilization. In addition, more applications can arise which will

6.1 Introduction 75

Fig. 37. Sample aerial image patch from AerialLanes18 dataset in which lane markings have been annotated. In this task,
all classes of lane markings have been considered for pixel-wise semantic segmentation.

Fig. 38. Challenges in lane marking segmentation. Light and strong Shadow caused by trees and buildings. Examples of
rare cases such as speed limit and the disabled, and bus signs have been indicated. Partial or total occlusion by other objects
such as bridge or tree branches can be seen.

use high precision maps as the smart and efficient management of transportation systems is
one of the main topics of the 21st century.

At present the data collection for generating HD maps is mainly carried out by so called
mobile mapping systems, which comprise in most cases of a vehicle equipped with a broad
range of sensors (e.g., Radar, Lidar, cameras). This method comes with some drawbacks, for
instance the ground based systems can cover only a small part of the map due to the sensor
line-of-sight. Sensor drift and GPS-shadows in urban canyons lower the spatial accuracy,
traffic flow leads to partial occlusions in the recorded data. This issue can be addressed
by remote sensing imagery which are intrinsically motivated by the need for large areas
in short time at a monetary competitive level. More and more airborne and space-borne
sensors recording data in the very-high resolution, e.g., GSD less than 50 cm domain are
in operational mode. The public sector often offers its data under a free-and-open policy,
e.g., aerial imagery of U.S. Geological Survey (USGS) in urban regions has GSD less than
30 cm. Data collected by flight campaign with the goal to monitor infrastructure can offer
even better GSD. Figure 37 gives an example of such imagery from AerialLanes18 dataset,
introduced in this work which can be used for the purpose of HD maps creation.

6.1.1 Challenges
Several issues raise the level of difficulty when it comes to image segmentation of aerial
imagery for creating HD maps. Some of them are well known general problems in the com-
puter vision domain, for instance:

76

Fig. 39. Different lane marking classes. Single and double boundary, intersection, boxed junction, turn signs, separator,
zig-zag, bus and bike sign, speed limit, no-parking zone and pedestrian crossing.

Fig. 40. Complex Background. Objects such as those shown in this figure share similar appearance with lane markings. As
some complex background cases one can name sport field lines, rail ways, roofs of buildings and so on.

� Occlusion (partial or full) changes the appearance of lane markings in the image. Some
occlusion cases can be observed in Figure 38: full occlusion can be caused by other
objects such as bridge, tree and so on, while partial occlusion which occurs more often
is mostly caused by trees.

� Shadow creates a different illumination over lane markings causing changes in their
appearance. It does not happen often that lane markings are overshadowed, making it
a special case. This reason, like the previous one, could reduce the accuracy of auto-
matic lane marking algorithms, especially Deep Learning methods which need a lot of
training samples.

Some other challenges are specifically binded to the task of lane marking segmentation. A
short overview is given in the following itemization.

� Different classes - Generally, lane markings are categorized into different classes such
as single and double boundary, intersection, boxed junction, separator, zig-zag, spe-
cial sign for the disabled, bus and bike sign, speed limit, no-parking zone, pedestrian
crossing, and so on. Some of these classes can be seen in Figure 39.

� Small size - In airborne imagery, the size of lane markings compared to other objects
in the image is, depending on the GSD, quite small. In some cases, a sign of separator
could be 5× 5 px. This is one of the biggest challenges within the lane marking mapping
task in aerial imagery.

� Washed out samples - Not all lane markings are visible in the image; some of them ap-
pear washed out partially or completely. This imposes another challenge for the accu-
rate localization of lane markings. On the one hand, in the case of completely washed
out lane markings, no visual feature may be captured. Therefore, these cases are ig-
nored. Partially occluded objects, on the other hands, impose a difficult challenge both
in the prediction and dataset annotation steps.

� Rare cases - Lane marking classes are not equally distributed, as some classes are more
frequent than others. Speed limit, bus and bike signs, parking place for the disabled
can be named as rare cases which can be seen in Figure 38.

6.1 Introduction 77

� The complex background represents an additional hindrance in accurate localization
of lane markings. Structures such as those in Figure 40 resemble with high similarity
lane markings.

6.1.2 Related work
Besides of the before mentioned challenges concerning semantic lane-marking segmenta-
tion of aerial imagery, another challenge was identified in the early phase of this work. The
usage of aerial images in order to extract valuable data from transportation infrastructure
has a rich literature in the remote sensing domain. But as it comes to supervised learning
algorithms, we identified the lack of annotated, high-quality datasets. As the lane markings
are so small, annotating such objects is difficult and time-consuming. We will later on tackle
this issue by making our dataset easily available.

Concerning aerial imagery Jin et al. [161] extract roads first. Then they apply Gabor filters
for highlighting the lane markings followed by Otsu’s thresholding algorithm for raw binary
segmentation. The final result is then given by morphological operators or by using support
vector machines (SVMs) [36]. However, by using this approach some white linear features
such as the ridges of house roofs may be misclassified if the road extraction is not applied.
Also lines belonging to vehicles or bridges may be misclassified as they are inside the road
areas. Furthermore, they did not investigate lane-marking extraction into detail providing
only one resulting image. They also mentioned that objects, such as trees above roads or
worn-out/dirty lane markings on the roads, decrease the accuracy of the final results. In
order to solve the problem, Jin et al. [162] propose an approach consisting of three steps to
detect lane markings:

� First, the road centerline is extracted.
� Then the road surface is detected.
� Finally pavement markings are extracted.

Similar to the previous work, in this work also roads are extracted first and then lane-
markings are detected. Even though, this method shows better performance than previous
methods as claimed by the author, it still has the drawback of the previous methods such
as not being able to have a good accuracy on lane-marking detection without road extrac-
tion. Following this work flow, Jin et al. [163] use an unsupervised algorithm to extract the
road surface first. Second the authors employed co-occurrence contrast measurements to
enhance the lane markings, under the assumption that the contrast between lane marking
and road surface is strong and then localized lane markings. Subsequently, morphological
closings and openings are applied in order to remove the enhanced edges in the shadow
regions. In the last step, the extracted lane marking features are narrowed by a modified
Wang-Zangen algorithm and further fitted to a line by least square regression. This work
extends lane-marking detection to rural areas. Similar to the previous mentioned works,
despite yielding good results in the few provided test images, this work also suffers from
high rate of false positives in case of not using road extraction step. Further works following
this core approach are given by Javanmardi et al. [156] and Huang et al. [143] who used
adaptive threshold in airborne images. Javanmardi et al. [156] approach contains different
steps such as digital surface model (DSM) processing, removing vehicles using multiple im-
ages and in the end utilizing a simple adaptive thresholding to extract lane marking. In this
method, lane markings are not detected directly as we have done in this work and 3rd party
data is used to remove non-lane marking objects.

Hinz and Baumgartner [128] propose a method to extract lane markings by multi-view im-
agery and context cues and also used the extracted thin lines as a hint for the presence of a
road. This method yields very good results. However, this method works only when multiple
images have been captured with different views from a place of interest. This method is also

78

Fig. 41. Aerial LaneNet. Overview of lane marking segmentation approach using Wavelet-enhanced symmetric cost-sen-
sitive fully convolutional neural networks. The input image is a high resolution aerial image. It is cropped first and seg-
mented using Aerial LaneNet network. In the end, segmented patches are stitched together. H and W represent height and
width and third number is number of feature maps.
similar to previous mentioned works in using the road mask and therefore it suffers from
low accuracy in case of not applying the road extraction step. Mattyus et al. [102, 233] pro-
posed a method based on Markov Random Fields and a combined parsing of both ground
and aerial images to generate detailed maps. These road models could be used for masking
images in order to localize lane markings, but it can not be used directly for lane marking
localization and only helps to find roads and the boundaries of each line in the roads.

Tournaire and Paparoditis [320] extract dashed-line and zebra crossing with the use of infor-
mation obtained by the reconstruction process from the extracted primitives of the image. In
contrast with our work, they only considered rectangle line markings and studied their geo-
metric properties to be able to extract them. Furthermore, they did not use a learning feature
approach to detect lane markings as we have done in this work. More complete overviews
about the extraction of roads and road features from airborne images can be found in Mayer
et al. [234] and Wang et al. [340].

As discussed, no previous work has tried to learn the features of the lane marking through
an end-to-end feature learning mechanism e.g., deep learning methods, to the best of knowl-
edge of these authors. Unlike in remote sensing community, researchers in computer vision
community have already applied deep learning methods to extract road infrastructure fea-
tures in in-situ images.

Deep learning methods, currently widely used in computer vision, try to learn features
rather than using engineered features. During the last few years, deep learning methods
have shown impressive performance in a variety of computer vision tasks such as ob-
ject recognition [122, 142, 292], detection [120, 212, 268, 273] and semantic segmentation
[48, 218, 277, 385]. CNNs, as one of the widely used deep learning methods, have been
proven to be very successful for object recognition in images [122, 142, 292].

However, pixel-wise semantic segmentation is a more challenging problem, as each pixel
should be classified. Kim et al. [168] propose a sequential transfer learning method based
on FCNNs by segmenting the road in the first step and then lane marking segmentation on
the road-masked image. This method is similar to the methodology used in current lane-
marking detection algorithms in remote sensing. The main difference is now using FCNNs
to extract roads first rather than using non-deep-learning-based methods.

Gurghian et al. [110] propose a CNN classification method to localize lane markings on both
sides of a vehicle. However, this method is not applicable to remote sensing applications as
we are interested to detect lane-marking in all regions in the images. Lee et al. [187] propose

6.1 Introduction 79

a multi-task CNN to localize and classify lane markings in day time with different weather
conditions as well as during night time. This is a very interesting work where the author has
developed a method to detect lane-markings in different weather conditions. However, this
method and other FCNN-based methods in lane-marking detection have been developed
for ground imagery processing. Lane-markings of small size in image data have not been
the focus of most works in this context. In imagery from cars or poles (ground imagery)
they are big enough and therefore do not introduce a significant challenge. Having said
that, in remote sensing imagery lane-markings can be as small as 3× 3 px which are much
more difficult to detect.

In order to facilitate the application of supervised learning methods, Caltech Lane [4]
and tuSimple [20] datasets were created for lane marking segmentation, while large-scale
datasets for semantic understanding of roads containing a diverse range of classes including
lane markings have been defined in [64, 248]. The aforementioned datasets are in ground
imagery and to the best of our knowledge there is no public dataset available for research
on lane marking localization in remote sensing data.

In our work, we have created the first high-quality annotated dataset for lane-marking se-
mantic segmentation in remote sensing imagery specifically in airborne images. We use FC-
NNs as baselines of our method. Therefore, this work is to our knowledge the first time
using FCNNs to segment lane-marking in remote sensing data in contrast to previous meth-
ods which mostly detect road first as a hint and secondly apply edge detection-based meth-
ods to segment lane-markings. This is one of the main differences of this work compared
to previous works on this task. Unlike the works done in ground imagery, in this work we
focus on small size lane-markings by inserting discrete wavelet transforms (DWTs) of in-
put images in different steps into FCNNs to preserve high-frequency information including
lane-markings. Wavelet transforms have been widely used both in ground [138] and remote
sensing imagery [229]. Recently, Fujieda et al. [98] also used DWT combined with CNNs for
texture classification. They used CNNs for classification while in our work the focus is on the
semantic segmentation task which is a different task from classification. They inserted all
DWT decompositions with CNN only in two steps and in the middle of the convolutional
layers and did not investigate which insertion place for DWT yield the best results while
in our work we use three decompositions and also we investigate where is the best place
to insert DWT to yield the best results. In their work, DWT decompositions were inserted
into CNNs as input while in our work, we still give RGB image as input. More importantly,
the effect of DWT was not investigated from the point of preserving high-frequency data
such as very small objects for semantic segmentation. Moreover, we deploy a weighted loss
function as well as symmetric FCNN. Although, FCNNs introduced by Long et al. [218] is
among the first deep learning methods for the semantic segmentation task, its accuracies
are still comparable with the-state-of-the-art such as DeepLabv3 [54], DeepLabv3+ [55],
PSPNet [385], ICNet [384] and others with deep backbone networks such as ResNet [122],
ResNext [353], Xception [62], and DenseNet [142]. We choose the FCNN network proposed
by Long et al. [218] with VGG16 backbone as baseline of our method due to its simplicity
and familiarity of the community with its architecture and yet its accuracy is comparable
with the-state-of-the-art methods.

6.1.3 Our contribution
In this work, we focus on lane marking pixel-wise semantic segmentation using aerial im-
ages. In high-resolution aerial images, the lane markings are easy to identify. Our proposal is
based on combining FCNNs with DWT for lane marking pixel-wise semantic segmentation
in airborne images. The motivation of using FCNNs as a deep learning method for semantic
segmentation is its higher performance compared with non-deep-learning methods.

80

Unlike traditional methods in which feature extraction and classification steps are per-
formed separately, in FCNNs features are learned during an end-to-end training and there
is no separation between feature extraction and feature classification. FCNNs have been
proposed first by Long et al.[218] for semantic segmentation in in-situ imagery with extra
up-sampling layers (deconvolutional layers). The authors propose multiple pooling layers
to be fused with up-sampling layers (skip layers) to further refine segmentation boundaries.
The authors call their network and its variants FCN32s, FCN16s and FCN8s. We consider
FCN32s as the base-line of this work.

In order to enhance current network performance, we combine different of input images
with the FCNN network. The motivation of using DWT is to provide the network with dif-
ferent representations of input objects in different scales as well as full-spectral analysis.
DWTs can represent the input image at different scales. While CNNs process the image in
the spatial domain and partially in the spectral domain, DWT allows analyzing the images
in full-spectral domain. Therefore, the properties of these algorithms are different.

Integrating DWT will enable the network to access the intensity frequency information
which is lost in the convolution and average pooling layers, carrying out limited spectral
analysis. The intensity frequency information lays in the frequency domain for the pixel
intensities variation and not in the different image bands like e.g. in hyperspectral images.
Wavelet transform has been investigated for a long time for frequency analysis and also
image compression.

In this work, we have carried out experiments with different combinations of DWT decom-
positions to be used as input with a modified version of FCN32s, which we call “Symmetric
FCNN”. The final result is a pixel-wise semantic segmentation of lane-marking. Due to the
heavily unbalanced task in terms of number of lane marking pixels compared to background
ones, we have applied a cost-sensitive loss function to impose higher loss for wrong classifi-
cation of lane markings as minor class than loss for the wrong classification of background.
As mentioned before we introduce the first high quality pixel-wise annotated dataset for
lane marking segmentation and detection in aerial imagery, which shall encourage future
works in this area.

The following sections are organized as follows. Section 6.2 represents the methodology to
enhance FCNN with different DWT decompositions, the cost-sensitive loss function used
during the training phase, and the symmetric FCNNs architecture. In Section 6.3, we intro-
duce the dataset and its features and properties and report different experiments. In Sec-
tion 6.4, the results of the experiments are given and evaluated. In Section 8.32 a conclusion
is drawn.

6.2 Arial LaneNet: Wavelet-enhanced Cost-sensitive Sym-
metric Fully Convolutional Neural Network

In this work, we propose a Cost-sensitive Symmetric FCNN enhanced by DWT which we
call Aerial LaneNet. The overall work-flow of our method is illustrated in Figure 66. Due to
the high resolution of aerial images and hardware memory constraint, the original images
are chopped into small patches using a sliding window[74]. Then each patch is processed
by Aerial LaneNet in order to predict a semantic segmentation of the input patch.

The output is a binary image which denotes which pixel belongs to lane markings and which
one to the background. In the end, patches are stitched together to create the final output
with the same resolution as the input image. In the following, we explain our proposed
methods in detail.

6.2 Arial LaneNet: Wavelet-enhanced Cost-sensitive Symmetric Fully Convolutional Neural Network 81

Fig. 42. First level DWT decomposition work flow. The input gray-scale image is processed by low pass and high pass filter
in different directions. The output is with half size of the original image. Afterwards, the same operation is applied on each
part, resulting in 4 decomposition parts of the input image in 1st level DWT. In conventional FCNNs, only low-frequency
analysis is carried out shown in red, while DWT offers a full spectral analysis shown in blue.

CNNs are a combination of different layers such as convolution, pooling, activation function,
drop-out and fully connected layers. Input data is convolved with a linear convolution filter
in convolution layers

(hk)ij = (Wk ∗X)ij + bk (25)

where k = 1, . . . ,K is the k-th feature map in the convolution layer and (i, j) is the index
of a neuron in it. X stands for the input data and Wk and bk are the weights (trainable
parameters) of the network and the biases (trainable parameters) respectively.

The output of each neuron in the k − th feature map, has been represented by (hk)ij at po-
sition (i, j). The 2D convolution between input data and filter mask in spatial domain is
represented by “ ∗ ” which partially includes spectral analysis at low-frequencies, while the
remaining spectral information is lost.

Considering Figure 42, parts shown in red in the DWT algorithm can be considered as a
convolution function in traditional CNNs. On the other hand, a wavelet transform is able to
capture the full spectral information of the input in the frequency domain.

Moreover, wavelets can extract multi-resolution spectral information from input data at
different decomposition levels as shown in Figure 43. Multi-resolution analysis of the input
data would represent the input in different scales, similarly to a pooling operation. Each
sub-sampling step in wavelet transform can be considered as a different pooling operation.

Therefore, pooling layers could be also replaced by wavelet transforms. Instead of doing
so, we merge (fuse) wavelet information of the input with traditional FCNNs together with
pooling layers which can be done in different ways. In order to add the wavelet decompo-
sition to the network, one can compute wavelet transforms for each image and apply the
output to FCNNs. However, in this case, multi-scale information of the data is lost. There-
fore, the network is not able to learn the lane marking features at different resolutions. This
will lead to a non-scale-invariant method. To address this problem, multi-scale input pro-
cessing is needed.

Each level of wavelet decomposition analyzes the data at different resolution. Therefore, by
combining different decomposition levels of wavelet transforms with FCNNs, low and high
frequency domain analyses as well as different resolution analysis are achieved.

After applying a wavelet transform on the input image, lane marking boundaries appear as
high-frequency objects in vertical, horizontal and partially in diagonal details in the wavelet

82

Fig. 43. Different DWT decompositions. The input RGB image is converted to gray scale first. Then first DWT decomposi-
tion is computed followed by next levels. High-pass and low-pass filters are represented by “H ′′ and “L′′ respectively. LL
stands for two step low-pass filtering where HL, LH and HH contain horizontal, vertical and diagonal details respectively.

coefficients. Different parts from the first to the third level of the DWT are illustrated in
Figure 43.

6.2.1 Discrete Wavelet Transform (Background)
DWT of a signal x is computed by applying a series of filters and sub-sampling in subse-
quent levels [229]. For instance, in the first level of DWT, a low pass and a high pass filter
are applied simultaneously with impulse responses of g and h resulting in two convolutions
of

ylowpass[n] = (x ∗ g)[n] =
+∞∑
x=−∞

x[k]g[n− k]

yhighpass[n] = (x ∗ h)[n] =
+∞∑
x=−∞

x[k]h[n− k]

(26)

and the resulting signals are sub-sampled by a factor of 2 i.e.,

ylowpass = (x ∗ g) ↓ 2
yhighpass = (x ∗ h) ↓ 2

(27)

In order to further increase the approximation coefficients and the frequency resolution re-
sulting from low and high pass filters and down-samplings, this decomposition is repeated.
This results in a tree representation of each decomposition level known as filter bank which
is illustrated for a two-level decomposition in Figure 42. We can consider the implementa-
tion of a wavelet filters as the wavelet coefficients calculation of a discrete set of lower-level
wavelets for a mother wavelet functionΨ (x). By applying DWT, a discrete function f (x) is
converted into a signal of two variables [229]: scale and translation which can be described
as

Ψj,k(x) :=
1

2j/2
Ψ (
x − k2j

2j
) (28)

Φj,k(x) :=
1

2j/2
Φ(
x − k2j

2j
) (29)

Ψ (x) :=

1 ,for 0 ≤ x ≤ 1/2
−1 ,for 1/2 < x ≤ 1
0 ,otherwise

(30)

Φ(x) :=
{

1 ,for 0 ≤ x ≤ 1
0 ,otherwise

(31)

6.2 Arial LaneNet: Wavelet-enhanced Cost-sensitive Symmetric Fully Convolutional Neural Network 83

in which Φj,k(x) is the scaling function for which the box function Φ has been chosen. Ψj,k(x)

and Φj,k(x) have ranges of [− 1
2j/2

,
1

2j/2
] and [0,

1
2j/2

] accordingly with width 2j that starts at

k2j . The scale level is represented by j and the shift by k. Ψj,k(x) are scaled and shifted
versions of the continuous mother wavelet Ψ (x). In the discrete domain, for a signal of
length N = 2n one considers the N functions Φn,0,Ψn,0 . . .Ψ1,2n−1−1. In this work, we consider
the Haar wavelet transform as the first order of the Daubechies wavelet family [76] with
n = 2 and we use the basis vectors

Φ2,0 =
1
2

(1,1,1,1)T

Φ2,0 =
1
2

(1,1,−1,−1)T

Φ1,0 =
1
2

(1,−1,0,0)T

Φ1,1 =
1
2

(0,0,1,−1)T

(32)

that yield the coefficients

cj,k := f TΦj,k
dj,k := f TΨj,k

(33)

in which cj,k are coefficients of the scaling vector Φj,k, for coarse decomposition these are
low-pass filter coefficients. Similarly dj,k are coefficients of the wavelet vector Ψj,k for de-
tailed decompositions which are high-pass filter coefficients. In 2D DWT, it starts first with
calculating the wavelet decomposition on a single level in x direction then in y direction.
Afterwards the next decomposition is performed only in the quadrant part that contains the
low-frequency parts (scaling coefficients) for both directions. The decomposition levels are
proceeded until a single pixel is reached.

In order to compress the images as wavelet transform injections, the orthonormal
Daubechies wavelet family [76] is selected for their proven success in decomposing images
and identifying borders. The Daubechies wavelet family is written as dbN, where N is the
order, and db is the abbreviation for the Daubechies wavelet family. The db1 wavelet is the
same as the Haar wavelet and the first order of Daubechies family with lower computation
cost and fewer wavelet filter bank coefficients. The continuous wavelet transform has been
presented in Equation 28.

As shown in Figure 66, DWT decompositions are injected as shown by the paths in pink.
Given that the input data is H(Height) and W (Weight) pixels after having changed to gray-
scale image shown in Figure 43, using four levels of the wavelet transform on the input
image results in the outputs with H/2×W/2, H/4×W/4, H/8×W/8 and H/16×W/16 sizes.
The input image is first converted to gray-scale before DWT computation. In contrast to
usual cases in which more data results into a better performance, our preliminary results
show that using an RGB input image results in 1.78% IoU performance decrease. To fur-
ther investigate this issue, we considered other color spaces including HSV and observed
the same effect which we conjecture it could be due to insertion of redundant input data. It
is worth mentioning that the parameters of DWT is fixed and are not updated during the
training phase. The first level DWT has an input size of H×W, and four outputs (Approx-
imate, Horizontal, Vertical, and Diagonal) with half size capturing different details in the
image like shown in Figure 42.

The fusion of the 1st level wavelet transform has to be done after the first pooling. The
reason is that the input size of the image is H×W while the size of the 1st level wavelet

84

Fig. 44. Different 1st level DWT fusion with Symmetric FCNNs. There are three fusion variants. Left: before pooling layer,
middle: after convolution layer, right: after pooling layer.

decomposition is H/2×W/2. Hence, due to incompatible size resolution, the first fusion layer
is carried out after the first pooling operation.

Inserting the 1st level DWT decompositions with half size of the input image as input to the
network results in losing spatial and spectral information of the original input. Therefore,
this scenario is not efficient.

There are different ways of wavelet transform fusion with the FCNN network, as shown in
Figure 44. As mentioned, the wavelet decompositions have to be placed after the pooling
layer. We have considered all three illustrated cases to combine the 1st wavelet decomposi-
tion level to the network. The same goes for other DWT levels. A typical cross entropy loss
function in semantic segmentation treats pixels belonging to different classes equally. For a
binary classification problem, this can be represented as

L(W) = − 1
N

∑N
n=1 yn log ŷ(xn,W) + (1− yn)(1− log ŷ(xn,W)) (34)

where xn ∈ [0,255] is the input pixel value, yn ∈ {0,1} the ground truth label, ŷn ∈ [0,1]
the prediction probability, W is the weight matrix of the network and L denotes the loss
function.

In order to classify each pixel, the softmax function is widely used in multi-class classifi-
cation tasks in FCNNs. The vector of real values between [0,1] generated by this function
denotes a categorical probability distribution.

The softmax function can be expressed as ŷj = sof tmax(X,Wj) = e
XT Wj∑K

k=1 e
XT Wj

, in which Wj and

X denote the weights of the network (including bias values) and the input data respectively.
The well-known loss layer using the softmax function for multi-class classification is cross-
entropy loss.

However, for lane marking segmentation, the majority of pixels belong to the non-lane
marking class. This makes the problem highly unbalanced. Therefore, we modify the typical
cross entropy loss function by imposing a higher cost on the wrong classification of a lane
marking pixel compared with a background pixel. The defined loss function is

(35)L(W) = − 1
N

(
λlane

N∑
n=1

yn log ŷ(xn,W) +
N∑
n=1

(1 − yn) log(1 − ŷ(xn,W))
)

which is cost-sensitive, as it penalizes different class pixels differently. This is done by intro-
ducing parameter λlane in the cross entropy loss function. This weighted loss function can
be easily extended to a multi-class segmentation scenario by inserting a function 1cls(xn)

6.2 Arial LaneNet: Wavelet-enhanced Cost-sensitive Symmetric Fully Convolutional Neural Network 85

Fig. 45. Aerial LaneNet architecture break down.

which is equal to one if xn belongs to class cls and zero if it does not. To leverage the capac-
ity of CNNs to perform semantic segmentation, the networks can be modified by replacing
fully-connected layers with convolution layers which allow CNNs to be applied to images
with variable sizes.

This approach will not lead to semantic segmentation with the same resolution as the
input image. Therefore, extra up-sampling layers (bi-linear interpolation) are applied in
the base-line network. Bi-linear interpolation is differentiable which makes applying back-
propagation during training feasible. In order to grasp varied visual input information yet
keeping input feature map dimensions, the up-sampling layer is applied after the last con-
volution layer to up-sample the extracted features to the input dimension size. This can be
considered as encoding of the input data to the first up-sampling layer and decoding by
up-sampling layers as illustrated in Figure 66.

By modification of FCNNs to be more robust to over-fitting, we design a symmetric FCNN
network. In this methodology, we add convolution and drop-out layers after up-sampling
layers in the baseline network of FCN32s. We do the same for FCN16s and FCN8s network
architectures. We also add one additional up-sampling layer which can be seen as a new
FCN4s network.

Instead of using average pooling layers, we use max-pooling layers. In FCN4s, we also apply
the fusion technique used in the baseline paper which is a summation of the corresponding
pooling layers with the output of the up-sampling layers. The motivation to add more con-
volution layers comes from [122, 177, 292] where it has been shown that depth has a key
role in high-level feature extraction.

Aerial LaneNet is not limited to a fixed input size i.e., there is no need to resize input images.
The only preprocessing step is the subtraction of image mean. Due to the heavily unbalanced
datasets for lane marking and the scarcity of such datasets, more drop-out layers have been
added to the network to prevent over-fitting. The deep neural networks are prone to over-
fitting according to the noise present in the training set samples if that is small. In Figure
45, the Aerial LaneNet network architecture is reported in detail. The inserted layers have
been denoted in red in Table 21. The same table shows the architecture of the network and
its properties such as input and output size, feature map dimension, receptive field and so
on.

86

Table 21. Symmetric FCNN input and output sizes for each layer as well as filter maps and receptive fields. Added layers
in Symmetric FCNN to FCN8s have been specified with red colors.

Layer Input Output Features Receptive Field

conv1-1 960× 960× 3 960× 960× 64 64 3× 3
conv1-2 960× 960× 64 960× 96× 64 64 5× 5

maxpooling-1/conv2-1 960× 960× 64 480× 480× 128 128 11× 11
conv2-2/1st level Wavelet-fusion 480× 480× 128 480× 480× 131 131 13× 13

maxpooling-2/conv3-1 480× 480× 131 240× 240× 256 256 17× 17
conv3-2 240× 240× 256 240× 240× 256 256 19× 19

conv3-3/2nd level Wavelet-fusion 240× 240× 256 240× 240× 259 259 21× 21
maxpooling-3/conv4-1 240× 240× 256 120× 120× 512 512 25× 25

conv4-2 120× 120× 512 120× 120× 512 512 27× 27
conv4-3/3rd level Wavelet-fusion 120× 120× 512 120× 120× 515 515 29× 29

maxpooling-4/conv5-1 120× 120× 515 60× 60× 512 512 33× 33
conv5-2 60× 60× 512 60× 60× 512 512 35× 35

conv5-3/4th level Wavelet-fusion 60× 60× 512 60× 60× 515 515 37× 37
maxpooling-5/conv6-1 60× 60× 515 30× 30× 4096 4096 41× 41

dropout-1 - - - -
conv6-2 30× 30× 4096 30× 30× 4096 4096 43× 43

dropout-2 - - - -
deconv-1/maxpooling-1-fusion 30× 30× 4096 60× 60× 512 512 43× 43

conv7 60× 60× 512 60× 60× 512 512 43× 43
dropout-3 - - - -

deconv-2/maxpooling-2-fusion 60× 60× 512 120× 120× 256 256 43× 43
conv8 120× 120× 256 120× 120× 256 256 43× 43

dropout-4 - - - -
deconv-3/maxspooling-3-fusion 120× 120× 256 240× 240× 128 128 43× 43

conv9 240× 240× 128 240× 240× 128 128 43× 43
dropout-5 - - - -

deconv-4/maxpooling-4-fusion 240× 240× 128 480× 480× 64 64 43× 43
conv10 480× 480× 64 480× 480× 64 64 43× 43

dropout-6 - - - -
deconv-5 480× 480× 64 960× 960× 2 2 43× 43

6.3 Experiments

In this section, we introduce the dataset used in the experiments. Then we explain the ex-
periments and provide quantitative and qualitative results along with corresponding dis-
cussions.

6.3.1 AerialLanes18 Dataset
The experiments were conducted using images acquired by the German Aerospace Center
(DLR) within a flight campaign in the framework of the VABENE++ project. The campaign
was carried out over the greater area of the city of Munich on the 26þof April 2012.

The 3K camera system [272] consisting of three Canon Eos 1Ds Mark III cameras was used
for recording the raw data, where two cameras are mounted side looking and one is mounted
nadir-looking on a flexible platform.

The 3K system is a low-cost camera system used for various remote sensing applications,
such as real-time mapping [182], disaster monitoring [180], traffic monitoring [209], and

6.3 Experiments 87

Fig. 46. Sample training patches from AerialLanes18 dataset taken by aerial imagery over Munich, Germany. The original
image patch is shown with its corresponding annotation. GSD is 13cm.

detection of high-density crowds [236].

In total, 20 representative RGB images of size 5616× 3744 px have been chosen. The flight
height of about 1000 m above ground led to a GSD of approximately 13 cm.

The images depict urban and partly rural areas with highways and first/second order roads.
Complex traffic situations like crossings and congestions are included. The images served as
starting point for works in the domain of vehicle detection by Liu and Mattyus [209].

6.3.2 Annotation of AerialLanes18
The ground truth has been annotated by human experts who marked all kinds of lane mark-
ings over roads and highways such as separate line, continuous line, turn sign, speed limit
sign, and even bus and disabled people parking place signs. The annotation was carried out
manually by using an in-house annotation software. During annotation, we ignored washed
out lane-markings. Figure 46 shows some patches of the mentioned dataset. Figure 58 show
large training images with the overlaid lane marking annotations.

6.3.3 Implementation Details
As the dataset does not consist of many images, most likely training a deep neural net-
work on such a small dataset from scratch with randomly initialized parameters will lead
to over-fitting. On the other hand, as annotating small lane marking objects is difficult and
time-consuming, only images of the mentioned dataset have been annotated. To address this
problem, networks which have already been trained using large datasets like ImageNet [79]
are used as initialization of parameters in order to transfer the learned information to a new
task. This technique is known as “Transfer Learning”. Using this technique, we can initialize
the weights more efficiently.

Therefore, it can be assumed that the network is already close to one of the optimal so-
lutions and needs far less training data to converge and by retraining the network known
as “Fine-tuning” technique, the problem of over-fitting can decrease significantly. In our
experiments with wavelet transform fusion, we use FCN32s [218] as the baseline. VGG16
proposed by Simonyan et al. [292] is the backbone main network. However, AlexNet [177],
GoogleNet [311], and ResNet-101 [122] are also considered.

We use the patches of 1024× 1024 px as input to the network. We employ the 800 px crop-
ping step in horizontal and vertical directional in the training phase and 1000 px in the test

88

Fig. 47. Sample large training image from AerialLanes18 dataset. The original image patch is shown with its corresponding
annotation.

phase. For the training step, random flipping patches are applied for data augmentation.
We consider one random image as validation set which consists of 24 patches. In the test set,
the number of test patches is 240. Networks are trained on the training set to find the best
hyper parameters and then both the training plus the validation set are used for the final
training.

It should be mentioned that in the following experiments no extra information such as road
segmentation or third-party data such as OpenStreetMap [254] has been used.

Aerial LaneNet is trained end-to-end. The optimization problem of finding the minimum
value in the loss function is solved by Adam optimizer [172] and Back-propagation [186]
process. The learning rate of 0.0001 with batch size of 1 is used. We have trained the final
network for about 10 epochs on one Nvidia Titan X Pascal GPU using the Tensorflow [88]
framework.

6.4 Results and Evaluation

In our experiments, we compare the final output of the system for each image (not patch)
with the corresponding ground truth. Therefore, in lane marking segmentation, the goal is
to classify each pixel as lane marking class (foreground) or non-lane marking (background).
The more pixels are classified correctly, the more accurate the system is. Concerning the
evaluation criteria, we use the metrics used by Long et al. [218] which are widely used in
semantic segmentation tasks. In these metrics, nij is the pixel number belonging to class i
which has been predicted as class j and ncl stands for the number of classes with ti =

∑
j nij

representing the total number of pixels belonging to class i. IoU means intersection over
union i.e., it is proportional to the intersection between predictions and ground truth.

We use the dice similarity coefficient also due to the heavy unbalance in the dataset. The
number of pixels belonging to each class does not have effect on these two criteria. P and T
represent prediction and ground truth respectively. The criteria are derived as follows:

6.4 Results and Evaluation 89

Table 22. Evaluation of lane marking segmentation using different backbone networks for segmentation with one up-
-sampling layer. With VGG16 network, this is equivalent with FCN32s. In fine-tuning, the parameters are initialized by
ImageNet pre-trained model rather than random initialization. In this case, all of the layers are re-trained. Mean IoU
numbers in [%]. Higher value is better. Max stride is 32pixel.

Network
weighted

loss
fine

tuned
data

augmentation
mean
IoU

forward
time

conv.
layers

param.

FCN-AlexNet [218] - - - 51.08 80ms 8 57M
FCN-AlexNet - - X 52.92 80ms 8 57M
FCN-AlexNet - X X 55.23 80ms 8 57M
FCN-AlexNet X X X 59.06 80ms 8 57M

FCN-VGG16 [218] X X X 61.56 300ms 16 134M
FCN-GoogLeNet [218] X X X 61.49 100ms 22 6M

Table 23. Numerical results of FCN32s-AlexNet using different values of λlane during training. The base network is VGG16.

λlane value 1 50 100 200 300 308 350 400 500 1000

mean IoU 55.23 56.77 57.22 57.93 58.12 58.21 58.45 59.06 58.76 57.32

� Pixel accuracy: ∑
i ni,i∑
i ti

(36)

� Mean accuracy:

1
ncl

∑
i

ni,i
ti

(37)

� Mean IoU:

1
ncl

∑
i

ni,i
ti +

∑
j nj,i −ni,i

(38)

� Frequency weighted IoU:

(
∑
k

tk)
−1

∑
i

tini,i
ti +

∑
j nj,i −ni,i

(39)

� Dice similarity coefficient:

2 | P ∩ T |
| P | + | T |

(40)

and recall and precision are calculated using the criteria

Recall :=
T rueP ositives

T rueP ositives+FalseNegatives

P recision :=
T rueP ositives

T rueP ositives+FalseP ositives
.

(41)

The baseline network of FCN32s with AlexNet as backbone network is trained from scratch
and due to the small and highly unbalanced dataset, it classifies lane-marking pixels as
background in most areas, with only 51.0% mean IoU accuracy.

90

100 101 102 103
55

56

57

58

59

λlane

m
ea

n
Io

U

Fig. 48. Performance of FCN32s network with AlexNet as backbone network on different λlane values during training. The
ratio between lane marking and background pixels in train, trainval and test set are 389, 418 and 308 respectively.

Table 24. Impact of added convolutions, drop-out and up-sampling layers to shape Symmetric FCNN on AerialLanes18
dataset. The base network is VGG16.

Network
pixel
acc.

mean
acc.

mean
IoU

f.w.
IoU

dice s. c.

FCN-8s [218]
(A,B and C layers)

99.73 66.12 62.79 99.53 51.67

FCNN
(A,B,C and D layers)

99.73 67.42 63.45 99.54 52.33

FCNN
(A,B,C,D and conv layers)

99.74 68.25 64.23 99.54 53.25

Symmeteric FCNN 99.74 69.57 65.10 99.55 55.08

Employing weighted loss increased the performance by almost 2 percent by penalizing
wrong classification of lane marking pixels more than wrong classification of background
pixels, alleviating to some extend the challenge posed by an unbalanced dataset.

Before applying the customized loss function, fine tuning using a pre-trained model trained
on ImageNet [79] as well as data augmentation are applied, due to the small training dataset
available.

6.4.0.1 Different Base Network Investigation

Results in Table 22 show the performance of Aerial LaneNet in lane marking segmentation
with different network architectures. VGG16 outperforms AlexNet as the shallower network
and slightly GoogleNet. The high pixel accuracy of this system should be investigated as
most of pixels belong to the background class rather than lane markings. This phenomenon
has two main reasons: firstly the network is over-fitting to the background class due to the
small-size dataset and secondly due to the heavily unbalanced dataset. As expected, due to
the highly unbalanced dataset, pixel accuracy and frequency weighted IoU are larger than
99%. These parameters, as mentioned before, are not suitable to evaluate performance of
a network using a highly unbalanced task. That is the why mean IoU and Dice are more
reliable criteria to evaluate an algorithm in such cases.

6.4 Results and Evaluation 91

1 2 3 4 5 6 7 8 9 10

80

85

90

95

100

image number

%
p

er
ce

nt
ag

e

recall precision

Fig. 49. Evaluation of Aerial LaneNet network with total recall and precision values for each test image.

1 2 3 4 5 6 7 8 9 10

60

70

80

90

image number

%
p

er
ce

nt
ag

e

mean IoU dice recall lane
recall bg precision lane precision bg

Fig. 50. Evaluation of Aerial LaneNet network on each test image with mean IoU, dice and recall and precision values for
each class.

6.4.0.2 The Effect of Lambda

The value of λlane, which is a hyper-parameter, should be tuned. There is no automatic
approach to find the best value for this parameter. One approach is considering the default
value of λlane = 389 as the ratio between background to lane marking pixels in the training
set. Another method is grid search which can be applied to refine the default value. We
considered the pixel ratio in the test set as well as other setups ranging from 1 to 1000. With
this approach, we noticed that the pixel ratio is not the best value to get the best results
(Figure Considering Table 23, the best value is achieved with 400 which is higher than the
default one and lower than 418 as the ratio in tainval set. Performance degrades using 308
as the ratio in the test set. This shows the network has learned this hyper-parameter based
on the training set. In this case, more research can be devoted to find the best value of λlane
automatically.

92

Table 25. Evaluation of Aerial LaneNet for fusion of each level of DWT to Symmetric FCNN with cost-sensitive loss func-
tion. In addition, the comparison between FCN-8s [218] with and without 1st level DWT is provided.

Network base network
pixel
acc.

mean
acc.

mean
IoU

f.w.
IoU

dice s. c.

FCN-8s [218] VGG16 99.73 66.12 62.79 99.53 51.67
FCN-8s - 1st DWT level VGG16 99.75 69.67 66.24 99.56 55.14

Aerial LaneNet - 1st DWT level VGG16 99.77 75.86 70.16 99.60 61.23
Aerial LaneNet - 1st, 2nd DWT level VGG16 99.79 80.83 73.57 99.62 65.55

Aerial LaneNet - 1st, 2nd, 3rd DWT level VGG16 99.80 84.32 76.72 99.65 69.61
Aerial LaneNet - 1st, 2nd, 3rd, 4th DWT level VGG16 99.81 85.72 77.78 99.67 71.17
Aerial LaneNet - 1st, 2nd, 3rd, 4th DWT level ResNet-101 99.81 85.95 77.98 99.68 71.42

Aerial LaneNet - 1st, 2nd, 3rd, 4th, 5th DWT level VGG16 99.80 84.01 76.64 99.65 70.25

Table 26. Evaluation of impact of different DWT decompositions in 1st level on lane marking segmentation including
horizontal, horizontal and vertical, horizontal, vertical and diagonal details as well as all of decompositions consisting of
approximation part. The base network is VGG16.

Network
pixel
acc.

mean
acc.

mean
IoU

f.w.
IoU

dice s. c.

horizontal 99.78 79.72 71.96 99.62 64.34
horizontal and vertical 99.80 84.03 75.84 99.65 68.56

horizontal, vertical and diagonal 99.81 85.72 77.78 99.67 71.17
horizontal, vertical, diagonal and approximation 99.80 83.21 76.02 99.65 69.23

6.4.0.3 The Importance of Symmetric FCNN

As mentioned in the last section, in order to extract higher-level features as well as mak-
ing the network robust to noise in the training set, a symmetric FCNN is designed. The
improvement introduced by this algorithm shown in Table 24 is almost 3 percent in terms
of mean IoU. Adding more convolution, drop-out and up-sampling layers seem to have al-
most the same impact of around 1 percent point on the mean IoU. This indicates that even
though deeper network could basically improve the performance, the major problem is not
their depth. An observation of symmetric FCNN networks shows that even if the network is
deep, the algorithm has some difficulty to segment small lane markings. Due to the nature
of low-frequency spectral analysis of FCNN, lane markings are smoothed and removed after
convolution and average pooling operations. To address this problem, wavelet transform of
input image is inserted into the network.

6.4.0.4 The Effect of DWT

Multi-resolution analysis using different levels of wavelet transform augments the perfor-
mance by considering lane marking objects at different scales. Table 25 indicates that a
combination of the first four DWT decomposition levels results in the best performance,
confirming our motivation for multi-resolution analysis. In our experiments we noticed that
the addition of a 5th level worsens the results, which could be due to small size lane mark-
ings, since most of their details have already been discarded.

In order to further improve the performance, we replaced the VGG16 base network with
the ResNet-101 [122] network which has better performance on the ImageNet dataset in
comparison to VGG16. We inserted DWT levels after the first pooling layer in stage 1 and
after the first convolution layer with stride of 2 in each stage from stage 2 to stage 4. We did
not insert DWT’s 5th level to stage 5 due to our observation in the DWT’s 5th level insertion
after the last pooling layer in VGG16 (cf. Table 25).

6.4 Results and Evaluation 93

Fig. 51. Examples of results using Aerial LaneNet approach with the best performance. The left column shows input
images. The middle columns shows ground truth and the right column images are predictions.

As wavelet transform decomposition is made of horizontal, vertical, diagonal details as well
as an approximation component, investigation is carried out to investigate the effect of each
component.

6.4.0.5 The Effect of DWT Components

According to Table 26, horizontal and vertical components have considerably more impact
than the other two. Although the diagonal component also increases mean IoU by almost 2
percent points, it has less effect than the rather horizontal and vertical components of almost
5 percent. This indicates that the majority of lane markings are present in the horizontal and
the vertical DWT components. The approximation part, however, worsens the performance.
This could be due to the fact that this part does not carry sparse information about lane
marking as other parts. Experiments with orders of Daubeschies wavelet transforms higher
than 1 resulted in lower performance of 1.45 mean IoU for db2 which could be due to less
appearance of the lane marking in higher Daubeschies orders.

6.4.0.6 Varied Possible Fusions

As shown in Figure 44, Table 27 reports the result of different DWT fusion with symmetric
FCNN. We have considered three different fusion locations. The fusion can be either after
the pooling layers or convolution layer or before the pooling layers. Before the first pooling
layer, due to dimension incompatibility, the fusion is not possible. Results in Table 27 show
that placing the fusion right after the pooling layers results in the best performance. The
reason for this phenomenon could be the extraction of high-level features by subsequent
convolution layers. In contrary, fusion of DWT decomposition before pooling layers leads to
a decrease in mean IoU. This could be due to the reason that DWT representation is pooled
by the next pooling layer which smooths the representation. However, this degradation is
not significant, as lane marking pixels have higher values compared to neighboring pixels,

94

Table 27. Evaluation of fusion of DWT with symmetric FCNN in different locations. The base network is VGG16. The
fusion is concatenation in all cases.

Fusion After first conv After pooling Before pooling

mean IoU 76.23 77.78 75.42

Table 28. Aerial LaneNet comarison with the state-of-the-art algorithms. All numbers are in [%].

Network
pixel
acc.

mean
acc.

mean
IoU

f.w.
IoU

dice s. c.

DeepLab[48] 99.73 68.02 63.95 99.54 53.07
UNet[277] 99.73 67.25 63.39 99.54 52.12

FCN-8s [218] 99.73 66.12 62.79 99.53 51.67
DeepLabv3 [54] 99.68 53.79 53.24 99.38 12.26

DeepLabv3+ [55] 99.79 78.23 73.18 99.62 62.71
Aerial LaneNet 99.81 85.95 77.98 99.68 71.42

(a) input patch (b) ground truth (c) DeepLabv3 (d) DeepLabv3+ (e) Aerial LaneNet

Fig. 52. Qualitative comparison of Aerial LaneNet with ground truth and the state-of-the-art algorithms DeepLabv3 and
DeepLabv3+.

and in max pooling operation the maximum value is chosen.

6.4.0.7 Confusion Matrix Investigation

In order to evaluate true and false positives/negatives in our method as well as precision
and recall, we have considered the confusion matrix of the configuration for the best perfor-
mance. Table 29 indicates, that in spite of a heavily unbalanced dataset, the system is able to
achieve a lane marking pixel (pixel-wise) accuracy of 71.55%. In spite of different illumi-
nation conditions introduced by shadows, different shapes and sizes, the network is able to
classify background pixels with 0.1% false positive compared with 99.8% true negative pix-
els. This indicates how robust the system is in the presence of the very complex background
and objects similar to lane-marking. However, the false negatives are still high.

The majority of false negative cases come from straight and dot-shape lane markings. In
straight lane markings, the output width of the system is almost in all of cases narrower
than ground truth. This indicates this architecture is not able to segment boundaries ac-
curately. Although a morphological operation could increase the performance in this case
dramatically, it is not interesting from a research point of view and we do encourage other
researchers not to use it in next researches on this dataset for benchmarking.

6.4 Results and Evaluation 95

Table 29. Confusion Matrix of Aerial LaneNet with the best performance using VGG16 base network. Matrix shows the
number of samples for each class predicted by the system. Due to unbalanced multi-class problem, percentage numbers
for each class shows normalized recall rates. Confusion matrix shows the number of correct and wrong classified pixels
along with normalized values.

Actual Labels
Lane Marking Background Class Precision

P
re

d
ic

te
d

L
ab

el
s Lane Marking

473313
71.55%

205431
0.10%

69.73%

Background
188196
28.45%

209396100
99.90%

99.91%

Class Recall 71.55% 99.90%
Total Accuracy
mean: 85.72%

absolute: 99.81%

As mentioned, dot-shape objects yield a considerable number of false negatives. These ob-
jects are as small as 5× 5 px which makes them difficult to segment. However, as we do not
have access to the information of which pixel belongs to which class in the current annota-
tion, we cannot report a number in this case.

Another and important source of false negative is shadows. As shadows occur rarely, the
network has not been able to learn shadows to segment lane markings accordingly. Regard-
ing rare objects, like "BUS" signs, speed limits, disabled parking places, turn signs and so on,
the same phenomenon is happening. These classes do not occur often and as in deep convo-
lutional neural networks a big number of training samples is needed to train the network,
performance in these cases is not high.

6.4.0.8 Comparison with the state-of-the-art

We also compared Aerial LaneNet with FCN-8s, DeepLab [48], UNet [277] and the state-of-
the-art method DeepLabv3 [54] 15 , and its newer version DeepLabv3+ [55] 15 in Table 28.
Interestingly, there is a big gap between DeepLabv3+ and DeepLabv3. The reason is that
DeepLabv3 uses monotonically increasing atrous rates which in spite of being effective to
obtain large receptive field to segment large-size objects, it severely damages information
from small objects like lane markings. In contrast, DeepLabv3+ uses a multi-scale encoder
containing atrous convolutions to obtain a multi-scale contextual information and in the
decoder part a simple yet effective module refines the segmentation outputs to improve the
boundary segmentation. The qualitative comparison has been provided in Figure 52. The
multi-scale processing helps the DeepLabv3+ to achieve significantly better results than
its previous version. This is mostly due to the decoder part which improve the boundary
region segmentation. However, it does not have a satisfactory performance on tiny lane-
markings despite its very good performance in the terrestrial images. The results shows
that recovering high-frequency information of image pixels by inserting DWT into differ-
ent levels of CNNs leads to a considerably better performance of 4% mIOU in comparison
with DeepLabv3+ algorithm. Aerial LaneNet outperforms all of these networks in Table 28
showing the high accuracy of our method.

6.4.0.9 Qualitative Analysis

In Figure 49, recall and precision values for each test image are reported. These values are
consistent and there is not a big difference between recall and precision. In Figure 50 mean
IoU and Dice for each test image as well as recall and precision for each class have been
reported. As for total recall and precision values, these criteria are consistent among test
images. Recall and precision values for each class have also been computed.

15https://github.com/tensorflow/models/tree/master/research/deeplab

https://github.com/tensorflow/models/tree/master/research/deeplab

96

One can notice that precision and recall for background class is very high, which is due to
the unbalanced task: there is a big gap between recall and precision for the lane marking
class and for the background class. In order to evaluate the results qualitatively, Figure
51 illustrates the lane marking segmentations of different patches of size 1024× 1024 px
compared with the ground truth. The left images are input test patches. The middle patches
are the ground truth. The patches on the right are the corresponding predictions. These
figures show a very good performance in the segmentation of both straight and dashed
lines in highways. It is very interesting that in some cases the network has localized correct
lane marking which are not even annotated in the ground truth. However, there are also
some failure cases. In the same figures, one can note that shadows, narrower straight lines,
very small lane markings, and similar objects in the background are the main reasons for
false negative and positive outputs. Figure 51(a) shows the shadow caused by a truck has
caused degradation in lane marking segmentation. Objects with similar appearance still are
a challenge e.g., the roof structures at the left bottom part of image in Figure 51(b), which
look similar to lane markings have been classified as lane marking. Also in the same image,
when it comes to smaller lane marking objects, the network is not performing as good. In
spite of these failure cases, the overall performance proves the concept of effective semantic
segmentation of lane marking using enhanced FCNNs with DWT information. In Figure 53
predictions have been overlaid on the original test images after stitching prediction patches
together. In these images, predicted lane marking pixels and undetected ones are reported
in red and blue respectively. In shadow areas the network has difficulties to segment lane
markings.

6.4.0.10 Cross-domain Generalization

In order to evaluate the robustness of our algorithm to variations: GSD, camera angle view,
and illumination conditions, we have considered multiple flights on different days, altitudes
and angles with the DLR 3K camera. Results are reported in Figure 54.

We have over-laid predictions on test patches of a new dataset in Figure 55. The performance
shows a good generalization capability of the network, which appears robust to most of the
challenges mentioned earlier such as small size, different camera angles and presence of
objects similar to lane marking such as lanes in soccer fields.

6.5 Conclusions

In this work, we have introduced a reliable and fast algorithm to segment very small objects
such as lane markings in aerial imagery with high accuracy and robustness. We presented
the Aerial LaneNet network based on the idea of enhancing FCNNs with wavelet transfor-
mation coefficients for pixel-wise semantic segmentation, which enables a full spectral and
multi-scale analysis resulting in the considerable improvement compared with our FCNN
based-line network. We have shown that using sub-sampling layers or atrous convolutions
to obtain large receptive fields although yields very good performance in terrestrial images,
they cause a vital data loss for pixel-wise semantic segmentation of tiny objects which leads
to a considerable performance degradation. Therefore, the lost information should be ei-
ther injected into the network or be kept by removing sub-sampling layers to recover the
lost data. In this work, we selected the first strategy showing impressive performance im-
provement in comparison with the state-of-the-art methods. We conclude that for tiny object
segmentation both high and low frequency information of pixels should be analyzed while
CNNs perform mostly low frequency analysis due to using pooling and convolution layers.
The limitations of Aerial LaneNet is in shadow areas, semantic signs on the roads as well

6.5 Conclusions 97

as washed out lane-markings. We also introduced the AerialLanes18 dataset the first high-
quality aerial lane marking dataset as a benchmark in this domain. Using different levels of
wavelet decomposition leads to a multi-resolution data analysis which is important in ex-
tracting lane markings, as objects appear at different scales. In the future, we will investigate
improving the performance by processing shadow areas differently.

98

Fig. 53. Test image with overlaid prediction and ground truth. Ground truth which has not been predicted has been
illustrated with dark blue color and prediction is depicted with pink color.

6.5 Conclusions 99

Fig. 54. New test patch images taken in different days, GSD and camera angles in comparison with AerialLanes18 dataset.
Each patch has been shown with the corresponding lane marking segmentation.

100

Fig. 55. New test patch images taken in different days, GSD and camera angles in comparison with AerialLanes18 dataset.
Lane Marking prediction has been overlaid on patches in order to illustrate the localization accuracy of Aerial LaneNet
network.

7 SkyScapes: Fine-grained Semantic Understanding of Aerial Scenes 101

7 SkyScapes: Fine-grained Semantic Understand-
ing of Aerial Scenes

This chapter describes the paper Seyed Majid Azimi, Corentin Henry, Lars Sommer, Arne
Schumann and Eleonora Vig: Skyscapes: fine-grained semantic understanding of aerial
scenes, IEEE International Conference on Computer Vision (ICCV) 2019, (Azimi et al.,
2019). The published paper can be found in the Appendix E.

Understanding the complex urban infrastructure with centimeter-level accuracy is essen-
tial for many applications from autonomous driving to mapping, infrastructure monitor-
ing, and urban management. Aerial images provide valuable information over a large area
instantaneously; nevertheless, no current dataset captures the complexity of aerial scenes
at the level of granularity required by real-world applications. To address this, we intro-
duce SkyScapes, an aerial image dataset with highly-accurate, fine-grained annotations for
pixel-level semantic labeling. SkyScapes provides annotations for 31 semantic categories
ranging from large structures, such as buildings, roads and vegetation, to fine details, such
as 12 (sub-)categories of lane markings. We have defined two main tasks on this dataset:
dense semantic segmentation and multi-class lane-marking prediction. We carry out exten-
sive experiments to evaluate state-of-the-art segmentation methods on SkyScapes. Existing
methods struggle to deal with the wide range of classes, object sizes, scales, and fine details
present. We therefore propose a novel multi-task model, which incorporates semantic edge
detection and is better tuned for feature extraction from a wide range of scales. This model
achieves notable improvements over the baselines in region outlines and level of detail on
both tasks.

7.1 Introduction

Automated methods for creating maps of today’s urban and rural infrastructures with
centimeter-level (cm-level) accuracy are of great aid in handling their growing complex-
ity. Applications of such accurate maps include urban management, city planning, and in-
frastructure monitoring/maintenance. Another prominent example is the creation of HD
maps for autonomous driving. Applications here include the use of a general road net-
work for navigation and more advanced automation tasks in ADAS, such as lane de-
parture warnings, which rely on precise information about lane boundaries, sidewalks,
etc. [231, 233, 260, 284, 387].

Currently, the data collection process to generate HD maps is mainly carried out by so-
called mobile mapping systems, which comprise of a vehicle equipped with a broad range
of sensors (e.g., Radar, LiDAR, cameras) followed by automated analysis of the collected
data [45, 109, 111, 183]. The limited field-of-view and occlusions due to the oblique sensor
angle make this automated analysis complicated. In addition, mapping large urban areas
in this way requires a lot of time and resources. An aerial perspective can alleviate many
of these problems and simultaneously allow for processing of much larger areas of cm-
level geo-referenced data in a short time. Existing aerial semantic segmentation datasets,
however, are limited in the range of their annotations. They either focus on a few individ-
ual classes, such as roads or building footprints in the INRIA [227], Massachusetts [241],
SpaceNet [325], or DeepGlobe [77] datasets, or they provide very coarse classes, such as the
GRSS_DFC_2018 [149], or the ISPRS Vaihingen and Potsdam datasets [152]. Other datasets
are recorded at sensor angles and at flight heights unsuitable for HD mapping [148, 222]
or contain potentially inaccurate annotations generated automatically [339]. In addition,
only few works tackle lane-marking extraction in aerial imagery, and they either rely on

102

Fig. 56. SkyScapes image with overlaid annotation and zoomed-in samples (×2: solid line, ×4: dashed line). Top to bottom:
RGB, dense annotation (20 classes), lane markings annotation (12 classes), multi-class edges. Class colors as in Figure 57.

third-party sources such as OpenStreetMap, or only provide a binary extraction in Azimi et
al. [10].

Ground imagery has greatly benefited from large-scale datasets, such as ImageNet [82], Pas-
cal VOC [91], MS-COCO [202], but in aerial imagery the annotation is scarce and more
tedious to obtain. In this work, we propose a new aerial image dataset, called SkyScapes,
which closes this gap by providing detailed annotations of urban scenes for established
classes, such as buildings, vegetation, and roads, as well as fine-grained classes, such as var-
ious types of lane markings, vehicle entrance/exit zones, danger areas, etc. Fig. 56 shows
sample annotations offered by SkyScapes.

The dataset contains 31 classes and a rigorous annotation process was established to pro-
vide a high degree of annotation accuracy. SkyScapes uniquely combines the fine-grained
annotation of road infrastructure with an overhead viewing angle and coverage of large ar-
eas, thus enabling the generation of HD maps for various applications. We evaluate several
state-of-the-art semantic segmentation models as baselines on SkyScapes. Existing models
achieve a significantly lower accuracy on our dataset than on established benchmarks with
either ground-views or a much coarser set of classes. Our analysis of the most common er-
rors hints at many merged regions and inaccurate boundaries. We therefore propose a novel
segmentation model, which incorporates semantic edge detection as an auxiliary task. The
secondary loss function emphasizes edges more strongly during the learning process, lead-
ing to a clear reduction of the prominent error cases. Furthermore, the proposed architecture
takes both large- and small-scale objects into account.

In summary: i) we provide a new aerial dataset for semantic segmentation with highly ac-
curate annotations and fine-grained classes, thus enabling the development of models for
previously unsupported tasks, such as aerial HD-mapping; ii) we carry out extensive eval-
uations of current state-of-the-art models and show that existing approaches struggle to
handle the large number of classes and level of detail in the dataset; iii) hence, we propose a
new multi-task model, which combines semantic segmentation with edge detection, yield-
ing more precise region outlines.

7.2 The SkyScapes Dataset

The data collection was carried out with a helicopter flying over the greater area of Mu-
nich, Germany. A low-cost camera system [108, 181] consisting of three standard DSLR

7.2 The SkyScapes Dataset 103

cameras and mounted on a flexible platform was used for recording the data, with only
the nadir-looking capturing images. In total, 16 non-overlapping RGB images of size
5616× 3744 pixels were chosen. The flight altitude of about 1000 m above ground led to
a GSD of approximately 13 cm/pixel. The images represent urban and partly rural areas
with highways, first/second order roads, and complex traffic situations, such as crossings
and congestion, as exemplified in Figure 56.

7.2.1 Classes and Annotations
Thirty-one semantic categories were annotated: low vegetation, paved road, non-paved road,
paved parking place, non-paved parking place, bike-way, sidewalk, entrance/exit, danger
area, building, car, trailer, van, truck, large truck, bus, clutter, impervious surface, tree, and
12 lane-marking types. The considered lane-markings are the following: dash-line, long-
line, small dash-line, turn sign, plus sign, other signs, crosswalk, stop-line, zebra zone, no
parking zone, parking zone, other lane-markings. The selection of classes was influenced
by their relevance to real-world applications, hence, road-like objects dominate. Class def-
initions and visual examples for each class are given in the supplementary materials, class
statistics can be found in Fig. 57.

The SkyScapes dataset was manually annotated using tools adapted to each object class and
following a strict annotation policy. Annotating aerial images requires considerable time
and effort, especially when dealing with many small objects, such as lane-markings. Shad-
ows, occlusion, and unclear object boundaries also add to the difficulty. Due to the size and
shape complexity, and to the large number of classes/instances, annotation required consid-
erably more work than for ground-view benchmarks (such as CityScapes [64]), also limiting
the dataset size. To ensure high quality, the annotation process was performed iteratively
with a three-level quality check over each class, overall taking about 200 man-hours per
image. We show one such annotated image in Fig. 56.

In SkyScapes, we enforce pixel-accurate annotations, as even small offsets lead to large lo-
calization errors in aerial images (e.g., a 1-pixel offset in SkyScapes would lead to a 13 cm
error). As autonomous vehicles require a min. accuracy of 20 cm for on-map localization
[397], we chose the highly accurate annotation of a smaller set of images over coarser an-
notations of a much larger set. In fact, in Section 7.6, we show high generalization of our
model when trained on SkyScapes and tested on third-party data.

7.2.2 Dataset Splits and Tasks
We split the dataset into training, validation, and test sets with 50%, 12.5%, and 37.5%
portions respectively. We chose this particular split due to the class imbalance and to avoid
splitting larger images.

Lane-markings and the rest of the scene elements (such as buildings, roads, vegetation,
and vehicles) present different challenges, with lane-markings operating on much finer
scales and requiring a fine-grained differentiation, whereas other scene elements are rep-
resented on a much wider scale. Having considered these challenges, we defined five dif-
ferent tasks: 1) SkyScapes-Dense with 20 classes as the lane-markings were merged into a
single class, 2) SkyScapes-Lane with 13 classes comprising 12 lane-marking classes and a
non-lane-marking one, 3) SkyScapes-Dense-Category with 11 merged classes comprising
nature (low-vegetation, tree), driving-area (paved, non-paved), parking-area (paved, non-
paved), human-area (bikeway, sidewalk, danger area), shared human and vehicle area (en-
trance/exit), road-feature (lane-marking), residential area (building), dynamic-vehicle (car,
van, truck, large-truck, bus), static-vehicle (trailer), man-made surface (impervious surface),

104

and others objects (clutter), 4) SkyScapes-Dense-Edge-Binary, and 5) SkyScapes-Dense-
Edge-Multi. The two latter tasks are binary and multi-class edge detection, respectively.
Defining separate tasks allows for more fine-grained control to fit the model to the dense
object regions, their boundaries, and their classes. This is especially helpful when object
boundary accuracy is paramount and difficult to extract, e.g., for multi-class lane-markings.

7.2.3 Statistical Properties
(a) SkyScapes-Dense

na
tu

re
re

sid
en

tia
l

dr
ivi

ng
ar

ea
pa

rk
in

g
ar

ea ro
ad

-
fe

at
ur

e
hu

m
an

ar
ea

sh
ar

ed
ar

ea

dy
n.

 v
eh

icl
e

st
at

. v
eh

icl
e

hu
m

an
-m

ad
e

ot
he

rs

104

106

108

#P
ix

el
s L

V
 T B P
R

 n
PR n
PP B
W S

W

 L
T

 B
u

 C
l

101

103

105

#I
ns

ta
nc

es P
P L

M

 D
A

 E
E C

a
 V

 T
K

 T
R

 IS

(b) SkyScapes-Lane

LL DL TDL ZZ TS SL OS R PZ nPZ CW PS
103

104

105

106

#P
ix

el
s

102

103

104

#I
ns

ta
nc

es
Fig. 57. Number of annotated pixels (filled) and instances (non-filled) per class in SkyScapes-Dense and SkyScapes-Lane
for low-vegetation (LV), tree (T), building (B), paved-road (PR), paved-parking-place (PP), non-paved-parking-place (nPP),
non-paved-road (nPR), lane-marking (LM), sidewalk (SW), bikeway (BW), danger-area (DA), entrance-exit (EE), car (Ca),
van (V), truck (TK), trailer (TR), long-truck (LT), bus (Bu), impervious-surface (IS), clutter (Cl), long line (LL), dash line
(DL), tiny dash line (TDL), zebra zone (ZZ), turn sign (TS), stop line (SL), other signs (OS), the rest of lane-markings (R),
parking zone (PZ), no parking zone (nPZ), crosswalk (CW), and plus sign (PS).

SkyScapes is comprised of more than 70K annotated instances that are divided into 31
classes. The number of annotated pixels and instances per class for SkyScapes-Dense and
SkyScapes-Lane are given in Figure 57.

The majority of pixels are annotated as low vegetation, tree, or building, whereas the most
common classes are lane markings, tree, low vegetation, and car. This illustrates the wide
range from classes with fewer large regions to those with many small regions. A similar
range can be observed among the lane markings within the more fine-grained SkyScapes-
Lane task. With an average pixel area of about 9 pixels, ‘tiny dash lines’ are the small-
est instances. A quantitative comparison of SkyScapes against existing aerial segmentation
datasets is provided in Table 30. Existing datasets lack the high detail level and annota-
tion quality of SkyScapes. Potsdam contains fewer classes (6 vs 31), less accurate labels, and
image distortions due to suboptimal orthorectification. TorontoCity focuses on quantity:
its wider spatial coverage requires (a less precise) automated labeling. SkyScapes offers the

7.3 Semantic Benchmarks 105

Table 30. Statistics of SkyScapes and other aerial datasets. To date, TorontoCity is not publicly available.
SkyScapes Potsdam [152] Vaihingen [152] Aerial KITTI [232] TorontoCity [339]

Classes 31 6 6 4 2+8
Images 16 38 33 20 N/A
Image dimension (px) 5616×3744 6000×6000 2493×2063 (avg) variable N/A
GSD (cm/pixel) 13 5 9 9 10
Aerial coverage (km2) 5.69 (urban&rural) 3.42 1.36 3.23 712
Instances 70,346 42,389 10,700 2,814 N/A

largest number of classes including various fine-structures (e.g., lane markings). In absolute
terms, SkyScapes contains also notably more region instances, which emphasizes the higher
complexity of SkyScapes. Handling this range of classes and variety of object instance sizes
is one of the main challenges. The capability of state-of-the-art segmentation methods to
address these challenges has not yet been thoroughly explored.

7.3 Semantic Benchmarks

In the following, we review several state-of-the-art segmentation methods and benchmark
these on SkyScapes.

7.3.1 Metrics
To assess the segmentation performance, we use the Jaccard Index, known as the PASCAL
VOC intersection over union (IU) metric: T P

T P+FP+FN [91], where TP, FP, and FN stand for the
numbers of true positive, false positive, and false negative pixels for each class, determined
over the test set. We also report other metrics, such as frequency weighted IoU, pixel ac-
curacy, average recall/precision, and mean IoU, i.e., the average of IoUs over all classes as
defined in [218]. In the supplementary material, we report IoUclass for SkyScapes-Dense and
IoUcategory for the best baseline on SkyScapes-Dense-Category. Unlike in the street scenes of
CityScapes [64], in aerial scenes the objects can be as long as the image size (roads or long-
line lane-markings). Therefore, we do not report IoUinstance.

7.3.2 State of the Art in Semantic Segmentation
As detection results have matured, reaching around 80% mean AP on Pascal VOC [170]
and on the DOTA aerial object detection dataset [13, 349], the interest has shifted to
pixel-level segmentation, which yields a more detailed localization of an object and han-
dles occlusion better than bounding boxes. In recent years, fully-convolutional neural net-
works (FCNs) [218, 285] achieved remarkable performance on several semantic segmenta-
tion benchmarks. Current state-of-the-art methods include Auto-Deeplab [203], DenseA-
SPP [359], BiSeNet [367], Context-Encoding [374], and OcNet [370]. While specific archi-
tecture choices offer a good baseline performance, the integration of a multi-scale context
aggregation module is key to competitive performance. Indeed, context information is cru-
cial in pixel labeling tasks. It is best leveraged by so-called “pyramid pooling modules”,
using either stacks of input images at different scales, as in PSPNet [385], or stacks of con-
volutional layers with different dilation rates, as in DeepLab [49]. However, context aggre-
gation is often performed at the expense of fine-grained details. As a remedy, FRRN [261]
implements an architecture comprising a full-resolution stream for segmenting the details
and a separate pooling stream for analyzing the context. Similarly, GridNet [97] uses mul-
tiple interconnected streams working at several resolutions. For our benchmark, in addi-
tion to the aforementioned models, we train several other popular segmentation networks:
FCN [218], U-Net [276], MobileNet [135], SegNet [14], RefineNet [198], Deeplabv3+ [56],

106

Fig. 58. The architecture of SkyScapesNet. Three branches are used to predict dense semantics and multi-class/binary
edges. For multi-class lane-marking prediction, two branches are used to predict multi-class and binary lane-markings.

AdapNet [324], and FC-DenseNet [158], as well as a custom U-Net-like MobileNet and cus-
tom Decoder-Encoder with skip-connections.

In tables 31 and 33, we report our benchmarking results for the above methods. As antici-
pated, all methods struggle on SkyScapes due to the significant differences between ground
and aerial imagery exposed in the introduction. On the SkyScapes-Dense task (table 31),
classification mistakes are for the most part found around the inter-class boundaries. We
observe the same inter-class misclassification on the SkyScapes-Lane task (table 33), and fur-
thermore notice that many lane-markings are entirely missed and classified as background,
certainly due to their few-pixel size. Both tasks hence represent a new type of challenge. This
is reinforced by the fact that the performance of the networks remained consistent from one
task to the other, showing that none are specialized enough to obtain a significant advantage
on either task. In our method, we tackled this challenge by focusing on object boundaries.

7.4 Method

Thirty-one highly similar classes and small complex objects in SkyScapes necessitate a spe-
cialized architecture that unifies latest architectural improvements (FC-DenseNet [158],
auxiliary tasks, etc.) and proves more effective than the state of the art. Motivated by the
major errors from our benchmarking analysis, we propose a multi-task method that tackles
both dense prediction and edge detection to improve performance on boundary regions. In
the case of multi-class lane-markings, we modify the method to enable both multi-class and
binary lane-marking segmentation to decrease the number of false positives in non-lane ar-
eas. We consider FC-DenseNet [158] as the main baseline. SkyScapesNet, illustrated in Fig-
ure 58, can be seen as a modified case of FC-DenseNet, but more generally as a multi-task
ensemble-model network, encapsulating units from [52, 158, 258, 261]. Thus, it also shares
their advantages, such as alleviating the gradient-vanishing problem. Figure 59 illustrates
the building blocks, which are explained below.

FDB: in fully dense block (FDB), we use more residual connections compared to the exist-
ing Dense Blocks (DBs) in the baseline, as inspired by DenseASPP [359]. However, instead of
using atrous convolutions, we add separable-convolutions due to their recent success [52].
Moreover, as SkyScapes contains large scale variation, making receptive fields larger by us-
ing larger atrous rates deteriorates the feature extraction from very small objects such as
lane-markings. The number of sub-blocks, referred to as Separable Layer (SL), is the same
as in the DBs from the baseline.

FRSR: inspired by [261] and the comparable performance of this model with DenseNet,
we add a residual-pooling stream (similar to the full-resolution residual unit – FRRU
from [261]) as full-resolution separable residual (FRSR) unit to the main stream. Similar
to FDB, we utilize separable convolutions. As the original FRRU, FRSR has two process-
ing streams: a residual stream (for better localization) and a pooling stream (for better

7.4 Method 107

Fig. 59. Configuration of SkyScapesNet building blocks. SL, DoS, and UpS are Separable, Downsampling, and Upsampling
blocks, UpS-NN is a Nearest-Neighbor Upsampling layer. Add/Cat are addition/concatenation operators.

recognition). Inside the pooling stream, the downsampled results go through several depth-
wise separable convolutions, batch-normalization, and ReLU layers and, after applying a
1× 1 convolution, the output is upsampled and added to FDB. We limit the number of down-
samplings in FRSR to one as the main stream applies consecutive downsampling.

CRASPP: inspired by the success of atrous spatial pyramid pooling block (ASPP) [56, 359],
after five downsampling steps, we add the concatenated reverse ASPP (CRASPP) to enhance
the feature extraction of large objects. In CRASPP, we ‘reverse’ the original ASPP (i.e., the
order of atrous rates) and concatenate it with the original ASPP, so as to obtain receptive
fields optimal for both small/large objects.

LKBR: for boundary refinement and to improve the extraction of tiny objects, we apply –
in addition to five skip-connections – large-kernels with boundary refinements (LKBRs).
LKBR [258] is composed of two streams including a boundary refinement module. Un-
like [158], we apply a residual path from the output of the last downsampling module to
the input of the first upsampling module.

108

Table 31. Benchmark of the state of the art on the SkyScapes-Dense task over all 20 classes; ‘-’ means no specific back-bone;
‘f.w.’ is frequency weighted IoU; * skip connections.

Method Base IoU [%] average [%]
mean f.w. recall prec.

FCN-8s [218] ResNet50 33.06 67.02 40.78 65.01
SegNet [14] – 23.14 61.32 29.21 59.56
U-Net [276] – 14.15 36.33 21.88 22.87

BiSeNet [367] ResNet50 30.82 59.62 40.25 49.42
DenseASPP [359] ResNet101 24.73 56.58 32.21 40.82
Encoder-Decoder* – 37.16 67.18 48.26 50.16

FC-DenseNet-103 [158] – 37.78 67.44 46.66 53.89
FRRNA [261] – 37.20 65.10 46.44 53.22

GCN [258] ResNet152 32.92 65.12 41.60 49.65
Mobile-U-Net* – 34.96 65.26 44.52 49.49
PSPNet [385] ResNet101 30.44 61.62 40.48 43.63

RefineNet [198] ResNet152 36.39 65.52 46.12 52.17
DeepLabv3+ [52] Xception65 38.20 68.81 47.97 55.34

SkyScapesNet – 40.13 72.67 47.85 65.93

Multi-task learning: we use three separate branches to predict dense semantics and multi-
class and binary edges simultaneously. The streams are separated from each other after the
second upsampling layer. The motivation is to allow the auxiliary tasks to modify the shared
weights so as to augment the network performance on boundary regions. For multi-class
lane-marking segmentation, we consider two streams with similar configuration.

Loss functions: instead of relying only on cross-entropy, we propose to add either the Soft-
IoU-loss [231] or the Soft-Dice-loss [239] to it (taking the sum of indiv. losses).

By the direct application of the cost-aware cross-entropy loss, the network tries to fill in
lane-marking areas which leads to a high TP rate for the lane-marking classes, but also high
FP for the non-lane class. However, due to the very high number of non-lane pixels, the
resulting FP does not have much effect on the overall accuracy. To alleviate this, we propose
the scheduled weighting mechanism in which the costs of corresponding classes gradually
move towards the final weighted coefficients as the training process evolves. Further details
about the architecture as well as loss formulas are included in the supplementary material.

7.5 Evaluation

For our experiments, we crop the images into 512× 512 patches, as the original 21 MP im-
ages would not fit into GPUs. As data augmentation, we carry out horizontal and vertical
flipping, and use 50% overlap between neighboring crops both in vertical and horizontal
directions. During inference we use 10% overlap as a partial solution to the lower perfor-
mance at image boundaries. We use Titan XP and Quadro P6000 GPUs for training. The
learning rate was 0.0001 and a batch size of 1 was chosen. We trained the algorithms for 60
epochs to make the comparison fair (the majority of the methods converged at this step).
In total, there are 8820 training images. Our model has 137 M parameters. As we deal with
offline mapping, inference at 355 ms per 512× 512 image patch is of little concern.

7.5.0.1 SkyScapes-Dense – 20 main classes:

The benchmarking results reported in Table 31 demonstrate the complexity of the task.
Our method described above achieves 1.93% mIoU improvement over the best benchmark.
Qualitative examples of the best baselines and our proposed algorithm are depicted in Fig-
ure 60. Our algorithm exhibits the best trade-off between accurately segmented coarse and
fine structures. Ablation studies in Table creftab:ablation quantifying the effect of several
components show that the main improvement is achieved by including both binary and
multi-class edge detection.

7.5 Evaluation 109

(a) RGB Image (b) Ground Truth (c) SkyScapesNet (d) DeepLabv3+ (e) FC-DenseNet103

Fig. 60. Result samples for SkyScapes-Dense task by SkyScapesNet and the two best baselines. For class colors, cf. Figure 57.

Table 32. Evaluation of different parts of SkyScapesNet. ‘Baseline’ was trained only with cross-entropy (i.e., no IoU loss
added). Max stride is 32 pixels. * using original number of sub-sampling as in the baseline in SkyScapesNet.

N
et

w
or

k

lo
ss

Io
U

se
p

.b
ra

nc
h.

FD
B

FS
R

R
B

C
R

A
SP

P

L
K

B
R

m
Io

U
[%

]

Baseline* [158] 37.78
Baseline 36.88

SkyScapesNet X 37.08
SkyScapesNet X X 38.55
SkyScapesNet X X X 38.77
SkyScapesNet X X X X 38.90
SkyScapesNet X X X X X 39.09
SkyScapesNet X X X X X X 39.30
SkyScapesNet* X X X X X X 40.13

Table 33. Benchmark of the state of the art on the SkyScapes-Lane task over all 13 classes. Cf. table 31 for abbreviations.
Method Base IoU [%] average [%]

mean f.w. recall precision
FCN-8s [218] ResNet50 13.74 99.69 15.23 77.96
U-Net [276] – 8.97 99.62 12.73 88.26

AdapNet [324] – 20.20 99.67 22.21 53.60
BiSeNet [367] ResNet50 23.77 99.66 28.71 51.42

DeepLabv3 [53] ResNet50 16.15 99.62 18.94 55.44
DenseASPP [359] ResNet101 17.00 99.65 18.74 46.02

FC-DenseNet-103 [158] – 48.42 99.85 55.32 69.01
FRRN-B [261] – 47.02 99.85 54.72 66.19

GCN [258] ResNet50 35.65 99.82 43.09 55.65
Mobile-U-Net* – 41.21 99.84 47.48 64.60
PSPNet [385] ResNet101 35.85 99.82 42.64 58.23

DeepLabv3+ [52] Xception65 37.14 99.77 43.14 62.07
Encoder-Decoder* – 48.87 99.85 55.31 70.63

SkyScapesNet – 51.93 99.87 60.53 72.29

7.5.0.2 SkyScapes-Lane – multi-class lane prediction:

Here, a further challenge is the highly imbalanced dataset. Results in Table 33 show that
despite the tiny object sizes, our algorithm achieves 51.93% mIoU, outperforming the state
of the art by 3.06%. Qualitative examples in Figure 61 highlight that our algorithm generates
fewer decomposed segments.

7.5.0.3 SkyScapes-Dense – auxiliary tasks:

We further provide results for the three auxiliary tasks SkyScapes-Dense-Category,
SkyScapes-Dense-Edge-Binary, and SkyScapes-Dense-Edge-Multi in Table 34 (cf.
sec. 7.2.2 for task definitions). As multiple categories are merged into a single category,
e.g., low vegetation and tree into nature, the mIoU for SkyScapes-Dense-Category is notably

110

(a) Image (b) GT (c) Ours (d) Enc-Dec*

Fig. 61. Result samples for the SkyScapes-Lane task by SkyScapesNet and the best baseline. Class colors: cf. Figure 57.

Table 34. Results on SkyScapes-Dense-Category, multi-class edge, and binary edge prediction tasks.
Method Task IoU [%] average [%]

mean f.w. recall prec.
SkyScapesNet Category 52.27 77.77 63.49 65.65
SkyScapesNet Multi-class Edge 13.00 88.74 16.82 22.74
SkyScapesNet Binary Edge 58.72 89.52 64.81 71.99

higher than for the more challenging SkyScapes-Dense. For the edge detection branches,
used to enforce the learning of more accurate boundaries, high mIoU is obtained for
SkyScapes-Dense-Edge-Binary, while still a low one for the more challenging multi-class
edge detection.

7.6 Generalization

Our aim in this paper is to promote aerial imagery (in its widest sense) as a means to create
HD-maps. Hence, our method is not restricted to aerial images captured by a helicopter, but
would work for satellites and lower-flying drones, too. To demonstrate the good generaliza-
tion capability of our method, here we show results on four additional data types covering a
wide range of sensors (camera and platform), spatial resolutions, and geographic locations.

For quantitative evaluation we consider the Potsdam [152] and GRSS_DFC_2018
datasets [149], and show qualitative results also on an aerial images of Perth, Australia.
Qualitative results can be seen inFigure 62,Figure 63, Figure 64. By adjusting the GSD of the
test images (through scaling) to match that of our dataset, our model trained on SkyScapes
indicates good generalization even without fine-tuning. This is demonstrated also in the
quantitative results on Potsdam (see Table 35) as the mean IoU is in the range of SkyScapes-
Dense-Category. For the quantitative evaluation, we merged our categories according to the
Potsdam categories.

Moreover, Figure 65 demonstrates the generalization capability of our algorithm for binary
lane-marking extraction at a widely different scale (30 cm/pixel) on a WorldView-4 satellite
image. To the best of our knowledge, satellite images have not been used for lane-marking
extraction before.

7.7 Conclusion 111

Table 35. Generalization of our model trained on SkyScapes-Dense and evaluated on Potsdam and DFC2018.
training data test data IoU [%] average [%]

mean f.w. recall prec.
SkyScapes Potsdam 47.46 70.58 62.28 66.09
SkyScapes Data Fusion Contest 2018 26.42 47.58 55.67 37.64

Fig. 62. Results of our model trained on SkyScapes and tested on the Potsdam dataset with GSD adjustment and no
fine-tuning. Patches from left to right: RGB, ground truth, prediction. Potsdam classes: ����������������� impervious, ����������������� building, ����������������� low
vegetation, ����������������� tree, ����������������� car, ����������������� clutter.

Fig. 63. Results of our model trained on SkyScapes and tested on the GRSS_DFC_2018 dataset (over Houston, USA) with
GSD adjustment and without fine-tuning.

7.7 Conclusion

In this paper, we introduced SkyScapes, an image dataset for cm-level semantic labeling of
aerial scenes to facilitate the creation of HD maps for autonomous driving, urban manage-
ment, city planning, and infrastructure monitoring. We presented an extensive evaluation
of several state-of-the-art methods on SkyScapes and proposed a novel multi-task network
that, thanks to its specialized architecture and auxiliary tasks, proves more effective than
all tested baselines. Finally, we demonstrated good generalization of our method on four
additional image types ranging from high-resolution aerial images to even satellite images.

112

Fig. 64. Segmentation result samples of our model trained on SkyScapes and tested on an aerial image over Perth, Australia,
with GSD adjustment and without fine-tuning.

Fig. 65. Binary lane segmentation on a Worldview4 satellite image over Munich using our model trained on SkyScapes,
and tested on a highway scene with GSD adjustment and no fine-tuning.

8 Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a Convolutional Neural Network 113

8 Multiple Pedestrians and Vehicles Tracking in
Aerial Imagery Using a Convolutional Neural
Network

This chapter describes the paper Seyed Majid Azimi, Maximilian Kraus, Reza Bahmanyar
and Peter Reinartz: Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a
Convolutional Neural Network, MDPI Remote Sensing 2021, (Azimi et al.,2021). The pub-
lished paper can be found in the Appendix F. In this paper, we address various challenges in
multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evalu-
ation of a number of traditional and Deep Learning based Single- and Multi-Object Track-
ing methods. We also describe our proposed Deep Learning based Multi-Object Tracking
method AerialMPTNet that fuses appearance, temporal, and graphical information using a
Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural
Network module for more accurate and stable tracking.

Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online
Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge,
we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we
studied and compared the L1 and Huber loss functions. In our experiments, we extensively
evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT
and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that
AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves
competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph
Convolutional Neural Network modules enhance the tracking performance. Moreover, us-
ing Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some
cases while degrades the results for other cases. In addition, according to the results, L1
yields better results with respect to Huber loss for most of the scenarios. The presented
results provide a deep insight into challenges and opportunities of the aerial Multi-Object
Tracking domain, paving the way for future research.

8.1 Introduction

VOT, that is, locating objects in video frames over time, is a dynamic field of research with
a wide variety of practical applications such as in autonomous driving, robot aided surgery,
security, and safety. The recent advances in machine and deep learning techniques have
drastically boosted the performance of VOT methods by solving long-standing issues such
as modeling appearance feature changes and relocating the lost objects [23, 24, 351]. Never-
theless, the performance of the existing VOT methods is not always satisfactory due to hin-
drances such as heavy occlusions, difference in scales, background clutter or high-density in
the crowded scenes. Thus, developing more sophisticated VOT methods overcoming these
challenges is highly demanded.

The VOT methods can be categorized into SOT and MOT methods, which track single and
multiple objects throughout subsequent video frames, respectively. The MOT scenarios are
often more complex than the SOT because the trackers must handle a larger number of
objects in a reasonable time (e.g., ideally real-time). Most previous VOT works using tradi-
tional approaches such as Kalman and particle filters [66, 67], Discriminative Correlation
Filter (DCF) [30], or silhouette tracking [31], simplify the tracking procedure by constrain-
ing the tracking scenarios with, for example, stationary cameras, limited number of ob-
jects, limited occlusions, or absence of sudden background or object appearance changes.

114

These methods usually use handcrafted feature representations (e.g., Histogram of Gradi-
ents (HOG) [75], color, position) and their target modeling is not dynamic [230]. In real-
world scenarios, however, such constraints are often not applicable and VOT methods based
on these traditional approaches perform poorly.

The rise of Deep Learning (DL) offered several advantages in object detection, segmentation,
and classification [122, 273, 312]. Approaches based on DL have also been successfully ap-
plied to VOT problems, and significantly enhancing the performance, especially in uncon-
strained scenarios. Examples include the Convolutional Neural Network (CNN) [334, 376],
Recurrent Neural Network (RNN) [167], Siamese Neural Network (SNN) [126, 189], Gener-
ative Adversarial Network (GAN) [295] and several customized architectures [372].

Despite the many progress made for VOT in ground imagery, in the remote sensing domain,
VOT has not been fully exploited, due to the limited available volume of images with high
enough resolution and level of details. In recent years, the development of more advanced
camera systems and the availability of very high-resolution aerial images have opened new
opportunities for research and applications in the aerial VOT domain ranging from the
analysis of ecological systems to aerial surveillance [90, 323].

Aerial imagery allows collecting very high-resolution data from wide open areas in a cost-
and time-efficient manner. Performing MOT based on such images (e.g., with Ground Sam-
pling Distance (GSD) < 20 cm/pixel) allows us to track and monitor the movement be-
haviours of multiple small objects such as pedestrians and vehicles for numerous applica-
tions such as disaster management and predictive traffic and event monitoring. However,
few works have addressed aerial MOT [15, 235, 271], and the aerial MOT datasets are rare.
The large number and the small sizes of moving objects compared to the ground imagery
scenarios together with large image sizes, moving cameras, multiple image scale, low frame
rates as well as various visibility levels and weather conditions makes MOT in aerial im-
agery especially complicate. Existing drone or ground surveillance datasets frequently used
as MOT benchmarks, such as MOT16 and MOT17 [238], are very different from aerial MOT
scenarios with respect to their image and object characteristics. For example, the objects are
bigger and the scenes are less crowded, with the objects appearance features usually being
discriminative enough to distinguish the objects. Moreover, the videos have higher frame
rates and better qualities and contrasts.

In this paper, we aim at investigating various existing challenges in the tracking of multiple
pedestrian and vehicles in aerial imagery through intensive experiments with a number of
traditional and DL-based SOT and MOT methods. This paper extends our recent work [176],
in which we introduced a new MOT dataset, the so-called Aerial Multi-Pedestrian Track-
ing (AerialMPT), as well as a novel DL-based MOT method, the so-called AerialMPTNet,
that fuses appearance, temporal, and graphical information for a more accurate MOT. In
this paper, we also extensively evaluate the effectiveness of different parts of AerialMPTNet
and compare it to traditional and state-of-the-art DL-based MOT methods. Additionally, we
propose a MOT method inspired by the SORT method [26], the so-called Euclidean Online
Tracking (EOT), which employs GSD adapted Euclidean distance for object association in
consecutive frames.

We conduct our experiments on three aerial MOT datasets, namely AerialMPT and KIT AIS
(https://www.ipf.kit.edu/code.php, accessed on 10 May 2021) pedestrian and vehicle
datasets. All image sequences were captured by an airborne platform during different flight
campaigns of the German Aerospace Center (DLR) (https://www.dlr.de, accessed on 10
May 2021) and vary significantly in object density, movement patterns, and image size and
quality. Figure 66 shows sample images from the AerialMPT dataset with the tracking re-
sults of our AerialMPTNet. The images were captured at different flight altitudes and their
GSD (reflecting the spatial size of a pixel) varies between 8 cm and 13 cm. The total num-

https://www.ipf.kit.edu/code.php
https://www.dlr.de

8.1 Introduction 115

ber of objects per sequence ranges up to 609. Pedestrians in these datasets appear as small
points, hardly exceeding an area of 4 × 4 pixels. Even for human experts, distinguishing
multiple pedestrians based on their appearance is laborious and challenging. Vehicles ap-
pear as bigger objects and are easier to distinguish based on their appearance features. How-
ever, different vehicle sizes, fast movements together with the low frame rates (e.g., 2 fps)
and occlusions by bridges, trees, or other vehicles presents challenges to the vehicle tracking
algorithm, illustrated in Figure 67.

Fig. 66. Multi-Pedestrian tracking results of AerialMPTNet on the frame 18 of the “Munich02” (left) and frame 10 of
the “Bauma3” (right) sequences of the AerialMPT dataset. Different pedestrians are depicted in different colors with the
corresponding trajectories.

Fig. 67. Illustrations of some challenges in aerial MOT datasets. The examples are from the KIT AIS pedestrian (a),
AerialMPT (b), and KIT AIS vehicle datasets (c,d). Multiple pedestrians which are hard to distinguish due to their similar
appearance features and low image contrast (a). Multiple pedestrians at a trade fair walking closely together with occlu-
sions, shadows, and strong background colors (b). Multiple vehicles at a stop light where the shadow on the right hand
side can be problematic (c). Multiple vehicles with some of them occluded by trees (d).

AerialMPTNet is an end-to-end trainable regression-based neural network comprising a
SNN module which takes two image patches as inputs, a target and a search patch, cropped
from a previous and a current frame, respectively. The object location is known in the tar-
get patch and should be predicted for the search patch. In order to overcome the track-
ing challenges of the aerial MOT such as the objects with similar appearance features and
densely moving together, AerialMPTNet incorporates temporal and graphical information
in addition to the appearance information provided by the SNN module. Our AerialMPT-
Net employs a Long Short-Term Memory (LSTM) for temporal information extraction and
movement prediction, and a Graph Convolutional Neural Network (GCNN) for modeling
the spatial and temporal relationships between adjacent objects (graphical information).
AerialMPTNet outputs four values indicating the coordinates of the top-left and bottom-
right corners of each object’s bounding box in the search patch. In this paper, we also in-

116

vestigate the influence of Squeeze-and-Excitation (SE) and Online Hard Example Mining
(OHEM) [290] on the tracking performance of AerialMPTNet. To the best of our knowl-
edge, we are the first work applying adaptive weighting of convolutional channels by SE
and employ OHEM for the training of a DL-based tracking-by-regression method.

According to the results, our AerialMPTNet outperforms all previous methods for the
pedestrian datasets and achieves competitive results for the vehicle dataset. Furthermore,
LSTM and GCNN modules adds value to the tracking performance. Moreover, while us-
ing SE and OHEM can significantly help in some scenarios, in other cases they may de-
grade the tracking results. In summary, the contributions of this paper over our previous
work [176] are:

� We apply OHEM and SE to a MOT task for the first time.
� We propose EOT which outperforms tracking methods with Intersection over Union

(IoU)-based association strategy.
� We conduct an ablation study to evaluate the role of all different parts

of AerialMPTNet.
� We evaluate the role of loss functions in the tracking performance by comparing L1 and

Huber loss functions.
� We evaluated and compared various MOT methods for pedestrian tracking in

aerial imagery.
� We conduct intensive qualitative and quantitative evaluations of AerialMPTNet on two

aerial pedestrian and one aerial vehicle tracking datasets.

We believe that our paper can promote research on aerial MOT (esp. for pedestrians and
vehicles) by providing a deep insight into its challenges and opportunities.

The rest of the paper is organized as follows: Section 8.2 presents an overviews on related
works; Section 8.6 introduces the datasets used in our experiments; Section 8.10 represents
the metrics used for our quantitative evaluations; Section 8.11 provides a comprehensive
study on previous traditional and DL-based tracking methods on the aerial MOT datasets,
with Section 8.25 explaining our AerialMPTNet with all its configurations; Section 8.20
represents our experimental setups; Section 8.21 provides an extensive evaluation of our
AerialMPTNet and compares it to the other methods; and Section 8.32 concludes our paper
and gives ideas for future works.

8.2 Related Works

Visual object tracking is defined as locating one or multiple objects in videos or image se-
quences over time. The traditional tracking process comprises four phases including ini-
tialization, appearance modeling, motion modeling, and object finding. During initializa-
tion, the targets are detected manually or by an object detector. In the appearance modeling
step, visual features of the region of interest are extracted by various learning-based meth-
ods for detecting the target objects. The variety of scales, rotations, shifts, and occlusions
makes this step challenging. Image features play a key role in the tracking algorithms. They
can be mainly categorized into handcrafted and deep features. In recent years, research
studies and applications have focused on developing and using deep features based on
DNNs which have shown to be able to incorporate multi-level information and more robust-
ness against appearance variations [95]. Nevertheless, DNNs require large enough training
datasets, which are not always available. Thus, for many applications, the handcrafted fea-
tures are still preferable. The motion modeling step aims at predicting the object movement
in time and estimate the object locations in the next frames. This procedure effectively re-
duces the search space and consequently the computation cost. Widely used methods for

8.3 Various Categorizations of VOT 117

motion modeling include Kalman filter [166], Sequential Monte Carlo methods [237] and
RNNs. In the last step, object locations are found as the ones close to the estimated locations
by the motion model.

8.3 Various Categorizations of VOT

Visual object tracking methods can be divided into SOT [223, 336] and MOT [15, 345] meth-
ods. While SOTs only track a single predetermined object throughout a video, even if there
are multiple objects, MOTs can track multiple objects at the same time. Thus, MOTs can face
exponential complexity and runtime increase based on the number of objects as compared
to SOTs.

Object tracking methods also can be categorized into detection-based [141] and detection-
free methods [220]. While the detection-based methods utilize object detectors to detect ob-
jects in each frame, the detection-free methods only need the initial object detection. There-
fore, detection-free methods are usually faster than the detection-based ones; however, they
are not able to detect new objects entering the scene and require manual initialization.

Object tracking methods can be further divided based on their training strategies using
either online or offline learning strategy. The methods with an online learning strategy can
learn about the tracked objects during runtime. Thus, they can track generic objects [335].
The methods with offline learning strategy are trained beforehand and are therefore faster
during runtime [140].

Tracking methods can be categorized into online and offline. Offline trackers take advantage
of past and futures frames, while online ones can only infer from past frames. Although
having all frames by offline tracking methods can increase the performance, in real-world
scenarios future frames are not available.

Most existing tracking approaches are based on a two-stage tracking-by-detection
paradigm [46, 380]. In the first stage, a set of target samples is generated around the pre-
viously estimated position using region proposal, random sampling, or similar methods.
In the second stage, each target sample is either classified as background or as the target
object. In one-stage-tracking, however, the model receives a search sample together with a
target sample as two inputs and directly predicts a response map or object coordinates by a
previously trained regressor [15, 126].

Object tracking methods can be categorized into the Traditional and DL-Based ones. Tradi-
tional tracking methods mostly rely on the Kalman and particle filters to estimate object
locations. They use velocity and location information to perform tracking [66, 67, 253].
Tracking methods only relying on such approaches have shown poor performance in un-
constrained environments. Nevertheless, such filters can be advantageous in limiting the
search space (decreasing the complexity and computational cost) by predicting and propa-
gating object movements to the following frames. A number of traditional tracking methods
follow a tracking-by-detection paradigm based on template matching [35]. A given target
patch models the appearance of the region of interest in the first frame. Matched regions
are then found in the next frame using correlation, normalized cross-correlation, or the
sum of squared distances methods [33, 113]. Scale, illumination, and rotation changes can
cause difficulties with these methods. More advanced tracking-by-detection-based methods
rely on discriminative modeling, separating targets from their backgrounds within a spe-
cific search space. Various methods have been proposed for discriminative modeling, such
as boosting methods and Support Vector Machines (SVMs) [7, 118]. A series of traditional
tracking algorithms, such as MOSSE and KCF [30, 127], utilizes correlation filters, which
model the target’s appearance by a set of filters trained on the images. In these methods,

118

the target object is initially selected by cropping a small patch from the first frame centered
at the object. For the tracking, the filters are convolved with a search window in the next
frame. The output response map assumes to have a peak at the target’s next location. As the
correlation can be computed in the Fourier domain, such trackers achieve high frame rates.

Recently, many research works and applications have focused on using DL-based track-
ing methods. The great advantage of DL-based features over handcrafted ones such as
HOG, raw pixels values or grey-scale templates have been presented previously for a vari-
ety of computer vision applications. These features are robust against appearance changes,
occlusions, and dynamic environments. Examples of DL-based tracking methods include
re-identification with appearance modeling and deep features [345], position regression
mainly based on SNNs [126, 189], path prediction based on RNN-like networks [280], and
object detection with DNNs such as YOLO [267].

8.4 SOTs and MOTs

Among various categorizations, in this section, we consider the SOT and MOT one for re-
viewing the existing object tracking methods. We believe that this is the fundamental cat-
egorization of the tracking methods which significantly affects the method design. In the
following, we briefly introduce a few recent methods from both categories and experimen-
tally discuss their strengths and limitations on aerial imagery in Section 8.11.

8.4.1 SOT Methods
Kalal et al.proposed Median Flow [165], which utilizes point and optical flow tracking. The
inputs to the tracker are two consecutive images together with the initial bounding box of
the target object. The tracker calculates a set of points from a rectangular grid within the
bounding box. Each of these points is tracked by a Lucas-Kanade tracker generating a sparse
motion flow. Afterwards, the framework evaluates the quality of the predictions and filters
out the worst 50%. The remaining point predictions are used to calculate the new bounding
box positions considering the displacement.

MOSSE [30], KFC [127] and CSRT [221] are based upon DCFs. Bolme et al.[30] proposed
MOSSE which uses a new type of correlation filter called Minimum Output Sum of Squared
Errors (MOSSE), which aims at producing stable filters when initialized using only one
frame and grey-scale templates. MOSSE is trained with a set of training images fi and train-
ing outputs gi , where gi is generated from the ground truth as a 2D Gaussian centered
on the target. This method can achieve state-of-the-art performances while running with
high frame rates. Henriques et al.[127] replaced the grey-scale templates with HOG fea-
tures and proposed the idea of Kernelized Correlation Filter (KCF). KCF works with mul-
tiple channel-like correlation filters. Additionally, the authors proposed using non-linear
regression functions which are stronger than linear functions and provide non-linear filters
that can be trained and evaluated as efficiently as linear correlation filters. Similar to KCF,
dual correlation filters use multiple channels. However, they are based on linear kernels to
reduce the computational complexity while maintaining almost the same performance as
the non-linear kernels. Recently, Lukezic et al. [221] proposed to use channel and reliability
concepts to improve tracking based on DCFs. In this method, the channel-wise reliability
scores weight the influence of the learned filters based on their quality to improve the lo-
calization performance. Furthermore, a spatial reliability map concentrates the filters to the
relevant part of the object for tacking. This makes it possible to widen the search space and
improves the tracking performance for non-rectangular objects.

8.4 SOTs and MOTs 119

As we stated before, the choice of appearance features plays a crucial role in object track-
ing. Most previous DCF-based works utilize handcrafted features such as HOG, grey-scale
features, raw pixels, and color names or the deep features trained independently for other
tasks. Wang et al.[336] proposed an end-to-end trainable network architecture able to learn
convolutional features and perform the correlation-based tracking simultaneously. The au-
thors encode a DCF as a correlation filter layer into the network, making it possible to back-
propagate the weights through it. Since the calculations remain in the Fourier domain, the
runtime complexity of the filter is not increased. The convolutional layers in front of the
DCF encode the prior tracking knowledge learned during an offline training process. The
DCF defines the network output as the probability heatmaps of object locations.

In the case of generic object tracking, the learning strategy is typically entirely online. How-
ever, online training of neural networks is slow due to backpropagation leading to a high run
time complexity. However, Held et al.[126] developed a regression-based tracking method,
called GOTURN, based on a SNN, which uses an offline training approach helping the net-
work to learn the relationship between appearance and motion. This makes the tracking
process significantly faster. This method utilizes the knowledge gained during the offline
training to track new unknown objects online. The authors showed that without online
backpropagation, GOTURN can track generic objects at 100 fps. The inputs to the net-
work are two image patches cropped from the previous and current frames, centered at
the known object position in the previous frame. The size of the patches depends on the
object bounding box sizes and can be controlled by a hyperparameter. This determines the
amount of contextual information given to the network. The network output is the coor-
dinates of the object in the current image patch, which is then transformed to the image
coordinates. GOTURN achieves state-of-the-art performance on common SOT benchmarks
such as VOT 2014 (https://www.votchallenge.net/vot2014/, accessed on 10 May 2021).

8.4.2 MOT Methods
Bewley et al. [26] proposed a simple multi-object tracking approach, called SORT, for on-
line tracking applications. Bounding box position and size are the only values used for
motion estimation and assigning the objects to their new positions in the next frame. In
the first step, objects are detected using Faster R-CNN [273]. Subsequently, a linear con-
stant velocity model approximates the movements of each object individually in consecu-
tive frames. Afterwards, the algorithm compares the detected bounding boxes to the pre-
dicted ones based on IoU, resulting in a distance matrix. The Hungarian algorithm [178]
then assigns each detected bounding box to a predicted (target) bounding box. Finally, the
states of the assigned targets are updated using a Kalman filter. SORT runs with more than
250 Frames per Second (fps) with almost state-of-the-art accuracy. Nevertheless, occlusion
scenarios and re-identification issues are not considered for this method, which makes it
inappropriate for long-term tracking.

Wojke et al.[345] extended SORT to DeepSORT and tackled the occlusion and re-
identification challenges, keeping the track handling and Kalman filtering modules almost
unaltered. The main improvement takes place into the assignment process, in which two
additional metrics are used: (1) motion information provided based on the Mahalanobis
distance between the detected and predicted bounding boxes, (2) appearance information
by calculating the cosine distance between the appearance features of a detected object and
the already tracked object. The appearance features are computed by a deep neural network
trained on a large person re-identification dataset [386]. A cascade strategy then determines
object-to-track assignments. This strategy effectively encodes the probability spread in the
association likelihood. DeepSORT performs poorly if the cascade strategy cannot match the
detected and predicted bounding boxes.

https://www.votchallenge.net/vot2014/

120

Recently, Bergmann et al.[23] introduced Tracktor++ which is based on the Faster R-CNN
object detection method. Faster R-CNN classifies region proposals to target and background
and fits the selected bounding boxes to object contours by a regression head. The authors
trained Faster R-CNN on the MOT17Det pedestrian dataset [238]. The first step is an object
detection by Faster R-CNN. The detected objects in the first frame are then initialized as
tracks. Afterwards, the tracks are tracked in the next frame by regressing their bounding
boxes using the regression head. In this method, the lost or deactivated tracks can be re-
identified in the following frames using a SNN and a constant velocity motion model.

8.5 Tracking in Satellite and Aerial Imagery

The reviewed object tracking methods in the previous sections have been mainly developed
for computer vision datasets and challenges. In this section, we focus on the proposed meth-
ods for satellite and aerial imagery. Visual object tracking for targets such as pedestrians
and vehicles in satellite and aerial imagery is a challenging task that has been addressed by
only few works, compared to the huge number addressing pedestrian and vehicle tracking
in ground imagery [334, 366].Tracking in satellite and aerial imagery is much more com-
plex. This is due to the moving cameras, large image sizes, different scales, large number
of moving objects, tiny size of the objects (e.g., 4 × 4 pixels for pedestrians, 30 × 15 for ve-
hicles), low frame rates, different visibility levels, and different atmospheric and weather
conditions [155, 238].

8.5.1 Tracking by Moving Object Detection
Most of the previous works in satellite and aerial object tracking are based on moving object
detection [21, 235, 271]. Reilly et al.[271] proposed one of the earliest aerial object tracking
approaches focusing on vehicle tracking mainly in highways. They compensate camera mo-
tion by a correction method based on point correspondence. A median background image
is then modeled from ten frames and subtracted from the original frame for motion detec-
tion, resulting in the moving object positions. All images are split into overlapping grids,
with each one defining an independent tracking problem. Objects are tracked using bipar-
tite graph, matching a set of label nodes and a set of target nodes. The Hungarian algorithm
solves the cost matrix afterwards to determine the assignments. The usage of the grids al-
lows tracking large number of objects with theO(n3) runtime complexity for the Hungarian
algorithm.

Meng et al.[235] followed the same direction. They addressed the tracking of ships and
grounded aircrafts. Their method detects moving objects by calculating an Accumulative
Difference Image (ADI) from frame to frame. Pixels with high values in the ADI are likely to
be moving objects. Each target is afterwards modeled by extracting its spectral and spatial
features, where spectral features refer to the target probability density functions and the
spatial features to the target geometric areas. Given the target model, matching candidates
are found in the following frames via regional feature matching using a sliding window
paradigm.

Tracking methods based on moving object detection are not applicable for our pedestrian
and vehicle tracking scenarios. For instance, Reilly et al.[271] use a road orientation esti-
mate to constrain the assignment problem. Such estimations which may work for vehicles
moving along predetermined paths (e.g., highways and streets), do not work for pedestrian
tracking with much more diverse and complex movement behaviors (e.g., crowded situ-
ations and multiple crossings). In general, such methods perform poorly in unconstrained
environments, are sensitive to illumination change and atmospheric conditions (e.g., clouds,

8.6 Datasets 121

shadows, or fog), suffer from the parallax effect, and cannot handle small or static objects.
Additionally, since finding the moving objects requires considering multiple frames, these
methods cannot be used for the real-time object tracking.

8.5.2 Tracking by Appearance Features
The methods based on appearance-like features overcome the issues of the tracking by mov-
ing object detection approaches [15, 38, 205, 262, 282], making it possible to detect small
and static objects on single images. Butenuth et al.[38] deal with pedestrian tracking in
aerial image sequences. They employ an iterative Bayesian tracking approach to track nu-
merous pedestrians, where each pedestrian is described by its position, appearance features,
and direction. A linear dynamic model then predicts futures states. Each link between a pre-
diction and a detection is weighted by evaluating the state similarity and associated with the
direct link method described in [141]. Schmidt et al.[282] developed a tracking-by-detection
framework based on Haar-like features. They use a Gentle AdaBoost classifier for object
detection and an iterative Bayesian tracking approach, similar to [38]. Additionally, they
calculate the optical flow between consecutive frames to extract motion information. How-
ever, due to the difficulties of detecting small objects in aerial imagery, the performance
of the method is degraded by a large number of false positives and negatives. Bahman-
yar et al.[15] proposed Stack of Multiple Single Object Tracking CNNs (SMSOT-CNN) and
extended the GOTURN method, a SOT method developed byHeld et al.[126], by stacking
the architecture of GOTURN to track multiple pedestrians and vehicles in aerial image
sequences. SMSOT-CNN is the only previous DL-based work dealing with MOT. SMSOT-
CNN expands the GOTURN network by three additional convolutional layers to improve
the tracker’s performance in locating the object in the search area. In their architecture,
each SOT-CNN is responsible for tracking one object individually leading to a linear in-
crease in the tracking complexity by the number of objects. They evaluate their approach on
the vehicle and pedestrian sets of the KIT AIS aerial image sequence dataset. Experimental
results show that SMSOT-CNN significantly outperforms GOTURN. Nevertheless, SMSOT-
CNN performs poorly in crowded situations and when objects share similar appearance
features.

In Section 8.11, we experimentally investigate a set of the reviewed visual object tracking
methods on three aerial object tracking datasets.

8.6 Datasets

In this section, we introduce the datasets used in our experiments, namely the KIT AIS
(pedestrian and vehicle sets), the Aerial Multi-Pedestrian Tracking (AerialMPT) [176], and
DLR’s Aerial Crowd Dataset (DLR-ACD) [16]. All these datasets are the first of their kind
and aim at promoting pedestrian and vehicle detection and tracking based on aerial im-
agery. The images of all these datasetes have been acquired by the German Aerospace Cen-
ter (DLR) using the 3K camera system, comprising a nadir-looking and two side-looking
DSLR cameras, mounted on an airborne platform flying at different altitudes. The differ-
ent flight altitudes and camera configurations allow capturing images with multiple spatial
resolutions (ground sampling distances-GSDs) and viewing angles.

For the tracking datasets, since the camera is continuously moving, in a post-processing
step, all images were orthorectified with a digital elevation model, co-registered, and geo-
referenced with a GPS/IMU system. Afterwards, images taken at the same time were fused
into a single image and cropped to the region of interest. This process caused small errors
visible in the frame alignments. Moreover, the frame rate of all sequences is 2 Hz. The image

122

Table 36. Statistics of the KIT AIS pedestrian dataset.
Train

Seq. Image Size #Fr. #Pedest. #Anno. #Anno./Fr. GSD
AA_Crossing_01 309 × 487 18 164 2618 145.4 15.0

AA_Easy_01 161 × 168 14 8 112 8.0 15.0
AA_Easy_02 338 × 507 12 16 185 15.4 15.0

AA_Easy_Entrance 165 × 125 19 83 1105 58.3 15.0
AA_Walking_01 227 × 297 13 40 445 34.2 15.0

Munich01 509 × 579 24 100 1308 54.5 12.0
RaR_Snack_Zone_01 443 × 535 4 237 930 232.5 15.0

Total 104 633 6703 64.4
Test

AA_Crossing_02 322 × 537 13 94 1135 87.3 15.0
AA_Entrance_01 835 × 798 16 973 14,031 876.9 15.0
AA_Walking_02 516 × 445 17 188 2671 157.1 15.0

Munich02 702 × 790 31 230 6125 197.6 12.0
RaR_Snack_Zone_02 509 × 474 4 220 865 216.2 15.0
RaR_Snack_Zone_04 669 × 542 4 311 1230 307.5 15.0

Total 85 2016 26,057 306.5

sequences were captured during different flight campaigns and differ significantly in object
density, movement patterns, qualities, image sizes, viewing angles, and terrains. Further-
more, different sequences are composed by a varying number of frames ranging from 4 to
47. The number of frames per sequence depends on the image overlap in flight direction
and the camera configuration.

8.7 KIT AIS

The KIT AIS dataset is generated for two tasks, vehicle and pedestrian tracking. The data
have been annotated manually by human experts and suffer from a few human errors. Ve-
hicles are annotated by the smallest enclosing rectangle (i.e., bounding box) oriented in the
direction of their travel, while individual pedestrians are marked by point annotations on
their heads. In our experiments, we used bounding boxes of sizes 4 × 4 and 5× 5 pixels for
the pedestrians according to the GSDs of the images, ranging from 12 to 17 cm. As objects
may leave the scene or be occluded by other objects, the tracks are not labeled continuously
for all cases. For the vehicle set cars, trucks, and buses are annotated if they lie entirely
within the image region with more than 2

3 of their bodies visible. In the pedestrian set only
pedestrians are labeled. Due to crowded scenarios or adverse atmospheric conditions in
some frames, pedestrians can be hardly visible. In these cases, the tracks have been esti-
mated by the annotators as precisely as possible. Tables 36 and 37 represent the statistics of
the pedestrian and vehicle sets of the KIT AIS dataset, respectively. The KIT AIS pedestrian
is composed of 13 sequences with 2649 pedestrians (Pedest.), annotated by 32,760 annota-
tion points (Anno.) throughout the frames Table 36. The dataset is split into 7 training and
6 testing sequences with 104 and 85 frames (Fr.), respectively. The sequences are charac-
terized by different lengths ranging from 4 to 31 frames. The image sequences come from
different flight campaigns over Allianz Arena (Munich, Germany), Rock am Ring concert
(Nuremberg, Germany), and Karlsplatz (Munich, Germany).

The KIT AIS vehicle comprises nine sequences with 464 vehicles annotated by 10,817
bounding boxes throughout 239 frames. It has no pre-defined train/test split. For our exper-
iments, we split the dataset into five training and four testing sequences with 131 and 108

8.8 AerialMPT 123

Table 37. Statistics of the KIT AIS vehicle dataset.
Train

Seq. Image Size #Fr. #Vehic. #Anno. #Anno./Fr. GSD
MunichAutobahn1 633 × 988 16 16 161 10.1 15.0
MunichCrossroad1 684 × 547 20 30 509 25.5 12.0

MunichStreet1 1764 × 430 25 57 1338 53.5 12.0
MunichStreet3 1771 × 422 47 88 3071 65.3 12.0

StuttgartAutobahn1 767 × 669 23 43 764 33.2 17.0
Total 131 234 5843 44.6

Test
MunichCrossroad2 895 × 1036 45 66 2155 47.9 12.0

MunichStreet2 1284 × 377 20 47 746 37.3 12.0
MunichStreet4 1284 × 388 29 68 1519 52.4 12.0

StuttgartCrossroad1 724 × 708 14 49 554 39.6 17.0
Total 108 230 4974 46.1

frames, respectively, similarly to [15]. According to Table 37, the lengths of the sequences
vary between 14 and 47 frames. The image sequences have been acquired from a few high-
ways, crossroads, and streets in Munich and Stuttgart, Germany. The dataset presents sev-
eral tracking challenges such as lane change, overtaking, and turning maneuvers as well
as partial and total occlusions by big objects (e.g., bridges). Figure 68 demonstrates sample
images from the KIT AIS vehicle dataset.

Fig. 68. Sample images from the KIT AIS vehicle dataset acquired at different locations in Munich and Stuttgart, Germany.

8.8 AerialMPT

The Aerial Multi-Pedestrian Tracking (AerialMPT) dataset [176] is newly introduced to the
community, and deals with the shortcomings of the KIT AIS dataset such as the poor image
quality and limited diversity. AerialMPT consists of 14 sequences with 2528 pedestrians
annotated by 44,740 annotation points throughout 307 frames Table 38. Since the images
have been acquired by a newer version of the DLR’s 3K camera system, their quality and
contrast are much better than the images of KIT AIS dataset. Figure 69 compares a few
sample images from the AerialMPT and KIT AIS datasets.

AerialMPT is split into 8 training and 6 testing sequences with 179 and 128 frames, respec-
tively. The lengths of the sequences vary between 8 and 30 frames. The image sequences
were selected from different crowd scenarios, for example, from moving pedestrians on mass
events and fairs to sparser crowds in the city centers. Figure 66 demonstrates an image from
the AerialMPT dataset with the overlaid annotations.

124

Table 38. Statistics of the AerialMPT dataset.
Train

Seq. Image Size #Fr. #Pedest. #Anno. #Anno./Fr. GSD
Bauma1 462 × 306 19 270 4448 234.1 11.5
Bauma2 310 × 249 29 148 3627 125.1 11.5
Bauma4 281 × 243 22 127 2399 109.1 11.5
Bauma5 281 × 243 17 94 1410 82.9 11.5

Marienplatz 316 × 355 30 215 5158 171.9 10.5
Pasing1L 614 × 366 28 100 2327 83.1 10.5
Pasing1R 667 × 220 16 86 1196 74.7 10.5

OAC 186 × 163 18 92 1287 71.5 8.0
Total 179 1132 21,852 122.1

Test
Bauma3 611 × 552 16 609 8788 549.2 11.5
Bauma6 310 × 249 26 270 5314 204.4 11.5

Karlsplatz 283 × 275 27 146 3374 125.0 10.0
Pasing7 667 × 220 24 103 2064 86.0 10.5
Pasing8 614 × 366 27 83 1932 71.6 10.5

Witt 353 × 1202 8 185 1416 177.0 13.0
Total 128 1396 22,888 178.8

8.8.1 AerialMPT vs. KIT AIS

The AerialMPT has been generated in order to mitigate the limitations of the KIT AIS pedes-
trian dataset. In addition to the higher quality of the images, the numbers of minimum anno-
tations per frame and the total annotations of AerialMPT are significantly larger than those
of the KIT AIS dataset. All sequences in AerialMPT contain at least 50 pedestrians, while
more than 20% of the sequences of KIT AIS include less than ten pedestrians. Based on our
visual inspection, not only the pedestrian movements in AerialMPT are more complex and
realistic, but also the diversity of the crowd densities are greater than those of KIT AIS. The
sequences in AerialMPT differ in weather conditions and visibility, incorporating more di-
verse kinds of shadows as compared to KIT AIS. Furthermore, the sequences of AerialMPT
are longer in average, with 60% longer than 20 frames (less than 20% in KIT AIS). Further
details on these datasets can be found in [176].

Fig. 69. Sample images from the AerialMPT and KIT AIS datasets. “Bauma3”, “Witt”, “Pasing1” are from AerialMPT.
“Entrance_01”, “Walking_02”, and “Munich02” are from KIT AIS.

8.9 DLR-ACD 125

8.9 DLR-ACD

DLR-ACD is the first aerial crowd image dataset [16] comprises 33 large aerial RGB images
with average size of 3619 × 5226 pixels from different mass events and urban scenes con-
taining crowds such as sports events, city centers, open-air fairs, and festivals. The GSDs of
the images vary between 4.5 and 15 cm/pixel. In DLR-ACD 226,291 pedestrians have been
manually labeled by point annotations, with the number of pedestrians ranging from 285 to
24,368 per image. In addition to its unique viewing angle, the large number of pedestrians
in most of the images (>2 K) makes DLR-ACD stand out among the existing crowd datasets.
Moreover, the crowd density can vary significantly within each image due to the large field
of view of the images. Figure 70 demonstrates example images from the DLR-ACD dataset.
For further details on this dataset, the interested reader is remanded to [16].

Fig. 70. Example images of the DLR-ACD dataset. The images are from an open-air (a) festival (b) and music concert.

8.10 Evaluation Metrics

In this section, we introduce the most important metrics we use for our quantitative eval-
uations. We adopted widely-used metrics in the MOT domain based on [238] which are
listed in Table 39. In this table, ↑ and ↓ denote higher or lower values being better, respec-
tively. The objective of MOT is finding the spatial positions of p objects as bounding boxes
throughout an image sequence (object trajectories). Each bounding box is defined by the x
and y coordinates of its top-left and bottom-right corners in each frame. Tracking perfor-
mances are evaluated based on true positives (TP), correctly predicting the object positions,
false positives (FP), predicting the position of another object instead of the target object’s
position, and false negatives (FN), where an object position is totally missed. In our experi-
ments, a prediction (tracklet) is considered as TP if the intersection over union (IoU) of the
predicted and the corresponding ground truth bounding boxes is greater than 0.5. More-
over, an identity switch (IDS) occurs if an annotated object a is associated with a tracklet t,
and the assignment in the previous frame was a , t. The fragmentation metric shows the
total number of times a trajectory is interrupted during tracking.

Among these metrics, the crucial ones are the Multiple-Object Tracker Accuracy (MOTA)
and the Multiple-Object Tracker Precision (MOTP). MOTA represents the ability of trackers
in following the trajectories throughout the frames t, independently from the precision of
the predictions:

MOTA = 1−
∑
t(FNt +FPt + IDSt)∑

tGTt
. (42)

The Multiple-Object Tracker Accuracy Log (MOTAL) is similar to MOTA; however,

126

Table 39. Description of the metrics used for quantitative evaluations.

Metric Description
IDF1 ↑ ID F1-Score
IDP ↑ ID Global Min-Cost Precision
IDR ↑ ID Global Min-Cost Recall
Rcll ↑ Recall
Prcn ↑ Precision
FAR ↓ False Acceptance Rate
MT ↑ Ratio of Mostly Tracked Objects
PT ↑ Ratio of Partially Tracked Objects
ML ↓ Ratio of Mostly Lost Objects
FP ↓ False Positives
FN ↓ False Negatives
IDS ↓ Number of Identity Switches
FM ↓ Number of Fragmented Tracks

MOTA ↑ Multiple Object Tracker Accuracy
MOTP ↑ Multiple Object Tracker Precision

MOTAL ↑ Multiple Object Tracker Accuracy Log

ID switches are considered on a logarithmic scale.

MOTAL = 1−
∑
FNT +FPt + log10(IDSt + 1)∑

GTt
. (43)

MOTP measures the performance of the trackers in precisely estimating object locations:

MOT P =

∑
t,i dt,i∑
t ct

, (44)

where dt,i is the distance between a matched object i and the ground truth annotation in
frame t, and c is the total number of matched objects.

Each tracklet can be considered as mostly tracked (MT), partially tracked (PT), or mostly lost
(ML), based on how successful an object is tracked during its whole lifetime. A tracklet is
mostly lost if it is only tracked less than 20% of its lifetime and mostly tracked if it is tracked
more than 80% of its lifetime. Partially tracked applies to all remaining tracklets. We report
MT, PT, and ML as percentages of the total amount of tracks. The false acceptance rate (FAR)
for an image sequence with f frames describes the average amount of FPs per frame:

FAR =
∑
FPt
f

. (45)

In addition, we use recall and precision measures, defined as follows:

Rcll =
∑
T Pt∑

(T Pt +FNt)
, (46)

P rcn =
∑
T Pt∑

(T Pt +FPt)
. (47)

Identification precision (IDP), identification recall (IDR), and IDF1 are similar to precision
and recall; however, they take into account how long the tracker correctly identifies the tar-
gets. IDP and IDR are the ratios of computed and ground-truth detections that are correctly

8.11 Preliminary Experiments 127

identified, respectively. IDF1 is calculated as the ratio of correctly identified detections over
the average number of computed and ground-truth detections. IDF1 allows ranking differ-
ent trackers based on a single scalar value. For any further information on these metrics, the
interested reader is remanded to [274].

8.11 Preliminary Experiments

This section empirically shows the existing challenges in aerial pedestrian track-
ing. We study the performance of a number of existing tracking methods including
KCF [127], MOSSE [30], CSRT [221], Median Flow [165], SORT, DeepSORT [345], Stacked-
DCFNet [336], Tracktor++ [23], SMSOT-CNN [15], and Euclidean Online Tracking on aerial
data, and show their strengths and limitations. Since in the early phase of our research, only
the KIT AIS pedestrian dataset was available to us, the experiments of this section have been
conducted on this dataset. However, our findings also hold for the AerialMPT dataset.

The tracking performance is usually correlated to the detection accuracy for both detection-
free and detection-based methods. As our main focus is at tracking performance, in most
of our experiments we assume perfect detection results and use the ground truth data.
While for the object locations in the first frame are given to the detection-free methods,
the detection-based methods are provided with the object locations in every frame. There-
fore, for the detection-based methods, the most substantial measure is the number of ID
switches, while for the other methods all metrics are considered in our evaluations.

8.12 From Single- to Multi-Object Tracking

Many tracking methods have been initially designed to track only single objects. However,
according to [15], most of them can be extended to handle MOT. Tracking management is
an essential function in MOT which stores and exploits multiple active tracks at the same
time, in order to remove and initialize the tracks of objects leaving from and entering into
the scenes. For our experiments we developed a tracking management module for extend-
ing the SOT methods to MOT. It unites memory management, including the assignment of
unique track IDs and individual object position storage, with track initialization, aging and
removing functionalities.

OpenCV provides several built-in object tracking algorithms. Among them, we investigate
the KCF, MOSSE, CSRT, and Median Flow SOT methods. We extend them to the MOT sce-
narios within the OpenCV framework. We initialize the trackers by the ground truth bound-
ing box positions.

DCFNet [336] is also an SOT on a DCF. However, the DCF is implemented as part
of a DNN and uses the features extracted by a light-weight CNN. Therefore, DCFNet
is a perfect choice to study whether deep features improve the tracking performance
compared to the handcrafted ones. For our experiments, we took the PyTorch imple-
mentation (https://github.com/foolwood/DCFNetpytorch, accessed on 10 May 2021) of
DCFNet and modified its network structure to handle multi-object tracking, and we re-
fer to it as “Stacked-DCFNet”. From the KIT AIS pedestrian training set we crop a total
of 20,666 image patches centered at every pedestrian. The patch size is the bounding box
size multiplied by 10 in order to consider contextual information to some degree. Then we
scale the patches to 125 × 125 pixels to match the network input size. Using the patches,
we retrain the convolutional layers of the network for 50 epochs with ADAM [171] opti-
mizer, MSE loss, initial learning rate of 0.01, and a batch size of 64. Moreover, we set the

https://github.com/foolwood/DCFNet_pytorch

128

Table 40. Results of KCF, MOSSE, CSRT, Median Flow, and Stacked-DCFNet on the KIT AIS pedestrian dataset. The first
and second best values are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KCF 9.0 8.8 9.3 10.3 9.8 165.6 1.1 53.8 45.1 11,426 10,782 32 116 −84.9 87.2 −84.7

MOSSE 9.1 8.9 9.3 10.5 10.0 163.8 0.8 54.0 45.2 11,303 10,765 31 133 −85.8 86.7 −83.5
CSRT 16.0 16.9 15.2 17.5 19.4 126.5 9.6 51.0 39.4 8732 9924 91 254 −55.9 78.4 −55.1

Median Flow 18.5 18.3 18.8 19.5 19.0 144.7 7.7 55.8 36.5 9986 9678 30 161 −63.8 77.7 −63.5
Stacked-DCFNet 30.0 30.2 30.9 33.1 32.3 120.5 13.8 62.6 23.6 8316 8051 139 651 −37.3 71.6 −36.1

spatial bandwidth to 0.1 for both online tracking and offline training. Furthermore, in order
to adapt it to MOT, we use our developed Python module. Multiple targets are given to the
network within one batch. For each target object, the network receives two image patches,
from previous and current frames, centered on the known previous position of the object.
The network output is the probability heatmap in which the highest value represents the
most likely object location in the image patch of the current frame (search patch). If this
value is below a certain threshold, we consider the object as lost. Furthermore, we propose a
simple linear motion model and set the center point of the search patch to the position esti-
mate of this model instead of the position of the object in the previous frame patch (as in the
original work). Based on the latest movement vt(x,y) of a target, we estimate its position as:

pest(x,y) = p(x,y) + k · vt(x,y), (48)

where k determines the influence of the last movement. For all of the methods, we remove
the objects if they leave the scene and their track ages are greater than 3 frames.

Tables 40 and 41 show the overall and sequence-wise tracking results of these methods
on the KIT AIS pedestrian dataset, respectively. The results of Table 40 indicate the poor
performance of all of these methods with a total MOTA scores varying between −85.8 and
−55.9. The results of KCF and MOSSE are very similar. However, the use of HOG features
and non-linear kernels in KCF improves MOTA by 0.9 and MOTP by 0.5 points respectively,
compared to MOSSE. Moreover, both methods mostly track about 1% of the pedestrians in
average. However, they have the first and second best MOTP values among the compared
methods in Table 40. This indicates that although they lose track of many objects (partially
or totally), their tracking localization is relatively precise. Moreover, according to the re-
sults, Stacked-DCFNet significantly outperforms the method with handcrafted features by
a MOTA score of −37.3 (18.6 points higher than that of the CSRT). The MT and ML rates
are also improving with only losing 23.6% of all tracks while mostly tracking the 13.8% of
the pedestrians.

CSRT (which is also DCF-based) outperforms both prior methods significantly, reaching
a total MOTA and MOTP of −55.9 and 78.4. The smaller MOTP value of CSRT indicates
its slightly worse tracklet localization precision as compared to KCF and MOSSE. Further-
more, it mostly tracks about 10% of the pedestrians in average and proves the effective-
ness of the channel and reliability scores. According to the table, Median Flow achieves
comparable results to CSRT with total MOTA and MOTP scores of −63.8 and 77.7, respec-
tively. Comparing the results of different sequences in Table 41 indicates that all algorithms
perform significantly better on the “RaR_Snack_Zone_02” and “RaR_Snack_Zone_04” se-
quences. Based on visual inspection, we argue that this is due to their short length
resulting in fewer lost objects and ID switches. Comparing their performances on the
longer sequences (“AA_Crossing_02”, “AA_Walking_02” and “Munich02”) demonstrates
that Stacked-DCFNet performs much better than the other methods on these sequences,
showing the ability of the method in tracking objects for a longer time.

Altogether, according to the results, we argue that the deep features outperform the hand-
crafted ones by a large margin.

8.13 Multi-Object Trackers 129

Table 41. Results of KCF, MOSSE, CSRT, Median Flow, and Stacked-DCFNet on different sequences of KIT AIS pedestrian
dataset. The first and second best values of each method on the sequences are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KCF

AA_Crossing_02 13 94 8.1 8.1 8.0 9.1 9.2 78.1 1.1 6.4 92.5 1015 1032 0 8 −80.4 97.3 −80.4
AA_Walking_02 17 188 6.5 6.3 6.7 7.8 7.3 154.9 1.6 10.6 87.8 2633 2463 3 14 −90.9 96.9 −90.8

Munich02 31 230 4.3 4.1 4.4 5.6 5.2 201.7 0.9 3.9 95.2 6254 5781 29 75 −97.0 62.2 −96.5
RaR_Snack_Zone_02 4 220 29.3 29.1 29.5 29.8 29.5 154.5 1.8 98.2 0.0 618 607 0 8 −41.6 95.1 −41.6
RaR_Snack_Zone_04 4 311 25.8 25.7 25.9 26.9 26.8 226.5 0.3 99.7 0.0 906 899 0 11 −46.7 97.9 −46.7

MOSSE
AA_Crossing_02 13 94 8.0 8.1 7.9 9.1 9.2 78.1 1.1 5.3 93.6 1015 1032 0 9 −80.4 96.9 -80.4
AA_Walking_02 17 188 6.6 6.4 6.7 8.0 7.6 151.8 1.6 10.1 88.3 2580 2458 2 20 −88.7 95.7 −88.6

Munich02 31 230 4.3 4.2 4.5 5.7 5.4 199.7 0.9 4.3 94.8 6190 5775 29 78 −95.8 61.9 −95.4
RaR_Snack_Zone_02 4 220 29.4 29.2 29.6 30.4 30.0 153.2 0.5 99.5 0.0 613 602 0 14 −40.5 94.9 −40.5
RaR_Snack_Zone_04 4 311 25.8 25.7 25.9 27.0 26.8 226.2 0.3 99.7 0.0 905 898 0 12 −46.6 97.5 −46.6

CSRT
AA_Crossing_02 13 94 12.9 13.2 12.5 15.1 15.9 69.5 1.1 30.9 68.0 904 964 10 29 −65.5 84.6 −64.7
AA_Walking_02 17 188 9.2 10.0 8.5 11 12.9 116.9 2.7 15.4 81.9 187 2378 12 41 −63.9 88.0 −63.5

Munich02 31 230 9.2 9.9 8.7 10.9 12.5 151.4 1.8 14.3 83.9 4696 5455 66 137 −66.8 61.2 −65.8
RaR_Snack_Zone_02 4 220 43.2 42.0 42.5 43.8 43.3 124.2 17.3 82.7 0.0 497 486 0 16 −13.6 87.9 −13.6
RaR_Snack_Zone_04 4 311 45.6 45.5 45.0 47.9 47.6 162.0 16.7 83.3 0.0 648 641 3 31 −5.0 85.2 −4.8

Median Flow
AA_Crossing_02 13 94 27.3 27.3 27.4 28.5 28.3 62.8 1.1 68.1 30.8 817 812 4 49 −43.9 74.9 −43.6
AA_Walking_02 17 188 10.0 9.9 10.0 11.1 11.0 141.1 1.6 21.3 77.1 2398 2374 8 16 −79.0 86.3 −78.7

Munich02 31 230 9.2 9.0 9.4 9.9 9.5 186.4 1.3 8.7 90.0 5778 5517 10 53 −84.6 64.7 −84.4
RaR_Snack_Zone_02 4 220 51.7 51.4 52.0 52.8 52.2 104.7 8.6 91.4 0.0 419 408 2 14 4.2 83.7 4.3
RaR_Snack_Zone_04 4 311 53.1 53.0 53.3 53.9 53.6 143.5 17.4 82.6 0.0 574 567 6 29 6.7 83.0 7.2

Stacked-DCFNet
AA_Crossing_02 13 94 41.9 42.4 41.3 42.7 43.9 47.8 12.8 58.5 28.7 621 650 15 71 −13.3 74.7 -12.1
AA_Walking_02 17 188 31.4 31.6 31.2 32.3 32.7 104.3 5.9 45.7 48.4 1773 1809 23 184 −35.0 74.1 −34.2

Munich02 31 230 21.2 20.6 21.9 25.0 23.6 160.4 1.7 50.0 48.3 4974 4591 97 322 −57.7 60.5 −56.2
RaR_Snack_Zone_02 4 220 51.8 52.3 51.3 52.4 53.4 99.0 22.3 74.5 3.2 396 412 4 35 6.1 84.0 6.5
RaR_Snack_Zone_04 4 311 51.8 52.6 51.0 52.1 53.7 138.0 21.9 74.9 3.2 552 589 0 39 7.2 83.6 7.2

Table 42. Results of DeepSORT, SORT, Tracktor++, and SMSOT-CNN on the KIT AIS pedestrian dataset. The first and
second best values are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
DeepSORT 10.0 9.8 10.2 100.0 95.8 7.6 100.0 0.0 0.0 523 0 8627 9 23.9 81.1 98.6

DeepSORT-BBX2× 38.4 36.9 39.9 100.0 92.6 13.9 100.0 0.0 0.0 958 0 5073 9 49.9 78.7 92.0
DeepSORT-IoU99 43.3 40.8 44.0 98.3 91.1 16.7 99.8 0.2 0.0 1152 205 4009 189 55.4 73.7 88.7

DeepSORT-BBX2×-IoU99 82.1 80.7 83.6 99.4 96.0 7.3 99.8 0.2 0.0 502 75 738 70 89.1 74.7 95.2
DeepSORT-BBX2×-IoU99-FT 82.4 81.0 83.8 99.4 96.0 7.1 99.8 0.2 0.0 493 71 734 68 89.2 74.7 95.3

SORT-IoU99 42.9 41.8 44.2 98.7 93.4 12.2 99.8 0.2 0.0 840 151 3805 141 60.1 73.6 91.7
SORT-BBX2×-IoU99 86.5 85.5 87.2 99.6 98.1 3.3 99.8 0.2 0.0 231 46 438 48 94.1 74.7 97.7

Tracktor++ 13.7 27.3 9.2 28.5 85.0 – 13.2 44.2 42.6 604 8593 2188 725 5.3 0.1 –
SMSOT-CNN 34.0 33.2 34.9 38.2 36.4 116.4 25.0 52.5 22.5 8028 7427 157 614 −29.8 71.0 −28.5

EOT-D17 85.2 84.9 85.5 86.5 86.0 24.5 80.2 19.6 0.2 1692 1619 37 1074 72.2 69.3 72.5

8.13 Multi-Object Trackers

In this section, we study a number of MOT methods including SORT, DeepSORT, and Track-
tor++. Additionally, we propose a new tracking algorithm called Euclidean Online Tracking
(EOT) which uses the Euclidean distance for object matching.

8.13.1 DeepSORT and SORT

DeepSORT [345] is a MOT method comprising deep features and an IoU-based tracking
strategy. For our experiments, we use the PyTorch implementation (https://github.com/
ZQPei/deepsortpytorch, accessed on 10 May 2021) of DeepSORT and adapt it for the KIT
AIS dataset by changing the bounding box size and IoU threshold, as well as fine-tuning the
network on the training set of the KIT AIS dataset. As mentioned, for the object locations
we use the ground truth and do not use the DeepSORT’s object detector. Tables 42 and 43
show the tracking results of our experiments in which Rcll, Prcn, FAR, MT, PT, ML, FN, FM,
and MOTP are not important in our evaluations as the ground truth is used instead of the
detection results. Therefore, the best values for these metrics are not highlighted for non of
the methods in Table 42 and for DeepSORTs and SORTs in Table 43.

https://github.com/ZQPei/deep_sort_pytorch
https://github.com/ZQPei/deep_sort_pytorch

130

Table 43. Results of DeepSORT, SORT, Tracktor++, and SMSOT-CNN on the KIT AIS pedestrian dataset. The first and
second best values of each method on the sequences are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
DeepSORT

AA_Crossing_02 13 94 3.1 3.1 3.1 100.0 100.0 0.0 100.0 0.0 0.0 0 0 940 1 17.2 99.7 99.7
AA_Walking_02 17 188 7.7 7.7 7.8 100.0 98.9 1.7 100.0 0.0 0.0 29 0 2145 5 18.6 99.0 98.8

Munich02 31 230 9.1 8.8 9.4 100.0 92.8 15.4 100.0 0.0 0.0 478 0 4681 1 15.8 64.0 92.1
RaR_Snack_Zone_02 4 220 21.0 20.9 21.2 100.0 98.7 2.7 100.0 0.0 0.0 11 0 351 2 58.2 98.1 98.4
RaR_Snack_Zone_04 4 311 17.9 17.9 18.0 100.0 99.6 1.2 100.0 0.0 0.0 5 0 510 0 58.1 98.6 99.4

DeepSORT-BBX2×
AA_Crossing_02 13 94 34.8 34.5 35.1 100.0 98.4 1.4 100.0 0.0 0.0 18 0 566 1 48.5 94.3 98.2
AA_Walking_02 17 188 46.6 46.0 47.1 100.0 98.8 3.6 100.0 0.0 0.0 61 0 1073 5 57.5 93.1 97.6

Munich02 31 230 29.5 27.6 31.5 100.0 87.7 27.7 100.0 0.0 0.0 859 0 2989 1 37.2 63.9 85.9
RaR_Snack_Zone_02 4 220 52.2 51.9 52.5 100.0 98.9 2.5 100.0 0.0 0.0 10 0 203 2 75.4 95.7 98.6
RaR_Snack_Zone_04 4 311 61.2 61.0 61.5 100.0 99.2 2.5 100.0 0.0 0.0 10 0 242 0 79.5 94.4 99.0

DeepSORT-IoU99
AA_Crossing_02 13 94 55.0 54.4 55.6 99.0 96.9 2.8 100.0 0.0 0.0 36 11 347 10 65.3 83.6 95.6
AA_Walking_02 17 188 63.4 62.5 64.3 99.1 96.3 6.1 100.0 0.0 0.0 103 23 557 25 74.4 82.0 95.2

Munich02 31 230 24.2 22.8 25.8 97.2 85.8 31.8 99.6 0.4 0.0 985 170 2737 151 36.5 62.9 81.1
RaR_Snack_Zone_02 4 220 57.7 57.3 58.2 100.0 98.5 3.2 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 311 69.1 68.7 69.5 99.9 98.8 3.7 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

DeepSORT-BBX2×-IoU99
AA_Crossing_02 13 94 93.8 92.5 95.2 99.8 96.9 2.8 100.0 0.0 0.0 36 2 45 2 93.8 85.0 96.5
AA_Walking_02 17 188 88.7 84.4 93.4 99.7 90.0 17.3 100.0 0.0 0.0 295 8 42 12 87.0 86.4 88.6

Munich02 31 230 73.1 70.9 75.3 98.9 93.2 14.2 100.0 0.0 0.0 441 67 565 56 82.5 62.9 91.7
RaR_Snack_Zone_02 4 220 90.1 89.9 90.4 99.8 99.2 1.7 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 311 90.2 90.1 90.3 100.0 99.8 0.7 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

DeepSORT-BBX2×-IoU99-FT
AA_Crossing_02 13 94 93.1 92.7 93.4 100.0 99.3 0.6 100.0 0.0 0.0 8 0 43 1 95.5 85.1 99.2
AA_Walking_02 17 188 93.1 92.4 93.7 99.8 98.4 2.5 100.0 0.0 0.0 43 6 42 9 96.6 86.5 98.1

Munich02 31 230 73.3 71.2 75.5 99.0 93.3 13.9 100.0 0.0 0.0 432 63 563 54 82.7 62.9 91.9
RaR_Snack_Zone_02 4 220 90.1 89.9 90.4 99.8 99.2 1.7 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 311 90.2 90.1 90.3 100.0 99.8 0.7 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

SORT-IoU99
AA_Crossing_02 13 94 55.9 55.4 56.5 99.1 97.2 5.5 100.0 0.0 0.0 33 10 343 9 66.0 83.5 96.0
AA_Walking_02 17 188 64.0 63.2 64.9 99.3 96.7 5.3 100.0 0.0 0.0 90 19 550 21 75.3 82.0 95.8

Munich02 31 230 24.6 23.6 25.8 98.0 89.7 22.2 99.6 0.4 0.0 689 122 2544 108 45.2 62.8 86.7
RaR_Snack_Zone_02 4 220 57.7 57.3 58.2 100.0 98.5 3.2 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 311 69.1 68.7 69.5 99.9 98.8 3.7 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

SORT-BBX2×-IoU99
AA_Crossing_02 13 94 93.1 92.7 93.4 100.0 99.3 0.6 100.0 0.0 0.0 8 0 45 1 95.3 85.0 99.1
AA_Walking_02 17 188 94.5 93.9 95.1 99.3 98.6 2.2 100.0 0.0 0.0 37 2 30 6 97.4 86.5 98.5

Munich02 31 230 80.4 79.6 81.3 99.3 97.2 5.7 100.0 0.0 0.0 176 42 284 37 91.8 63.0 96.4
RaR_Snack_Zone_02 4 220 90.5 90.2 90.8 99.8 99.2 1.7 99.1 0.9 0.0 7 2 34 4 95.0 87.9 98.8
RaR_Snack_Zone_04 4 311 90.5 90.4 90.7 100.0 99.8 0.7 100.0 0.0 0.0 3 0 45 0 96.1 88.4 99.6

Tracktor++
AA_Crossing_02 13 94 12.7 19.6 9.4 48.2 100.0 – 20.1 51.1 28.8 0 588 432 107 10.1 0.13 –
AA_Walking_02 17 188 10.7 27.5 6.7 23.2 95.8 – 3.2 43.1 53.7 27 2050 426 154 6.3 0.13 –

Munich02 31 230 7.8 16.7 5.1 22.7 74.5 – 2.2 41.3 56.6 746 4736 965 412 −0.8 0.08 –
RaR_Snack_Zone_02 4 220 33.8 54.5 24.5 40.2 89.5 – 17.7 45.5 36.8 41 517 134 27 20.0 0.09 –
RaR_Snack_Zone_04 4 311 32.5 50.2 24.0 42.9 89.8 – 22.2 44.1 33.7 60 702 231 25 19.3 0.06 –

SMSOT-CNN
AA_Crossing_02 13 94 49.9 49.7 50.1 52.1 51.6 42.6 24.5 52.1 23.4 554 544 11 71 2.3 68.8 3.2
AA_Walking_02 17 188 30.7 30.2 31.3 33.8 32.7 109.6 15.5 38.9 45.6 1864 1767 34 140 −32.7 68.0 −36.0

Munich02 31 230 23.6 22.7 24.5 28.8 26.7 156.3 8.6 38.3 53.1 4846 4363 105 316 −52.1 68.4 −50.4
RaR_Snack_Zone_02 4 220 61.6 61.4 61.8 64.4 63.9 78.5 37.3 62.3 0.4 314 308 2 39 27.9 77.9 28.0
RaR_Snack_Zone_04 4 311 61.2 61.1 61.3 63.8 63.6 112.5 34.4 64.6 1.0 450 445 5 48 26.8 76.7 27.2

EOT-D17
AA_Crossing_02 13 94 94.4 94.4 94.4 95.3 95.2 4.1 91.5 8.5 0.0 54 53 4 34 90.2 73.8 90.5
AA_Walking_02 17 188 94.6 94.0 95.1 96.9 95.8 6.7 96.8 2.7 0.5 114 82 10 63 92.3 76.6 92.6

Munich02 31 230 76.0 75.8 76.2 77.0 76.5 46.6 44.3 54.8 0.9 1446 1409 15 930 53.1 60.4 53.4
RaR_Snack_Zone_02 4 220 95.0 94.9 95.1 96.5 96.3 8.0 87.7 12.3 0.0 32 30 3 16 92.5 77.6 92.8
RaR_Snack_Zone_04 4 311 95.2 95.1 95.2 96.3 96.3 11.5 76.2 23.8 0.0 46 45 5 31 92.2 78.6 92.5

In the first experiment, we employ DeepSORT with its original parameter settings. As the
results show, this configuration is not suitable for tracking small objects (pedestrians) in
aerial imagery. DeepSORT utilizes deep appearance features to associate objects to tracklets;
however, for the first few frames, it relies on IoU metric until enough appearance features
are available. The original IoU threshold is 0.5. The standard DeepSORT uses a Kalman
filter for each object to estimate its position in the next frame. However, due to small IoU
overlaps between most predictions and detections, many tracks can not be associated with
any detection, making it impossible to use the deep features afterwards. The main cause of
minor overlaps is the small size of the bounding boxes. For example, if the Kalman filter
estimates the object position only 2 pixels off the detection’s position, for a bounding box of
4 × 4 pixels, the overlap would be below the threshold and, consequently, the tracklet and
the object cannot be matched. These mismatches result in a large number of falsely initiated
new tracks, leading to a total amount of 8627 ID switches, an average amount of 8.27 ID

8.13 Multi-Object Trackers 131

switches per person, and an average amount of 0.71 ID switches per detection.

We tackle this problem by enlarging the bounding boxes by a factor of two in order to
increase the IoU overlaps, increase the number of matched tracklets and detections, and en-
able the use of appearance features. According to Table 42, this configuration (DeepSORT-
BBX2×) results in a 41.19% decrease in the total number of ID switches (from 8627 to 5073),
a 56.38% decrease in the average number of ID switches per person (from 8.62 to 4.86),
and a 59.15% decrease in the average number of ID switches per detection (from 0.71 to
0.42). We further analyze the impact of using different IoU thresholds on the tracking per-
formance. Figure 71 illustrates the number of ID switches with different IoU thresholds.
It can be observed that by increasing the threshold (minimizing the required overlap for
object matching) the number of ID switches reduces. The least number of ID switches (738
switches) is achieved by the IoU threshold of 0.99, as can be seen in Table 42 for DeepSORT-
IoU99. Based on the results, enlarging the bounding boxes and changing the IoU threshold
significantly improves the tracking results of DeepSORT-BBX2×-IoU99 as compared to the
original settings of DeepSORT (ID switches by 91.44% and MOTA by 3.7 times). This con-
firms that the missing IoU overlap is the main issue with the standard DeepSORT.

0.6 0.7 0.8 0.9 1.0
IoU Threshold

7K

0.6 0.7 0.8 0.9 1.0
IoU Threshold

1

3

5

7

0.6 0.7 0.8 0.9 1.0
IoU Threshold

0.1

0.3

0.5

5K

3K

1K

ID
 S

w
itc

he
s

ID
 S

w
itc

he
s

ID
 S

w
itc

he
s

Fig. 71. ID Switches versus IoU thresholds in DeepSORT. From left to right: total, average per person, and average per
detection ID Switches.

After adapting the IoU object matching, the deep appearance features play a prominent
role in the object tracking after the first few frames. Thus, a fine-tuning of the DeepSORT’s
neural network on the training set of the KIT AIS pedestrian dataset can further improve the
results (DeepSORT-BBX2×-IoU99-FT). Originally, the network has been trained on a large
person re-identification dataset, which is very different from our scenario, especially in the
looking angle and the object sizes, as the bounding boxes in aerial images are much smaller
than in the person re-identification dataset (4× 4 vs. 128× 64 pixels). Scaling the bounding
boxes of our aerial dataset to fit the network input size leads to relevant interpolation errors.
For our experiments we initialize the last re-identification layers from scratch, and the rest
of the network using the pre-trained weights and biases. We also changed the number of
classes to 610, representing the number of different pedestrians after cropping the images
into the patches with the size of the bounding boxes, and ignoring the patches located at the
image border. Instead of scaling the patches to 128×64 pixels, we only scale them to 50×50.
We trained the classifier for 20 epochs with SGD optimizer, Cross-Entropy loss function,
batch size of 128, and an initial learning rate of 0.01. Moreover, we doubled the bounding
box sizes for our experiment. The results in Table 42 show that the total number of ID
switches only decreases from 738 to 734. This indicates that the deep appearance features
of DeepSORT are not useful for our problem. While for a large object a small deviation of the
bounding box position is tolerable (as the bounding box still mostly contains object-relevant
areas), for our very small objects this can cause significant changes in object relevance. The
extracted features mostly contain background information. Consequently, in the appearance

132

matching step, the object features from its previous and currently estimated positions can
differ significantly. Additionally, the appearance features of different pedestrians in aerial
images are often not discriminative enough to distinguish them.

In order to better demonstrate this effect, we evaluate DeepSORT without any appearance
feature, also known as SORT. Table 42 shows the tracking results with original and dou-
bled bounding box sizes and an IoU threshold of 0.99. According to the results, SORT out-
performs the fine-tuned DeepSORT with 438 ID switches. Nevertheless, the number of ID
switches is still high, given that we use the ground truth object positions. This could be due
to the low frame rate of the dataset and the small sizes of the the objects. Although enlarging
the bounding boxes improved the performance significantly (60% and 56% better MOTA for
DeepSORT and SORT, respectively), it leads to a poor localization accuracy.

8.13.2 Tracktor++
Tracktor++ [23] is an MOT method based on deep features. It employs a Faster-RCNN to
perform object detection and tracking through regression. We use its PyTorch implementa-
tion (https://github.com/phil-bergmann/trackingwobnw, accessed on 10 May 2021) and
adapt it to our aerial dataset. We tested Tracktor++ with the ground truth object positions
instead of using its detection module; however, it totally failed the tracking task with these
settings. Faster-RCNN has been trained on the datasets which are very different to our aerial
dataset, for example in looking angle, number and size of the objects. Therefore, we fine-
tune Faster-RCNN on the KIT AIS dataset. To this end, we had to adjust the training proce-
dure to the specification of our dataset.

We use Faster-RCNN with a ResNet50 backbone, pre-trained on the ImageNet dataset. We
change the anchor sizes to {2, 3, 4, 5, 6} and the aspect ratios to {0.7, 1.0, 1.3}, enabling it to
detect small objects. Additionally, we increase the maximum detections per image to 300,
set the minimum size of an image to be rescaled to 400 pixels, the region proposal non-
maximum suppression (NMS) threshold to 0.3, and the box predictor NMS threshold to 0.1.
The NMS thresholds influence the amount of overlap for region proposals and box predic-
tions. Instead of SGD, we use an ADAM optimizer with an initial learning rate of 0.0001
and a weight decay of 0.0005. Moreover, we decrease the learning rate every 40 epochs by a
factor of 10 and set the number of classes to 2, corresponding to background and pedestri-
ans. We also apply substantial online data augmentation including random flipping of every
second image horizontally and vertically, color jitter, and random scaling in a range of 10%.

The tracking results of Tracktor++ with the fine-tuned Faster-RCNN are presented in Table
42. The detection precision and recall of Faster-RCNN are 25% and 31%, respectively, with
this poor detection performance potentially propagated to the tracking part. According to
the table, Tracktor++ only achieves an overall MOTA of 5.3 and 2188 ID switches even
when we use ground truth object positions. We conclude by assuming that Tracktor++ has
difficulties with the low frame rate of the dataset and the small object sizes.

8.13.3 SMSOT-CNN
SMSOT-CNN [15] is the first DL-based method for multi-object tracking in aerial imagery.
It is an extension to GOTURN [126], an SOT regression-based method using CNNs to track
generic objects at high speed. SMSOT-CNN adapts GOTURN for MOT scenarios by three
additional convolution layers and a tacking management module. The network receives two
image patches from the previous and current frames, where both are centered at the object
position in the previous frame. The size of the image patches (the amount of contextual
information) is adjusted by a hyperparameter. The network regresses the object position in
the coordinates of the current frame’s image patch. SMSOT-CNN has been evaluated on the

https://github.com/phil-bergmann/tracking_wo_bnw

8.14 Conclusion of the Experiments 133

KIT AIS pedestrian dataset in [15], where the objects’ first positions are given based on the
ground truth data. The tracking results can be seen in Table 42. Due to the use of a deep net-
work and the local search for the next position of the objects, the number of ID switches by
SMSOT-CNN is 157, which is small, relative to the other methods. Moreover, this algorithm
achieves an overall MOTA and MOTP of −29.8 and 71.0, respectively. Based on our visual
inspections, SMSOT-CNN has some difficulties in densely crowded situations where the ob-
jects share similar appearance features. In these cases, multiple similarly looking objects can
be present in an image patch, resulting in ID switches and losing track of the target objects.
Furthermore, the small sizes of the pedestrians make them similar to many non-pedestrian
objects in the feature space causing a large number of FPs and FNs.

8.13.4 Euclidean Online Tracking
Inspired by the tracking results of SORT besides its simplicity, we propose EOT based on
the architecture of SORT for pedestrian tracking in aerial imagery. EOT uses a Kalman filter
similarly to SORT. Then it calculates the euclidean distance between all predictions (xi , yi)
and detections (xj , yj), and normalizes them w.r.t. the GSD of the frame to construct a cost
matrix as follows:

Di,j = GSD ·
√

(xi − xj)2 + (yi − yj)2. (49)

After that, as in SORT, we use the Hungarian algorithm to look for global minima. How-
ever, if objects enter or leave the scene, the Hungarian algorithm can propagate an error to
the whole prediction-detection matching procedure: therefore, we constrain the cost ma-
trix so that all distances greater than a certain threshold are ignored and set to an infin-
ity cost. We empirically set the threshold to 17.GSD pixels. Furthermore, only objects suc-
cessfully tracked in the previous frame are considered for the matching process. According
to Table 42, while the total MOTA score is competitive with the previously studied meth-
ods, EOT achieves the least ID switches (only 37). Compared to SORT, as EOT keeps better
track of the objects, the deviations in the Kalman filter predictions are smaller. Therefore,
Euclidean distance is a better option as compared to IoU for our aerial image sequences.

8.14 Conclusion of the Experiments

In this section, we conclude our preliminary study. According to the results, our EOT is the
best performing tracking method. Figure 72 illustrates a major case of success by our EOT
method. We can observe that almost all pedestrians are tracked successfully, even though
the sequence is crowded and people walk in different directions. Furthermore, the signif-
icant cases of false positives and negatives are caused by the limitation of the evaluation
approach. In other words, while EOT tracks most of the objects, since the evaluation ap-
proach is constrained to the minimum 50% overlap (4 pixels), the correctly tracked objects
with smaller overlaps are not considered.

25 26 27 28 29 30

Fig. 72. A success case processed by Stacked-DCFNet on the sequence “Munich02”. The tracking results and ground truth
are depicted in green and black, respectively.

134

Figure 73 shows a typical failure case of the Stacked-DCFNet method. In the first two
frames, most of the objects are tracked correctly; however, after that, the diagonal line in
the patch center is confused with the people walking across it. We assume that the line
shares similar appearance features with the crossing people. Figure 74 demonstrates a suc-
cessful tracking case by Stacked-DCFNet. People are not walking closely together and the
background is more distinguishable from the people. Figure 75 illustrates another typi-
cal failure case of DCFNet. The image includes several people walking closely in different
directions, introducing confusion into the tracking method due to the people’s similar ap-
pearance features. We closely investigate these failure cases in Figure 76. In this figure, we
visualize the activation map of the last convolution layer of the network. Although the con-
volutional layers of Stacked-DCFNet are supposed to be trained only for people, the line
and the people (considering their shadows) appear indistinguishable. Moreover, based on
the features, different people cannot be discriminated. We also evaluated SMSOT-CNN and
found that it shares similar failure and success cases with Stacked-DCFNet, as both take
advantage of convolutional layers for extracting appearance features.

54 55 56 57 58 59

Fig. 73. A failure case by Stacked-DCFNet on the sequence “AA_Walking_02”. The tracking results and ground truth are
depicted in green and black, respectively.

180 181 182 183 184 185

Fig. 74. A success case by Stacked-DCFNet on the sequence “AA_Crossing_02”. The tracking results and ground truth are
depicted in green and black, respectively.

141 142 143 144

Fig. 75. A failure case by Stacked-DCFNet on the test sequence “RaR_Snack_Zone_04”. The tracking results and the ground
truth are depicted in green and black, respectively.

Altogether, the Euclidean distance paired with trajectory information in EOT works better
than IoU for tracking in aerial imagery. However, detection-based trackers such as EOT re-
quire object detection in every frame. As shown for Tracktor++, the detection accuracy of the
object detectors is very poor for pedestrians in aerial images. Thus, detection-based meth-
ods are not appropriate for our scenarios. Moreover, the approaches which employ deep ap-
pearance features for re-identification share similar problems with object detectors, features
with poor discrimination abilities in the presence of similarly looking objects, leading to ID
switches and loosing track of objects. The tracking methods based on regression and corre-
lation (e.g., Stacked-DCFNet and SMSOT-CNN) show, in general, better performances than

8.15 AerialMPTNet 135

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Fig. 76. (a) An input image patch to the last convolutional layer of Stacked-DCFNetand and (b) its corresponding activation
map.

the methods based on re-identification because they track objects by local image patches that
errors to be propagated to the whole image. Furthermore, according to our investigations,
the path taken by every pedestrian is influenced by three factors: (1) the pedestrian’s path
history, (2) the positions and movements of the surrounding people, (3) the arrangement of
the scene.

We conclude that both regression- and correlation-based tracking methods are good choices
for our scenario. They can be improved by considering trajectory information and the pedes-
trians movement relationships.

8.15 AerialMPTNet

In this section we explain our proposed AerialMPTNet tracking algorithm with its different
configurations. Part of its architecture and configurations has been presented in [176].

As stated in Section 8.11, a pedestrian’s movement trajectory is influenced by its movement
history, its motion relationships to its neighbours, and scene arrangements. The same holds
for the vehicles in traffic scenarios. For the vehicles, there are other constraints such as mov-
ing along predetermined paths (e.g., streets, highways, railways) in most of the time. Differ-
ent objects have different motion characteristics such as speed and acceleration. For exam-
ple, several studies have shown that walking speed of pedestrians are strongly influenced by
their age, gender, temporal variations as well as distractions (e.g., cell phone usage), whether
the individual is moving in a group or not, and even the size of the city where the event takes
place [96, 265]. Regarding road traffic, similar factors could influence driving behaviors and
movement characteristics (e.g., cell phone usage, age, stress level, and fatigue) [263, 303].
Furthermore, similar to the pedestrians, maneuvers of a vehicle can directly affect the move-
ments of other neighbouring vehicles: for example, if the vehicle brakes, all the following
vehicles must brake, too.

The understanding of individual motion patterns is crucial for tracking algorithms, espe-
cially when only limited visual information about target objects is available. However, cur-
rent regression-based tracking methods such as GOTURN and SMSOT-CNN do not incor-
porate movement histories or relationships between adjacent objects. These networks lo-
cate the next position of objects by monitoring a search area in their immediate proximity.

136

Thus, the contextual information provided to the network is limited. Additionally, during
the training phase, the networks do not learn how to differentiate the targets from simi-
larly looking objects within the search area. Thus, as discussed in Section 8.11, ID switches
and losing of object tracks happen often for these networks in crowded situations or by
object intersections.

In order to tackle the limitations of previous works we propose to fuse visual features, track
history, and the movement relationships of adjacent objects in an end-to-end fashion within
a regression-based DNN, which we refer to as AerialMPTNet. Figure 77 shows an overview
of the network architecture. AerialMPTNet takes advantage of a Siamese Neural Network
(SNN) for visual features, a Long Short-Term Memory (LSTM) module for movement his-
tories, and a GraphCNN for movement relationships. The network takes two local image
patches cropped from two consecutive images (previous and current), called target and
search patch in which the object location is known and has to be predicted, respectively.
Both patches are centered at the object coordinates known from the previous frame. Their
size (the degree of contextual information) is correlated with the size of the objects, and
it is set to 227 × 227 pixels to be compatible to the network’s input. Both patches are then
given to the SNN module (retained from [15]) composed of two branches of five 2D convolu-
tional, two local response normalization, and three max-pooling layers with shared weights.
Afterwards, the two output features OutSNN are concatenated and given to three 2D convo-
lutional layers and, finally, four fully connected layers regressing the object position in the
search patch coordinates. We use ReLU activations for all these convolutional layers.

227 x 227 x 3
Cropped Patch

27 x 27 x 64
13 x 13 x 192 13 x 13 x 256

13 x 13 x 384 6 x 6 x 256

FC Layer Max Pool 2D Conv +
ReLU

Sequence
Un - or Padding Dropout Track

Memory
Global

Average
Pooling

Local
Response

Norm
Concat

Local ContextGlobal Context

LSTM Neighbor
Calculation

Previous Frame

Current Frame

6 x 6 x 512

6 x 6 x 512

6 x 6 x 512
4096 4096 4096

4

128
64 64

1D Conv +
ReLU

Kernel Size 1

3264128

LSTM Module

GCNN Module

SE

Fig. 77. Overview of the network’s architecture composing a SNN, a LSTM and a GraphCNN module. The inputs
are two consecutive images cropped and centered to a target object, while the output is the object location in search
crop coordinates.

The network output is a vector of four values indicating the x and y coordinates of the top-
left and bottom-right corners of the objects’ bounding boxes. These coordinates are then
transformed into image coordinates. In our network, the LSTM module and the GraphCNN
module use the object coordinates in the search patch and image domain, respectively.

8.16 Long Short-Term Memory Module

In order to encode movement histories and predict object trajectories, recent works mainly
relied on LSTM- and RNN-based structures [3, 327, 356]. While these structures have been
mostly used for individual objects, due to the large number of objects, we cannot apply
these structures directly to our scenarios. Thus, we propose using a structure which treats

8.17 GraphCNN Module 137

all object by only one model and predicts the movements (movement vectors) instead of
positions.

In order to test our idea, we built an LSTM comprising two bidirectional LSTM layers with
64 dimensions, a dropout layer with p = 0.5 in between, and a linear layer which generates
two-dimensional outputs, representing the x and y values of the movement vector. The in-
put of the LSTM module are two-dimensional movement vectors with dynamic lengths up
to five steps of the objects’ movement histories. We applied this module to our pedestrian
tracking datasets. The results of this experiment show that our LSTM module can predict
the next movement vector of multiple pedestrians with about 3.6 pixels (0.43 m) precision,
which is acceptable for our scenarios. Therefore, training a single LSTM on multiple objects
would be enough for predicting the objects’ movement vectors.We embed a similar LSTM
module into our network as shown in Figure 77. For the training of the module, the network
first generates a sequence of object movement vectors based on the object location predic-
tions. In our experiments, each track has a dynamic history of up to five last predictions.
As tracks are not assumed to start at the same time, the length of each track history can be
different. Thus, we use zero-padding to make the lengths of track histories similar, allowing
to process them together as a batch. These sequences are fed into the first LSTM layer with
a hidden size of 64. A dropout with p = 0.5 is then applied to the hidden state of the first
LSTM layer, and passes the results to the second LSTM layer. The output features of the
second LSTM layer are fed into a linear layer of size 128. The 128-dimensional output of
the LSTM module OutLSTM is then concatenated with OutSNN and OutGraph, the output of
the GCNN module. The concatenation allows the network to predict object locations more
precisely based on a fusion of appearance and movement features.

8.17 GraphCNN Module

The GraphCNN module consists of three 1D convolution layers with 1 × 1 kernels and re-
spectively 32, 64, and 128 channels. We generate each object’s adjacency graph based on
the location prediction of all objects. To this end, the eight closest neighbors in a radius of
7.5 m from the object are considered and modeled as a directed graph by a set of vectors
vi from the neighbouring objects to the target object’s position (x,y). The resulting graph is
represented as [x,y,xv1

, yv1
, . . . ,xv8

, yv8
]. If less than eight neighbors are existing, we zero-pad

the rest of the vectors.

The GraphCNN module also uses historical information by considering five previous graph
configurations. Similarly to the LSTM module, we use zero-padding if less than five previous
configurations are available. The resulting graph sequences are described by a 18×5 matrix
which is fed into the first convolution layer. In our setup, graph sequences of multiple ob-
jects are given to the network as a batch of matrices. The output of the last convolutional
layer is gone through a global average pooling in order to generate the final 128-dimensional
output of the moduleOutGraph, which is concatenated toOutSNN andOutLSTM . The features
of the GraphCNN module enable the network to better understand group movements.

8.18 Squeeze-and-Excitation Layers

During our preliminary experiments in Section 8.11, we experienced a high deviation in
the quality of activation maps produced by the convolution layers in DCFNet and SMSOT-
CNN. This deviation shows the direct impact of single channels and their importance for
the final result of the network. In order to consider this factor in our approach, we model
the dominance of the single channels by Squeeze-And-Excitation (SE) layers [139].

138

CNNs extract image information by sliding spatial filters across the inputs to different lay-
ers. While the lower layers extract detailed features such as edges and corners, the higher
layers can extract more abstract structures such as object parts. In this process, each filter at
each layer has a different relevance to the network output. However, all filters (channels) are
usually weighted equally. Adding the SE layers to a network helps weighting each channel
adaptively based on their relevance. In the SE layers, each channel is squeezed to a single
value by using global average pooling [199], resulting in a vector with k entries. This vector
is given to a fully connected layer reducing the size of the output vector by a certain ratio,
followed by a ReLu activation function. The result is fed into a second fully connected layer
scaling the vector back to its original size and applying a sigmoid activation afterwards. In
the final step, each channel of the convolution block is multiplied by the results of the SE
layer. This channel weighting step adds less than 1% to the overall computational cost. As
can bee seen in Figure 77, we add one SE layer after each branch of the SNN module, and
one SE layer after the fusion of OutSNN , OutLSTM , and OutGraph.

8.19 Online Hard Example Mining

In the object detection domain, datasets usually contain a large number of easy cases with
respect to cases which are challenging for the algorithms. Several strategies have been de-
veloped in order to account for this, such as sample-aware loss functions (e.g., Focal Loss
[201]), where the easy and hard samples are weighted based on their frequencies, and on-
line hard example mining (OHEM) [290], which gives hard examples to the network if they
are previously failed to be correctly predicted. The selection and focusing on such hard
examples can make the training more effective. OHEM have been explored in the object de-
tection task [173, 197], however, its usage has not been investigated for the object tracking
task. In the multi-object tracking domain, such strategies have been rarely used although
the tracking datasets suffer from the sample problem as the detection datasets. To the best
of our knowledge, none of the previous works in the regression-based tracking used OHEM
during their training process.

Thus, in order to deal with the sample imbalance problem of our datasets, we propose adapt-
ing and employing OHEM for our training process. To this end, if the tracker loses an object
during training, we reset the object to its original starting position and the starting frame,
and feed it to the network in the next iteration again. If the tracker fails again, we ignore the
sample by removing it from the batch.

8.20 Experimental Setup

For all of our experiments, we used PyTorch and one Nvidia Titan XP GPU. We trained all
networks with an SGD optimizer and an initial learning rate of 10−6. For all training setups,
unless indicated otherwise, we use the L1 loss, L(x, x̂) = |x − x̂|, where x and x̂ represent the
output of the network and ground truth, respectively. The batch size of all our experiments
is 150; however, during offline feedback training, the batch size can differ due to unsuccess-
ful tracking cases and subsequent removal of the object from the batch.

In our experiments, we consider SMSOT-CNN as baseline network and compare different
parts of our approach to it. The original SMSOT-CNN is described in Caffe. In order to
make it completely comparable to our approach, we re-implement it in PyTorch. For the
training of SMSOT-CNN, we assign different fractions of the initial learning rate to each
layer, as in the original Caffe implementation, inspired by the GOTURN’s implementation.
In more detail, we assign the initial learning rate to each convolutional layer, and assign a

8.21 Evaluation and Discussion 139

learning rate 10 times larger to the fully connected layers. Weights are initialized by Gaus-
sians with different standard deviations, while biases are initialized by constant values (zero
or one), as in the Caffe version. The training process of SMSOT-CNN is based on a so-called
Example Generator. Provided with one target image with known object coordinates, this
creates multiple examples by creating and shifting the search crop to create different kinds
of movements. It is also possible to give the true target and search images. A hyperparame-
ter set to 10 controls the number of examples generated for each image. For the pedestrian
tracking, we use DLR-ACD to increase the number of available training samples. SMSOT-
CNN is trained completely offline and learns to regress the object location based on only the
previous location of the object.

For AerialMPTNet, we train the SNN module and the fully connected layers as in SMSOT-
CNN. After that, the layers are initialized with the learnt weights, and the remaining layers
are initialized with the standard PyTorch initialization. Moreover, we decay the learning rate
by a factor of 0.1 for every twenty thousand iterations and train AerialMPTNet in an end-
to-end fashion by using feedback loops to integrate previous movement and relationship
information between adjacent objects. In contrast to the training process of SMSOT-CNN,
which is based on artificial movements created by the example generator, we train our net-
works based on real tracks.

In the training process, a batch of 150 random tracks (i.e., objects from random sequences of
the training set) is first selected starting at a random time step between 0 and the track end
tend − 1. We give the network the target and search patches for these objects. The network’s
goal is to regress each object position in the search patches consecutively until either the
object is lost or the track ends. The target and search patches are generated based on the
network predictions in consecutive frames. The object will remain in the batch as long as
the network tracks it successfully. If the ground truth object position lies outside of the
predicted search area or the track reaches its end frame, we remove the object from the
batch and replace it with a new randomly selected object.

For each track and each time step, the network’s prediction is stored and used from the
LSTM and GraphCNN module. For each object in the batch, the LSTM module is given
the objects’ movement vectors from the latest time steps up to a maximum number of five,
as explained in Section 8.15. This process provides the network with an understanding of
each object’s movement characteristics by a prediction of the next movement. As a result,
our network uses its predictions as feedback to improve its performance. Furthermore, we
perform gradient clipping for the LSTM during training to prevent exploding gradients. The
neighbor calculation of the GraphCNN module is also based on the network’s prediction of
each object’s position, as mentioned in Section 8.15. Based on the network’s prediction of
the object position, we search for the nearest neighbors in the ground truth annotation of
that frame. However, during the testing phase, we search nearest neighbors based on the
network’s prediction of the object positions.

For the pedestrian dataset, we set the context factor to 4, with each object with a bounding
box size of 4 × 4 pixel resulting in an image patch of 16 × 16 pixels. For vehicle tracking,
however, due to the larger sizes of their bounding boxes, we reduce the context factor to
3. This helps avoiding multiple vehicles in a single image patch which could cause track
confusion.

8.21 Evaluation and Discussion

In this section, we evaluate different parts of our proposed AerialMPTNet on the KIT AIS
and AerialMPT datasets through a set of ablation studies. Furthermore, we compare our

140

results to the tracking methods discussed in Section 8.11. Table 44 reports the different
network configurations for our ablation studies.

Table 44. Different network configurations.

Name SNN LSTM GCNN SE Layers OHEM

SMSOT-CNN X × × × ×
AerialMPTNetLSTM X X × × ×
AerialMPTNetGCNN X × X × ×

AerialMPTNet X X X × ×
AerialMPTNetSE X X X X ×

AerialMPTNetOHEM X X X × X

8.22 SMSOT-CNN (PyTorch)

The tracking results of our PyTorch SMOST-CNN on the ArialMPT and KIT AIS pedestrian
and vehicle datasets are presented in Table 45. Therein, SMSOT-CNN achieves MOTA and
MOTP scores of −35.0 and 70.0 for the KIT AIS pedestrian, and 37.1 and 75.8 for the KIT
AIS vehicle dataset, respectively. It achieves, respectively, a MOTA and MOTP of −37.2 and
68.0 on the AerialMPT dataset. It can be seen that IDF is highest for the RaR_Snach_Zone
and Pasing7 for the AerialMPT and KIT AIS dataset by achieving about 63.1 and 57.7 re-
spectively. This is due to the less persons on those sequences, lowering the possibility of
falsely tracking an ID. This shows its affect on other parameters such as IDP, IDR, FAR, MT,
PT, ML as well. Regarding FP, FN and ID switch, Munich02 and Bauma3 have the high-
est wrong detections and id switches, however, the performance of algorithm on Bauma3 is
comparable with other sequences to the less noise in the dataset. A comparison of the results
to [15] shows that our PyTorch implementation works rather similarly to the original Caffe
version, with only 5.2 and 4.0 points smaller MOTA for the KIT AIS pedestrian and vehicle,
respectively. For the rest of our experiments, we consider the results of this implementation
of SMOST-CNN as the baseline for our evaluations.

Table 45. SMSOT-CNN on the KIT AIS and AerialMPT datasets.
Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS Pedestrian Dataset
AA_Crossing_02 13 94 49.4 49.2 49.6 51.7 51.3 42.92 22.4 60.6 17.0 558 548 15 88 1.2 66.8 2.4
AA_Walking_02 17 188 29.6 29.0 30.2 31.9 30.6 113.76 9.1 45.7 45.2 1934 1820 25 139 −41.5 65.7 −40.6

Munich02 31 20.7 230 19.9 21.5 24.5 22.6 165.45 3.5 44.3 52.2 5129 4625 91 271 −60.7 67.1 −59.3
RaR_Snack_Zone_02 4 220 63.1 62.9 63.4 64.2 63.7 79.0 35.0 63.6 1.4 316 310 1 39 27.5 78.2 27.6
RaR_Snack_Zone_04 4 311 63.5 63.3 63.7 65.3 64.9 108.5 35.0 64.0 1.0 434 427 3 48 29.8 76.7 30.0

Overall 69 1043 32.5 31.7 33.4 35.7 33.9 121.32 22.2 56.0 21.8 8371 7730 135 585 −35.0 70.0 −33.9
AerialMPT Dataset

Bauma3 16 609 29.3 28.6 30.0 34.6 33.0 385.69 9.9 47.1 43.0 6171 5748 200 458 −37.9 69.1 −35.7
Bauma6 26 270 30.8 28.6 33.3 37.7 32.3 161.23 12.2 57.4 30.4 4192 3311 115 302 −43.4 67.7 −41.2

Karlsplatz 27 146 30.7 29.4 32.2 33.8 30.8 94.93 6.9 58.2 34.9 2563 2233 26 95 −42.9 67.9 −42.2
Pasing7 24 103 57.7 54.5 61.3 61.9 55.1 43.42 35.9 54.4 9.7 1042 786 7 136 11.1 67.6 11.4
Pasing8 27 83 33.5 32.6 34.4 35.1 33.3 50.30 8.4 54.2 37.4 1358 1253 10 82 −35.7 67.0 −35.2

Witt 8 185 15.8 15.7 15.9 16.4 16.2 150.38 1.1 20.5 78.4 1203 1184 1 9 −68.6 61.5 −68.6
Overall 128 1396 32.0 30.7 33.4 36.6 33.6 129.13 10.7 47.7 41.6 16,529 14,515 359 1082 −37.2 68.0 −35.6

KIT AIS Vehicle Dataset
MunichStreet02 20 47 87.4 85.0 90.1 90.5 85.3 5.80 87.2 8.5 4.3 116 71 1 7 74.8 80.6 74.9

StuttgartCrossroad01 14 49 67.3 63.6 71.5 74.9 66.6 14.86 57.1 30.6 12.3 208 139 3 17 36.8 75.3 37.3
MunichCrossroad02 45 66 50.6 49.5 51.7 53.5 51.3 24.38 45.5 27.3 27.2 1097 1001 17 41 1.9 69.4 2.6

MunichStreet04 29 68 83.5 82.4 84.7 85.8 83.6 8.83 76.5 14.7 8.8 256 215 6 15 68.6 79.7 68.9
Overall 108 230 68.0 66.4 69.7 71.3 67.9 15.53 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6

8.23 AerialMPTNet (LSTM Only)

In this step, we evaluate the influence of the LSTM module on the tracking performance
of our AerialMPTNet. Table 46 reports the tracking result of AerialMPTNetLSTM on our

8.23 AerialMPTNet (LSTM Only) 141

experimental datasets. We use the pre-trained weights of SMSOT-CNN to initialize the con-
volutional weights and biases. For the KIT AIS pedestrian dataset, we evaluate the effects
of freezing the weights during the training of LSTM. The tracking results with frozen and
trainable convolutional weights in Table 46 show that the latter improves MOTA and MOTP
values by 8.2 and 0.5, respectively. Moreover, the network trained with trainable weights
tracks 6.9% more objects mostly during their lifetimes (MT). We can observe that this in-
crease in performance holds for all sequences with different number of frames and objects
with regard to IDF, IDPR, IDR, MT, ML, FP and FN. Having said that by not freeźing the ini-
tial weights, the number of ID switches (IDs) from 231 increases to 270, which we contem-
plate this is due to the small size of dataset and high number of trainable weights. However,
after further investigation we notice that after visual inspections that although the network
with the trainable weights can track objects for a longer time; however, when the objects get
into crowded scenarios, it loses their track by switching their IDs. Based on these compar-
isons, we can argue that the computed features in SNN need fine tuning to some degree in
order to work jointly with the LSTM module. That could be the reason why the training with
the trainable weights outperforms the setting employing frozen weights. Thus, for the rest
of our experiments, we use trainable weights. Consequently, Table 46 shows only the results
with trainable weights for the AerialMPT and KIT AIS vehicle datasets.

Table 46. AerialMPTNetLSTM on the KIT AIS and AerialMPT datasets. The best overall values of the two configurations
on the KIT AIS pedestrian dataset are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset—Frozen Weights

AA_Crossing_02 13 94 42.0 41.8 42.2 44.8 44.5 48.92 13.8 59.6 26.6 636 626 13 99 −12.3 68.4 −11.3
AA_Walking_02 17 188 34.7 34.0 35.4 37.2 35.8 104.94 8.0 55.3 36.7 1784 1678 22 227 −30.4 67.4 −29.7

Munich02 31 230 26.0 25.1 26.9 33.1 30.8 146.81 6.1 57.8 36.1 4551 4098 191 463 −44.3 67.8 −41.2
RaR_Snack_Zone_02 4 220 57.1 56.9 57.3 59.0 58.6 90.25 29.1 69.5 1.4 361 355 1 42 17.1 72.9 17.2
RaR_Snack_Zone_04 4 311 64.7 64.4 64.9 66.3 65.9 105.25 39.6 58.8 1.6 421 415 4 52 31.7 73.8 32.0

Overall 69 1043 35.5 34.6 36.3 40.4 38.5 112.36 22.0 60.3 17.7 7753 7172 231 883 −26.0 69.3 −24.1
KIT AIS Pedestrian Dataset—Trainable Weights

AA_Crossing_02 13 94 47.1 49.9 47.3 49.6 49.2 44.77 23.4 48.9 27.7 582 572 11 91 −2.6 68.2 −1.8
AA_Walking_02 17 188 39.8 39.2 40.5 41.9 40.5 96.47 18.6 46.8 34.6 1640 1553 31 215 −20.7 67.2 −19.6

Munich02 31 230 29.6 28.6 30.8 37.1 34.5 139.10 8.3 59.6 32.1 4312 3852 221 506 −36.9 67.1 −33.3
RaR_Snack_Zone_02 4 220 63.0 62.8 63.2 64.9 64.4 77.50 37.3 60.0 2.7 310 304 4 31 28.6 72.2 28.9
RaR_Snack_Zone_04 4 311 67.6 67.5 67.8 69.1 68.8 96.50 46.0 50.8 3.2 386 380 3 43 37.5 73.3 37.7

Overall 69 1043 39.7 38.8 40.6 44.6 42.6 104.78 28.9 53.8 17.3 7230 6661 270 886 −17.8 68.8 −15.5
AerialMPT Dataset

Bauma3 16 609 28.3 27.7 29.0 34.6 33.0 386.00 8.4 51.2 40.4 6176 5745 246 608 −38.5 71.0 −35.7
Bauma6 26 270 33.2 31.2 35.5 39.3 34.5 152.35 13.0 58.5 28.5 3961 3225 135 387 −37.8 70.1 −35.3

Karlsplatz 27 146 48.4 47.0 50.0 51.4 48.2 68.89 24.7 55.5 19.8 1860 1641 16 140 −4.2 69.7 −3.8
Pasing7 24 103 61.0 58.5 63.6 64.3 59.2 38.08 35.9 56.3 7.8 914 737 5 127 19.8 70.5 20.0
Pasing8 27 83 41.3 40.6 42.1 42.7 41.4 43.78 18.1 50.6 31.3 1182 1108 4 90 −18.7 69.4 −18.6

Witt 8 185 15.6 15.5 15.7 17.3 17.1 148.75 2.7 23.8 73.5 1190 1171 3 24 −66.9 61.1 −66.8
Overall 128 1396 35.7 34.5 37.0 40.5 37.7 119.40 12.8 49.8 37.4 15,283 13,627 409 1376 −28.1 70.1 −26.3

KIT AIS Vehicle Dataset
MunichStreet02 20 47 81.9 79.9 84.0 84.9 80.6 7.60 74.5 10.6 14.9 152 113 4 3 63.9 79.6 64.4

StuttgartCrossroad01 14 49 65.9 62.4 69.9 72.7 65.0 15.50 59.2 26.5 14.3 217 151 2 11 33.2 76.2 33.5
MunichCrossroad02 45 66 57.7 56.0 59.5 60.6 56.9 21.93 48.5 33.3 18.2 987 850 22 43 13.7 69.4 14.7

MunichStreet04 29 68 88.7 88.3 89.1 89.9 89.0 5.79 86.8 7.4 5.8 168 153 2 3 78.7 79.8 78.8
Overall 108 230 71.6 69.8 73.4 74.5 70.9 14.11 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9

Table 47 represents the overall performances of different tracking methods on the KIT AIS
and AerialMPT datasets. According to the table, AerialMPTNetLSTM outperforms SMSOT-
CNN with significant larger MOTA on all experimental datasets. In particular, based
on Tables 45 and 46, the main improvements happen for complex sequences such as the
“AA_Walking_02” and “Munich02” sequences of the KIT AIS pedestrian dataset, with a
20.8 and 23.8 points larger MOTA, respectively.

On the AerialMPT dataset, the most complex sequences are “Bauma3” and “Bauma6” pre-
senting overcrowded scenarios with many pedestrians intersecting. According to the re-
sults, using the LSTM module does not help the performance relevantly. In such complex
sequences, the trajectory information of the LSTM module is not enough for distinguishing
pedestrians and tracking them within the crowds. Furthermore, the increase in the num-
ber of mostly and partially tracked objects (MT and PT) and the decrease in the number
of mostly lost ones (ML) indicate that the LSTM module helps AerialMPTNet in the track-
ing of the objects for a longer time. This, however, causes a larger number of ID switches

142

as discussed before. On the KIT AIS vehicle dataset, although the results show a significant
improvement of AerialMPTNetLSTM over SMSOT-CNN, the performance improvements are
minor compared to the pedestrian datasets. This could be due the more distinguishable ap-
pearance features of the vehicles, leading to a good performance even when relying solely
on the SNN module.

Table 47. Overall Performances of Different Tracking Methods on the KIT AIS and AerialMPT Datasets. The first and
second best values on each dataset are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

KCF 9.0 8.8 9.3 10.3 9.8 165.6 1.1 53.8 45.1 11,426 10,782 32 116 −84.9 87.2 −84.7
Median Flow 18.5 18.3 18.8 19.5 19.0 144.7 7.7 55.8 36.5 9986 9678 30 161 −63.8 77.7 −63.5

CSRT 16.0 16.9 15.2 17.5 19.4 126.5 9.6 51.0 39.4 8732 9924 91 254 −55.9 78.4 −55.1
MOSSE 9.1 8.9 9.3 10.5 10.0 163.8 0.8 54.0 45.2 11,303 10,765 31 133 −85.8 86.7 −83.5

Tracktor++ 6.6 9.0 5.2 10.8 18.7 81.7 1.1 28.4 70.5 5648 10,723 648 367 −41.5 40.5 –
Stacked-DCFNet 30.0 30.2 30.9 33.1 32.3 120.5 13.8 62.6 23.6 8316 8051 139 651 −37.3 71.6 −36.1

SMSOT-CNN 32.5 31.7 33.4 35.7 33.9 121.3 22.2 56.0 21.8 8371 7730 135 585 −35.0 70.0 −33.9
AerialMPTNetLSTM (Ours) 39.7 38.8 40.6 44.6 42.6 104.8 28.9 53.8 17.3 7230 6661 270 886 −17.8 68.8 −15.5
AerialMPTNetGCNN (Ours) 37.5 36.7 38.4 42.0 40.0 109.5 25.3 55.3 19.4 7555 6980 259 814 −23.0 69.6 −20.9

AerialMPTNet (Ours) 40.6 39.7 41.5 45.1 43.2 103.4 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2
AerialMPTNetSE (Ours) 38.3 37.5 39.1 42.8 41.1 107.2 27.4 54.5 18.1 7395 6876 250 818 −20.7 69.9 −18.7

AerialMPTNetOHEM (Ours) 38.6 37.7 39.4 42.7 40.9 107.7 26.1 55.8 18.1 7435 6889 254 854 −21.2 69.5 −19.1
AerialMPT Dataset

KCF 11.9 11.5 12.3 13.4 12.5 167.2 3.7 17.0 79.3 21,407 19,820 86 212 −80.5 77.2 −80.1
Median Flow 12.2 12.0 12.4 13.1 12.7 162.0 1.7 20.2 78.1 20,732 19,883 46 144 −77.7 77.8 −77.5

CSRT 16.9 16.6 17.1 20.3 19.7 148.5 2.9 37.8 59.3 19,011 18,235 426 668 −64.6 74.6 −62.7
MOSSE 12.1 11.7 12.4 13.7 12.9 165.7 3.8 17.9 78.3 21,204 19,749 85 194 −79.3 80.0 −78.9

Tracktor++ 4.0 8.8 3.1 5.0 8.7 93.0 0.1 7.6 92.3 11,907 21,752 399 345 −48.8 40.3 –
Stacked-DCFNet 28.0 27.6 28.5 31.4 30.4 128.3 9.4 44.2 46.4 16,422 15,712 322 944 −41.8 72.3 −40.4

SMSOT-CNN 32.0 30.7 33.4 36.6 33.6 129.1 10.7 47.7 41.6 16,529 14,515 359 1082 −37.2 68.0 −35.6
AerialMPTNetLSTM (Ours) 35.7 34.5 37.0 40.5 37.7 119.4 12.8 49.8 37.4 15,283 13,627 409 1376 −28.1 70.1 −26.3
AerialMPTNetGCNN (Ours) 37.0 35.7 38.3 42.0 39.1 117.0 15.6 46.0 38.4 14,983 13,279 433 1229 −25.4 69.7 −23.5

AerialMPTNet (Ours) 37.8 36.5 39.3 43.1 40.0 115.5 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5
AerialMPTNetSE (Ours) 38.9 37.5 40.4 44.1 40.9 113.8 17.0 48.1 34.9 14,568 12,799 430 1212 −21.4 69.8 −19.6

AerialMPTNetOHEM (Ours) 37.2 35.8 38.7 42.4 39.3 117.3 16.0 46.8 37.2 15,016 13,181 430 1284 −25.1 69.8 −23.2
KIT AIS Vehicle Dataset

KCF 41.3 39.0 43.9 45.6 40.4 30.9 27.0 33.5 39.5 3339 2708 53 96 −22.6 72.3 −21.6
Median Flow 42.0 39.5 44.9 46.3 40.8 31.0 32.2 40.0 27.8 3348 2669 23 47 −21.4 82.0 −21.0

CSRT 76.7 72.1 81.9 83.1 73.1 14.1 72.6 21.7 5.7 1520 841 21 46 52.1 80.7 52.5
MOSSE 29.0 27.4 30.8 32.4 28.8 36.8 19.6 30.0 50.4 3977 3364 56 81 −48.7 75.0 −47.6

Tracktor++ 55.3 66.6 47.2 57.3 80.7 6.3 30.0 47.4 22.6 681 2125 323 204 37.1 77.4 –
Stacked-DCFNet 73.8 71.2 76.6 77.2 71.8 14.0 69.1 15.2 15.7 1512 1133 9 39 46.6 82.0 46.8

SMSOT-CNN 68.0 66.4 69.7 71.3 67.9 15.5 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6
AerialMPTNetLSTM (Ours) 71.6 69.8 73.4 74.5 70.9 14.1 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9
AerialMPTNetGCNN (Ours) 71.1 69.4 72.9 74.1 70.6 14.2 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

AerialMPTNet (Ours) 70.0 68.3 71.8 73.9 70.3 14.4 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
AerialMPTNetSE (Ours) 70.0 68.4 71.7 73.2 69.8 14.6 63.5 24.8 11.7 1574 1334 23 84 41.1 75.6 41.5

AerialMPTNetOHEM (Ours) 71.7 70.0 73.4 74.6 71.2 13.9 67.0 19.6 13.4 1505 1262 27 66 43.8 75.5 44.3

8.24 AerialMPTNet (GCNN Only)

In this step, we focus on the modeling of the movement relationships between adjacent
objects by AerialMPTNetGCNN . As described in Table 44, we only consider the SNN and
GCNN modules, and train the network on our experimental datasets. The tracking results
on the test sequences of the datasets are shown in Table 48, and the comparisons to the
other methods are provided in Table 47. By adding GCNN the AerialMPTNet performance
increases compared to the SMSOT-CNN significantly. MOTA is improved by 11.8, 12.0, and
5.7 points on the AerialMPT and KIT AIS pedestrian and vehicle datasets, respectively. MT,
PT, and ML values also improve for the pedestrian datasets. However, MT is only enhanced
on the vehicle dataset. IDF, IDP and IDR is improved on three datasets indicating GCNN
can improve the performance when objects are close to each other and keeping the track of
each object as a graph node is effective. Altogether, these results indicate that the relational
information is more important for the pedestrians than the vehicles. Moreover, according
to Table 48, as in LSTM results, the use of GCNN helps more for complex sequences. For
example, MOTA on the “AA_Walking_02” and “Munich02” sequences increase by 13.9 and
20.5, respectively; however, it decreases respectively by 12.1 and 14.8 on “AA_Crossing_02”
and “RaR_Snack_Zone_02”. This could be due to the negative impact of the large number

8.25 AerialMPTNet 143

of zero paddings in the less crowded sequences with smaller number of adjacent objects.
Compared to AerialMPTNetLSTM , for the AerialMPT, AerialMPTNetGCNN performs slightly
better while on the other two datasets it performs worse with a narrow margin. We assume
that, due to the higher crowd densities in the AerialMPT dataset, the relationships between
adjacent objects are more critical with respect to their movement histories.

Table 48. AerialMPTNetGCNN on the KIT AIS and AerialMPT datasets.
Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS Pedestrian Dataset
AA_Crossing_02 13 94 43.5 43.3 43.7 45.5 45.1 48.4 18.1 51.1 30.8 629 619 11 90 −10.9 68.5 −10.1
AA_Walking_02 17 188 35.8 35.3 36.2 38.2 37.2 101.3 14.9 47.9 37.2 1723 1650 35 204 −27.6 68.1 −26.3

Munich02 31 230 29.1 28 30.2 35.5 32.9 142.9 8.3 53.9 37.8 4431 3951 204 434 −40.2 68.1 −36.9
RaR_Snack_Zone_02 4 220 55.2 55.0 55.4 56.9 56.5 94.7 28.2 69.5 2.3 379 373 3 41 12.7 73.3 13.0
RaR_Snack_Zone_04 4 311 67.2 67 67.3 68.5 68.2 98.2 44.4 52.1 3.5 393 387 6 45 36.1 73.9 36.5

Overall 69 1043 37.5 36.7 38.4 42.0 40.0 109.5 25.3 55.3 19.4 7555 6980 259 814 −23.0 69.6 −20.9
AerialMPT Dataset

Bauma3 16 609 29.6 28.9 30.4 36.5 34.7 376.7 11.3 48.3 40.4 6028 5581 276 550 −35.2 70.0 −32.1
Bauma6 26 270 36.7 34.4 39.3 43.7 38.2 144.2 20.4 50.4 29.2 3750 2994 126 329 −29.3 70.6 −26.9

Karlsplatz 27 146 43.7 72.3 45.2 46.4 43.4 75.6 15.8 63.0 21.2 2042 1809 25 145 −14.9 68.5 −14.2
Pasing7 24 103 68.6 66.0 71.4 71.6 66.1 31.5 51.5 39.8 8.7 756 857 4 96 34.7 71.0 34.9
Pasing8 27 83 41.2 40.4 42.1 42.7 41.0 44.0 18.1 51.8 30.1 1188 1108 2 94 −18.9 68.2 −18.9

Witt 8 185 14.1 14.0 14.2 15.3 15.1 152.4 1.6 19.5 78.9 1219 1200 0 15 −70.8 60.8 −70.8
Overall 128 1396 37.0 35.7 38.3 42.0 39.1 117.1 15.6 46.0 38.4 14,983 13,279 433 1229 −25.4 69.7 −23.5

KIT AIS Vehicle Dataset
MunichStreet02 20 47 82.6 80.5 84.7 85.4 81.1 7.4 76.6 6.4 17.0 148 109 4 3 65.0 79.5 65.5

StuttgartCrossroad01 14 49 70.0 66.5 73.8 76.7 69.1 13.6 65.3 22.4 12.3 190 129 2 11 42.1 75.7 42.3
MunichCrossroad02 45 66 56.3 54.7 58.0 59.4 56.0 22.3 44.0 34.8 21.2 1005 876 14 41 12.1 70.0 12.7

MunichStreet04 29 68 87.3 86.8 87.8 88.5 87.4 6.7 83.8 8.8 7.4 193 175 2 3 75.6 79.7 75.7
Overall 108 230 71.1 69.4 72.9 74.1 70.6 14.2 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

8.25 AerialMPTNet

In this step, we evaluate the complete AerialMPTNet by fusing the SNN, LSTM, and GCNN
modules. Table 49 represents the tracking results of AerialMPTNet on the test sets of our
experimental datasets, and Table 47 compares its overall performance to the other tracking
methods.

According to the results, the AerialMPTNet outperforms AerialMPTnetLSTM and
AerialMPTNetGCNN for both pedestrian datasets. However, this is not the case for the ve-
hicle dataset. This is due to the main idea behind the development of the network. Since
AerialMPTNet is initially designed for pedestrian tracking, it needs to be further adapted
to domain specific challenges posed by vehicle tracking. For example, the distance thresh-
old for the modeling if the adjacent object relationships (in GCNN) which considers objects
within a distance of 50 pixels from the target object might miss many neighbouring vehicles,
as usually the distances between vehicles are larger than those between pedestrians. Finally,
AerialMPTNet achieves better tracking results than SMSOT-CNN on all three datasets.

Table 49. AerialMPTNet on the KIT AIS and AerialMPT datasets.
Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS Pedestrian Dataset
AA_Crossing_02 13 94 46.7 45.6 46.9 49.3 48.8 45.1 23.4 51.1 25.5 586 576 12 92 −3.4 69.7 −2.5
AA_Walking_02 17 188 41.4 40.8 42.1 43.7 42.3 93.6 17.0 51.6 31.4 1591 1504 25 231 −16.8 68.5 −15.9

Munich02 31 230 31.2 30.2 32.3 37.8 35.3 136.8 10.4 55.7 33.9 4240 3808 192 498 −34.5 67.6 −31.4
RaR_Snack_Zone_02 4 220 59.0 58.8 59.2 60.9 60.5 86.0 33.2 65.0 1.8 344 3338 4 34 20.7 73.4 21.1
RaR_Snack_Zone_04 4 311 68.5 68.3 68.6 69.8 69.5 94.2 45.7 51.8 2.5 377 371 3 42 38.9 74.2 39.1

Overall 69 1043 40.6 39.7 41.5 45.1 43.2 103.4 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2
AerialMPT Dataset

Bauma3 16 606 31.2 30.4 32.0 38.2 36.3 368.1 11.6 51.7 36.7 5890 5435 277 582 −32.0 70.8 −28.9
Bauma6 26 270 37.2 34.8 39.9 44.2 38.6 143.7 17.0 58.1 24.9 3736 2964 123 333 −28.4 70.2 −26.1

Karlsplatz 27 146 45.6 44.2 47.1 48.6 45.6 72.4 19.9 61.6 18.5 1954 1733 25 153 −10.0 67.4 −9.3
Pasing7 24 103 67.6 64.8 70.7 71.3 65.3 32.6 49.5 43.7 6.8 782 593 5 93 33.1 70.7 33.3
Pasing8 27 83 39.7 38.7 40.8 41.3 39.2 45.8 15.7 55.4 28.9 1238 1134 2 83 −22.9 68.9 −22.8

Witt 8 185 16.0 15.9 16.1 17.9 17.6 147.7 2.7 24.3 73.0 1182 1163 4 25 −65.9 60.1 −65.7
Overall 128 1396 37.8 36.5 39.3 43.1 40.0 115.5 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5

KIT AIS Vehicle Dataset
MunichStreet02 20 47 83.2 81.1 85.4 86.3 82.0 07.1 76.6 10.6 12.7 141 102 4 3 66.9 80.1 67.3

StuttgartCrossroad01 14 49 68.4 65.0 72.2 75.3 67.8 14.14 61.2 26.5 12.3 198 137 1 16 39.4 76.3 39.5
MunichCrossroad02 45 66 54.5 52.9 56.3 58.5 54.9 22.9 43.9 37.9 18.2 1033 895 20 45 9.6 70.1 10.5

MunichStreet04 29 68 86.5 86.0 87.0 89.1 88.0 6.3 85.3 7.4 7.3 184 165 4 3 76.8 80.2 77.0
Overall 108 230 70.0 68.3 71.8 73.9 70.3 14.4 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6

144

8.25.1 Pedestrian Tracking

In more detail, AerialMPTNet yields the best MOTA among the studied methods on the
“AA_Walking_ 02”, “Munich02”, and “RaR_Snack_Zone_02” sequences of the KIT AIS
pedestrian dataset (−16.8, −34.5, and 38.9, respectively.) These sequences are the most com-
plex ones in this dataset with respect to the length and number of objects, thing which could
significantly influence the MOTA value. Longer sequences and a higher number of objects
usually cause the MOTA value to decrease, as it is more probable that the tracking methods
lose track of the objects or confuse their IDs in these cases. Figure 78 illustrates the tracking
results on two frames of the “AA_Walking_ 02” sequence of the KIT AIS pedestrian dataset
by AerialMPTNet and SMSOT-CNN. Comparing the predictions and ground truth points
demonstrates that SMSOT-CNN loses track of a considerably higher number of pedestrians
between these two frames. While SMSOT-CNN’s predictions are stuck at the diagonal back-
ground lines due to their similar appearance features to the pedestrians, AerialMPTNet can
easily handle this situation due to the LSTM module.

8 14

8 14

Fig. 78. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 8 and 14 of the
“AA_Walking_ 02” sequence of the KIT AIS pedestrian dataset. The predictions and ground truth are depicted in blue
and white, respectively.

We also visualized a cropped part of four frames from the “AA_Crossing_02” sequence
of the KIT AIS pedestrian dataset in Figure 79. As in the previous example, AerialMPT-
Net clearly outperforms SMSOT-CNN on the tracking of the pedestrians crossing the back-
ground lines.

On the AerialMPT dataset, AerialMPTNet achieves the best MOTA scores among all studied
methods in this paper on the “Bauma3”, “Bauma6”, and “Witt” sequences (−32.0, −28.4,
−65.9), which contain the most complex scenarios regarding crowd density, pedestrian
movements, variety of the GSDs, and complexity of the terrain. However, in contrast to the
KIT AIS pedestrian dataset, the MOTA scores are not correlated with the sequence lengths,
indicating the impact of other complexities on the tracking results and the better distribu-
tion of complexities over the sequences of the AerialMPT dataset as compared to the KIT AIS
pedestrian dataset.

Figure 80 exemplifies the role of the LSTM module in enhancing the tracking performance
in AerialMPTNet. This figure shows an intersection of two pedestrians in the cropped
patches from four frames of the “Pasing8” sequence of the AerialMPT dataset. According
to the results, SMOT-CNN (bottom row) loses one of the pedestrians after their intersection
leading to an ID switch. However, AerialMPTNet (top row) can track both pedestrians cor-
rectly, mainly relying on the pedestrians’ movement histories (their movement directions)
provided by the LSTM module.

8.25 AerialMPTNet 145

4 6 8 10

4 6 8 10

Fig. 79. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 4, 6, 8, and 10 of the
“AA_Crossing_02” sequence of the KIT AIS pedestrian dataset. The predictions and ground truth are depicted in blue and
white, respectively.

11 13 15 17

11 13 15 17

Fig. 80. Tracking results by the AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 11, 13, 15, and 17
of the “Pasing8” sequence of the AerialMPT dataset. The predictions and ground truth are depicted in blue and white,
respectively.

Figure 81 illustrates a case in which the advantage of the GCNN module can be clearly
observed. The images are cropped from four frames of the “Karlsplatz” sequence of the
AerialMPT dataset. It can be seen that SMSOT-CNN has difficulties in tracking the pedestri-
ans in such crowded scenarios, where the pedestrians move in various directions. However,
AerialMPTNet can handle this scenario mainly based on the pedestrian relationship models
provided by the GCNN module.

In addition, there are sequences where both methods reach their limits and perform poorly.
Figure 82 illustrates the tracking results of AerialMPTNet (top row) and of SMSOT-CNN
(bottom row) on two frames of the “Witt” sequence of the AerialMPT dataset. Comparing
the predictions and ground truth object tracks indicates the large number of lost objects
by both methods. According to Tables 45 and 49, despite the small number of frames in
the “Witt” sequence, the MOTA scores are low for both methods (−68.6 and −65.9). Further
investigations show that these poor performances are caused by the non-adaptive search
window size. In the “Witt” sequence, pedestrians move out of the search window and are
lost by the tracker as a consequence. In order to solve this issue, the GSD of the frames as
well as the pedestrian velocities should be considered in determining the search window
size.

In order to show the complexity of the pedestrian tracking task in the AerialMPT dataset,
we report the tracking results of AerialMPTNet on the frames 18 and 10 of the “Munich02”

146

21 23 25 27

21 23 25 27

Fig. 81. Tracking results by the AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 21, 23, 25, and 27
of the “Karlsplatz” sequence of the AerialMPT dataset. The predictions and ground truth are depicted in blue and white,
respectively.

3 6

3 6

Fig. 82. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 3 and 6 of the “Witt”
sequence of the AerialMPT dataset. The predictions and ground truth are depicted in blue and white, respectively.

and “Bauma3” sequences, respectively, in Figure 66.

8.25.2 Vehicle Tracking
According to Table 47, AerialMPTNet outperforms SMSOT-CNN also on the KIT AIS vehicle
dataset, although the increase in performance is lower compared to the pedestrian tracking
results. Results on different sequences in Tables 45 and 49 show that both methods perform
poorly on the “MunichCrossroad02” sequence. Figure 83 visualizes the challenges that the
tracking methods face in this sequence. For the visualization, we selected an early and a
late frame to demonstrate the strong camera movements and changes in the viewing angle,
which affect scene arrangements and object appearances. In addition, vehicles are partly or
completely occluded by shadows and other objects such as trees. Finally, in this crossroad
the movement patterns of the vehicles are complex.

In Figure 84, we compare the performances of AerialMPTNet and SMSOT-CNN on the “Mu-
nichCrossroad02” sequence. Both methods track AerialMPTNet tracks a few vehicles better
than SMSOT-CNN such as the ones located densely at the traffic lights. AerialMPTNet loses
track of a few vehicles which are tracked correctly by SMSOT-CNN. These failures could be
solved by a parameter adjustment in our AerialMPTNet.

In Figure 85 we compare performances on the “MunichStreet04” sequence. In this example,
AerialMPTNet tracks the long vehicle much better than SMSOT-CNN.

8.25 AerialMPTNet 147

4 31

Fig. 83. Tracking results by AerialMPTNet on the frames 4 and 31 of the “MunichCrossroad02” sequence of the KIT AIS
vehicle dataset. The predictions and ground truth bounding boxes are depicted in blue and white, respectively. Several
hindrances such as changing viewing angle, shadows, and occlusions (e.g., by trees) are visible.

2 8

2 8

Fig. 84. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 2 and 8 of the “Mu-
nichCrossroad02” sequence of the KIT AIS vehicle dataset. The predictions and ground truth bounding boxes are depicted
in blue and white, respectively.

Based on Tables 45 and 49, SMSOT-CNN outperforms our AerialMPTNet on the “Munich-
Street02” sequence. In Figure 86, we exemplify the existing problems with our AerialMPT-
Net in this sequence. A background object (in the middle of the scene) has been recognized
as a vehicle in frame 7, while the vehicle of interest is lost. A similar failure happens at the
intersection. This is due to the parameter configurations of AerialMPTNet. As mentioned
before, our method was initially proposed for pedestrian tracking, taking into account the
characteristics and challenges of this task. Thus, we believe that by further investigations
and parameter tuning, such issues should be solved.

8.25.3 Localization Preciseness
In order to evaluate the preciseness of the object locations predicted by AerialMPTNet with
respect to SMSOT-CNN, we vary the overlap criterion (IoU threshold) of the evaluation
metrics for the Prcn, MOTA, MT, and ML metrics in Figure 87.

148

20 29

20 29

Fig. 85. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 20 and 29 of the
“MunichStreet04” sequence of the KIT AIS vehicle dataset. The predictions and ground truth bounding boxes are depicted
in blue and white, respectively.

1 7

1 7

Fig. 86. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames 1 and 7 of the “Mu-
nichStreet02” sequence of the KIT AIS vehicle dataset. The predictions and ground truth bounding boxes are depicted in
blue and white, respectively.

According to the plots, the performance of both methods decreases by increasing the IoU
threshold, requiring more overlap between the predicted and ground truth bonding boxes
(more precise localization.) For all presented metrics, the preciseness of our ArialMPTNet
surpasses that of the SMSOT-CNN. However, for the vehicle dataset the performance in-
crease by our AerialMPTNet over SMSOT-CNN is lower than for the case of the pedestrian
datasets.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

10

30

50

70

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60
AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

M
L

AerialMPTNet
SMSOT-CNN

M
T

0

80

0.7 0.8 0.9
IoU Threshold

10

30

50

70

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6

0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

10

30

50

M
T

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

60

100

M
L

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

80

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

0

20

40

60

80

M
T

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

80

M
L

AerialMPTNet
SMSOT-CNN

Fig. 87. Comparing the Prcn, MOTA, MT, and ML of the AerialMPTNet and SMSOT-CNN on the KIT AIS pedestrian
(first row), AerialMPT (second row), and KIT AIS vehicle (third row) datasets by changing the IoU thresholds of the
evaluation metrics.

8.26 AerialMPTNet (with Squeeze-and-Excitation Layers)

In this step, we evaluate the improvement achieved by adding SE layers to our AerialMPT-
Net, as described in Section 8.18. We train the network on our three experimental datasets
and report the tracking results in Table 47. Using the SE layers in AerialMPTNetSE degrades
the results marginally for most of the metrics on the KIT AIS pedestrian and vehicle datasets
as compared to AerialMPTNet. For the vehicle dataset, the SE layers improves the number of

8.27 Training with OHEM 149

the mostly lost (ML) and partially tracked (PT) vehicles by 0.9% and 3.9%, respectively. On
the AerialMPT dataset, however, the network behaviour is totally different. AerialMPTNetSE
outperforms AerialMPTNet for most of the metrics. SE layers improve MOTA and MOTP by
2 and 0.1 points, respectively. Moreover, the number of mostly tracked (MT) pedestrians in-
creases by 1.7%. These inconstant behaviours could be due to the different image quality
and contrast of the datasets. Since the images of the AerialMPT dataset are characterized by
a higher quality, the adaptive channel weighting would be more meaningful.

8.27 Training with OHEM

We evaluate the influence of Online Hard Example Mining (OHEM) on the training of
our AerialMPTNet as described in Section 8.19. The results are compared to those of the
AerialMPTNet with its standard training procedure in Table 47. The use of OHEM in the
training procedure reduces the performance marginally on both pedestrian datasets. For
example, MOTA decreases by 5 and 1.7 points for the KIT AIS pedestrian and AerialMPT
datasets, respectively. For the KIT AIS vehicle dataset, however, results show small improve-
ments in the tracking results. For instance, MOTA rises by 1.8 points and the number of
mostly tracked objects increases by 1.4%. We argue that pedestrian movement is highly
complex and therefore, providing in input a similar situation multiple times to the tracker
based on OHEM does not help the performance. For the vehicles, however, since they mostly
moves in straight paths, OHEM can improve the training by retrying the failure cases. This
is the first experiment on the benefits of OHEM in regression-based tracking. Further exper-
iments have to be conducted in order to better understand the underlying reasons.

8.28 Huber Loss Function

We assess the effects of loss function in the tracking performance by using the Huber
loss [145] instead of the traditional L1 loss function. The Huber loss is a mixture of the L1
and L2 losses, both commonly used for regression problems, and combines their strengths.
The L1 loss measures the Mean Absolute Error (MAE) between the output of the network x
and the ground truth x̂:

L1(x, x̂) =
∑
i

|xi − x̂i |. (50)

The L2 loss calculates the Mean Squared Error (MSE) between the network output and the
ground truth value:

L2(x, x̂) =
∑
i

(xi − x̂i)2. (51)

The L1 loss is less affected by outliers with respect to the L2 loss. The Huber loss acts as a
MSE when the error is small, and as a MAE when the error is large:

LH (x, x̂) =
∑
i

zi , (52)

zi =
{

0.5(xi − x̂i)2, if |xi − x̂i |< 1
|xi − x̂i |−0.5, otherwise.

The Huber loss is more robust to outliers with respect to L2 and improves the L1 loss for the
missing minima at the end of the training.

150

Table 50 compares results obtained by L1 and Huber loss functions. The model trained
with the L1 loss outperforms the one trained with the Huber loss in general on all three
datasets. There are a few metrics for which the Huber loss shows an improvement over
L1, such as MT in the vehicle dataset or IDS in the AerialMPT dataset; however, these are
marginal. Altogether, we can conclude that the L1 loss is a better option for our method in
these tracking scenarios.

Table 50. Comparison of AerialMPTNet trained with the L1 and Huber Losses.
Loss IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS Pedestrian Dataset
L1 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2

Huber 38.8 37.9 39.7 43.1 41.1 107.42 1043 25.0 56.5 18.5 7412 6845 212 866 −20.3 69.4 −18.6
AerialMPT Dataset

L1 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5
Huber 38.0 36.7 39.5 43.0 39.9 115.70 1396 15.6 48.4 36.0 14,809 13,051 415 1196 −23.5 69.9 −21.7

KIT AIS Vehicle Dataset
L1 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6

Huber 67.2 65.5 69.0 70.6 67.1 15.98 230 67.0 17.4 15.6 1726 1461 34 65 35.2 76.1 35.9

8.29 Comparing AerialMPTNet to Other Methods

In this section, we compare the results of our AerialMPTNet with a set of traditional meth-
ods including KCF, Median Flow, CSRT, and MOSSE as well as DL-based methods such as
Tracktor++, Stacked-DCFNet, and SMSOT-CNN. Table 47 reports the results of different
tracking methods on the KIT AIS and AerialMPT datasets. In general, the DL-based meth-
ods outperform the traditional ones, with MOTA scores varying between −16.2 and −48.8
rather then between −55.9 and −85.8, respectively. The percentages of mostly tracked and
mostly lost objects vary between 0.8% and 9.6% for the DL-based methods, while they lie
between 36.5% and 78.3% for the traditional ones.

8.30 Pedestrian Tracking

Among the traditional methods, CSRT is the best performing one on the AerialMPT and
KIT AIS pedestrian datasets, with MOTA values of −55.9 and −64.6. CSRT mostly tracks
9.6% and 2.9%, and of the pedestrians while it mostly loses 39.4% and 59.3% of the ob-
jects in these datasets. The DL-based methods, apart from Tracktor++, track much more
pedestrians mostly (>13.8%) and lose much less pedestrians (<23.6%) with respect to tra-
ditional methods. The poor performances of Tracktor++ is due to its limitations in working
with small objects. AerialMPTNet outperforms all other methods according to most of the
adopted figures of merit on the pedestrian datasets with significantly larger MOTA values
(−16.2 and −23.4) and competitive MOTP (69.6 and 69.7) values. It mostly tracks 5.9% and
4.6% more pedestrians and loses 5.2% and 6.8% less pedestrians with respect to the best per-
forming previous method, SMSOT-CNN on the KIT AIS and AerialMPT pedestrian datasets,
respectively.

8.31 Vehicle Tracking

As Table 47 demonstrates, the DL-based methods and CSRT outperform KCF, Median Flow,
and MOSSE significantly, with average MOTA value of 42.9 versus -30.9. The DL-based
methods and CSRT are also better with respect to the number of mostly tracked and mostly

8.32 Conclusions and Future Works 151

lost vehicles, varying between 30.0% and 69.1% and between 22.6% and 12.6%, respec-
tively. These values for KCF, MOSSE, and Median Flow are between 19.6% and 32.2% and
between 50.4% and 27.8%. Among the DL-based methods, Stacked-DCFNet has the best
performance in terms of MOTA and MOTP, outperforming AerialMPTNet by 4.6 and 5.7
points, respectively. While the number of mostly tracked vehicles by Stacked-DCFNet is
2.6% larger than in the case of AerialMPTNet, it mostly loses 3.1% more vehicles. The per-
formance of Tracktor++ increases significantly compared to the pedestrian scenarios, due
to the ability of its object detector in detecting vehicles. Tracktor++ achieves a competitive
MOTA of 37.1 without any ground truth initialization. The best performing method in terms
of MOTA, MT, and ML is CSRT. It outperforms all other methods with a MOTA of 51.1 and
MOTP of 80.7.

We rank the studied tracking methods based on their MOTA and MOTP values in Figure 88,
with the diagrams offering a clear overview on their performance. AerialMPTNet appears
the best method in terms of MOTA for both pedestrian datasets, and achieves competitive
MOTP values. Median Flow, for example, achieves a very high MOTP values; however, be-
cause of the low number of matched track-object pairs after the first frame, it is not able
to track many objects. Hence, the MOTP value solely is not a good performance indicator.
For the KIT AIS vehicle dataset, AerialMPTNet shows worse performance than the other
methods according to the MOTA and MOTP values. CSRT and Stacked-DCFNet, however,
perform favorably for vehicle tracking.

40 50 60 70 80
MOTP

-80

-70

-60

-50

-40

-30

-20

M
O

TA

40 45 50 55 60 65 70 75 80
MOTP

-80

-70

-60

-50

-40

-30

M
O

TA

72 74 76 78 80 82
MOTP

-40

-20

0

20

40

M
O

TA

'KCF'
'Median Flow'
'CSRT'
'MOSSE'
'Tracktor++'
'Stacked-DCFNet'
'SMSOT-CNN'
'AerialMPTNetLSTM'
'AerialMPTNetGCNN'
'AerialMPTNet'

Fig. 88. Ranking the tracking methods based on their MOTA and MOTP values on the (a) KIT AIS pedestrian,
(b) AerialMPT, and (c) KIT AIS vehicle datasets.

8.32 Conclusions and Future Works

In this paper, we investigate the challenges posed by the tracking of pedestrians and vehicles
in aerial imagery by applying a number of traditional and DL-based SOT and MOT methods
on three aerial MOT datasets. We also describe our proposed DL-based aerial MOT method,
the so-called AerialMPTNet. Our proposed network fuses appearance, temporal, and graph-
ical information for a more accurate and stable tracking by employing a SNN, a LSTM, and
a GCNN module. The influence of SE and OHEM on the performance of AerialMPTNet is
investigated, as well as the impact of adopting an L1 rather than a Huber loss function. An
extensive qualitative and quantitative evaluation shows that the proposed AerialMPTNet
outperforms both traditional and state-of-the-art DL-based MOT methods for the pedes-
trian datasets, and achieves competitive results for the vehicle dataset. On the one hand, it
is verified that LSTM and GCNN modules enhance the tracking performance; on the other
hand, the use of SE and OHEM significantly helps only in some cases, while degrading the
tracking results in other cases. The comparison of L1 and Huber loss shows that L1 is a
better option for most of the scenarios in our experimental datasets.

We believe that the present paper can promote research on aerial MOT by providing a deep
insight into its challenges and opportunities, and pave the path for future works in this
domain. In the future, within the framework of AerialMPTNet, the search area size can be

152

adapted to the image GSDs and object velocities and accelerations. Additionally, the SNN
module can be modified in order to improve the appearance features extraction. The train-
ing process of most DL-based tracking methods relies on common loss functions, which
do not correlate with tracking evaluation metrics such as MOTA and MOTP, as they are
usually differentiable. Recently, differentiable proxies of MOTA and MOTP have been pro-
posed [355], which can be also investigated for the aerial MOT scenarios.

9 Summary and Conclusion 153

9 Summary and Conclusion

This thesis describes the development of new deep learning algorithms for infrastructure
and traffic monitoring using aerial imagery, emphasizing monitoring large areas in a short
time. The central part is the automatic extraction of essential components or objects for the
High Definition and Hybrid maps using deep-learning algorithms. The main challenge is
that objects such as vehicles or lane-markings as crucial components of such maps appear
very tiny in aerial imagery. Besides, other factors like an extensive range of scales, shadows,
complex background pose serious challenges to the success of such algorithm, primarily as
these methods are known not to be suited for tiny objects. This thesis presents five novel
works for the automatic aerial imagery analysis towards the generation of HD-map and
Hybrid-map:

� Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery
� EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using Aerial

Imagery
� Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using

Wavelet-Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks
� SkyScapes: Fine-Grained Semantic Understanding of Aerial Scenes
� Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a Convolutional

Neural Network

To (1): For hybrid maps, the mapping of dynamic objects is an essential component. This
thesis proposes one multi-class object detection algorithm based on multi-scale image and
feature processing using an image cascade network and feature pyramid network. It has
been applied on the dataset DOTA and achieved more than 12 resp. 14 mAP points im-
provement over the latest results on HBB resp. RBB benchmarks. Deformable convolutions
are applied with flexible size for better extraction of the shape of objects, especially the
rectangular shape of vehicles, in contrast to the fixed size of typical convolutions. Rotated
Region of Interest and Region Proposal networks have been proposed to extract rotated rect-
angular region proposals that fit better the standard shape of objects as they appear in aerial
imagery. Besides, rotated NMS has been used, which is more suitable for this scenario than
the standard NMS procedure. Combining these methods proved to be beneficial to achieve
decent performance. The detected objects are classified into 16 categories, including vehi-
cles, boats, airplanes, etc. Another algorithm based on SSD architecture has been proposed
to speed up vehicle detection algorithms on on-board embedded platforms, which deploys
Shufflenet as its backbone with several modifications to deliver fast speed while keeping the
reduced performance marginal. The proposed algorithm is called ShuffleDet and is tested
on DLR 3K Munich dataset, CARPK, and the PUCPR+ dataset. The algorithm has been im-
plemented on the Jetson TX 2 embedded board with a high speed of 14 FPS. The proposed
algorithm delivers robust performance and fast computation times required for real-time
traffic monitoring from flying platforms.

To (2): To extract the orientation of vehicles, a new benchmark called EAGLE is created, one
of the best benchmarks currently available concerning size and annotation quality. Based
on EAGLE, a new CNN algorithm was developed to predict the orientation of vehicles reli-
ably, which is helpful for lane-logic extraction and vehicle tracking tasks. The algorithm can
deliver object positions in HBB, RBB and OBB. Assuming that vehicles are driving only on
roads, their trajectories can be as an incomplete road network representation. Based on the
presented results, these features are unique and can be used as a tool for the geolocalization
of vehicles.

To (3): The proposed binary lane-marking segmentation method applies Wavelet Transfor-
mation together with CNN to allow keeping high-frequency information by extracting low-

154

frequency data via initial convolution layers and preserves the information of tiny objects
such as lane-markings. The algorithm has a very high performance, and the computation
stays fast, i.e., , 85.95% mean accuracy with 77.98% mean IoU outperforms the state-of-the-
art algorithm of 78.23% mean accuracy with 73.18% mean IoU. These results are based on
the DLR 3K dataset: Aerial LaneNet, which contains very high-resolution aerial images. It
takes only 1.5 seconds based on one Graphics Processing Unit (GPU) for processing a 21
Megapixel aerial image. This algorithm achieves a new proof-of-concept concerning direct
binary lane-marking extraction. Contrary to other methods, this approach does not require
any 3rd party information or any intermediate steps such as road segmentation or detection,
and it can work on original images without the need for orthorectification and georeferenc-
ing. As a practical feature, it allows the localization of lane-markings, e.g., in parking lots on
top of buildings, sidewalks, and all areas outside of the known road network. Aggregating
these two methods to handle small-sized lane-markings delivers better performance, and
since all of the computation is paralleled, and weights of the network are shared, the total
speed of the method is decent. In the context of this work, the first benchmark dataset called
AerialLane dataset for lane marking extraction has also been introduced.

To (4): To expand the applicability of (3), SkyScapesNet is proposed, a multi-task algorithm
to simultaneously predict large-scale and small-scale objects. It is suitable for dense pixel-
wise semantic segmentation and binary and multi-class edge prediction. It can detect lane-
markings of different categories directly and outputs binary and multi-class pixel-wise se-
mantic segmentation. The algorithm is combined with different blocks, mainly with a two-
stream net to keep information of both large and tiny objects. During the development of
this algorithm, the first benchmark dataset for dense segmentation called SkyScapes has
been prepared, which is unique concerning several classes and quality. SkyScapesNet out-
performs the state-of-the-art algorithms in both sub-benchmarks called Dense and Lane
of the SkyScapes dataset. The results show a very high degree of transferability to other
aerial images. As an extension, the binary lane-marking extraction has been proven proof-
of-concept to work on satellite imagery with lower resolution than aerial images. As another
proof of concept, we proved the feasibility of the automatic detection of direct entrance/exit
areas and danger areas from aerial and satellite imagery.

To (5): In this thesis, a new algorithm called AerilMTPNet for multi-vehicle tracking and
multi-person tracking has been proposed as a new MOT algorithm capable of handling
many objects while keeping their trajectories and identity over a long period with a de-
cent speed. This algorithm has a linear computation complexity of O(N), which is very effi-
cient compared to other tracking algorithms with a complexity of O(n logn) or O(N 2), which
makes it suitable for hyperdense object tracking. The usage of GCNN and LSTM networks
together with Siamese CNNs is the basis that the network can track vehicles and other ob-
jects such as people even in very dense areas. Here, using GCNN, a graph composed of the
object with its neighboring objects of interest is built and using LSTM, its trajectory history
is kept.

To conclude this thesis, it is possible to create HD-map and Hybrid-map using aerial and
satellite imagery with the proposed algorithms. The advantages of the proposed methods in
this work have been demonstrated compared to the previous non-deep learning algorithm
in terms of accuracy, precision, speed, and generalization flexibility.

9.1 Improvements and future work

Specific parts of this thesis could be enhanced by various methods, for instance: The object
detector’s performance can be further improved by focusing on the geometry of the objects,

9.1 Improvements and future work 155

especially vehicles which could be accomplished by combining the GAN algorithm and us-
ing modules to extract the center of objects and their orientation. Layer pruning and weight
quantization can be explored to improve processing speed further. The performance of the
infrastructure component extraction can be further improved by applying a reinforcement
learning approach combined with GAN as post steps after the main initial multi-scale fea-
ture extraction backbone networks. This method can also be further extended by consider-
ing additional infrastructure components, e.g., traffic signs, traffic lights and turning lanes
at crossroads. Direct vectorization of road networks using GCNNs can also be considered
a future work. The vehicle tracking algorithm could be extended by using more categories,
e.g., truck, tractor unit, trailer, motorcycle, etc. Its performance could be increased by con-
sidering vehicles’ centers as crucial points and orientations. One can also use optical flow or
motion models and GAN algorithms to identify vehicles for long-term tracking. The multi-
class multi-object tracking with orientation may be a new frontier in this domain.

The primary image processings of airborne data, for instance, stereo matching, orthorectifi-
cation, and semantic extraction, are currently mostly handled independently, e.g., semantic
extraction tasks, for instance, building or road segmentation, are related strongly to the 3D
information, particularly to the stereo matching of aerial images. As future work, one could
research developing algorithms that can address all mentioned tasks collectively. This algo-
rithm will likely outperform the current ones. Developing such efficient and comprehensive
methods can be a long-term goal in computer vision and remote sensing communities. In
the end, one algorithm could be capable of generating a digital map at once without any
human interaction in the ideal case. As for the HD-maps, this system will be able to out-
put HD-maps in OpenDrive format, which is combined with GCP points extracted from the
RADAR satellites to yield a cm-level precision HD-map.

156

List of Abbreviations

AP Average Precision
BiFPN Bi-directional FPN
BN Batch Normalisation
BP Backpropagation
CBNet Composite Backbone Network for R-CNN based networks
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
DNN Deep Neural Networks
DPM Deformable Part Model
Faster R-CNN R-CNN + RPN + RoI pooling based CNN
Fast R-CNN R-CNN + RoI pooling based CNN
FPN Feature Pyramid Network
FPS frames per second (metric)
GAN Generative Adversarial Network
GPU Graphics Processing Unit
HD High-Definition
HOG Histogram of Oriented Gradients
IID independent and identically distributed
ILSVRC ImageNet Large Scale Vision Recognition Challenge
IoU Intersection over Union
MAP Maximum a prosteriori
Mask R-CNN Faster R-CNN + FCN based instance segmentation
MS-COCO Microsoft-Common Object in Context
NAS Neural Architecture Search
NMS Non-Maximum Suppression
PANet Path Aggregation Network
R-CNN Region based CNN
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RoI Regions of Interest
RoI pooling Discretised pooling of Regions of Interest
RPN Region (RoI) Proposal Network
SENet Squeeze and Excitation Network
SGD Stochastic Gradient Descent
SOTA state-of-the-art
SPPNet Spatial Pyramid Pooling Network
SSD Single Shot MultiBox Detector
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle

REFERENCES 157

References
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., et al., 2016. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems . 40

[2] Ajay, A., Sowmya, V., Soman, K. P., 2017. Vehicle detection in aerial imagery using eigen fea-
tures. In: ICCSP. 55

[3] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016. Social lstm:
Human trajectory prediction in crowded spaces. In: Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 961–971. 136

[4] Aly, M., 2008. Real Time Detection of Lane Markers in Urban Streets. In: IEEE Intelligent
Vehicles Symposium. 79

[5] Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B. C., Chen, J.,
Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner, C., Han, T., Han-
nun, A. Y., Jun, B., LeGresley, P., Lin, L., Narang, S., Ng, A. Y., Ozair, S., Prenger, R., Raiman,
J., Satheesh, S., Seetapun, D., Sengupta, S., Wang, Y., Wang, Z., Wang, C., Xiao, B., Yogatama,
D., Zhan, J., Zhu, Z., 2015. Deep speech 2: End-to-end speech recognition in english and man-
darin. CoRR abs/1512.02595. 18

[6] Audebert, N., Boulch, A., Le Saux, B., Lefèvre, S., 2019. Distance transform regression for
spatially-aware deep semantic segmentation. Computer Vision and Image Understanding 189:
102809. 42

[7] Avidan, S., 2007. Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29 (2): 261–271.
117

[8] Azimi, S. M., 2018. Shuffledet: real-time vehicle detection network in on-board embedded uav
imagery. In: Proceedings of the European Conference on Computer Vision (ECCV), 0–0. 9, 42

[9] Azimi, S. M., Bahmanyar, R., Henry, C., Kurz, F., 2020. Eagle: Large-scale dataset for vehicle
detection in aerial imagery. arXiv preprint arXiv:2007.06124 . 9, 42

[10] Azimi, S. M., Fischer, P., Körner, M., Reinartz, P., 2018. Aerial LaneNet: lane marking semantic
segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convo-
lutional neural networks. IEEE TGRS . 10, 102

[11] Azimi, S. M., Henry, C., Sommer, L., Schumann, A., Vig, E., 2019. Skyscapes fine-grained se-
mantic understanding of aerial scenes. In: Proceedings of the IEEE International Conference
on Computer Vision, 7393–7403. 10, 42, 64

[12] Azimi, S. M., Kraus, M., Bahmanyar, R., Reinartz, P., 2021. Multiple pedestrians and vehicles
tracking in aerial imagery using a convolutional neural network. Remote Sensing 13 (10): 1953.
10, 42

[13] Azimi, S. M., Vig, E., Bahmanyar, R., Körner, M., Reinartz, P., 2018. Towards multi-class object
detection in unconstrained remote sensing imagery. In: Proceedings of the Asian Conference
of Computer Vision (ACCV). 9, 60, 62, 64, 69, 72, 105

[14] Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and ma-
chine intelligence 39 (12): 2481–2495. 36, 105, 108

[15] Bahmanyar, R., Azimi, S. M., Reinartz, P., 2019. Multiple vehicle and people tracking in aerial
imagery using stack of micro single-object-tracking cnns. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 42: 163–170. 114, 117, 121, 123, 127, 132, 133, 136, 140

[16] Bahmanyar, R., Vig, E., Reinartz, P., 2019. Mrcnet: Crowd counting and density map estimation
in aerial and ground imagery. arXiv preprint arXiv:1909.12743 . 42, 121, 125

[17] Ball, J. E., Anderson, D. T., Chan, C. S., 2017. Comprehensive survey of deep learning in remote
sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing
11 (4): 042609. 5

[18] Barron, A. R., 1993. Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information Theory 39 (3): 930–945. 18

158 REFERENCES

[19] Bastani, F., He, S., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S., Madden, S., DeWitt,
D., 2018. Roadtracer: Automatic extraction of road networks from aerial images. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 4720–4728. 41

[20] benchmark, T., 2017. Tusimple benchmark. 79
[21] Benedek, C., Szirányi, T., Kato, Z., Zerubia, J., 2009. Detection of object motion regions in

aerial image pairs with a multilayer markovian model. IEEE Trans. Image Process. 18 (10):
2303–2315. 120

[22] Bengio, Y., 2013. Deep learning of representations: Looking forward. In: International Confer-
ence on Statistical Language and Speech Processing, Springer, 1–37. 5

[23] Bergmann, P., Meinhardt, T., Leal-Taixe, L., 2019. Tracking without bells and whistles. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 941–951. 39, 113,
120, 127, 132

[24] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., Torr, P. H., 2016. Fully-convolutional
siamese networks for object tracking. In: European Conference on Computer Vision (ECCV),
850–865. 113

[25] Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime tracking.
In: 2016 IEEE international conference on image processing (ICIP), IEEE, 3464–3468. 38

[26] Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime tracking.
In: IEEE International Conference on Image Processing (ICIP), 3464–3468. 114, 119

[27] Bishop, C. M., 2006. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA. 13

[28] Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M., 2020. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934 . 32, 33

[29] Bodla, N., Singh, B., Chellappa, R., Davis, L. S., 2017. Improving object detection with one line
of code. ICCV . 49

[30] Bolme, D. S., Beveridge, J. R., Draper, B. A., Lui, Y. M., 2010. Visual object tracking using
adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2544–2550. 113, 117, 118, 127

[31] Boudoukh, G., Leichter, I., Rivlin, E., 2009. Visual tracking of object silhouettes. In: IEEE In-
ternational Conference on Image Processing (ICIP), 3625–3628. 113

[32] Bourdev, L., Brandt, J., 2005. Robust object detection via soft cascade. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2005., Vol. 2, IEEE, 236–243. 27

[33] Briechle, K., Hanebeck, U. D., 2001. Template matching using fast normalized cross correla-
tion. In: Optical Pattern Recognition XII, Vol. 4387, 95–102. 117

[34] Brostow, G. J., Fauqueur, J., Cipolla, R., 2009. Semantic object classes in video: A high-
definition ground truth database. Pattern Recognition Letters 30 (2): 88–97. 36

[35] Brunelli, R., 2009. Template matching techniques in computer vision: Theory and practice.
John Wiley & Sons. 117

[36] Burges, C. J., 1998. A tutorial on support vector machines for pattern recognition. Data mining
and knowledge discovery 2 (2): 121–167. 77

[37] Buslaev, A., Seferbekov, S., Iglovikov, V., Shvets, A., 2018. Fully convolutional network for
automatic road extraction from satellite imagery. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, 207–210. 42

[38] Butenuth, M., Burkert, F., Schmidt, F., Hinz, S., Hartmann, D., Kneidl, A., Borrmann, A., Sir-
macek, B., 2011. Integrating pedestrian simulation, tracking and event detection for crowd
analysis. In: IEEE International Conference on Computer Vision Workshops (ICCVW), 150–
157. 121

[39] C., B., 1995. Neural networks for pattern recognition. Oxford University Press, Inc. . 17
[40] C., T., 2014. Bag-of-visual-words, its detectors and descriptors; a survey in detail. In: ACSIJ.

12
[41] Cai, Z., Saberian, M., Vasconcelos, N., 2015. Learning complexity-aware cascades for deep

pedestrian detection. In: International Conference on Computer Vision (ICCV) 2015. 18

REFERENCES 159

[42] Cai, Z., Vasconcelos, N., 2018. Cascade r-cnn: Delving into high quality object detection. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, 6154–6162.
30, 33, 62

[43] Cai, Z., Vasconcelos, N., 2019. Cascade r-cnn: high quality object detection and instance seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 31, 61, 62

[44] Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 8 (6): 679–698. 12

[45] Carneiro, R. V., Nascimento, R. C., Guidolini, R., Cardoso, V. B., Oliveira-Santos, T., Badue, C.,
De Souza, A. F., 2018. Mapping road lanes using laser remission and deep neural networks. In:
2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 1–8. 101

[46] Chahyati, D., Fanany, M. I., Arymurthy, A. M., 2017. Tracking people by detection using cnn
features. Procedia Comput. Sci. 124: 167–172. 117

[47] Chen, L.-C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam, H., Shlens, J.,
2018. Searching for efficient multi-scale architectures for dense image prediction. Advances in
neural information processing systems 31. 37, 38

[48] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014. Semantic Image
Segmentation With Deep Convolutional Nets And Fully Connected CRFs. ICLR . 34, 78, 94,
95

[49] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014. Semantic im-
age segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062 . 34, 105

[50] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2015. Semantic image seg-
mentation with deep convolutional nets and fully connected crfs. In: International Conference
on Learning Representations (ICLR) 2015. 18, 33, 34, 38

[51] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2017. Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence 40 (4): 834–848. 34, 38

[52] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2018. DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected
CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (4): 834–848. 106,
108, 109

[53] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for
semantic image segmentation. arXiv preprint arXiv:1706.05587 . 35, 109

[54] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for
semantic image segmentation. arXiv preprint arXiv:1706.05587 . 35, 38, 79, 94, 95

[55] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the European Con-
ference on Computer Vision (ECCV), 801–818. 36, 38, 79, 94, 95

[56] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the European Con-
ference on Computer Vision (ECCV), 801–818. 37, 38, 105, 107

[57] Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., Chen, L.-C., 2020. Panoptic-
deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, 12475–12485.
37

[58] Cheng, G., Han, J., Lu, X., 2017. Remote sensing image scene classification: Benchmark and
state of the art. Proceedings of the IEEE 105 (10): 1865–1883. 42

[59] Cheng, G., Han, J., Zhou, P., Guo, L., 2014. Multi-class geospatial object detection and geo-
graphic image classification based on collection of part detectors. ISPRS Journal of Photogram-
metry and Remote Sensing 98: 119–132. 42

[60] Cheng, G., Zhou, P., Han, J., 2016. Learning rotation-invariant convolutional neural networks
for object detection in vhr optical remote sensing images. TGRS . 49, 54

160 REFERENCES

[61] Cheng, G., Zhou, P., Han, J., 2016. Learning rotation-invariant convolutional neural networks
for object detection in VHR optical remote sensing images. TGRS . 57

[62] Chollet, F., 2016. Xception: Deep learning with depthwise separable convolutions. arXiv . 66,
79

[63] Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 1251–1258. 25, 27,
36

[64] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth,
S., Schiele, B., 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3213–3223.
79, 103, 105

[65] Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20 (3): 273–297. 5
[66] Cuevas, E., N, D., Rojas, R., 2006. Filtering for vision tracking. e-Gnosis Num.004 . 113, 117
[67] Cuevas, E., Zaldivar, D., Rojas, R., 2007. Particle filter in vision tracking. e-Gnosis 5: 1–11. 113,

117
[68] Dahl, G. E., 2015. Deep learning approaches to problems in speech recognition, computational

chemistry, and natural language text processing. Ph.D. thesis, University of Toronto. 18
[69] Dai, J., He, K., Sun, J., 2016. Instance-aware semantic segmentation via multi-task network

cascades. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
3150–3158. 42

[70] Dai, J., Li, Y., He, K., Sun, J., 2016. R-FCN: Object detection via region-based fully convolu-
tional networks. In: NeurIPS. 47, 53, 54, 61, 62, 66

[71] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y., 2017. Deformable convolutional
networks. ICCV . 47, 67, 69

[72] Dai, Z., Liu, H., Le, Q., Tan, M., 2021. Coatnet: Marrying convolution and attention for all data
sizes. Advances in Neural Information Processing Systems 34. 27

[73] Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2005, Vol. 1, IEEE, 886–893.
27

[74] Dalal, N., Triggs, B., 2005. Histograms of Oriented Gradients for Human Detection. CVPR . 80
[75] Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 886–893. 114
[76] Daubechies, I., 1992. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Ap-

plied Mathematics. 83
[77] Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D.,

Raska, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), IEEE, 172–17209. 101

[78] Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D.,
Raskar, R. D., 2018. A challenge to parse the earth through satellite images. arxiv 2018. arXiv
preprint arXiv:1805.06561 . 42

[79] Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierar-
chical image database. CVPR . 21, 70, 87, 90

[80] Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierar-
chical image database. CVPR . 49, 56

[81] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hier-
archical Image Database. In: CVPR09. 5

[82] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierar-
chical image database. In: 2009 IEEE conference on computer vision and pattern recognition,
Ieee, 248–255. 102

[83] Ding, J., Xue, N., Long, Y., Xia, G.-S., Lu, Q., 2019. Learning roi transformer for oriented object
detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision

REFERENCES 161

and Pattern Recognition, 2849–2858. 41, 42
[84] Ding, L., Tang, H., Bruzzone, L., 2019. Improving semantic segmentation of aerial images us-

ing patch-based attention. arXiv preprint arXiv:1911.08877 . 42
[85] Dollár, P., Appel, R., Belongie, S., Perona, P., 2014. Fast feature pyramids for object detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) . 27
[86] Dollár, P., Zitnick, C. L., 2015. Fast edge detection using structured forests. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI) . 12
[87] Duke Applied Machine Learning Lab., 2020. DukeAMLL Repository of Winning INRIA Build-

ing Labeling. Available online:https://github.com/dukeamll/inriabuildinglabeling2017,
[Online; accessed 1 April 2021]. 42

[88] et al., M. A., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org. 88

[89] Etten, A. V., 2020. City-scale road extraction from satellite imagery v2: Road speeds and travel
times. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, 1786–1795. 42

[90] Everaerts, J., et al., 2008. The use of unmanned aerial vehicles (uavs) for remote sensing and
mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37 (2008): 1187–1192. 114

[91] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., Zisserman, A., 2010. The PASCAL
Visual Object Classes (VOC) challenge. International journal of computer vision 88 (2): 303–
338. 102, 105

[92] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., 2010. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision (IJCV) 88 (2):
303–338. 12, 28, 44, 56

[93] F., L., A., K., J., J., 2016. Cs231n: Convolutional neural networks for visual recognition. In:
Standford University Course Lecture Notes. 19

[94] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., Ramanan, D., 2010. Object detection with
discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI) 32 (9): 1627–1645. 27

[95] Fiaz, M., Mahmood, A., Javed, S., Jung, S. K., 2019. Handcrafted and deep trackers: Recent
visual object tracking approaches and trends. Acm Comput. Surv. (Csur) 52 (2): 1–44. 116

[96] Finnis, K., Walton, D., 2006. Field observations of factors influencing walking speeds. Er-
gonomics . 135

[97] Fourure, D., Emonet, R., Fromont, E., Muselet, D., Trémeau, A., Wolf, C., 2017. Residual conv-
deconv grid network for semantic segmentation. In: Proceedings of the British Machine Vision
Conference, 2017. 105

[98] Fujieda, S., Takayama, K., Hachisuka, T., 2017. Wavelet convolutional neural networks for tex-
ture classification. arXiv preprint arXiv:1707.07394 . 79

[99] G., K., P., B., 2014. A detailed review of feature extraction in image processing systems. In:
ACCT. 11

[100] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P.,
Garcia-Rodriguez, J., 2018. A survey on deep learning techniques for image and video seman-
tic segmentation. Applied Soft Computing 70: 41–65. 33

[101] Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for autonomous driving? the kitti vision
benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
12

[102] Gellert, M., Wenjie, L., Raquel, U., 2017. Deeproadmapper: Extracting road topology from
aerial images. ICCV . 78

[103] Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk, E. D., Le, Q. V., Zoph, B., 2021. Sim-
ple copy-paste is a strong data augmentation method for instance segmentation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2918–2928.
31

[104] Ghiasi, G., Fowlkes, C. C., 2016. Laplacian pyramid reconstruction and refinement for seman-

https://github.com/dukeamll/inria_building_labeling_2017

162 REFERENCES

tic segmentation. ECCV . 44, 56
[105] Ghiasi, G., Lin, T.-Y., Le, Q. V., 2019. Nas-fpn: Learning scalable feature pyramid architecture

for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7036–7045. 32

[106] Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Conference on Computer Vision and Pattern
Recognition (CVPR), 2014. 28, 29, 33, 44

[107] Gkioxari, G., Girshick, R., Malik, J., 2015. Contextual action recognition with r*cnn. In: Inter-
national Conference on Computer Vision (ICCV), 2015. 18

[108] Gstaiger, V., Römer, H., Rosenbaum, D., Henkel, F., 2015. Airborne camera system for real-
time applications-support of a national civil protection exercise. The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 40 (7): 1189. 102

[109] Guo, C., Kidono, K., Meguro, J., Kojima, Y., Ogawa, M., Naito, T., 2016. A low-cost solution for
automatic lane-level map generation using conventional in-car sensors. IEEE Transactions on
Intelligent Transportation Systems 17 (8): 2355–2366. 101

[110] Gurghian, A., Koduri, T., Bailur, S. V., Carey, K. J., Murali, V. N., 2016. Deeplanes: End-to-end
lane position estimation using deep neural networksa. In: CVPR Workshops. 78

[111] Gwon, G.-P., Hur, W.-S., Kim, S.-W., Seo, S.-W., 2017. Generation of a precise and efficient lane-
level road map for intelligent vehicle systems. IEEE Transactions on Vehicular Technology
66 (6): 4517–4533. 101

[112] H., D., C., B., L., K., A., S., V., V., 1996. Support vector regression machines. In: NIPS. 15
[113] Hager, G. D., Belhumeur, P. N., 1996. Real-time tracking of image regions with changes in

geometry and illumination. In: Proceedings IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 403–410. 117

[114] Hamaguchi, R., Hikosaka, S., 2018. Building detection from satellite imagery using ensemble
of size-specific detectors. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 187–191. 42

[115] Han, J., Ding, J., Xue, N., Xia, G.-S., 2021. Redet: A rotation-equivariant detector for aerial
object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2786–2795. 41

[116] Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J., 2014. Object detection in optical remote sensing
images based on weakly supervised learning and high-level feature learning. IEEE Transac-
tions on Geoscience and Remote Sensing 53 (6): 3325–3337. 42

[117] Hannun, A. Y., Case, C., Casper, J., Catanzaro, B. C., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., Coates, A., Ng, A. Y., 2014. Deep speech: Scaling up end-to-end
speech recognition. CoRR abs/1412.5567. 18

[118] Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S. L., Torr, P. H., 2015. Struck:
Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38 (10): 2096–
2109. 117

[119] Hartley, R. I., Zisserman, A., 2004. Multiple View Geometry in Computer Vision, 2nd Edition.
Cambridge University Press, ISBN: 0521540518. 12

[120] He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE
international conference on computer vision, 2961–2969. 30, 33, 39, 44, 61, 62, 78

[121] He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial pyramid pooling in deep convolutional net-
works for visual recognition. IEEE transactions on pattern analysis and machine intelligence
37 (9): 1904–1916. 29

[122] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
770–778. 18, 25, 27, 44, 45, 61, 78, 79, 85, 87, 92, 114

[123] He, S., Bastani, F., Jagwani, S., Alizadeh, M., Balakrishnan, H., Chawla, S., Elshrif, M. M., Mad-
den, S., Sadeghi, M. A., 2020. Sat2graph: Road graph extraction through graph-tensor encod-
ing. In: European Conference on Computer Vision, Springer, 51–67. 41

REFERENCES 163

[124] Heitz, G., Koller, D., 2008. Learning spatial context: Using stuff to find things. In: Forsyth, D.,
Torr, P., Zisserman, A. (Hrsg.), ECCV, Springer Berlin Heidelberg. 56, 57

[125] Helber, P., Bischke, B., Dengel, A., Borth, D., 2018. Introducing eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. In: IGARSS 2018-2018
IEEE international geoscience and remote sensing symposium, IEEE, 204–207. 42

[126] Held, D., Thrun, S., Savarese, S., 2016. Learning to track at 100 fps with deep regression net-
works. In: European conference on computer vision, Springer, 749–765. 39, 114, 117, 118, 119,
121, 132

[127] Henriques, J. F., Caseiro, R., Martins, P., Batista, J., 2014. High-speed tracking with kernelized
correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37 (3): 583–596. 117, 118, 127

[128] Hinz, S., Baumgartner, A., 2003. Automatic extraction of urban road networks from multi-view
aerial imagery. ISPRS JPRS . 77

[129] Hoeser, T., Bachofer, F., Kuenzer, C., 2020. Object detection and image segmentation with deep
learning on earth observation data: A review—part ii: Applications. Remote Sensing 12 (18):
3053. 27, 33, 38, 42

[130] Hoeser, T., Kuenzer, C., 2020. Object detection and image segmentation with deep learning on
earth observation data: A review-part i: Evolution and recent trends. Remote Sensing 12 (10):
1667. 27, 33, 38, 42

[131] Hoiem, D., Chodpathumwan, Y., Dai, Q., 2012. Diagnosing error in object detectors. ECCV .
52

[132] Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P., 1990. A real-time al-
gorithm for signal analysis with the help of the wavelet transform. In: Wavelets. Springer,
286–297. 34

[133] Homayounfar, N., Ma, W.-C., Liang, J., Wu, X., Fan, J., Urtasun, R., 2019. Dagmapper: Learning
to map by discovering lane topology. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2911–2920. 41

[134] Honari, S., Yosinski, J., Vincent, P., Pal, C., 2016. Recombinator networks: Learning coarse-to-
fine feature aggregation. CVPR . 44, 56

[135] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861 . 27, 66, 105

[136] Hsieh, M., Lin, Y., Hsu, W. H., 2017. Drone-based object counting by spatially regularized
regional proposal network. ICCV . 67, 70, 71, 72

[137] Hsieh, M.-R., Lin, Y.-L., Hsu, W. H., 2017. Drone-based object counting by spatially regularized
regional proposal network. In: Proceedings of the IEEE international conference on computer
vision, 4145–4153. 42

[138] Hu, C., Jiang, L.-J., Bo, J., 2009. Wavelet transform and morphology image segmentation algo-
rism for blood cell. IEEE Conference on Industrial Electronics and Applications . 79

[139] Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 7132–7141. 26, 137

[140] Huang, C., Lucey, S., Ramanan, D., 2017. Learning policies for adaptive tracking with deep
feature cascades. In: Proceedings of the IEEE International Conference on Computer Vision,
105–114. 117

[141] Huang, C., Wu, B., Nevatia, R., 2008. Robust object tracking by hierarchical association of
detection responses. In: European Conference on Computer Vision, Springer, 788–801. 117,
121

[142] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q., 2017. Densely connected convo-
lutional networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, 4700–4708. 27, 36, 78, 79

[143] Huang, J., Liang, H., Wang, Z., Song, Y., Deng, Y., 2014. Lane marking detection based on
adaptive threshold segmentation and road classification. ROBIO : 291–296. 77

[144] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y.,

164 REFERENCES

Guadarrama, S., Murphy, K., 2017. Speed/accuracy trade-offs for modern convolutional object
detectors. CVPR . 67, 71, 72

[145] Huber, P. J., 1992. Robust estimation of a location parameter. In: Breakthroughs in statistics.
Springer, 492–518. 149

[146] Ian, G., Yoshua, B., Aaron, C., 2016. Deep learning, book in preparation for MIT Press. 17
[147] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., Keutzer, K., 2016.

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.
https://arxiv.org/abs/1602.07360 . 66

[148] ICGV TU Graz, 2018. Semantic Drone Dataset. http://dronedataset.icg.tugraz.at/, [On-
line; accessed 01-March-2019]. 101

[149] IEEE GRSS 2018, 2018. Data Fusion Contest. http://www.grss-ieee.org/community/
technical-committees/data-fusion/2018-ieee-grss-data-fusion-contest/, [Online;
accessed 22-March-2019]. 101, 110

[150] Iglovikov, V., Seferbekov, S., Buslaev, A., Shvets, A., 2018. Ternausnetv2: Fully convolutional
network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, 233–237. 42

[151] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. arXiv preprint arXiv:1502.03167 . 25, 27, 33

[152] ISPRS, 2019. 2D Semantic Labeling Dataset. http://www2.isprs.org/commissions/comm3/
wg4/semantic-labeling.html, [Online; accessed 01-March-2019]. 41, 42, 101, 105, 110

[153] J., D., Y., J., O., V., J., H., N., Z., E., T., T., D., 2014. DeCAF: A deep convolutional activation
feature for generic visual recognition. In: JMLR. 22

[154] J., D. S., O., P., R., T., 2010. Evaluating the potential of texture and color descriptors for remote
sensing image retrieval and classification. In: VISAPP. 11

[155] Jadhav, A., Mukherjee, P., Kaushik, V., Lall, B., 2019. Aerial multi-object tracking by detection
using deep association networks. arXiv:1909.01547 [cs] ArXiv: 1909.01547. 120

[156] Javanmardi, M., Javanmardi, E., Gu, Y., Kamijo, S., 2017. Towards High-Definition 3D Urban
Mapping: Road Feature-Based Registration of Mobile Mapping Systems and Aerial Imagery.
Remote Sensing 9 (10). 77

[157] Jayawardana, J. R., Bandaranayake, T. S., 2021. Analysis of optimizing neural networks and
artificial intelligent models for guidance, control, and navigation systems. International Re-
search Journal of Modernization in Engineering, Technology and Science 3 (3): 743–759. 20

[158] Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The One Hundred Layers
Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 11–19. 26, 36, 106,
107, 108, 109

[159] Ji, S., Wei, S., Lu, M., 2018. Fully convolutional networks for multisource building extraction
from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Re-
mote Sensing 57 (1): 574–586. 42

[160] Ji, S., Wei, S., Lu, M., 2019. A scale robust convolutional neural network for automatic building
extraction from aerial and satellite imagery. International journal of remote sensing 40 (9):
3308–3322. 42

[161] Jin, H., , Miska, M., Chung, E., Li, X., Feng, Y., 2012. Road Feature Extraction from High Res-
olution Aerial Images Upon Rural Regions Based on Multi-Resolution Image Analysis and
Gabor Filters. Remote Sensing Advanced Techniques and Platforms, Rijeka, Croatia . 77

[162] Jin, H., Feng, Y., 2010. Automated road pavement marking detection from high resolution
aerial images based on multi-resolution image analysis and anisotropic Gaussian filtering. IC-
SPS . 77

[163] Jin, H., Feng, Y., Li, M., 2012. Towards an automatic system for road lane marking extraction
in large-scale aerial images acquired over rural areas by hierarchical image analysis and Gabor
filter. International Journal of Remote Sensing . 77

[164] K., F., 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern

http://dronedataset.icg.tugraz.at/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2018-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2018-ieee-grss-data-fusion-contest/
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

REFERENCES 165

recognition unaffected by shift in position. In: Biological Cybernetics. 21
[165] Kalal, Z., Mikolajczyk, K., Matas, J., 2010. Forward-backward error: Automatic detection of

tracking failures. In: 2010 20th International Conference on Pattern Recognition, IEEE, 2756–
2759. 118, 127

[166] Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. ournal of
Basic Engineering . 117

[167] Kim, H.-I., Park, R.-H., 2018. Residual LSTM attention network for object tracking. Ieee Signal
Process. Lett. 25 (7): 1029–1033. 114

[168] Kim, J., Park, C., 2017. End-to-end ego lane estimation based on sequential transfer learning
for self-driving cars. In: CVPR Workshops. 78

[169] Kim, K., Cheon, Y., Hong, S., Roh, B., Park, M., 2016. PVANET: deep but lightweight neural
networks for real-time object detection. https://arxiv.org/abs/1608.08021 . 66

[170] Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., Ko, S.-J., 2018. Parallel feature pyramid net-
work for object detection. In: Proceedings of the European Conference on Computer Vision
(ECCV), 234–250. 105

[171] Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. Arxiv Prepr.
Arxiv:1412.6980 . 127

[172] Kingma, D. P., Ba, J. L., 2015. Adam: a Method for Stochastic Optimization. International Con-
ference on Learning Representations . 88

[173] Koga, Y., Miyazaki, H., Shibasaki, R., 2018. A cnn-based method of vehicle detection from
aerial images using hard example mining. remote sensing 10 (1): 124. 138

[174] Koga, Y., Miyazaki, H., Shibasaki, R., 2020. A method for vehicle detection in high-resolution
satellite images that uses a region-based object detector and unsupervised domain adaptation.
Remote Sensing 12 (3): 575. 42

[175] Krähenbühl, P., Koltun, V., 2011. Efficient inference in fully connected crfs with gaussian edge
potentials. Advances in neural information processing systems 24. 34

[176] Kraus, M., Azimi, S. M., Ercelik, E., Bahmanyar, R., Reinartz, P., Knoll, A., 2020. AerialMPT-
Net: multi-pedestrian tracking in aerial imagery using temporal and graphical features. In:
International Conference on Pattern Recognition (ICPR). 10, 42, 114, 116, 121, 123, 124, 135

[177] Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems : 1097–1105. 5,
18, 21, 24, 26, 27, 44, 85, 87

[178] Kuhn, H. W., 1955. The hungarian method for the assignment problem. Nav. Res. Logist. Q.
2 (1-2): 83–97. 119

[179] Kuo, T.-S., Tseng, K.-S., Yan, J.-W., Liu, Y.-C., Frank Wang, Y.-C., 2018. Deep aggregation net
for land cover classification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 252–256. 42

[180] Kurz, F., Meynberg, O., Rosenbaum, D., Türmer, S., Reinartz, P., Schroeder, M., 2012. Low-cost
optical camera system for disaster monitoring. Int. Archives of the Photogrammetry, Remote
Sens. and Spatial Information Sci 39: B8. 86

[181] Kurz, F., Rosenbaum, D., Leitloff, J., Meynberg, O., Reinartz, P., 2011. Real time camera system
for disaster and traffic monitoring. In: International Conference on Sensors and Models in
Photogrammetry and Remote Sensing. 102

[182] Kurz, F., Türmer, S., Meynberg, O., Rosenbaum, D., Runge, H., Reinartz, P., Leitloff, J.,
2012. Low-cost optical camera systems for real-time mapping applications. Photogrammetrie-
Fernerkundung-Geoinformation 2012 (2): 159–176. 86

[183] Lamon, P., Stachniss, C., Triebel, R., Pfaff, P., Plagemann, C., Grisetti, G., Kolski, S., Burgard,
W., Siegwart, R., 2006. Mapping with an autonomous car. In: IEEE/RSJ IROS Workshop: Safe
Navigation in Open and Dynamic Environments, Vol. 26. 101

[184] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521 (7553): 436–444. 5
[185] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D.,

1989. Backpropagation applied to handwritten zip code recognition. Neural computation

166 REFERENCES

1 (4): 541–551. 5
[186] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE 86 (11): 2278–2324. 19, 21, 88
[187] Lee, S., Kim, J., Yoon, J. S., Shin, S., Bailo, O., Kim, N., Lee, T., Hong, H. S., Han, S., Kweon,

I. S., 2017. Vpgnet: Vanishing point guided network for lane and road marking detection and
recognition. In: ICCV. 78

[188] Lewandowski, M., Płaczek, B., Bernas, M., Szymała, P., 2018. Road traffic monitoring system
based on mobile devices and bluetooth low energy beacons. Wireless Communications and
Mobile Computing . 55

[189] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X., 2018. High performance visual tracking with siamese
region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 8971–8980. 114, 118

[190] Li, Y., Chen, Y., Wang, N., Zhang, Z., 2019. Scale-aware trident networks for object detection.
In: Proceedings of the IEEE international conference on computer vision, 6054–6063. 31, 33,
61, 62

[191] Li, Y., Paluri, M., Rehg, J. M., Dollár, P., 2016. Unsupervised learning of edges. Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. . 12

[192] Li, Z., Wegner, J. D., Lucchi, A., 2019. Topological map extraction from overhead images. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, 1715–1724. 41

[193] Liang, D., Geng, Q., Wei, Z., Vorontsov, D. A., Kim, E. L., Wei, M., Zhou, H., 2021. Anchor re-
touching via model interaction for robust object detection in aerial images. IEEE Transactions
on Geoscience and Remote Sensing . 41

[194] Liang, J., Homayounfar, N., Ma, W.-C., Wang, S., Urtasun, R., 2019. Convolutional recurrent
network for road boundary extraction. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 9512–9521. 41

[195] Liang, J., Urtasun, R., 2018. End-to-end deep structured models for drawing crosswalks. In:
Proceedings of the European Conference on Computer Vision (ECCV), 396–412. 41

[196] Liao, M., Shi, B., Bai, X., 2018. Textboxes++: A single-shot oriented scene text detector. Trans-
actions on Image Processing . 62

[197] Lin, C.-T., Chen, S.-P., Santoso, P. S., Lin, H.-J., Lai, S.-H., 2019. Real-time single-stage vehicle
detector optimized by multi-stage image-based online hard example mining. IEEE Trans. Veh.
Technol. 69 (2): 1505–1518. 138

[198] Lin, G., Milan, A., Shen, C., Reid, I., 2017. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, 1925–1934. 36, 38, 105, 108

[199] Lin, M., Chen, Q., Yan, S., 2013. Network in network. Arxiv Prepr. Arxiv:1312.4400 . 138
[200] Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., Belongie, S. J., 2017. Feature pyramid

networks for object detection. CVPR . 44, 45, 46, 48, 56, 61, 62, 66
[201] Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection.

In: Proceedings of the IEEE international conference on computer vision, 2980–2988. 30, 33,
138

[202] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C. L.,
2014. Microsoft coco: Common objects in context. In: European conference on computer vi-
sion, Springer, 740–755. 28, 44, 56, 102

[203] Liu, C., Chen, L., Schroff, F., Adam, H., Hua, W., Yuille, A. L., Fei-Fei, L., 2019. Auto-deeplab:
Hierarchical neural architecture search for semantic image segmentation. arXiv preprint
arXiv:1901.02985 . 105

[204] Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., Fei-Fei, L., 2019. Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 82–92. 37,
38

[205] Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. IEEE Geoscience

REFERENCES 167

and Remote Sensing Letters 12 (9): 1938–1942. 42, 121
[206] Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. IEEE TGRS Let-

ters . 44
[207] Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. GRSL . 56, 57
[208] Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. IEEE Geoscience

and Remote Sensing Letters . 72
[209] Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. Geoscience and

Remote Sensing Letters, IEEE 12 (9): 1938–1942. 86, 87
[210] Liu, L., Pan, Z., Lei, B., 2017. Learning a rotation invariant detector with rotatable bounding

box. arXiv preprint arXiv:1711.09405 . 45
[211] Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path aggregation network for instance segmentation.

In: Proceedings of the IEEE conference on computer vision and pattern recognition, 8759–
8768. 30, 31, 32, 33

[212] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C., 2016. SSD: Single
shot multibox detector. In: European conference on computer vision, Springer, 21–37. 32, 33,
45, 47, 53, 54, 61, 62, 66, 71, 72, 78

[213] Liu, W., Rabinovich, A., Berg, A. C., 2015. Parsenet: Looking wider to see better. arXiv preprint
arXiv:1506.04579 . 35, 38

[214] Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., Ling, H., 2020. Cbnet: A novel com-
posite backbone network architecture for object detection. In: AAAI, 11653–11660. 31

[215] Liu, Y., Wang, Y., Wang, S., Liang, T.-T., Zhao, Q., Tang, Z., Ling, H., 2019. CBNet: A novel
composite backbone network architecture for object detection. 33

[216] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer:
Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 10012–10022. 31, 33

[217] Liu, Z., Wang, H., Weng, L., Yang, Y., 2016. Ship rotated bounding box space for ship extraction
from high-resolution optical satellite images with complex backgrounds. GRSL . 57

[218] Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
3431–3440. 30, 33, 34, 38, 78, 79, 80, 87, 88, 89, 90, 92, 94, 105, 108, 109

[219] Long, Y., Gong, Y., Xiao, Z., Liu, Q., 2017. Accurate object localization in remote sensing images
based on convolutional neural networks. TGRS . 57

[220] Lu, X., Ma, C., Ni, B., Yang, X., Reid, I., Yang, M.-H., 2018. Deep Regression Tracking with
Shrinkage Loss. In: Proceedings European Conference on Computer Vision (ECCV), 17. 117

[221] Lukezic, A., Vojir, T., Cehovin Zajc, L., Matas, J., Kristan, M., 2017. Discriminative correlation
filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 6309–6318. 118, 127

[222] Lyu, Y., Vosselman, G., Xia, G., Yilmaz, A., Yang, M. Y., 2018. The uavid dataset for video
semantic segmentation. arXiv preprint arXiv:1810.10438 . 101

[223] Ma, C., Huang, J.-B., Yang, X., Yang, M.-H., 2015. Hierarchical convolutional features for visual
tracking. In: Proceedings of the IEEE international conference on computer vision, 3074–3082.
117

[224] Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, X., 2018. Arbitrary-oriented scene
text detection via rotation proposals. IEEE Transactions on Multimedia . 47

[225] Ma, W.-C., Tartavull, I., Bârsan, I. A., Wang, S., Bai, M., Mattyus, G., Homayounfar, N., Lak-
shmikanth, S. K., Pokrovsky, A., Urtasun, R., 2019. Exploiting sparse semantic hd maps for
self-driving vehicle localization. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 5304–5311. 41

[226] Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Can semantic labeling methods gen-
eralize to any city? the inria aerial image labeling benchmark. In: 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 3226–3229. 42

[227] Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Can semantic labeling methods gener-

168 REFERENCES

alize to any city? the inria aerial image labeling benchmark. In: IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), IEEE. 101

[228] Makiuchi, A., Saji, H., 2019. Vehicle detection using aerial images in disaster situations. In:
Laukaitis, G. (Hrsg.), Recent Advances in Technology Research and Education, Springer Inter-
national Publishing. 55

[229] Mallat, S., 2009. A wavelet tour of signal processing. Academic Press, San Diego . 79, 82
[230] Marvasti-Zadeh, S. M., Cheng, L., Ghanei-Yakhdan, H., Kasaei, S., 2019. Deep learning for

visual tracking: A comprehensive survey. Arxiv Prepr. Arxiv:1912.00535 . 114
[231] Máttyus, G., Luo, W., Urtasun, R., 2017. Deeproadmapper: Extracting road topology from

aerial images. In: Proceedings of the IEEE international conference on computer vision, 3438–
3446. 41, 101, 108

[232] Máttyus, G., Wang, S., Fidler, S., Urtasun, R., 2015. Enhancing road maps by parsing aerial
images around the world. In: Proceedings of the IEEE International Conference on Computer
Vision, 1689–1697. 105

[233] Máttyus, G., Wang, S., Fidler, S., Urtasun, R., 2016. HD Maps: Fine-Grained Road Segmenta-
tion by Parsing Ground and Aerial Images. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 3611–3619. 78, 101

[234] Mayer, H., Hinz, S., Bacher, U., Baltsavias, E., 2006. A test of automatic road extraction ap-
proaches. In: In International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 209–214. 78

[235] Meng, L., Kerekes, J. P., 2012. Object tracking using high resolution satellite imagery. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 5 (1): 146–152. 114, 120

[236] Meynberg, O., Cui, S., Reinartz, P., 2016. Detection of high-density crowds in aerial images
using texture classification. Remote Sensing 8 (6): 470. 87

[237] Mihaylova, L., Carmi, A. Y., Septier, F., Gning, A., Pang, S. K., Godsill, S., 2014. Overview
of bayesian sequential monte carlo methods for group and extended object tracking. Digital
Signal Processing 25: 1–16. 117

[238] Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K., 2016. Mot16: A benchmark for multi-
object tracking. Arxiv Prepr. Arxiv:1603.00831 . 114, 120, 125

[239] Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation. In: 4th Inter. Conf. on 3D Vision. 108

[240] Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., Terzopoulos, D., 2021. Im-
age segmentation using deep learning: A survey. IEEE transactions on pattern analysis and
machine intelligence . 33

[241] Mnih, V., 2013. Machine Learning for Aerial Image Labeling. Ph.D. thesis, University of
Toronto. 101

[242] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through
deep reinforcement learning. Nature 518 (7540): 529–533. 18

[243] Mohan, R., Valada, A., 2021. Efficientps: Efficient panoptic segmentation. International Journal
of Computer Vision 129 (5): 1551–1579. 37

[244] Mundhenk, T. N., Konjevod, G., Sakla, W. A., Boakye, K., 2016. A large contextual dataset for
classification, detection and counting of cars with deep learning. In: European conference on
computer vision, Springer, 785–800. 42

[245] Mundhenk, T. N., Konjevod, G., Sakla, W. A., Boakye, K., 2016. A large contextual dataset for
classification, detection and counting of cars with deep learning. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (Hrsg.), ECCV. 56, 57

[246] Mundhenk, T. N., Konjevod, G., Sakla, W. A., Boakye, K., 2016. A large contextual dataset for
classification, detection and counting of cars with deep learning. ECCV . 71, 72

[247] Nam, H., Han, B., 2016. Learning multi-domain convolutional neural networks for visual
tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 38

REFERENCES 169

[248] Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P., 2017. The mapillary vistas dataset for
semantic understanding of street scenes. In: Proceedings of the IEEE International Conference
on Computer Vision, 4990–4999. 79

[249] Newell, A., Yang, K., Deng, J., 2016. Stacked hourglass networks for human pose estimation.
ECCV . 44, 56

[250] Ning, G., Zhang, Z., Huang, C., Ren, X., Wang, H., Cai, C., He, Z., 2017. Spatially supervised
recurrent convolutional neural networks for visual object tracking. In: 2017 IEEE international
symposium on circuits and systems (ISCAS), IEEE, 1–4. 38

[251] Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation.
In: Proceedings of the IEEE international conference on computer vision, 1520–1528. 36, 38

[252] Normalization, B., 2015. Accelerating deep network training by reducing internal covariate
shift. CoRR.–2015.–Vol. abs/1502.03167.–URL: http://arxiv. org/abs/1502.03167 . 61

[253] Okuma, K., Taleghani, A., De Freitas, N., Little, J. J., Lowe, D. G., 2004. A boosted particle filter:
Multitarget detection and tracking. In: European conference on computer vision, Springer, 28–
39. 117

[254] OpenStreetMap contributors, 2017. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org. 88

[255] Papandreou, G., Chen, L.-C., Murphy, K. P., Yuille, A. L., 2015. Weakly-and semi-supervised
learning of a deep convolutional network for semantic image segmentation. In: Proceedings of
the IEEE international conference on computer vision, 1742–1750. 34

[256] Papert, S., 1966. The summer vision project. https://dspace.mit.edu/handle/1721.1/6125. 11
[257] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep
learning library. In: Advances in neural information processing systems, 8026–8037. 40

[258] Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters–improve semantic seg-
mentation by global convolutional network. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 4353–4361. 106, 107, 108, 109

[259] Pinheiro, P. H. O., Lin, T., Collobert, R., Dollár, P., 2016. Learning to refine object segments.
ECCV . 44, 56

[260] Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F., Mayr, M., 2018.
Lanelet2: A high-definition map framework for the future of automated driving. In: 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), IEEE, 1672–1679. 101

[261] Pohlen, T., Hermans, A., Mathias, M., Leibe, B., 2017. Full-resolution residual networks for
semantic segmentation in street scenes. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3309–3318. 105, 106, 108, 109

[262] Qi, S., Ma, J., Lin, J., Li, Y., Tian, J., 2015. Unsupervised ship detection based on saliency and
s-hog descriptor from optical satellite images. IEEE Geosci. Remote Sens. Lett. 12 (7): 1451–
1455. 121

[263] Rakha, H., El-Shawarby, I., Setti, J. R., 2007. Characterizing driver behavior on signalized in-
tersection approaches at the onset of a yellow-phase trigger. IEEE Trans. Intell. Transp. Syst.
8 (4): 630–640. 135

[264] Rao, S. J., Wang, Y., Cottrell, G. W., 2016. A deep siamese neural network learns the human-
perceived similarity structure of facial expressions without explicit categories. In: CogSci. 38

[265] Rastogi, R., Thaniarasu, I., Chandra, S., 2011. Design implications of walking speed for pedes-
trian facilities. J. Transp. Eng. 137 (10): 687–696. 135

[266] Razakarivony, S., Jurie, F., 2016. Vehicle detection in aerial imagery: A small target detection
benchmark. JVCIR . 56, 57

[267] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-
time object detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, 779–788. 31, 33, 71, 72, 118

[268] Redmon, J., Farhadi, A., 2017. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 7263–7271. 32, 33, 44, 47, 53, 54, 66,

 https://www.openstreetmap.org

170 REFERENCES

67, 78
[269] Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767 . 32, 33, 61, 62
[270] Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.,

2019. Deep learning and process understanding for data-driven earth system science. Nature
566 (7743): 195–204. 5

[271] Reilly, V., Idrees, H., Shah, M., 2010. Detection and tracking of large number of targets in wide
area surveillance. In: European conference on computer vision, Springer, 186–199. 114, 120

[272] Reinartz, P., Tian, J., Arefi, H., Krauß, T., Kuschk, G., Partovi, T., d’Angelo, P., 2014. Advances
in dsm generation and higher level information extraction from high resolution optical stereo
satellite data. In: 34th Earsel Symposium, Vol. 34, Earsel, 1–9. 86

[273] Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object detection
with region proposal networks. In: Advances in neural information processing systems, 91–99.
18, 29, 44, 53, 54, 61, 62, 66, 71, 72, 73, 78, 114, 119

[274] Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C., 2016. Performance measures and a
data set for multi-target, multi-camera tracking. In: European Conference on Computer Vi-
sion, Springer, 17–35. 127

[275] Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical im-
age segmentation. In: International Conference on Medical image computing and computer-
assisted intervention, Springer, 234–241. 36, 38

[276] Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention,
Springer International Publishing, Cham, 234–241. 105, 108, 109

[277] Ronneberger, O., P.Fischer, Brox, T., 2015. U-net: Convolutional networks for biomedical image
segmentation. Medical Image Computing and Computer-Assisted Intervention . 34, 78, 94, 95

[278] Ross, G., 2015. Fast r-cnn. CVPR . 29, 44, 63
[279] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A. C., Fei-Fei, L., 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115 (3): 211–252. 12

[280] Sadeghian, A., Alahi, A., Savarese, S., 2017. Tracking the untrackable: Learning to track mul-
tiple cues with long-term dependencies. In: Proceedings of the IEEE International Conference
on Computer Vision, 300–311. 118

[281] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, 4510–4520. 26, 27

[282] Schmidt, F., Hinz, S., 2011. A scheme for the detection and tracking of people tuned for aerial
image sequences. In: ISPRS conference on Photogrammetric image analysis, Springer, 257–
270. 121

[283] Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks. CoRR
abs/1503.02351. 18

[284] Seif, H. G., Hu, X., 2016. Autonomous driving in the iCity—HD maps as a key challenge of the
automotive industry. Engineering 2 (2): 159–162. 101

[285] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2013. Overfeat: Inte-
grated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229 . 105

[286] Shermeyer, J., Hogan, D., Brown, J., Van Etten, A., Weir, N., Pacifici, F., Hansch, R., Bastidas,
A., Soenen, S., Bacastow, T., et al., 2020. Spacenet 6: Multi-sensor all weather mapping dataset.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 196–197. 42

[287] Shermeyer, J., Van Etten, A., 2019. The effects of super-resolution on object detection perfor-
mance in satellite imagery. In: CVPRW. 64

[288] Shi, B., Bai, X., Belongie, S., 2017. Detecting oriented text in natural images by linking seg-

REFERENCES 171

ments. In: CVPR. 59
[289] Shrivastava, A., Gupta, A., Girshick, R., 2016. Training region-based object detectors with on-

line hard example mining. CVPR . 49
[290] Shrivastava, A., Gupta, A., Girshick, R., 2016. Training region-based object detectors with on-

line hard example mining. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 761–769. 116, 138

[291] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalch-
brenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.,
2016. Mastering the game of go with deep neural networks and tree search. Nature 529 (7587):
484–489. 18

[292] Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks For Large-Scale Image
Recognition. ICRL . 18, 22, 24, 27, 33, 44, 45, 61, 78, 85, 87

[293] Singh, B., Najibi, M., Davis, L.-S., 2018. SNIPER: Efficient multi-scale training. In: NeurIPS).
31, 61, 62

[294] Sommer, L. W., Schuchert, T., Beyerer, J., 2017. Deep learning based multi-category object
detection in aerial images. SPIE Defense and Security . 45

[295] Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R. W., Yang, M.-H., 2018. Vi-
tal: Visual tracking via adversarial learning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 8990–8999. 114

[296] Souza, A., Brennand, C., Yokoyama, R., Donato, E., Madeira, E., Villas, L., 2017. Traffic man-
agement systems: A classification, review, challenges, and future perspectives. International
Journal of Distributed Sensor Networks . 55

[297] SpaceNet, 2020. SpaceNet6: Multi Sensor—All Weather. Available online:https://
spacenet.ai/sn6-challenge/, [Online; accessed 1 April 2020]. 42

[298] SpaceNet, 2021. SpaceNet 1: Building Detection v1. Available online:https://github.com/
SpaceNetChallenge/BuildingDetectors, [Online; accessed 1 April 2021]. 42

[299] SpaceNet, 2021. SpaceNet 2: Building Detection v2. Available online:https://github.com/
SpaceNetChallenge/BuildingDetectorsRound2, [Online; accessed 1 April 2021]. 42

[300] SpaceNet, 2021. SpaceNet 3: Road Network Detection. Available online:https://github.com/
SpaceNetChallenge/RoadDetector, [Online; accessed 1 April 2021]. 42

[301] SpaceNet, 2021. SpaceNet 4: Off-Nadir Buildings. Available online:https://github.com/
SpaceNetChallenge/SpaceNetOptimizedRoutingSolutions, [Online; accessed 1 April
2021]. 42

[302] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research
15: 1929–1958. 21

[303] Strayer, D. L., Drew, F. A., 2004. Profiles in driver distraction: Effects of cell phone conversa-
tions on younger and older drivers. Human factors 46 (4): 640–649. 135

[304] Sumbul, G., Charfuelan, M., Demir, B., Markl, V., 2019. Bigearthnet: A large-scale benchmark
archive for remote sensing image understanding. In: IGARSS 2019-2019 IEEE International
Geoscience and Remote Sensing Symposium, IEEE, 5901–5904. 42

[305] Sumbul, G., Kang, J., Kreuziger, T., Marcelino, F., Costa, H., Benevides, P., Caetano, M., Demir,
B., 2020. Bigearthnet dataset with a new class-nomenclature for remote sensing image under-
standing. arXiv preprint arXiv:2001.06372 . 40, 42

[306] Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution representation learning for
human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 5693–5703. 35

[307] Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X., Liu, W., Wang,
J., 2019. High-resolution representations for labeling pixels and regions. arXiv preprint
arXiv:1904.04514 . 35

[308] Sun, L., Jia, K., Yeung, D.-Y., Shi, B. E., 2015. Human action recognition using factorized spatio-

https://spacenet.ai/sn6-challenge/
https://spacenet.ai/sn6-challenge/
https://github.com/SpaceNetChallenge/BuildingDetectors
https://github.com/SpaceNetChallenge/BuildingDetectors
https://github.com/SpaceNetChallenge/BuildingDetectors_Round2
https://github.com/SpaceNetChallenge/BuildingDetectors_Round2
https://github.com/SpaceNetChallenge/RoadDetector
https://github.com/SpaceNetChallenge/RoadDetector
https://github.com/SpaceNetChallenge/SpaceNet_Optimized_Routing_Solutions
https://github.com/SpaceNetChallenge/SpaceNet_Optimized_Routing_Solutions

172 REFERENCES

temporal convolutional networks. In: International Conference on Computer Vision (ICCV),
2015. 18

[309] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-resnet and the
impact of residual connections on learning. arXiv preprint arXiv:1602.07261 . 25

[310] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. A., 2016. Inception-v4, inception-resnet and the
impact of residual connections on learning. ICLR . 67, 68

[311] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A., 2015. Going deeper with convolutions. CVPR . 18, 25, 46, 66, 87

[312] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception ar-
chitecture for computer vision. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2818–2826. 25, 27, 114

[313] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q. V., 2019. Mnas-
net: Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2820–2828. 26, 27, 37

[314] Tan, M., Le, Q. V., 2019. Efficientnet: Rethinking model scaling for convolutional neural net-
works. arXiv preprint arXiv:1905.11946 . 26, 27

[315] Tan, M., Pang, R., Le, Q. V., 2020. Efficientdet: Scalable and efficient object detection. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 10781–
10790. 30, 32, 33

[316] Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L., 2017. Vehicle detection in aerial images based on
region convolutional neural networks and hard negative example mining. Remote Sensing .
45

[317] Tayara, H., Chong, K. T., 2018. Object detection in very high-resolution aerial images using
one-stage densely connected feature pyramid network. Sensors 18 (10): 3341. 42

[318] Tian, C., Li, C., Shi, J., 2018. Dense fusion classmate network for land cover classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
192–196. 42

[319] Tian, Z., Shen, C., Chen, H., He, T., 2019. FCOS: Fully convolutional one-stage object detection.
arXiv preprint arXiv:1904.01355 . 61, 62

[320] Tournaire, O., Paparoditis, N., Lafarge, F., 2007. Rectangular road marking detection with
marked point processes. International Archives of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences . 78

[321] Touvron, H., Vedaldi, A., Douze, M., Jégou, H., 2020. Fixing the train-test resolution discrep-
ancy: Fixefficientnet. arXiv preprint arXiv:2003.08237 . 26, 27

[322] Uijlings, J. R., Van De Sande, K. E., Gevers, T., Smeulders, A. W., 2013. Selective search for
object recognition. International journal of computer vision 104 (2): 154–171. 28, 29

[323] U.S. House Hearing, . C., 2008. Remote sensing data: Applications and benefits. Tech.
rep., Subcommittee on Space and Aeronautics, Committee on Science and Technology, se-
rial No. 110-91, retrieved January 2, 2020: https://www.govinfo.gov/content/pkg/CHRG-
110hhrg41573/html/CHRG-110hhrg41573.html. 114

[324] Valada, A., Vertens, J., Dhall, A., Burgard, W., 2017. Adapnet: Adaptive semantic segmentation
in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), 4644–4651. 106, 109

[325] Van Etten, A., Lindenbaum, D., Bacastow, T. M., 2018. Spacenet: A remote sensing dataset and
challenge series. arXiv preprint arXiv:1807.01232 . 101

[326] Veeriah, V., Zhuang, N., Qi, G.-J., 2015. Differential recurrent neural networks for action recog-
nition. In: International Conference on Computer Vision (ICCV), 2015. 18

[327] Vemula, A., Muelling, K., Oh, J., 2018. Social attention: Modeling attention in human crowds.
In: 2018 IEEE international Conference on Robotics and Automation (ICRA), IEEE, 1–7. 136

[328] Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In:
Conference on Computer Vision and Pattern Recognition (CVPR), 2001., Vol. 1, I–511–I–518
vol.1. 27

REFERENCES 173

[329] Viola, P., Jones, M. J., 2004. Robust real-time face detection. International Journal of Computer
Vision (IJCV) 57 (2): 137–154. 27

[330] Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., Leibe, B., 2019.
MOTS: Multi-object tracking and segmentation. In: CVPR. 39

[331] Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M., 2021. Scaled-yolov4: Scaling cross stage partial
network. In: Proceedings of the IEEE/cvf conference on computer vision and pattern recogni-
tion, 13029–13038. 32, 33

[332] Wang, C.-Y., Yeh, I.-H., Liao, H.-Y. M., 2021. You only learn one representation: Unified net-
work for multiple tasks. arXiv preprint arXiv:2105.04206 . 32

[333] Wang, J., Kuffer, M., Roy, D., Pfeffer, K., 2019. Deprivation pockets through the lens of convo-
lutional neural networks. Remote sensing of environment 234: 111448. 42

[334] Wang, L., Ouyang, W., Wang, X., Lu, H., 2015. Visual tracking with fully convolutional net-
works. In: Proceedings of the IEEE international conference on computer vision, 3119–3127.
114, 120

[335] Wang, L., Ouyang, W., Wang, X., Lu, H., 2016. Stct: Sequentially training convolutional net-
works for visual tracking. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, 1373–1381. 117

[336] Wang, Q., Gao, J., Xing, J., Zhang, M., Hu, W., 2017. DCFNet: Discriminant Correlation Filters
Network for Visual Tracking. arXiv:1704.04057 [cs] ArXiv: 1704.04057. 117, 119, 127

[337] Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P. H., 2019. Fast online object tracking and
segmentation: A unifying approach. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 38

[338] Wang, R. J., Li, X., Ao, S., Ling, C. X., 2018. Pelee: A real-time object detection system on mobile
devices. https://arxiv.org/abs/1804.06882 . 66

[339] Wang, S., Bai, M., Máttyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S.,
Urtasun, R., 2017. TorontoCity: Seeing the World with a Million Eyes. In: Proceedings of the
IEEE International Conference on Computer Vision. 101, 105

[340] Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P., 2016. A review of road extrac-
tion from remote sensing images. Journal of Traffic and Transportation Engineering (English
Edition) 3 (3): 271 – 282. 78

[341] Wang, Y., Liang, B., Ding, M., Li, J., 2019. Dense semantic labeling with atrous spatial pyramid
pooling and decoder for high-resolution remote sensing imagery. Remote Sensing 11 (1): 20.
41

[342] Wang, Z., Zheng, L., Liu, Y., Wang, S., 2020. Towards real-time multi-object tracking. The
European Conference on Computer Vision (ECCV) . 39

[343] Weyand, T., Kostrikov, I., Philbin, J., 2016. Planet - photo geolocation with convolutional neu-
ral networks. CoRR abs/1602.05314. 18

[344] Wojke, N., Bewley, A., Paulus, D., 2017. Simple online and realtime tracking with a deep as-
sociation metric. In: 2017 IEEE international conference on image processing (ICIP), IEEE,
3645–3649. 38

[345] Wojke, N., Bewley, A., Paulus, D., 2017. Simple online and realtime tracking with a deep associ-
ation metric. In: 2017 IEEE International Conference on Image Processing (ICIP), 3645–3649,
iSSN: 2381-8549. 117, 118, 119, 127, 129

[346] Workman, S., Souvenir, R., Jacobs, N., 2015. Wide-area image geolocalization with aerial ref-
erence imagery. In: International Conference on Computer Vision (ICCV), 2015. 18

[347] Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J., 2016. Quantized convolutional neural networks
for mobile devices. CVPR . 68

[348] Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S. J., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018.
DOTA: A large-scale dataset for object detection in aerial images. CVPR . 44, 49, 50, 54

[349] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018.
Dota: A large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3974–3983. 42, 105

174 REFERENCES

[350] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S. J., Luo, J., Datcu, M., Pelillo, M., Zhang, L.,
2017. DOTA: A large-scale dataset for object detection in aerial images. CVPR . 56, 57, 59, 61,
62

[351] Xiang, Y., Alahi, A., Savarese, S., 2015. Learning to track: Online multi-object tracking by
decision making. In: Proceedings of the IEEE international conference on computer vision,
4705–4713. 113

[352] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations for
deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, 1492–1500. 26, 27, 61

[353] Xie, S., Girshick, R. B., Dollár, P., Tu, Z., He, K., 2016. Aggregated residual transformations for
deep neural networks. arXiv . 66, 79

[354] Xu, C., Wang, J., Yang, W., Yu, L., 2021. Dot distance for tiny object detection in aerial images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1192–1201. 41

[355] Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixé, L., Alameda-Pineda, X., 2020. How to train
your deep multi-object tracker. In: Computer Vision and Pattern Recognition. 152

[356] Xue, H., Huynh, D. Q., Reynolds, M., 2018. Ss-lstm: A hierarchical lstm model for pedestrian
trajectory prediction. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), IEEE, 1186–1194. 136

[357] Yan, H., Zhang, C., Wu, M., 2022. Lawin transformer: Improving semantic segmentation
transformer with multi-scale representations via large window attention. arXiv preprint
arXiv:2201.01615 . 37

[358] Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H., 2019. Clustered object detection in aerial images.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 8311–8320.
41

[359] Yang, M., Yu, K., Zhang, C., Li, Z., Deepmotion, K. Y., 2018. DenseASPP for Semantic Segmen-
tation in Street Scenes. In: CVPR, Salt Lake City, 3684–3692. 105, 106, 107, 108, 109

[360] Yang, X., Liu, Q., Yan, J., Li, A., Zhang, Z., Yu, G., 2019. R3det: Refined single-stage detector
with feature refinement for rotating object. arXiv preprint arXiv:1908.05612 2 (4): 2. 41

[361] Yang, X., Sun, H., Fu, K., Yang, J., Sun, X., Yan, M., Guo, Z., 2018. Automatic ship detection
in remote sensing images from google earth of complex scenes based on multiscale rotation
dense feature pyramid networks. Remote Sensing . 44, 54, 56

[362] Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K., 2018. Position detection and direction pre-
diction for arbitrary-oriented ships via multiscale rotation region convolutional neural net-
work. arXiv preprint arXiv:1806.04828 . 45, 54

[363] Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K., 2018. Position detection and direction pre-
diction for arbitrary-oriented ships via multiscale rotation region convolutional neural net-
work. https://arxiv.org/abs/1806.04828 . 50, 54

[364] Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z., Sun, X., Fu, K., 2019. Scrdet: To-
wards more robust detection for small, cluttered and rotated objects. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 8232–8241. 41

[365] Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D., 2021. Oriented object detection in aerial
images with box boundary-aware vectors. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2150–2159. 41

[366] Yokoyama, M., Poggio, T., 2005. A contour-based moving object detection and tracking. In:
2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, IEEE, 271–276. 120

[367] Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N., 2018. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In: Proceedings of the European Conference
on Computer Vision (ECCV), 325–341. 105, 108, 109

[368] Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., Hu, H., Huang, X., Li, B.,
Li, C., et al., 2021. Florence: A new foundation model for computer vision. arXiv preprint

REFERENCES 175

arXiv:2111.11432 . 27, 31, 33
[369] Yuan, Y., Chen, X., Chen, X., Wang, J., 2019. Segmentation transformer: Object-contextual rep-

resentations for semantic segmentation. arXiv preprint arXiv:1909.11065 . 37
[370] Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing. arXiv preprint

arXiv:1809.00916 . 105
[371] Zeiler, M. D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In:

European Conference on Computer Vision (ECCV), 2014., 818–833. 23, 24, 27, 33
[372] Zhang, D., Maei, H., Wang, X., Wang, Y.-F., 2017. Deep reinforcement learning for visual object

tracking in videos. Arxiv Prepr. Arxiv:1701.08936 . 114
[373] Zhang, G., Lei, T., Cui, Y., Jiang, P., 2019. A dual-path and lightweight convolutional neural

network for high-resolution aerial image segmentation. ISPRS International Journal of Geo-
Information 8 (12): 582. 42

[374] Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A., 2018. Context en-
coding for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 105

[375] Zhang, H., Wu, J., Liu, Y., Yu, J., 2019. Varyblock: a novel approach for object detection in
remote sensed images. Sensors 19 (23): 5284. 42

[376] Zhang, K., Liu, Q., Wu, Y., Yang, M.-H., 2016. Robust visual tracking via convolutional net-
works without training. IEEE Trans. Image Process. 25 (4): 1779–1792. 114

[377] Zhang, L., Zhang, L., Du, B., 2016. Deep learning for remote sensing data: A technical tutorial
on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4 (2): 22–40. 5

[378] Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.-Z., 2018. Single-shot refinement neural network for
object detection. In: CVPR. 61, 62

[379] Zhang, X., Zhou, X., Lin, M., Sun, J., 2018. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, 6848–6856. 26, 66, 67, 68

[380] Zhang, Y., Wang, J., Yang, X., 2017. Real-time vehicle detection and tracking in video based on
faster r-cnn. In: Journal of Physics: Conference Series, Vol. 887, IOP Publishing, 012068. 117

[381] Zhang, Z., Peng, H., 2019. Deeper and wider siamese networks for real-time visual tracking.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
4591–4600. 38

[382] Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J., 2018. Exfuse: Enhancing feature fusion for se-
mantic segmentation. In: Proceedings of the European conference on computer vision (ECCV),
269–284. 36

[383] Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J., 2017. Icnet for real-time semantic segmentation on
high-resolution images. arXiv preprint arXiv:1704.08545 . 46

[384] Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J., 2017. Icnet for real-time semantic segmentation on
high-resolution images. arXiv . 79

[385] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid Scene Parsing Network. In: CVPR,
Honolulu. 30, 35, 38, 78, 79, 105, 108, 109

[386] Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q., 2016. Mars: A video bench-
mark for large-scale person re-identification. In: European Conference on Computer Vision,
Springer, 868–884. 119

[387] Zheng, L., Li, B., Zhang, H., Shan, Y., Zhou, J., 2018. A high-definition road-network model
for self-driving vehicles. ISPRS International Journal of Geo-Information 7 (11): 417. 101

[388] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.
H. S., 2015. Conditional random fields as recurrent neural networks. In: International Confer-
ence on Computer Vision (ICCV), 2015. 18

[389] Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with pretrained encoder and dilated
convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 182–186. 42

[390] Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., Liang, J., 2018. Unet++: A nested u-net

176 REFERENCES

architecture for medical image segmentation. In: Deep learning in medical image analysis and
multimodal learning for clinical decision support. Springer, 3–11. 36

[391] Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Ji, X., 2015. Orientation robust object detection in
aerial images using deep convolutional neural network. ICIP . 49

[392] Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Ji, X., 2015. Orientation robust object detection in
aerial images using deep convolutional neural network. ICIP . 56, 57

[393] Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H., 2021. Detection and tracking meet
drones challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence : 1–1. 41

[394] Zhu, X. X., Hu, J., Qiu, C., Shi, Y., Kang, J., Mou, L., Bagheri, H., Häberle, M., Hua, Y., Huang,
R., et al., 2019. So2sat lcz42: A benchmark dataset for global local climate zones classification.
arXiv preprint arXiv:1912.12171 . 42

[395] Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F., 2017. Deep learning
in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote
Sensing Magazine 5 (4): 8–36. 5

[396] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W., 2018. Distractor-aware siamese networks for
visual object tracking. In: Proceedings of the European conference on computer vision (ECCV),
101–117. 38

[397] Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauß, T., Stiller, C., Dang, T., Franke, U.,
Appenrodt, N., Keller, C., Kaus, E., Herrtwich, R., Rabe, C., Pfeiffer, D., Lindner, F., Stein, F.,
Erbs, F., Enzweiler, M., Knoeppel, C., Zeeb, E., 2014. Making Bertha Drive – An Autonomous
Journey on a Historic Route. IEEE Intell. Transp. Syst. . 103

[398] Zoph, B., Ghiasi, G., Lin, T.-Y., Cui, Y., Liu, H., Cubuk, E. D., Le, Q., 2020. Rethinking pre-
training and self-training. Advances in neural information processing systems 33: 3833–3845.
37, 38

[399] Zoph, B., Le, Q. V., 2016. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 . 37

[400] Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V., 2018. Learning transferable architectures for
scalable image recognition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, 8697–8710. 26, 27

177

Appendices

A Azimi, S., Vig, E., Bahmanyar, R., Körner, M.
and Reinartz, P., Towards Multi-class Object
Detection in Unconstrained Remote Sensing
Imagery, Asian Conference of Computer Vision
(ACCV), 2018

https://link.springer.com/chapter/10.1007/978-3-030-20893-6_10

https://link.springer.com/chapter/10.1007/978-3-030-20893-6_10

Towards Multi-class Object Detection in
Unconstrained Remote Sensing Imagery

Seyed Majid Azimi1,2(B) , Eleonora Vig1 , Reza Bahmanyar1 ,
Marco Körner2 , and Peter Reinartz1

1 German Aerospace Center, Remote Sensing Technology Institute,
Wessling, Germany

seyedmajid.azimi@dlr.de
2 Technical University of Munich, Chair of Remote Sensing, Munich, Germany

Abstract. Automatic multi-class object detection in remote sensing
images in unconstrained scenarios is of high interest for several appli-
cations including traffic monitoring and disaster management. The huge
variation in object scale, orientation, category, and complex backgrounds,
as well as the different camera sensors pose great challenges for current
algorithms. In this work, we propose a new method consisting of a novel
joint image cascade and feature pyramid network with multi-size convo-
lution kernels to extract multi-scale strong and weak semantic features.
These features are fed into rotation-based region proposal and region of
interest networks to produce object detections. Finally, rotational non-
maximum suppression is applied to remove redundant detections. Dur-
ing training, we minimize joint horizontal and oriented bounding box
loss functions, as well as a novel loss that enforces oriented boxes to
be rectangular. Our method achieves 68.16% mAP on horizontal and
72.45% mAP on oriented bounding box detection tasks on the challeng-
ing DOTA dataset, outperforming all published methods by a large mar-
gin (+6% and +12% absolute improvement, respectively). Furthermore,
it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD,
and achieves competitive results with the baselines even when trained
on DOTA. Our method can be deployed in multi-class object detection
applications, regardless of the image and object scales and orientations,
making it a great choice for unconstrained aerial and satellite imagery.

Keywords: Object detection · Remote sensing · CNN

1 Introduction

The recent advances in remote sensing (RS) technologies have eased the acquisi-
tion of very high-resolution multi-spectral satellite and aerial images. Automatic
RS data analysis can provide an insightful understanding over large areas in a
short time. In this analysis, multi-class object detection (e.g., vehicles, ships,
airplanes, etc.) plays a major role. It is a key component of many applications

c© Springer Nature Switzerland AG 2019
C. V. Jawahar et al. (Eds.): ACCV 2018, LNCS 11363, pp. 150–165, 2019.
https://doi.org/10.1007/978-3-030-20893-6_10

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 151

such as traffic monitoring, parking lot utilization, disaster management, urban
management, search and rescue missions, maritime traffic monitoring and so on.
Object detection in RS images is a big challenge as the images can be acquired
with different modalities (e.g., panchromatic, multi- and hyper-spectral, and
Radar) with a wide range of ground sampling distance (GSD) e.g., from 10 cm
to 30 m. Furthermore, the objects can largely vary in scale, size, and orientation.

In recent years, deep learning methods have achieved promising object detec-
tion results for ground imagery and outperformed traditional methods. Among
them, deep convolutional neural networks (DCNNs) have been widely used
[10,13,26]. In the RS domain, newly introduced large-scale multi-class image
datasets such as DOTA [30] have provided the opportunity to leverage the appli-
cations of deep learning methods. The majority of current deep learning-based
methods detect objects based on horizontal bounding boxes (HBBs), which are
appropriate for ground-level images. However, in the RS scenarios, objects can
be arbitrarily oriented. Therefore, utilizing oriented bounding boxes (OBBs) is
highly recommended, especially when multiple objects are located tightly close
to each other (e.g., cars in parking lots).

Region-based convolutional neural networks (RCNNs) such as (Fast(er))-
RCNN [8,23,24] and Mask-RCNN [9] have achieved state-of-the-art object
detection results in large-scale ground imagery datasets [6,15]. Fast-RCNN [24]
improves the detection accuracy of RCNN [8] by using a multi-task loss function
for the simultaneous region proposal regression and classification tasks. As an
improvement, Faster-RCNN integrates an end-to-end trainable network, called
region proposal network (RPN), to learn the region proposals for increasing the
localization accuracy of Fast-RCNN. To further improve Faster-RCNN, one could
perform multi-scale training and testing to learn feature maps in multiple levels;
however, this will increase the memory usage and inference time.

Another alternative is image or feature pyramids [7,12,14,20,21,31].
Recently, Lin et al. [14] proposed the feature pyramid network (FPN) which
extracts feature maps through a feature pyramid, thus facilitating object detec-
tion in different scales, at a marginal extra cost. Although joint image and feature
pyramids may further improve results, this is avoided due to its computation
cost.

Object detection in RS images has been investigated by a number of works
in the recent years. The majority of the proposed algorithms focus on object
detection with a small number of classes and a limited range of GSDs. Liu and
Mattyus [16] proposed histogram of oriented gradients (HOG) features and the
AdaBoost method for feature classification to detect multi-class oriented vehi-
cles. Although this approach achieves a fast inference time, it does not have high
detection accuracy as it lacks high-level feature extraction. Sommer et al. [27]
and Tang et al. [29] proposed RCNN-based methods using hard-negative min-
ing together with concatenated and deconvolutional feature maps. They showed
that these methods achieve high accuracies in single-class vehicle detection in
aerial images for HBBs task. Liu et al. [17] proposed rotated region proposals
to predict object orientation using single shot detector (SSD) [18] improving

152 S. M. Azimi et al.

the localization of the OBBs task. Yang et al. [32] improved [17] by integrating
FPNs.

In this paper, we focus on improving the object localization of region-based
methods applied to aerial and satellite images. We propose a new end-to-end
CNN to address the aforementioned challenges of multi-class object detection in
RS images. The proposed method is able to handle images with a wide range of
scales, aspect ratios, GSDs, and complex backgrounds. In addition, our proposed
method achieves accurate object localization by using OBBs. More specifically,
the method is composed of the following consecutive modules: image cascade
network (ICN), deformable inception network (DIN), FPN, multiscale rotational
region-proposal network (R-RPN), multi-scale rotational region of interest net-
work (R-ROI), and rotational non-maximum suppression (RNMS). The main
contributions of our work are the following:

– We propose a new joint image cascade and feature pyramid network (ICN
and FPN) which allows extracting information on a wide range of scales and
significantly improves the detection results.

– We design a DIN module as a domain adaptation module for adapting the
pre-trained networks to the RS domain using deformable convolutions and
multi-size convolution kernels.

– We propose a new loss function to enforce the detection coordinates, forming
quadrilaterals, to shape rectangles by constraining the angles between the
edges to be 90◦. This augments object localization.

– We achieve significant improvements on three challenging datasets in com-
parison with the state of the art.

In addition, we employ rotational region proposals to capture object locations
more accurately in RS images. Finally, in order to select the best localized regions
and to remove redundant detections, we apply R-NMS which is the rotational
variant of the conventional NMS. Furthermore, we initialize anchor sizes in R-
RPNs with clustered data from rotated ground truth bounding boxes proposed
by Redmon and Farhadi [22] rather than manual initialization used in Faster-
RCNN. In order to evaluate the proposed method, we applied it to the DOTA
[30] dataset, a recent large-scale satellite and aerial image dataset, as well as
the UCAS-AOD and NWPU VHR-10 datasets. Results show that the proposed
method achieves a significantly higher accuracy in comparison with state-of-the-
art object detection methods.

2 Proposed Method

Figure 1 gives a high-level overview of our joint horizontal and oriented bounding
box prediction pipeline for multi-class object detection. Given an input image,
combined image cascade and feature pyramid networks (ICN and FPN) extract
rich semantic feature maps tuned for objects of substantially varying sizes.
Following the feature extraction, a R-RPN returns category-agnostic rotated
regions, which are then classified and regressed to bounding-box locations with

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 153

a R-ROI. During training, we minimize a multi-task loss both for R-RPN and
R-ROI. To obtain rectangular predictions, we further refine the output quadri-
laterals by computing their minimum bounding rectangles. Finally, R-NMS is
applied as a post-processing.

Fig. 1. Overview of our algorithm for (non-)rotated multi-class object detection.

2.1 Image Cascade, Feature Pyramid, and Deformable Inception
Subnetworks

In order to extract strong semantic information from different scales, this work
aims at leveraging the pyramidal feature hierarchy of convolutional neural net-
works (CNNs). Until recently, feature extraction was typically performed on a
single scale [23]. Lately, however, multi-scale approaches became feasible through
FPN [14]. As argued in [14], the use of pyramids both at the image and the
feature level is computationally prohibitive. Nevertheless, here we show that
by an appropriate weight sharing, the combination of ICN (Fig. 2) and FPN
(Fig. 3) becomes feasible and outputs proportionally-sized features at different
levels/scales in a fully-convolutional manner. This pipeline is independent of the
backbone CNN (e.g., AlexNet [13], VGG [26], or ResNet [10]). Here, we use
ResNet [10]. In the ICN, as illustrated in Fig. 2, we use ResNet to compute
a feature hierarchy C1, C2, C3, C4, C5, which correspond to the outputs of the
residual blocks: conv1, conv2, conv3, conv4, and conv5 (blue boxes in Fig. 2).
The pixel strides for different residual boxes are 2, 4, 8, 16, and 32 pixels with
respect to the input image.

To build our image cascade network, we resize the input image by bilinear
interpolation to obtain four scaled versions (1.5×, 1×, 0.75×, 0.5×) and extract
the feature hierarchy using ResNet subnetworks. For example, while all five resid-
ual blocks are used for the upsampled input (1.5×), for the half-resolution ver-
sion (0.5×), only C4 and C5 are used. The cascade network is thus composed

154 S. M. Azimi et al.

of different subnetworks of the ResNet sharing their weights with each other.
Therefore, apart from resizing the input image, this step does not add further
computation costs with respect to the single resolution baseline. ICN allows com-
bining the low-level semantic features form higher resolutions (used for detecting
small objects) with the high-level semantic features from low resolutions (used
for detecting large objects). This helps the network to handle RS images with
a wide range of GSD. A similar definition of ICN was proposed for real-time
semantic segmentation in [33], but without taking into account different scales
in the feature domain and using a cascaded label for each level to compensate
for the sub-sampling. Such a cascaded label is more suitable for semantic seg-
mentation.

FPNs [14] allow extracting features at different scales by combining the
semantically strong features (from the top of the pyramid) with the semanti-
cally weaker ones (from the bottom) via a top-down pathway and lateral connec-
tions (cf. Fig. 3). The original bottom-up pathway of FPN (i.e., the feed-forward
computation of the backbone CNN) is here replaced with the feature hierarchy
extraction of ICN, more specifically with the output of their residual blocks Ci,
i ∈ {1, 2, 3, 4, 5}. The top-down pathway upsamples coarse-resolution feature
maps (Mi) by a factor of 2 and merges them with the corresponding bottom-
up maps Ci−1 (i.e., the lateral connections). The final set of feature maps Pi,
i ∈ {1, 2, 3, 4, 5}, is obtained by appending 3 × 3 convolutions to Mi to reduce
the aliasing effect of upsampling. We refer the reader to the work of Lin et al.
[14] for more details on FPNs.

Fig. 2. Illustration of the image cascade network (ICN). Input images are first up-
and down-sampled. Then they are fed into different CNN cascade levels. (Color figure
online)

In the original FPN, the output of each Ci goes through a 1×1 convolution to
reduce the number of feature maps in Mi. Here, we replace the 1×1 convolution
with a DIN (Deformable Inception Network, cf. Fig. 3) to enhance the local-
ization properties of CNNs, especially for small objects which are ubiquitous in

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 155

Fig. 3. Illustration of the ICN and FPN subnetworks with deformable inception net-
work (DIN). DIN is the modified Inception block to learn features of objects includ-
ing geometrical features in flexible kernel sizes with stride 1. “defconv” stands for
deformable convolution.

RS datasets. Although Inception modules [28] have shown promising results in
various tasks such as object recognition, their effectiveness for detection has not
been extensively studied. While most current state-of-the-art methods, such as
Faster-RCNN, R-FCN [3], YOLOv3 [22], and SSD [18], focus on increasing the
network depth, the benefit of Inception blocks lies in capturing details at varied
scales which is highly desirable for RS imagery.

Deformable networks aim at overcoming the limitations of CNNs in model-
ing geometric transformations due to their fixed-size convolution kernels. When
applying the models pretrained on ground imagery (such as our ResNet back-
bone) to RS images, the parameters of traditional convolution layers cannot
adapt effectively to the new views of objects leading to degradations in localiza-
tion performance. Using deformable convolutions in DIN helps accommodating
such geometric transformations [4]. Furthermore, the offset regression property
of deformable convolution layers helps localizing the objects even outside the
kernel range. Here, we train the added offset layer from scratch to let the net-
work adjust to the new domain. 1 × 1 convolution layers reduce dimensions by
half for the next deformable convolution (def-conv) layers. The channel input to
DIN is divided equally among the four DIN branches. In our experiments, we
did not observe an improvement by using 5 × 5 def-conv layers, hence the use of
3 × 3 layers.

2.2 Rotation Region Proposal Network (R-RPN)

The output of each Pi block in the FPN module is processed by multi-scale
rotated region proposal networks (R-RPN) in order to provide rotated proposals,
inspired by [19]. More precisely, we modify RPN to propose rotated regions with
0, 45, 90, and 135◦ rotation, not differentiating between the front and back
of objects. For initializing the anchors, we cluster the scales and aspect ratios

156 S. M. Azimi et al.

using K-means++ with the intersection over union (IoU) distance metric [22].
We assign anchors with four different orientations to each level, P2 through P6

1.
As in the original RPN, the output feature maps of FPN go through a 3 × 3
convolutional layer, followed by two parallel 1 × 1 fully-connected layers: an
objectness classification layer (obj) and a box-regression layer (reg) (cf. Fig. 1).
For training, we assign labels to the anchors based on their IoUs with the ground-
truth bounding boxes. In contrast to the traditional RPN, we use the smooth l1
loss to regress the four corners (xi, yi), i ∈ {1, 2, 3, 4}, of the OBB instead of the
center point (x, y), and size (w and h) of the HBB. In this case, (x1, y1) indicates
the front of objects which allows to infer their orientations. As in Faster-RCNN,
we minimize the multi-task loss

L ({pi}, {ti}) =
1

Nobj

∑

i

Lobj(pi, p
∗
i) + λ

1

Nreg

∑

i

p∗
i Lreg (ti, t

∗
i) , (1)

where, for an anchor i in a mini-batch, pi is its predicted probability of being
an object and p∗

i is its ground-truth binary label. For classification (object/not-
object), the log-loss Lobj(pi, p

∗
i) = −p∗

i log pi is used, while we employ the smooth
l1 loss

Lreg(ti, t
∗
i) = lsmooth

1 (ti − t∗i) with lsmooth
1 (x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(2)

for the bounding box regression. Here,

txi = (xi − xi,a)/wa, tyi = (yi − yi,a)/ha (3)

t∗xi = (x∗
i − xi,a)/wa, t∗yi = (y∗

i − yi,a)/ha (4)

are the four parameterized coordinates of the predicted and ground-truth anchors
with xi, xi,a, and x∗

i denoting the predicted, anchor, and ground-truth, respec-
tively (the same goes for y); and wa and ha are width and height of the anchor.
Nobj and Nreg are normalizing hyper-parameters (the mini-batch size and num-
ber of anchor locations); and λ is the balancing hyper-parameter between the
two losses which is set to 10.

2.3 Rotated Region of Interest Network (R-ROI)

Similar to [14], we use a multi-scale ROI pooling layer to process the regions
proposed by R-RPN. Because the generated proposals are rotated, we rotate
them to be axis-aligned. The resulting fixed-length feature vectors are fed into
sequential fully-connected (fc) layers, and are finally sent through four sibling
fc layers, which – for each object proposal – output the class prediction, refined
HBB and OBB positions, as well as the angles of OBBs.

1 P6 is a stride 2 sub-sampling of P5 used to propose regions for large objects. P1 is
not computed due to its large memory footprint.

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 157

As seen for R-RPNs, OBBs are not restricted to be rectangular: R-RPN
predicts the four corners of quadrilaterals without any constraint on the corners
or edges. However, we observed that annotators tend to label rotated objects in
RS images with quadrilaterals that are close to rotated rectangles. In order to
enforce a rectangular shape of OBBs, we propose a new loss that considers the
angles between adjacent edges, i.e., we penalize angles that are not 90◦.

Let us consider Pij a quadrilateral side connecting the corners i to j, where
i, j ∈ {1, 2, 3, 4} and i �= j. Then, using the cosine rule, we calculate the angle
between adjacent sides (e.g., θ1 between P12 and P13) as:

θ1 = arccos((|P12|2 + |P13|2 − |P23|2)/(2 ∗ |P12| ∗ |P13|)), (5)

where |Pij | is the length of the side Pij . There are multiple ways to constrain
θl, l ∈ {1, 2, 3} to be right angles. (Note that θ4 can be computed from the other
three angles). We experimented with the following three angle-losses:

Tangent L1 : Langle−OBB(θ) =

3∑

l=1

(|tan(θl − 90)|)

Smooth L1 : Langle−OBB(θ) =

3∑

l=1

smoothL1(|θl − 90|)

L2 : Langle−OBB(θ) =
3∑

l=1

‖(θl − 90)‖2
.

(6)

Our final loss function is a multi-task loss composed of four losses that simultane-
ously predict the object category (Lcls), regress both HBB and OBB coordinates
(Lloc−HBB and Lloc−OBB), and enforce OBBs to be rectangular (Langle−OBB):

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc−HBB(tu, v)+

λ[u ≥ 1]Lloc−OBB(tu, v) + λ[u ≥ 1]Langle−OBB(θ),
(7)

where Lcls(p, u) = −u log p and Lloc−OBB(tu, v) is defined similar to Lreg as in R-
RPN above. u is the true class and p is the discrete probability distribution for the
predicted classes, defined over K+1 categories as p = (p0,, pK) in which “1” is
for the background category. tu = (tuxi, t

u
yi) is the predicted OBB regression offset

for class u and v = (vxi, vyi) is the true OBB (i ∈ {1, 2, 3, 4}). Lloc−HBB(tu, v)
is defined similar to Lreg in Faster-RCNN in which instead of OBB coordinates,
{xmin, ymin,w, h} (the upper-left coordinates, width and height) of tu and v for
the corresponding HBB coordinates are utilized. In case the object is classified as
background, [u ≥ 1] ignores the offset regression. The balancing hyper-parameter
λ is set to 1. To obtain the final detections, we compute the minimum bounding
rectangles of the predicted quadrilaterals. As the final post-processing, we apply
R-NMS in which the overlap between rotated detections is computed to select
the best localized regions and to remove redundant regions.

158 S. M. Azimi et al.

3 Experiments and Discussion

In this section, we present and discuss the evaluation results of the proposed
method on three RS image datasets. All experiments were conducted using
NVIDIA Titan X GPUs. The backbone network’s weights were initialized using
the ResNet-50/101 and ResNeXt-101 models pretrained on ImageNet [5]. Images
were preprocessed as described in baseline [30]. Furthermore, the learning rate
was 0.0005 for 60 epochs with the batch size of 1 using flipped images as the
data augmentation. Additionally, during training, we applied online hard exam-
ple mining (OHEM) [25] to reduce false positives and we use Soft-NMS [1] as
a more accurate non-maximum suppression approach only for the HBB bench-
mark.

3.1 Datasets

The experiments were conducted on the DOTA [30], UCAS-AOD [34], and
NWPU VHR-10 [2] datasets which all have multi-class object annotations.

DOTA is the largest and most diverse published dataset for multi-class
object detection in aerial and satellite images. It contains 2,806 images from
different camera sensors, GSDs (10 cm to 1 m), and sizes to reflect real-world
scenarios and decrease the dataset bias. The images are mainly acquired from
Google Earth, and the rest from the JL-1 and GF-2 satellites of the China Center
for Resources Satellite Data and Application. Image sizes vary from 288 to 8,115
pixels in width, and from 211 to 13,383 pixels in height. There are 15 object cat-
egories: plane, baseball diamond (BD), bridge, ground field track (GTF), small
vehicle (SV), large vehicle (LV), tennis court (TC), basketball court (BC), stor-
age tank (SC), soccer ball field (SBF), roundabout (RA), swimming pool (SP),
helicopter (HC), and harbor. DOTA is split into training (1/2), validation (1/6),
and test (1/3) sets.

UCAS-AOD contains 1,510 satellite images (≈700× 1300 px) with 14,595
objects annotated by OBBs for two categories: vehicles and planes. The dataset
was randomly split into 1,110 training and 400 testing images.

NWPU VHR-10 contains 800 satellite images (≈500× 1000 px) with 3,651
objects were annotated with HBBs. There are 10 object categories: plane, ship,
storage tank, baseball diamond, tennis court, basketball court, ground track
field, harbor, bridge, and small vehicle. For training, we used non-rotated RPN
and region of interest (ROI) networks only for the HBBs detection task.

3.2 Evaluation

In order to assess the accuracy of our detection and the quality of region pro-
posals, we adopted the same mean average precision (mAP) and average recall
(AR) calculations as for DOTA [30]. We conducted ablation experiments on the
validation set of DOTA. Furthermore, we compare our method to the ones in [30]
for HBB and OBB prediction tasks as well as Yang et al. [32] for OBB task based
on the test set whose ground-truth labels are undisclosed (Fig. 4). The results

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 159

reported here were obtained by submitting our predictions to the official DOTA
evaluation server2. We used 0.1 threshold for R-NMS and 0.3 for Soft-NMS.

The Impact of ICN: Table 1 shows the evaluation results of ICN. According to
the table, adding OHEM to ResNet-50 improved the accuracy by a narrow mar-
gin. Using a deeper network such as ResNet-101 further improved the accuracy.
As a next step, adding a 1.5× cascade level increased mAP by around 2% indi-
cating that the up-sampled input can have a significant impact. Based on this, we
added smaller cascade levels such as 0.75× and 0.5×, which however, increased
the accuracy to a lesser extent. This could be due to the fact that the majority
of objects within this dataset are small, so reducing resolution is not always
optimal. Further increasing the cascade levels (e.g., 1.75× and 2×) degraded the
accuracy, which is due to the lack of annotations for very small objects such as
small vehicles. We argue that extracting ResNet features on upsampled images
(1.5×) is beneficial for the small objects in the DOTA dataset, whereas doing this
on the downsampled input (0.75×, 0.5×) brings smaller improvements because
of the lower number of large objects in the dataset. We observed that replacing
ResNet-101 with ResNeXt-101 causes a small drop in accuracy which could be
due to the shallower architecture of ResNeXt-101. Results indicated that using
a higher number of proposals (2000) increases the accuracy to a small degree,
which however came with an increased computation cost; thus, we considered
300 proposals for the rest of our experiments.

Table 1. Evaluation of (1) the impact of ICN with different cascade levels, (2) the
effect of the backbone network (ResNet50/101, ResNeXt101), and (3) the influence of
the number of proposals for the OBB prediction task. The models were trained on the
DOTA training set and results are on the validation set.

Cascade level Proposals Backbone OHEM mAP (%)

1 300 ResNet-50 — 63.35

1 300 ResNet-50 � 64.61

1 300 ResNet-101 � 65.37

[1.5, 1] 300 ResNet-101 � 67.32

[1.5, 1, 0.75] 300 ResNet-101 � 68.06

[1.5, 1, 0.75, 0.5] 300 ResNet-101 � 68.17

[1.5, 1, 0.75, 0.5] 300 ResNeXt-101 � 68.09

[1.5, 1, 0.75, 0.5] 2000 ResNet-101 � 68.29

[1.75, 1.5, 1, 0.75] 2000 ResNet-101 � 67.36

[2, 1.5, 1.5, 1, 0.75] 2000 ResNet-101 � 66.86

The Impact of DIN: From Table 2 we see that replacing the 1×1 convolution
after the residual blocks Ci by DIN can augment mAP by more than 2%. More

2 http://captain.whu.edu.cn/DOTAweb/evaluation.html.

160 S. M. Azimi et al.

specifically, using DIN after lower level Cis resulted in slightly higher accuracy
than using it after higher levels (e.g., mAP for C4 > mAP for C5). In addition,
employing DIN after multiple Cis can further improve model performance (e.g.,
mAP for C4 < mAP for C4—C5 < mAP for C3—C5). Kernel size strongly
affects the high resolution (semantically weak) features. Thus, applying DIN to
the low-level Cis enriched the features and adapts them to the new data domain.
Comparing the last two rows of Table 2, we see that deformable convolutions also
have a positive impact; however, the improvement is smaller.

Table 2. Evaluation of employing DIN after certain residual blocks Ci with and with-
out deformable convolutions on the validation set of DOTA.

DIN Def. conv. mAP (%)

- - 65.97

C4 - 66.24

C5 - 66.28

C4—C5 - 66.41

C3—C5 - 66.75

C2—C5 - 67.47

C2—C5 � 68.17

Fig. 4. Sample OBB predictions in the DOTA test set.

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 161

Fig. 5. Outputs of HBB (left) and OBB (right) prediction on an image of DOTA.

Table 3. Evaluation of (1) the impact of rotated RPN and RoI and (2) the effect of
the loss functions enforcing the rectangularity of the bounding boxes.

Angle Loss functions Rotated BBs in RPN & RoI mAP (%)

- - 64.27

- � 65.67

Tangent L1 � 66.91

Smooth L1 � 67.41

L2 � 68.17

Rotated RPN and ROI Modules: Using clustered initialized anchors with
rotation, we obtained an additional 0.7% mAP. To initialize anchors, we selected
18 anchors compared to 15 in Faster-RCNN in clustering ground-truth OBBs.
We observed no significant increase in IoU with higher number for anchors. Fur-
thermore, we considered each anchor at four different angles (0, 45, 90, 135◦

rotation). The total number of anchors is thus 18 × 4. Table 3 shows that using
rotated proposals in the R-RPN/ R-ROI layers improves mAP by 1.4%, indicat-
ing that these proposals are more appropriate for RS images (Fig. 5).

In addition, we see that using a joint loss function (for HBB and OBB predic-
tion) can increase the prediction of OBBs by 0.81% mAP. We believe that HBBs
provide useful “hints” on the position of the object for regressing OBBs more
accurately. This is not the case for HBB prediction: here, using only the HBB
regression loss achieves 3.98% higher mAP as compared to the joint loss. This
could be due to the complexity that OBB imposes on the optimization problem.
Thus, we apply our algorithm on the HBB benchmark without the OBB loss.

Enforcing Rectangular Bounding Boxes: We investigated three different
loss functions to enforce the rectangularity of the quadrilateral bounding boxes.
Results in Table 3 show that all three angle losses improve the output accuracy
and angle L2 performs the best. The reason behind the lower performance of
angle tangent L1 could be the property of the tangent function: it leads to very
high loss values when the deviation from the right angle is large. Angle smooth

162 S. M. Azimi et al.

Fig. 6. Sample outputs of our algorithm on the NWPU VHR-10 (three right columns
– different camera sensors) and UCAS-AOD (two left columns – different weather
conditions, camera angles, and GSDs) datasets.

Table 4. Quantitative comparison of the baseline and our method on the HBB task
in test set of DOTA dataset. FR-H stands for Faster R-CNN [23] trained on HBB. TV
stands for ‘trainval’ and T for ‘train’ subsets.

method data mAP plane BD bridge GTF SV LV ship TC BC ST SBF RA harbor SP HC

Yolov2-[22] TV 39.20 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61
R-FCN[3] TV 52.58 81.01 58.96 31.64 58.97 49.77 45.04 49.29 68.99 52.07 67.42 41.83 51.44 45.15 53.3 33.89
SSD[18] TV 29.86 57.85 32.79 16.14 18.67 0.05 36.93 24.74 81.16 25.1 47.47 11.22 31.53 14.12 9.09 0.0
FR-H[23] TV 60.64 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85

ours T 70.54 89.54 73.48 51.96 70.33 73.39 67.91 78.15 90.39 78.73 78.48 51.02 59.41 73.81 69.00 52.59
ours TV 72.45 89.97 77.71 53.38 73.26 73.46 65.02 78.22 90.79 79.05 84.81 57.20 62.11 73.45 70.22 58.08

L1 performs marginally worse than angle L2 which could be due to its equal
penalization for deviations larger than 1◦ from the right angle.

By studying the recall-IoU curve, we noticed that very small and very large
objects (e.g., small vehicles and very large bridges) have the lowest localiza-
tion recall and medium-size objects have the highest recall. Overall AR for the
proposals on DOTA is 61.25%. A similar trend is observed for prec-recall curves.

On False Positives: To investigate false positives, we used the object detection
analysis tool from [11]. For the sake of brevity, we merge the bridge and harbor
as the long objects class, and the LV, SV, and ship classes as the vehicles class.
Similar observations were made for the rest of the classes. The large blue area in
Fig. 7 indicates that our method detects object categories with a high accuracy.
Moreover, recall is around 80% (the red line) and is even higher with “weak”
(10% overlap with the ground truth) localization criteria (dashed red line). The
majority of confusions are with the background (the green area) while the confu-
sion with similar object classes is much smaller (yellow area). This issue is more
severe for long objects. Although using only down-sampled levels in the image
cascade alleviates this issue, it lowers the performance for small objects. Since
the proposals are not able to capture long objects effectively, they cause a large
localization error. Additionally, the false positives for similar-classes often occur
for vehicles: small and large vehicles are mistaken for each other.

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 163

Fig. 7. False positive trends. Stacked area plots show the fraction of each type of
false positive by increasing the number of detections; line plots show recall for the
weak localization with more than 10% overlap with ground truth (dashed line) and
the strong one with more than 50% overlap (solid line). Cor: correct, Loc: localization,
Sim: similar classes, Oth: other reasons, BG: background. (Color figure online)

Table 5. Quantitative comparison of the baselines and our method on the OBB pre-
diction task in test set of DOTA dataset. Abbreviations are the same as in Table 4.
Note that only FR-O [23] is trained with OBB.

method data mAP plane BD bridge GTF SV LV ship TC BC ST SBF RA harbor SP HC

Yolov2-[22] TV 25.49 52.75 24.24 10.6 35.5 14.36 2.41 7.37 51.79 43.98 31.35 22.3 36.68 14.61 22.55 11.89
R-FCN[3] TV 30.84 39.57 46.13 3.03 38.46 9.1 3.66 7.45 41.97 50.43 66.98 40.34 51.28 11.14 35.59 17.45
SSD[18] TV 17.84 41.06 24.31 4.55 17.1 15.93 7.72 13.21 39.96 12.05 46.88 9.09 30.82 1.36 3.5 0.0
FR-H[23] TV 39.95 49.74 64.22 9.38 56.66 19.18 14.17 9.51 61.61 65.47 57.52 51.36 49.41 20.8 45.84 24.38
FR-O[23] TV 54.13 79.42 77.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.3 52.91 47.89 47.4 46.3

R-DFPN[31] TV 57.94 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88
Yang et al.[32] TV 62.29 81.25 71.41 36.53 67.44 61.16 50.91 56.60 90.67 68.09 72.39 55.06 55.60 62.44 53.35 51.47

ours T 64.98 81.24 68.74 43.36 61.07 65.25 67.72 69.20 90.66 71.47 70.21 55.41 57.28 66.49 61.3 45.27
ours TV 68.16 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23

Comparison with the State of the Art: Tables 4 and 5 show the performance
of our algorithm on the HBB and OBB prediction tasks DOTA, based on the offi-
cial evaluation of the methods on the test set with non-disclosed ground-truth.
We evaluate our method in two scenarios: training only on the ‘train’ subset,
and training on the training and validation sets (‘trainval’). Our method signifi-
cantly outperforms all the published methods evaluated on this benchmark, and
training on ‘trainval’ brings an additional 2–4% in mAP over training only on
‘train’. Looking at individual class predictions, only the mAPs of the helicopter,
bridge, and SBF classes are lower than the baseline, possibly due to their large
(and unique) size, complex features, and low occurrence in the dataset.

Generalization on the NWPU VHR-10 and UCAS-AOD Datasets: As
shown in Table 6, our algorithm significantly improves upon the baseline also
on these two additional datasets. This demonstrates the good generalization
capability of our approach (Fig. 6). Results are competitive even when we trained
our algorithm only on DOTA dataset.

164 S. M. Azimi et al.

Table 6. Comparison of results on NWUH VHR-10 and UCAS-AOD datasets.

Method Train data Test data mAP

Cheng et al. [2] NWUH VHR-10 NWUH VHR-10 72.63

Ours NWUH VHR-10 NWUH VHR-10 95.01

Ours DOTA NWUH VHR-10 82.23

Xia et al. [30] UCAS-AOD UCAS-AOD 89.41

Ours UCAS-AOD UCAS-AOD 95.67

Ours DOTA UCAS-AOD 86.13

4 Conclusions

In this work, we presented a new algorithm for multi-class object detection in
unconstrained RS imagery evaluated on three challenging datasets. Our algo-
rithm uses a combination of image cascade and feature pyramids together with
rotation proposals. We enhance our model by applying a novel loss function for
geometric shape enforcement using quadrilateral coordinates. Our method out-
performs other published algorithms [30,32] on the DOTA dataset by a large
margin. Our approach is also robust to differences in spatial resolution of the
image data acquired by various platforms (airborne and space-borne).

References

1. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Improving object detection with
one line of code. In: ICCV (2017)

2. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural
networks for object detection in VHR optical remote sensing images. IEEE TGRS
54, 7405–7415 (2016)

3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully
convolutional networks. In: NIPS (2016)

4. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)
5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale

hierarchical image database. In: CVPR (2009)
6. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-

CAL Visual Object classes (VOC) challenge. IJCV 88, 303–338 (2010)
7. Ghiasi, G., Fowlkes, C.C.: Laplacian pyramid reconstruction and refinement for

semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9907, pp. 519–534. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46487-9 32

8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR (2014)

9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
11. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors.

In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33712-3 25

Towards Multi-class Object Detection in Unconstrained Aerial Imagery 165

12. Honari, S., Yosinski, J., Vincent, P., Pal, C.: Recombinator networks: learning
coarse-to-fine feature aggregation. In: CVPR (2016)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

14. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: CVPR (2017)

15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

16. Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images. IEEE
TGRS Lett. 12, 1938–1942 (2015)

17. Liu, L., Pan, Z., Lei, B.: Learning a rotation invariant detector with rotatable
bounding box. arXiv preprint arXiv:1711.09405 (2017)

18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

19. Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE
Trans. Multimedia 20, 3111–3122 (2018)

20. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

21. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object seg-
ments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46448-0 5

22. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017)
23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS (2015)
24. Ross, G.: Fast R-CNN. In: CVPR (2015)
25. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors

with online hard example mining. In: CVPR (2016)
26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICRL (2015)
27. Sommer, L.W., Schuchert, T., Beyerer, J.: Deep learning based multi-category

object detection in aerial images. In: SPIE Defense and Security (2017)
28. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
29. Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L.: Vehicle detection in aerial images

based on region convolutional neural networks and hard negative example mining.
Remote Sens. 17(2), 336 (2017)

30. Xia, G., et al.: DOTA: a large-scale dataset for object detection in aerial images.
In: CVPR (2018)

31. Yang, X., et al.: Automatic ship detection in remote sensing images from Google
earth of complex scenes based on multiscale rotation dense feature pyramid net-
works. Remote Sens. 10, 132 (2018)

32. Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K.: Position detection and
direction prediction for arbitrary-oriented ships via multiscale rotation region con-
volutional neural network. arXiv preprint arXiv:1806.04828 (2018)

33. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmenta-
tion on high-resolution images. arXiv preprint arXiv:1704.08545 (2017)

34. Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Ji, X.: Orientation robust object
detection in aerial images using deep convolutional neural network. In: ICIP (2015)

Towards Multi-class Object Detection in
Unconstrained Remote Sensing Imagery

Seyed Majid Azimi∗1,2, Eleonora Vig1, Reza Bahmanyar1,
Marco Körner2, Peter Reinartz1

1German Aerospace Center (DLR), Remote Sensing Technology Institute, Weßling,
Bavaria, Germany.

2Technical University of Munich, Chair of Remote Sensing, Munich, Bavaria,
Germany.

∗Corresponding author: seyedmajid.azimi@dlr.de

1 Supplementary Material

In order to choose better initialized anchor scales and aspect ratios, we use
Kmeans++ clustering algorithm to cluster annotations into separate clusters.
we use height and width of OBB annotations. As illustrated in fig. 1, each points
stands for one sample point. X-axis is height and y-axis is width of samples. Each
color represents one cluster and white rectangles show the clusters.

Fig. 1: Visualization of training samples and their clusters based on width (x-
axis) and height (y-axis) of OBBs. Each color stands for one cluster. Each white
rectangle inbounds one cluster. We observed no significant increase in intersec-
tion over union (IoU) with higher number for anchors.

Kmeans++ was used for the clustering based on IoU distance instead of
euclidean distance. To initialize anchors, we selected 18 anchors:8.9077,9.8083,

2 Azimi et. al.

21.7707,15.7247, 18.7612,29.9447, 47.5558,25.8434, 32.1346,53.3690, 70.3294,49.8483,
40.0397,94.4366, 121.0369,43.7880, 59.3560,167.6737, 110.1107,109.4641, 52.2028,261.5603,
240.4541,81.2256, 38.4247,581.7922, 154.5593,204.1194, 106.3112,375.6224, 286.0744,235.7061,
526.3332,141.7297, 449.6078,532.2420 anchors compared to 15 in Faster R-CNN
in clustering ground truth OBBs.

Toward Multi-class Object Detection 3

(a) Histogram of height of HBBs. (b) Histogram of width of HBBs.

(c) Histogram of height of OBBs. (d) Histogram of width of OBBs.

(e) Histogram of size(aspect) ratio of
HBBs.

(f) Histogram of size(aspect) ratio of
OBBs.

Fig. 2: a) to f) figures provide further insights and statistical information on
DOTA dataset to better understand the distribution of the dataset. These sta-
tistical information is complementary to the original DOTA dataset paper. This
statistics highlights how diverse the dataset is in term of size of objects and
aspect ratios. For instance, the range of the aspect ratios in OBB is very high
which is mainly due to long objects such as bridges and harbors. Note y-axis is
logarithmic.

4 Azimi et. al.

(a)

(b)

Fig. 3: Illustration of the distribution of the object samples across different cat-
egories. This information shows how heavy unbalanced the dataset is. Interest-
ingly, despite having low number of samples compared with small-vehicles or
ships classes, tennis-court has a very high AP of 93.19% in OBB task (cf. Fig-
ure 5.). We conjecture the medium size of this class in the majority of the images
and its simple features could contribute to this high accuracy. This statistical
information is complementary to the original DOTA dataset paper. Note y-axis
in a) is logarithmic.

Toward Multi-class Object Detection 5

Fig. 4: Illustration of the distribution of angles inside quadrilaterals. This infor-
mation shows that the majority of the angles are 90 degrees, motivating us to
use the side angle loss function to constraint angles of the quadrilaterals to be
90 degrees. Hence, the quadrilaterals form rectangular shapes.

6 Azimi et. al.

0.0 0.2 0.4 0.6 0.8
recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

AP for each class - mAP is: 68.17%

plane AP:79.43%
baseball-diamond AP:72.43%
bridge AP:39.77%
ground-track-field AP:66.23%
small-vehicle AP:49.61%
large-vehicle AP:75.50%
ship AP:68.07%
tennis-court AP:93.19%
basketball-court AP:60.76%
storage-tank AP:83.71%
soccer-ball-field AP:77.69%
roundabout AP:63.54%
harbor AP:70.96%
swimming-pool AP:57.14%
helicopter AP:64.55%

(a)

0.0 0.2 0.4 0.6 0.8
recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

AP for each class - mAP is: 71.64%

plane AP:91.79%
baseball-diamond AP:67.23%
bridge AP:47.41%
ground-track-field AP:70.68%
small-vehicle AP:57.61%
large-vehicle AP:67.39%
ship AP:79.26%
tennis-court AP:91.95%
basketball-court AP:67.26%
storage-tank AP:86.00%
soccer-ball-field AP:76.36%
roundabout AP:68.09%
harbor AP:75.88%
swimming-pool AP:62.06%
helicopter AP:65.64%

(b)

Fig. 5: a) Precision Recall curve of the best performing configuration in the
proposed method for OBB task, b)Precision Recall curve of the best performing
configuration in the proposed method for HBB task. In both tasks, small-vehicle
and bridge classes have the lowest AP. The small and large size of small-vehicles
and bridges respectively might contribute to this performance.

Toward Multi-class Object Detection 7

0.0 0.2 0.4 0.6 0.8 1.0
IoU overlap threshold

0.5

0.6

0.7

0.8

0.9

re
ca

ll

Localization recall in different IoU thresholds
AR@:61.25
ARm@:79.13
ARsx@:59.6
ARxl@:61.39
ARl@:70.06
ARsxx@:23.96
ARs@:76.17

(a)

Fig. 6: Recall-IoU curve of the best performing configuration in the pro-
posed method for different object sizes . Areas for too small(sxx):(1, 162)px,
very small(sx):(162, 642)px, small(s):(642, 1282)px, medium(m):(1282, 2562)px,
large(l):(2562, 5122)px and very large(xl):(5122,)px objects.

8 Azimi et. al.

Fig. 7: False positive trends. Stacked area plots show the fraction of each type of
false positive by increasing the number of detections; line plots show recall for
the weak localization with more 10% overlap with ground truth (dashed line)
and the strong one with more than 50% overlap (solid line). Cor: correct, Loc:
localization, Sim:similar classes, Oth: other reasons, BG: background. We merge
the SP, SBF, BC, TC, and GTF classes as the rectangle objects class; the LV,
SV, and ship classes as the vehicles class; BD, RA, and ST as the round objects
class; bridge and harbor as the long objects class; and helicopter and airplane
as the air objects class.

Toward Multi-class Object Detection 9

Fig. 8: More sample outputs of our algorithm using DOTA test set trained by
DOTA dataset. Best viewed in color. The colors are the same as in the Figure 5.

B Azimi, S., Bahmanyar, R., Henry, C. and Kurz, F., EAGLE: Large-scale Dataset for Vehicle Detection in Aerial Imagery.
IEEE International Conference on Pattern Recognition(ICPR), 2020 203

B Azimi, S., Bahmanyar, R., Henry, C. and Kurz, F.,
EAGLE: Large-scale Dataset for Vehicle Detec-
tion in Aerial Imagery. IEEE International Con-
ference on Pattern Recognition(ICPR), 2020

https://ieeexplore.ieee.org/document/9412353

https://ieeexplore.ieee.org/document/9412353

EAGLE: Large-scale Vehicle Detection Dataset in
Real-World Scenarios using Aerial Imagery

Seyed Majid Azimi∗† , Reza Bahmanyar∗, Corentin Henry∗, and Franz Kurz∗
∗Remote Sensing Technology Institute, German Aerospace Center (DLR), Wessling, Germany

†Department of Aerospace, Aeronautics and Geodesy, Technical University of Munich, Munich, Germany
Corresponding author: {seyedmajid.azimi}@dlr.de

Sample aerial image from the EAGLE dataset with partial snow cover and its overlaid annotation taken in the early morning.

Abstract—Multi-class vehicle detection from airborne imagery
with orientation estimation is an important task in the near and
remote vision domains with applications in traffic monitoring
and disaster management. In the last decade, we have witnessed
significant progress in object detection in ground imagery, but
it is still in its infancy in airborne imagery, mostly due to the
scarcity of diverse and large-scale datasets. Despite being a useful
tool for different applications, current airborne datasets only
partially reflect the challenges of real-world scenarios. To address
this issue, we introduce EAGLE (oriEnted vehicle detection using
Aerial imaGery in real-worLd scEnarios), a large-scale dataset
for multi-class vehicle detection with object orientation informa-
tion in aerial imagery. It features high-resolution aerial images
composed of different real-world situations with a wide variety of
camera sensor, resolution, flight altitude, weather, illumination,
haze, shadow, time, city, country, occlusion, and camera angle.
The annotation was done by airborne imagery experts with small-
and large-vehicle classes. EAGLE contains 215,986 instances
annotated with oriented bounding boxes defined by four points
and orientation, making it by far the largest dataset to date in
this task. It also supports researches on the haze and shadow
removal as well as super-resolution and in-painting applications.
We define three tasks: detection by (1) horizontal bounding boxes,
(2) rotated bounding boxes, and (3) oriented bounding boxes.
We carried out several experiments to evaluate several state-of-
the-art methods in object detection on our dataset to form a
baseline. Experiments show that the EAGLE dataset accurately
reflects real-world situations and correspondingly challenging
applications.

I. INTRODUCTION

Automatic vehicle detection based on aerial imagery is
crucial for a variety of applications such as large-scale traffic
monitoring, parking lot utilization, urban planning, disaster
management, as well as search and rescue missions. Aerial
images, with their wide field of view, provide valuable in-
formation over large open areas in a short time [1]. Due to
the steep rise in the number of vehicles, traffic monitoring
and management has become tremendously more complex,

especially in urban areas. The major socio-economic impacts
of the traffic-related problems such as air pollution, time loss
in traffic jams, and health issues have increased the demand
for developing novel automatic algorithms and adequate traffic
data [2]. It has been shown that vehicle detection algorithms
based on aerial imagery can provide frequent and cost-efficient
information about the location, number, and the types of
vehicles in different traffic scenarios such as congestion caused
by infrastructure bottleneck, accidents, or even lack of parking
spaces [1]. Due to the dynamic nature of traffic, the availability
of large-scale information through aerial images can make
traffic management more adaptive to the changing traffic
conditions and help predicting infrastructure bottlenecks [3].
In disaster management, vehicle detection based on aerial
imagery allows rapid localization of traffic congestion and
abandoned vehicles to determine routes for effective search
and rescue activities. Furthermore, in the case of natural
disasters such as floods and earthquakes, aerial imagery is the
most efficient means for detecting the affected vehicles [4].
Recently, a large number of studies have focused on object
detection (including vehicles) in aerial imagery [5], [6], [7],
[8], [9], [10]; however, despite the pronounced differences
between ground and aerial images, most of the proposed
methods are based on transferring object detection algorithms
developed for natural-scene images to the aerial ones due
to the scarcity of the large-scale aerial image datasets. For
instance, to apply deep learning detection algorithms to aerial
images, previous works usually relied on fine-tuning networks
pre-trained on large-scale natural-scene datasets (e.g., Ima-
geNet [11], MSCOCO [12], PASCAL VOC [13]). As it can be
seen in Figure 1, the scale of the objects varies widely in aerial
images due to not only the differences in spatial resolution ,
but also in the size of objects from the same category. In
addition, aerial images usually contain a large number of small

ar
X

iv
:2

00
7.

06
12

4v
2

 [
cs

.C
V

]
 1

7
Ju

l 2
02

0

Fig. 1: Sample annotations in EAGLE: (a-b) car and trucks in purple and yellow respectively, (c-d) sunny and cloudy
illumination, (e-f) cars partly occluded by buildings, (g-h) cars partly occluded by vegetation, (i-j) cars in shadowed areas, (k-l)
hard to identify cars orientations, (m) difficult car example, (n) car with weak orientation, (o-p) trucks with weak orientations.

objects distributed and oriented differently over the scene (e.g.,
from sparse density of moving vehicles in highways to tightly
packed ones in parking lots). In addition, the number of the
object instances in aerial images is unbalanced, from a few to
thousands of objects per image.

Object detection in ground imagery owes its significant pro-
motion to the large datasets such as MSCOCO, ImageNet, and
PASCAL VOC. However, for aerial imagery, similar datasets
in terms of image number and annotation details are scarce,
which has highly limited the progress in developing methods
for aerial images.The current available aerial image datasets
e.g., [14], [15], [16], [17], [18] suffer from either low number
of images and annotated instances or low-quality annotations.
The largest currently available aerial image dataset for object
detection is DOTA [18] which comprises 2,800 images with
fifteen categories and about 188,000 bounding box annotations
using already processed Google Earth and satellite images;
however, it contains only 43,462 vehicles. Other datasets such
as TAS [14], VEDAI [15], COWO [19], DLR-3K-Munich-
Vehicle [16], and UCAS-AOD [17] which mainly focus on
vehicle detection also contain very limited number of anno-
tated vehicles: TAS (1,319), VEDAI (3,270), COWO (32,716),
DLR-3K-Munich-Vehicle (14,235), and UCAS-AOD (2,819).
In addition to the number of instances, the inadequate diversity
and complexity of the images used (e.g., clear background
and limited object distribution heterogeneity) in these datasets
prevents them from representing real-world situations. Table I
shows detailed statistics from the current major aerial image
datasets for object detection. To promote research on vehicle
detection including vehicle detection, counting, and tracking,
we propose a new and yet largest aerial image dataset for
vehicle detection in real-world aerial imagery scenarios, called
oriEnted object detection using Aerial imaGery in real-worLd
scEnarios (EAGLE).

Altogether, the main contributions of this paper are:
• EAGLE, which is to the best of our knowledge the largest

aerial image dataset for vehicle detection and the first
dataset of its kind addressing real-world scenarios.

• Its high-quality annotations can contribute to the de-
velopment and evaluation of practical airborne vehicle
detection systems as well as haze, shadow, in-painting
and super-resolution applciations.

• Benchmarks of state-of-the-art object detection algo-
rithms as baseline for future works by defining bench-
marks for all three possible detection possibilities and
two dataset split approaches.

II. EAGLE DATASET

The EAGLE dataset consists of 8, 820 aerial images with
size of 936× 936 px, acquired during several flight campaigns
carried out between 2006 and 2019 in various time of day
and year with different weather and illumination conditions.
The images were taken under different traffic conditions and
situations involving vehicles such as motorways, urban/rural
areas, industrial districts, floods, wildfires, earthquakes, as well
as search and rescue missions over multiple locations in five
countries (see Figure 2). The images contain a large diversity
of vehicle orientation angle and number of objects per image
as shown in Figure 3 with a higher number of vehicle in-
stances compared to previous datasets (see Figure 4). Figure 5
showcases some example image patches from the dataset. We
acquired the images using a camera system comprised of three
standard DSLR cameras (Canon EOS cameras) mounted on
an airborne platform with different looking angles, a nadir-
looking (top-down vertical) and two side-looking cameras.
According to the conditions of the flight campaigns, the
camera setups such as aperture size, image size, and ISO
were adjusted differently. The platform was installed either

TABLE I: Comparison between EAGLE and datasets for object detection in aerial images. BB is short for bounding box.
One-dot refers to annotations with only the center coordinates of an instance provided. Fine-grained categories are not taken
into account. For example, EAGLE features 2 different categories with additional difficulty flags with respect to the class and
orientation.

Datasets # Vehicle # Vehicle # All # Images # All Image Annotation Year
Instances Categories Categories Instances Width (px) Approach

TAS [14] 1,319 1 1 30 1,310 792 HBB 2008
NWPU-VHR10 [20] 232 1 10 800 3,775 1000 HBB 2014

VEDAI [15] 3,270 6 9 1,210 3,640 1024 OBB 2015
UCASAOD [17] 2,819 1 2 910 6,029 1280 HBB 2015

DLR-3K-Vehicle [16] 14,232 2 2 20 14,235 5616 OBB 2015
COWC [19] 32,716 1 1 53 32,716 2000-19,000 One-Dot 2016

HRSC2016 [21] 0 0 1 1,070 2,976 1000 OBB 2016
RSOD [22] 0 0 4 976 6,950 1000 HBB 2017
DOTA [18] 43,462 2 15 2,806 188,282 300-4000 RBB 2017

EAGLE (ours) 215,986 2 2 8,280 215,986 936 OBB 2020

Fig. 2: Distribution of image acquisition locations over central Europe, as well as the statistics on camera parameters, image,
and scenery properties.

Fig. 3: Statistics of annotated vehicles with respect to vehicle
orientation (top) and instances per image (bottom).

on an airplane or on a helicopter flying at altitudes between
300 m and 3000 m, resulting in a range of ground sampling
distances (GSDs), or spatial resolution, from 5 cm to 45 cm per
pixel. The images were taken from early in the morning until
the evening in various weather conditions (e.g., sunny, snowy,
rainy, and foggy) with different illumination levels. Altogether,
the variability in image parameters and scenes allows our
dataset to cover a wide range of real-world situations involving
vehicles. Figure 2 represents further statistics on the EAGLE
dataset.

A. Image annotation

Taking into account the relevance of the vehicle categories
for the real-world applications of aerial imagery according to
experts in the domain, we decided on two main categories for

our dataset, namely small vehicles (cars, vans, transporters,
SUVs, ambulances, police cars) and large vehicles (trucks,
large-trucks, minibuses, buses, firefighter trucks, construction
vehicles, trailers). The annotation contains the coordinates of
all four vehicles corners having right angle between sides
as well as orientation degree between 0◦ to 360◦ indicating
the angle of vehicle head with respect to the trigonometric
circle. Table I shows a comparison between EAGLE and other
existing aerial imagery datasets for vehicle detection. The
EAGLE contains 215, 986 annotated vehicles, ranging from
1 to 3,567 annotations per image in all possible orientations
(see Table II), making it the largest aerial image dataset for
vehicle detection by a large margin (5× more vehicle instances
than in the current largest dataset). Furthermore, for each
instance, the visibility condition (totally/partly/hardly visible)
and orientation clarity (clear/unclear) of the vehicle were
provided. Stitched images with original sizes are 345 ones
of 5616× 3744 px size. As visible in Table II, the EAGLE
dataset contains 208,963 small and 7,023 large vehicles. A
category-wise comparison is provided in Figure 4.

B. Annotation method
We have addressed various challenges during the annotation

of the vehicles in our aerial images. Due to the diversity
of the scene locations, the acquisition time, as well as the
weather and illumination conditions, precise annotation of the
vehicles could be a very challenging task. For example, in an

Fig. 4: Comparison between the number of annotated small
and large vehicles in the EAGLE dataset and the vehicle sets
of other aerial image datasets.

Small vehicles Large vehicles
Annotations 208,963 7,023
Weak orientation 311 10
Partly visible 18,188 184
min/max/avg 1/3,567/630 0/140/16
objects per image

TABLE II: Category-wise statistics in EAGLE.

image taken over a flooded area when haze is present with
low illumination or resolution, the visibility of the vehicles
gets limited considerably. In addition, the occlusion due to
other objects or strong shadow could cause difficulties in
finding the vehicles. Furthermore, spotting vehicles in large
aerial images of remote places (e.g., mountains) is not trivial.
Moreover, categorizing the vehicles into either small or large
vehicles could be sometimes tricky due to the uncertainty
about the category of some borderline cases such as large
transporters or buses. To ease the latter situation, we assumed
the one-cabin vehicles with a width or a height smaller
than a specific threshold (specified by an expert) as small
vehicles and otherwise as large vehicles. We also assigned
a difficulty flag for the occluded vehicles which can help to
better train algorithms to overcome occlusion. Detecting the
occluded vehicles is very important in real-world scenarios
such as in disasters like flood when the vehicles are trapped
or partially under water. In the ground imagery , objects are
usually annotated by horizontal bounding box (HBB), where
an HBB can be defined by its top-left (TL) and bottom-right
(BR) vertices, (xTL, yTL, xBR, yBR); or by its center point
(xc, yc) together with the width w and height h, (xc, yc, w, h).
HBB is an efficient object annotation approach; however, it
does not consider the objects’ orientation, which can lead
to imprecise outlines of arbitrary oriented objects.Moreover,
HBBs considerably overlap when objects are tightly packed,
which can confuse even state-of-the-art algorithms trying to
distinguish them. An approach toward alleviating the limita-
tions of HBB is using arbitrary quadrilateral bounding boxes,
the so-called rotated bounding box (RBB) [18], which can
be described by {(xi, yi), i = 1, 2, 3, 4}, where (xi, yi)
are the vertex coordinates which can be with a clockwise
order [18]. A specific case is a rotated rectangle when the sides
make right angle with each other. Inspired by [23], [18] and
the annotations in the common object detection benchmarks
such as MSCOCO and PASCAL VOC, we propose a right-
angle constrained oriented bounding box (OBB) which can
be described as {(xi, yi), i = 1, 2, 3, 4; θ}, where (xi, yi)

are the vertex coordinates and θ indicates the bounding box
orientation. OBB can be also represented as (xc, yc, w, h, θ),
where the bounding box edges are oriented according to θ.
This approach ensures the precision of the object outlines.

C. Dataset splits

We split the dataset into training, validation, and test sets
based on two approaches. In the first approach, we randomly
assign 1/2, 1/6, and 1/3 of the images respectively. In this
case, images from similar flight campaigns can be present in
both train and test sets, which makes the detection task easier
and similar to DOTA.Thus, in the second approach, we split
the dataset so that the images from the same flight campaigns
are either in the training or test set. This approach is similar to
the real-world scenarios in which there is no prior knowledge
about future flight missions and their locations, weather or
illumination conditions.

D. Contributions over the existing datasets

The existing datasets containing vehicle instances (e.g.
DOTA) suffer from inconsistent or inaccurate annotations, low
degree of diversity and a small number of vehicle instances,
limiting their practical applications. Therefore, vehicle de-
tection datasets such as EAGLE with thorough annotations
even for tiny yet visible vehicles (see Figure 6) are lacking
in the community. Moreover, EAGLE enables researchers to
do research on haze and shadow removal as well as super-
resolution, in-paining and instance segmentation. Our dataset
is featuring major differences compared to the DOTA dataset:

• EAGLE focuses on vehicle detection in real-world and
practical scenarios with images of diverse location, time,
resolution, weather and illumination conditions while
DOTA is a multi-class general-purpose detection and
classification dataset.

• DOTA suffers from incomplete and noisy annotations
(see Figure 6) especially for small vehicles [24], whereas
EAGLE provides precise and comprehensive annotations
(even for partially visible vehicles).

• Due to overlaps between the training and test sets in
DOTA, the task is less challenging than EAGLE in which
two training/test splits are proposed: (1) a random patch-
based split, and (2) a more realistic and challenging
campaign-based split, where the test set contains locations
and adverse conditions unseen during training.

III. EVALUATION

We assess the performance of state-of-the-art object de-
tection methods on EAGLE. For HBB object de-
tection, we choose Cascade (Mask-)RCNN [25], Mask-
RCNN [26]1, FPN [9], Faster RCNN [27], FCOS [28]2,
TridentNet [29], SNIPER [30]3, R-FCN [31]4, YOLOv3 [32],

1https://github.com/facebookresearch/Detectron
2https://github.com/tianzhi0549/FCOS
3https://github.com/MahyarNajibi/SNIPER
4https://github.com/msracver/Deformable-ConvNets

Fig. 5: Examples of annotated images (left to right, top to bottom): low sun, rural scene, industrial scene, parking space, mixed
illumination, snow, mega city, mixed parking, flood scene, oblique view, highway scene, service area, suburban area, festival
scene, haze, motorway. Magenta: small vehicles. Yellow: large vehicles. Cyan triangle: driving direction.

Fig. 6: High-quality EAGLE labels (left column) and incom-
plete DOTA labels (right column).

RefineDet [33], and SSD [34]5 having ResNet101 [35],
ResNext101 [36], Triple-ResNeXt152, InceptionV2 [37] or
VGG16 [38] backbone-networks as our baseline benchmark
algorithms on the test set for their excellent performance in
object detection on ground images by HBBs. Furthermore,
we modify the original Cascade Mask-RCNN to detect objects
with RBBs described by {(xi, yi), i = 1, 2, 3, 4}. We further
adapt the algorithm to able to detect objects with OBBs
denoted as (xc, yc, w, h, θ), as θ means the vehicle head angle.

5https://github.com/tensorflow/models/tree/master/research/object detection

In order to evaluate the benchmark algorithms on EAGLE,
we propose three different tasks including detection by HBB,
RBB, and OBB.As the evaluation metric, we employ mean
average precision (mAP) similar to PASCAL VOC. The image
patches are stitched to form the original image before the
evaluation step. In order to remove the redundant detected
boxes in the overlapping regions as well as the patches
themselves, we apply non-maximum suppression (NMS) with
a threshold of 0.3 for HBB and 0.1 for both RBB and OBB.

A. Image splitting

In the training phase, due to the large size of the images
(5616×3744 px) in the EAGLE dataset which cannot be fitted
into the object detectors for the training process, we crop them
into 1024× 1024 px patches with a 50% overlap in a sliding
window fashion, resulting in 70 patches per image leading to
12075, 4025, and 8050 patches of training, validation and test
respectively. The overlaps of the patches allows keeping all the
objects, even if partially clipped at image boundaries. Patches
thus ending up partially outside the image are shifted back
into the image window. Patch-wise predictions are stitched
into full images and overlaps were merged using NMS. This
process could cut some vehicles into two parts. In this case,
we compute the ratio between the area covered by each part
(Ai, i = 1, 2) and that of the complete vehicle (AO) as

Ui = Ai/AO similar to [18], but with the difference that we
adapt the parts’ ground truths to the image boundaries to have
the highest intersection with the original object. After that,
for Ui > 0.7, the attribute of the part remains unchanged,
for 0.1 ≤ Ui < 0.7, the attribute of the part is changed to
”difficult”, and for Ui < 0.1, the part is ignored. Moreover,
the part which does not include the front part of the vehicle
(depicting the orientation) is assigned a ”difficult” flag to its
orientation attribute. For the testing step, we crop the images,
but with a stride of 912 px (10% overlap to ensure the coverage
of the vehicles in their full appearance as well.

B. Horizontal Bounding Boxes (HBB) baselines

We generate the ground truth for HBB by calculating the
center coordinates of the minimum and maximum in x and y
coordinates in the original rotated bounding box ground truth.
We train the baseline algorithms with their default settings
and hyper-parameters for a fair comparison. Table III shows
the HBB detection results which indicates how challenging
this dataset is for the-state-of the-art methods, with Cascade
Mask-RCNN achieving the best performance of 39.29% mAP.
SSD and Yolov3 have very low performance compared to
the others. This could be due to the random crops during
data augmentation suggested by [18]. Furthermore, the results
depict a considerable difference between the ground-level and
aerial objects concerning their size, scale and appearance.

C. Rotated Bounding Boxes (RBB) baselines

Since most of the state-of-the-art algorithms are designed
for non-oriented objects, direct application of the algorithms
for detecting the oriented-objects is not efficient which makes
the benchmark of the existing algorithms for RBB challeng-
ing. We select and modify the Cascade Mask-RCNN [25]
algorithm for predicting rotated bounding boxes, due to its
accuracy on the HBB task of the EAGLE dataset. For the rest
of algorithms, we train the algorithms on the HBB annotations
of our dataset and test them on the RBB annotations.Cascade
Mask-RCNN is composed of one region proposal network
(RPN) and three detection and segmentation heads with thresh-
olds U = {0.5, 0.6, 0.7}. While RBB ground truth is defined
by {(vxi, vyi), i = 1, 2, 3, 4} vertices, RPN generates horizon-
tal rectangles denoted by their top-left (TL) and bottom-right
(BR) vertices RoI = (xTL, yTL, xBR, yBR). Therefore, we
adapt the ground truth to rectangles by xTL = vx1 = vx4,
xBR = vx2 = vx3, yTL = vy1 = vy4, and yBR = vy2 = vy3,
similar to [18]. An alternative would be using rotated RPN as
mentioned in [24]. However, we try to preserve the structure
of the algorithm as much as possible. In the detection heads,
the output target T = {(txi, tyi), i = 1, 2, 3, 4} for each RoI
and its ground truth G = {(gxi, gyi), i = 1, 2, 3, 4} are defined
as:

txi = (gxi − vxi)/w, tyi = (gyi − vyi)/h (1)

where w = xBR − xTL and h = yBR − yTL, similar
to [39]. We consider the coordinates of each ground truth G
as the object mask to prepare the mask for the segmentation

Fig. 7: Test prediction samples of Cascade Mask-RCNN
trained on the EAGLE dataset. The first row is the result of
horizontal bounding box (HBB), the middle row for rotated
quadrilateral bounding boxes (RBB), and the bottom row is
the result of oriented bounding boxes (OBB). Magenta is for
small-vehicle and yellow for large-vehicle. The orientation is
depicted in cyan.

head. Table III shows the results of the modified Cascade
Mask-RCNN trained and tested on RBB compared with
other baselines trained on HBB and tested based on RBB
ground truth. We denote the modified method as Cascade
Mask-RCNN-Rotated. The results show that by adapting the
algorithm to rotated bounding box detection, we can achieve
an improvement of about 7% mAP points. It also indicates
that RBB task is a more difficult task than general HBB.

D. Oriented Bounding Boxes (OBB) baselines

For the benchmark based on OBB, we modify the detection
heads of Cascade Mask-RCNN to predict the bounding box
angles, and denote it as Cascade Mask-RCNN-Oriented. To
this end, We regress over T = (xc, yc, w, h, θ) instead of
(xTL, yTL, xBR, yBR). Other possibilities are regression over
T = {(xi, yi), i = 1, 2, 3, 4; θ)} , or considering the clock-
wise order of bounding box vertices. The angle regression is
defined as:

tθ = tan(gθ − vθ), (2)

where tangent function is used to ensure the periodicity of
the angle regression, but other regression approaches can be
considered. Similar to the Fast-RCNN [41] algorithm, we use
the smooth L1 loss for bounding box regression and Cross-
entropy loss for classification. We evaluate the performance
of the algorithm on the OBB task by comparing the center
coordinates, angle, width and height of predicted oriented

TABLE III: Benchmark of the state of the art on the horizontal bounding box (HBB) and the rotated bounding box (RBB)
detection task; mAP means mean Average Precision, higher is better. Mask-RCNN-H means trained on horizontal bounding
box. Mask-RCNN-R means trained on rotated bounding box.

Method Backbone AP [%] (HBB) AP [%] (RBB)
Mean SV LV Mean SV LV

Yolov3 [32] Darknet-53 20.29 30.45 10.13 13.28 21.34 5.23
SSD [34] InceptionV2 12.06 20.67 3.45 7.31 12.34 2.28

RefineDet [33] VGG16 22.23 32.25 12.21 14.78 22.67 6.89
R-FCN [31] ResNet101 30.61 46.85 14.37 21.06 35.56 6.56

Faster-RCNN [27] ResNet101 31.84 48.34 15.34 23.15 39.29 7.02
Mask-RCNN [26] ResNet101 30.81 46.51 15.11 22.54 36.65 8.43

Cascade-RCNN [40] ResNet101 33.49 49.65 17.34 23.58 38.97 8.19
SNIPER [30] ResNet101 30.74 48.34 13.14 21.97 38.23 5.72

FPN [9] ResNet101 37.10 50.76 23.45 27.11 39.78 14.45
TridenNet [29] ResNet101 30.53 47.16 13.91 22.53 37.16 7.91

FCOS [28] ResNeXt101 38.80 52.94 24.67 27.67 41.24 14.10
Cascade Mask-RCNN-H [25] Triple-ResNeXt152 39.29 53.45 25.14 30.22 43.84 16.60

Cascade Mask-RCNN-R [Ours] Triple-ResNeXt152 - - - 37.23 51.27 23.19

bounding box. For orientation estimation, we divide the angles
in the range of (−180, 180) into 16 output bins and we
consider an angle prediction to be correct if it falls into the
same bin as the ground truth. Cascade Mask-RCNN-Oriented
achieves 43.87% mAP which is 59.45% average precision
(AP) and 28.29% AP for small and large vehicle and with
the angle accuracy of 67.34%.

E. Experimental analysis

By analyzing the results shown in Table III, we observe that
the HBB detection is still challenging with respect to very
small size objects, densely crowded regions, and occlusions
in aerial images. In Figure 7, we provide a comparison of
small and large vehicle detection methods of HBB, RBB,
and OBB. As shown in Figure 7, for areas in which vehicles
are parked tightly , we observe that HBB is less accurate
than RBB and OBB in precise localization of vehicles in
which several detection results are suppressed by NMS and
other post-processing steps. Furthermore, we see that some
vehicles do not have right-angle detections for the RBB task
leading to mistakes in the localization while OBB does not
have this issue, resulting in a better performance. Therefore
OBB is the more accurate way in oriented object detection in
aerial images.As for false positives, some non-vehicles objects
appear similar to vehicles, confusing detectors as shown in the
left column of Figure 7, showing false positives over the roofs.
Also in the results of RBB in the middle column, a trash
bin was detected as small vehicle. The less accuracy of the
detector in large-vehicle detection compared to small-vehicle
is the higher number of small-vehicle instances compared to
large-vehicle ones leading to an unbalanced dataset. Also, in
highly dense areas, results of both RBB and OBB are not
satisfying implying the high difficulty of this task.

F. Impact of data-related factors on the performance

The smaller GSD is already known to improve performance
drastically [42], [24], but requires very-high resolution image

TABLE IV: Benchmark of the best method from benchmark
on the second split approach by splitting based on flight
campgain. Cascae Mask-RCNN-O, -H, and -R means Cas-
cade Mask-RCNN trained on oriented, horizontal, and rotated
bounding boxes respectively.

Method Task mAP [%] AP [%]
small-vehicle large-vehicle

Cascade Mask-RCNN-H HBB 33.54 50.16 16.92
Cascade Mask-RCNN-R RBB 30.18 46.82 13.54
Cascade Mask-RCNN-O OBB 32.02 48.13 15.91

TABLE V: Comparison of results on EAGLE and DOTA using
Cascade Mask-RCNN.The comparison is based on mAP. SL
and LV stand for small-vehicle and large-vehicles respectively.
(scores in mAP)

Training set Test set Avg. SV LV
DOTA DOTA 59.95 61.23 58.67
DOTA EAGLE 28.23 38.89 17.57

EAGLE DOTA 53.25 57.34 49.16
EAGLE EAGLE 39.29 53.45 25.14

acquisition, which may not always be possible. Smaller size
and scale can also degrade the performance. The segmentation
of objects down to 2px-wide at different scales was already
successfully presented [43]. Experiments on EAGLE indicates
other challenges such as low-illumination, haze, shadow and
occlusion as critical factors preventing state-of-the-art object
detectors from performing well. EAGLE will support future
works aiming at solving these real-world issues.

G. Cross-dataset validation

We do a cross-dataset generalization to evaluate the gen-
eralization capability of EAGLE dataset. We select DOTA
for comparison and its validation set for testing. We choose
Cascade Mask-RCNN for validation experiments with HBB
ground truth. Table V shows that a model trained on EAGLE
generalizes well to DOTA, scoring only 6% mAP below a
model trained on DOTA, indicating that EAGLE contains

features of DOTA to a large extend. Moreover, as the annota-
tion quality in EAGLE is significantly higher than in DOTA
specially with respect to very small vehicles (as mentioned in
Section II-A), a portion of false positives in this comparison
is due to the detection of vehicles which are generally not
annotated and ignored in DOTA, due to their small size. As for
DOTA, the model trained on it only achieves 28.23% mAP on
EAGLE (-11% mAP of the model trained on EAGLE) reflect-
ing that EAGLE is significantly more diverse and challenging
than the current available datasets which makes it appropriate
for real-world vehicle detection scenarios.

IV. CONCLUSION

We present EAGLE, a large-scale dataset for task of vehicle
detection in aerial imagery, which is multiple times larger than
existing datasets. Unlike common object detection datasets, we
provide a high number of annotated instances with oriented
bounding boxes. We build a dataset specifically focusing on
real-world scenarios which includes a variety of situations in
aerial photography such as time, weather, and places. The
detection of vehicles in any situation regardless of their size
and appearance with arbitrary orientations contains useful
information for different applications, making it useful for
many practical applications. Our benchmarks show EAGLE
is a very challenging dataset for the current state-of-the-
art object detection algorithms. We also showcase a general
method on object detection which can be modified to detect
oriented objects. We believe EAGLE addresses the task of
vehicle detection in remote vision bringing it to the next
practical level. It also introduces interesting challenges to
object detection domain in computer vision.

V. ACKNOWLEDGEMENT

We thank Ternow AI GmbH for the data labeling support.

REFERENCES

[1] A. Ajay, V. Sowmya, and K. P. Soman, “Vehicle detection in aerial
imagery using eigen features,” in ICCSP, 2017.

[2] M. Lewandowski, B. Paczek, M. Bernas, and P. Szymaa, “Road traffic
monitoring system based on mobile devices and bluetooth low energy
beacons,” Wireless Communications and Mobile Computing, 2018.

[3] A. Souza, C. Brennand, R. Yokoyama, E. Donato, E. Madeira, and
L. Villas, “Traffic management systems: A classification, review, chal-
lenges, and future perspectives,” International Journal of Distributed
Sensor Networks, 2017.

[4] A. Makiuchi and H. Saji, “Vehicle detection using aerial images in
disaster situations,” in Recent Advances in Technology Research and
Education, G. Laukaitis, Ed. Springer International Publishing, 2019.

[5] P. Pinheiro, T. Lin, R. Collobert, and P. Dollár, “Learning to refine object
segments,” ECCV, 2016.

[6] S. Honari, J. Yosinski, P. Vincent, and C. Pal, “Recombinator networks:
Learning coarse-to-fine feature aggregation,” CVPR, 2016.

[7] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction and
refinement for semantic segmentation,” ECCV, 2016.

[8] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” ECCV, 2016.

[9] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” CVPR, 2017.

[10] X. Yang, H. Sun, K. Fu, J. Yang, X. Sun, M. Yan, and Z. Guo,
“Automatic ship detection in remote sensing images from google earth
of complex scenes based on multiscale rotation dense feature pyramid
networks,” Remote Sensing, 2018.

[11] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” CVPR, 2009.

[12] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and L. Zitnick, “Microsoft COCO: Common objects in context,” ECCV,
2014.

[13] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” IJCV, 2010.

[14] G. Heitz and D. Koller, “Learning spatial context: Using stuff to find
things,” in ECCV, D. Forsyth, P. Torr, and A. Zisserman, Eds. Springer
Berlin Heidelberg, 2008.

[15] S. Razakarivony and F. Jurie, “Vehicle detection in aerial imagery: A
small target detection benchmark,” JVCIR, 2016.

[16] K. Liu and G. Mattyus, “Fast multiclass vehicle detection on aerial
images,” GRSL, 2015.

[17] H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and X. Ji, “Orientation
robust object detection in aerial images using deep convolutional neural
network,” ICIP, 2015.

[18] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. J. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, “DOTA: A large-scale dataset for object
detection in aerial images,” CVPR, 2017.

[19] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye, “A large
contextual dataset for classification, detection and counting of cars with
deep learning,” in ECCV, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds., 2016.

[20] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convo-
lutional neural networks for object detection in VHR optical remote
sensing images,” TGRS, 2016.

[21] Z. Liu, H. Wang, L. Weng, and Y. Yang, “Ship rotated bounding box
space for ship extraction from high-resolution optical satellite images
with complex backgrounds,” GRSL, 2016.

[22] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate object localization in
remote sensing images based on convolutional neural networks,” TGRS,
2017.

[23] B. Shi, X. Bai, and S. Belongie, “Detecting oriented text in natural
images by linking segments,” in CVPR, 2017.

[24] S. M. Azimi, E. Vig, R. Bahmanyar, M. Körner, and P. Reinartz,
“Towards multi-class object detection in unconstrained remote sensing
imagery,” in ACCV, 2018.

[25] Z. Cai and N. Vasconcelos, “Cascade R-CNN: high quality object
detection and instance segmentation,” TPAMI, 2019.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” ICCV,
2017.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” NIPS, 2015.

[28] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” arXiv preprint arXiv:1904.01355, 2019.

[29] Y. Li, Y. Chen, N. Wang, and Z. Zhang, “Scale-aware trident networks
for object detection,” arXiv preprint arXiv:1901.01892, 2019.

[30] B. Singh, M. Najibi, and L.-S. Davis, “SNIPER: Efficient multi-scale
training,” in NeurIPS), 2018.

[31] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-
based fully convolutional networks,” in NeurIPS, 2016.

[32] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[33] S. Zhang, L. Wen, X. Bian, Z. Lei, and S.-Z. Li, “Single-shot refinement
neural network for object detection,” in CVPR, 2018.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A. Berg,
“Ssd: Single shot multibox detector,” in ECCV, 2016.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CVPR, 2016.

[36] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR, 2017.

[37] B. Normalization, “Accelerating deep network training by reduc-
ing internal covariate shift,” CoRR.–2015.–Vol. abs/1502.03167.–URL:
http://arxiv. org/abs/1502.03167, 2015.

[38] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
For Large-Scale Image Recognition,” ICRL, 2015.

[39] M. Liao, B. Shi, and X. Bai, “Textboxes++: A single-shot oriented scene
text detector,” Transactions on Image Processing, 2018.

[40] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” CVPR, 2018.

[41] G. Ross, “Fast R-CNN,” CVPR, 2015.
[42] J. Shermeyer and A. Van Etten, “The effects of super-resolution on

object detection performance in satellite imagery,” in CVPRW, 2019.

[43] S. M. Azimi, C. Henry, L. Sommer, A. Schumann, and E. Vig,
“Skyscapes - fine-grained semantic understanding of aerial scenes,” in
ICCV, 2019.

C Azimi, S., ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery. IEEE European
Conference on Computer Vision Workshop (ECCVW), UAV Vision, 2018 213

C Azimi, S., ShuffleDet: Real-Time Vehicle Detec-
tion Network in On-Board Embedded UAV Im-
agery. IEEE European Conference on Computer
Vision Workshop (ECCVW), UAV Vision, 2018

https://www.springerprofessional.de/shuffledet-real-time-vehicle-detection-network-in-on-board-
embed/16425532

https://www.springerprofessional.de/shuffledet-real-time-vehicle-detection-network-in-on-board-embed/16425532
https://www.springerprofessional.de/shuffledet-real-time-vehicle-detection-network-in-on-board-embed/16425532

ShuffleDet: Real-Time Vehicle Detection
Network in On-board Embedded UAV Imagery

Seyed Majid Azimi1,2[0000−0002−6084−2272]

1 German Aerospace Center (DLR), Remote Sensing Technology Institute,
Weßling, Germany

2 Technical University of Munich, Chair of Remote Sensing,
Munich, Germany

seyedmajid.azimi@{dlr,tum}.de

Abstract. On-board real-time vehicle detection is of great significance
for UAVs and other embedded mobile platforms. We propose a com-
putationally inexpensive detection network for vehicle detection in UAV
imagery which we call ShuffleDet. In order to enhance the speed-wise per-
formance, we construct our method primarily using channel shuffling and
grouped convolutions. We apply inception modules and deformable mod-
ules to consider the size and geometric shape of the vehicles. ShuffleDet is
evaluated on CARPK and PUCPR+ datasets and compared against the
state-of-the-art real-time object detection networks. ShuffleDet achieves
3.8 GFLOPs while it provides competitive performance on test sets of
both datasets. We show that our algorithm achieves real-time perfor-
mance by running at the speed of 14 frames per second on NVIDIA Jet-
son TX2 showing high potential for this method for real-time processing
in UAVs.

Keywords: UAV imagery · real-time vehicle detection · on-board em-
bedded processing · convolutional neural networks · traffic monitoring

1 Introduction

On-board real-time processing of data through embedded systems plays a crucial
role in applying the images acquired from the portable platforms (e.g., unmanned
aerial vehicless (UAVs)) to the applications requiring instant responses such as
search and rescue missions, urban management, traffic monitoring, and parking
lot utilization.

Methods based on convolutional neural networks (CNNs), for exam-
ple, FPN [1], FasterRCNN [19], R-FCN [3], multi-box single shot detectors
(SSDs) [14], and Yolov2 [18], have shown promising results in many object de-
tection tasks. Despite their high detection precision, these methods are com-
putationally demanding and their models are usually bulky due to the deep
backbone networks being used. Employing CNNs for the on-board real-time ap-
plications requires developing time and computation efficient methods due to
the limited processing resources available on-board. A number of networks have

2 Seyed Majid Azimi

been developed recently such as GoogleNet [20], Xception [2], ResNeXt [25], Mo-
bileNet [7], PeleeNet [23], SqueezeNet [10], and ShuffleNet [26] which have less
complex structures as compared to the other CNNs while providing comparable
or even superior results. For the real-time object detection applications (e.g.,
vehicle detection), there are a few recent works proposing the methods such as
MobileNet [7] with SSD [9], PVANET [11], and Tiny-Yolo [18]. They have shown
computational efficiency to be deployed in mobile platforms.

Zhang et al. [26] employed ShuffleNet as the backbone network, which uses
point-wise grouped convolutions and channel shuffle to greatly reduce the com-
putations while maintaining the accuracy. The authors reported a better perfor-
mance compared with MobileNet using Faster-RCNN detection approach. Kim
et al. [11] developed PVANET by concatenating 3 × 3 conv layer with its nega-
tion as a building block for the initial feature extraction stage. Recently, Wang
et al. [23] proposed PeleeNet that uses a combination of parallel multi-size kernel
convolutions as a 2-way dense layer and a similar module to the Squeeze mod-
ule. They additionally applied a residual block after feature extraction stage to
improve the accuracy using the SSD [14] approach. The authors reported more
accurate results compared to MobileNet and ShuffleNet on the Pascal VOC
dataset despite the smaller model size and computation cost of PeleeNet. Red-
mon and Farhadi [18] proposed Yolov2, a fast object detection method, but
yet with high accuracy. However, their method is still computationally heavy
for real-time processing on an embedded platform. Tiny Yolov2 as the smaller
version of Yolov2, although it is faster, but it lacks high-level extraction capa-
bility which results in poor performance. In the work of Huang et al. [9], they
showed the SSD detection approach together with SqueezeNet and MobileNet
as the backbone networks. Although SSD with SqueezeNet backbone results in
a smaller model than MobileNet, its results are less accurate and its compu-
tation is slightly more expensive. In general, replacing the backbone network
with SqueezeNet, MobileNet, or any other efficient network - though enhancing
computational efficiency - can degrade the accuracy if no further modification is
performed.

In this paper, we propose ShuffleDet, a real-time vehicle detection approach
to be used on-board by mobile platforms such as UAVs. ShuffleDet network is
composed of ShuffleNet and a modified variant of SSD based on channel shuf-
fling and grouped convolution. We design a unit to appropriately transfer the
pretrained parameters of the pretrained model on terrestrial imagery to aerial
imagery domain. We call this unit domain adapter block (DAB) which includes
deformable convolutions [4] and Inception-ResNetv2 units [21]. To the best of
our knowledge, group convolution and channel shuffling have not been used be-
fore in real-time vehicle detection based on UAV imagery. ShuffleDet runs at 14
frames per second (FPS) on NVIDIA Jetson TX2 while having the computa-
tional complexity of 3.8 giga floating point operations (GFLOPs). Experimental
results on the CARPK and PUCPR+ datasets [8] demonstrates that ShuffleDet
achieves a good trade-off between accuracy and speed for mobile platforms while
it is comparably computation and time efficient.

ShuffleDet 3

2 Method

In this section, a detailed description of the network architecture is presented. We
use ShuffleNet [26] which is designed for object recognition to extract high-level
features as our backend network.

Fig. 1: Illustration of ShuffleDet architecture. The backbone network is Shuf-
fleNet. Modified inception layers are applied as extra layers. C stands for chan-
nel. DAB unit is deployed to adapt to the new domain of UAV imagery using a
residual block containing deformable convolution layers3.

ShuffleNet[26] shows that by utilizing grouped or depth-wise separable con-
volutions, one can reduce the computational demand, while still boosting the
performance through a decent representation ability. A major bottleneck can
arise by replacing 1 × 1 convolution layers with stacked grouped convolutions
which can degrade the accuracy of the network. This is due to the fact that
a limited portion of input channels are utilized by the output channels. In or-
der to solve this issue channel shuffling was proposed in [26] which we also use
inside ShuffleDet architecture. Figure 1 illustrates the network architecture of
ShuffleDet. In stage 1, a 3 × 3 convolutional layer is applied to the input image
with a stride of 2 which downsamples the input by a factor of 2. This layer
is followed by a maxpooling layer with a stride of 2 and kernel of 3 × 3. This
maxpooling operation destroys half of the input information. This is critical as
vehicles in our case are small objects [5, 12, 22, 17]. Having said that without
this operation, computation cost will be multiplied. Therefore, we keep the max-
pooling layer and we try to enhance the performance especially via DABs units
which will be discussed later. After the maxpooling three stages containing mul-
tiple units from ShuffleNet are performed. Stage 2 and 4 contain 3 ShuffleNet

3 UAV photo is from https://www.quantum-systems.com/tron

4 Seyed Majid Azimi

units while stage 3 in the middle is composed of 7 units. The whole stage 1
to 4 leads to 32x down-sampling factor. ShuffleUnit illustrated in Figure 1 acts
as residual bottleneck unit. Using stride 2 in ShuffleUnit, an average pooling is
applied to the primary branch parallel with depthwise convolution with a stride
2 in the residual branch. To ensure that all of the input channels are connected
to the output channels, channel shuffling is performed before the depthwise con-
volution. A 1 × 1 grouped convolutions are applied before the channel shuffling
as a bottleneck in order to reduce the number of feature maps in the output
for the efficient computation. It has been shown [26, 24] that the group convolu-
tions also improve the accuracy. The second grouped convolution brings back the
number of feature maps or channel to the number of input channels for a more
accurate representation capability. Using a stride of 2, the features of average
pooling and second grouped convolution is concatenated while having a stride
of 1, maxpooling is omitted and depth-wise convolution is performed. Moreover,
the outputs are summed up instead of using concatenation. Figure 1 shows the
detailed structure of ShuffleNet units with and without stride of 2.

Stage 1, 2, 3 and stage 4 are employed to enhance the heat map resolution
as input intermediate layers. In the detection module, we primarily inspire from
SSD approach. In order to enrich the extracted features from the intermediate
layers, we perform extra feature layers in stage 5. In our case, the output from
stage 4 is passed through stage 5 as illustrated in Figure 1 This is compatible
with using multi-box strategy explained in the SSD method. In total, we extract
7 feature maps of different sizes from the backbone network.

To enhance the performance, instead of employing a conventional convolution
layer similar to SSD method for each extra layer, we use a modified module of
Reduction-B from Inception-ResNet-v2 [21] in stage 5. Unlike ResNet and VGG,
inception modules have not been explored enough in object detection task due to
their higher computation cost. We stack 4 modified inception modules as stage 5
for feature map extraction at different levels. Unlike original Inception-ResNet-
v2 work, we add 1 × 1 conv layers after maxpooling and concatenation layer.
The maxpooling layer reduces spatial-resolution and dimension as a bottleneck.
1×1 convolution in return expands the dimension to insert further non-linearity
to the network resulting in a better performance. The same philosophy was
used in the latter 1 × 1 conv layer. Applying the inception module adds more
computational cost to the network. To compensate its load, we replace 3 × 3
convolution layers with 3 × 3 depthwise convolutions. Depth-wise convolution

improves the performance slightly, yet it has
1

N
+

1

k2
times less computation

cost compared with regular conv layers. N is the number of output channels and
k is the kernel size. Furthermore, we divide the input channels equally among
the branches. The output number of channels for each layer is an equally-divided
concatenation of output channels from each branch. These modifications keep
the model size as well as computational complexity small. We observe using this
modified inception modules enhances the performance. We conjecture unlike the
original SSD which uses 1 × 1 and 3 × 3 conv layers in series as extra layers,
multi-size kernels parallel in inception modules capture features in different sizes

ShuffleDet 5

simultaneously e.g. 1 × 1 kernels to detect small vehicles and 3 × 3 kernels for
bigger ones which could be the reason for this enhancement. This shows by
widening the network and augmenting the cardinality, we can achieve better
results. This comes only with a marginal increase in computational complexity.
Moreover, by using multi-size kernels, one does not need to worry which kernel
size is more appropriate.

In order to regress bounding boxes and predict object classes from extra
layers as illustrated in Figure 1, the base-line SSD processes each feature map
by only a single 3 × 3 convolution layer followed by permute and flatten
layers in multi-box detection layer. This includes feature maps only from one of
the high-resolution layers. This leads to a weak performance in detecting small-
scale vehicles. The feature maps from higher-resolution layers e.g. in our case
stage 2 and 3 are responsible to detect small-scale vehicles. Stage 1 is ignored
due to its high computational complexity. Those corresponding feature maps are
semantically weak and not deep enough to be capable of detecting small-scale
vehicles. ResNet and VGG19 works denote that employing deeper features en-
hances the object recognition accuracy. However, those backbone networks are
computationally heavy to be deployed on on-board processors in UAVs which
work under strict power constraints. As an alternative, we propose using a resid-
ual module which we call DAB as shown in Figure 1. Combination of 1 × 1
convention and 3 × 3 deformable convolution operations enrich the features fur-
ther, but still introducing low computation burden. We choose a portion of input
channels to keep the computation cost low. 1/8, 1/8, 1/8, 1/4, 1/2, 1/2, 1 are used
as the portion of input channels of output layers from stage 2 to the last extra
layer and inside DAB unit we assign 1/5, 4/5, 4/5 portion of input channels to
each branch as illustrated in Figure 1. The output channels remain similar to the
original SSD. The only difference is the introduced extra multi-box feature map
from stage 2. SSD calculates the number of default boxes per class by W ×H×B
in which W and H are input width and height and B is from the set of 4, 6, 6, 4, 4
for each feature map. We choose B = 4 for the stage 2 leading to 28642 boxes
per class.

In aerial imagery, vehicles appear to be very small and almost always in
rectangle geometric shape. On the other hand, the pre-trained ShuffleNet has
been trained on ground imagery while our images are in another domain of aerial
imagery. Therefore pre-trained weights should be adapted to the new domain.
We use deformable convolution as introduced in [4] to take into account the new
domain and the geometric properties of the vehicles. Deformable convolution
adds an offset to the conventional conv layer in order to learn from the geometric
shape of the objects. They are not limited to a fix kernel size and offset is
learned during training by adding only an inexpensive conv layer to compute
the offset field. Deformable conv layer shows considerable improvement in case
of using images acquired from low-flying UAVs. However, the impact is less
by using images from high-altitude platforms such as helicopter or airplanes.
According to [4] the computation cost of deformable convolutions is negligible.
Finally, we apply ReLU layer to element-wise added features in the DAB to add

6 Seyed Majid Azimi

more non-linearity. In general, naive implementation of ShuffleNet with SSD
has 2.94 GFLOPs while ShuffleDet has 3.8 GFLOPs. Despite an increase in
the computation cost, ShuffleDet has considerable higher accuracy. As vehicles
appear to be small objects in UAV images, we choose default prior boxes with
smaller scales similar to [5]. Eventually, non-maximum suppression (NMS) is
employed to suppress irrelevant detection boxes. It is worth mentioning that
during training hard negative mining is employed with the ratio of 3 : 1 between
negative and positive samples. This leads to more stable and faster training.
We also apply batch normalization after each module in DAB as well as extra
feature layers.

3 Experiments and Discussion

In this section, we provide ablation evaluation of our proposed approach and
compare it to the state-of-the-art CNN-based vehicle detection methods. The
experiments were conducted on the CARPK and PUCPR+ datasets [8], which
contain 1573 and 125 images of 1280×720 pixels, respectively. The vehicles in the
images are annotated by horizontal bounding boxes. To have a fair comparison
with different baseline methods, we follow the same strategy as theirs for split-
ting the datasets into training and testing sets. Moreover, we train ShuffleNet as
the backbone network on the ImageNet-2012 [6] dataset achieving similar per-
formance compared to the original ShuffleNet work. The results are compared to
the benchmark using MAE and RMSE, similar to the baseline [8]. In addition,
we use data augmentation in a similar way to the original work on SSD.

3.1 Experimental Setup

We use Caffe to implement our proposed algorithm. It is trained using Nvidia
Titan XP GPU and evaluated on NVIDIA Jetson TX2 as an embedded edge
device. For the optimization, we use stochastic gradient descent with the base
learning rate of 0.001, gamma 0.1, momentum 0.9 to train the network for 120k
iterations. The learning rate is reduced after 80k and 100k by a factor of 10.
Moreover, the images are resized to 512×512 pixels along with their annotations.
Additionally, we initialize the first four layers with our pre-trained ShuffleNet
weights and the rest with Gaussian noise. For the grouped convolutions, we set
the number of groups to 3 throughout the experiments. Furthermore, NMS of
0.3 and confidence score threshold of 0.5 are considered.

3.2 Ablation Evaluation

In this section, we present an ablation study on the effect of the submodules
in our approach. Table 1 shows the impact of the modified inception module
compared to the original baseline. According to the results, introducing the first
modified inception module (small scales) decreases RMSE by about 4 points
indicating the importance of wider networks in first layers as the critical layers
of the network for small object detection. Replacing the baseline’s extra layers
with more modified inception models further improves the performance. This
highlights the role of higher-resolution layers in the vehicle detection tasks.

ShuffleDet 7

Table 1: Evaluation of modified inception module (mincep) in the stage 5 on the
CARPK dataset. The DAB units are in place. Smaller the RMSE, better the
performance.

method RMSE small scales mincep-1 mincep-2 mincep-3 mincep-4

ShuffleNet-SSD-512 63.57 - - - -
ShuffleDet 52.75 - - - -
ShuffleDet 45.26 X - - -
ShuffleDet 41.89 X X - - -
ShuffleDet 40.47 X X X - -
ShuffleDet 39.67 X X X X -
ShuffleDet 38.46 X X X X X

Table 2 represents the evaluation of DAB unit in which we observe a signifi-
cant reduction in RMSE (almost 5 points) even by the first DAB unit on stage
2. This further indicates the significance of including higher-resolution layer.
Furthermore, the results show that adding DAB modules to the extra layer can
additionally enhance the performance to a lesser degree. This performance in-
dicates that applying the DAB unit in the high-resolution layers can lead to a
significant improvement in detecting small vehicles allowing a better utilization
of the deformable convolution to adapt to the vehicle geometries.

Table 2: Evaluation of using DAB unit on the CARPK dataset. We refer to
modified inception layers as mincep. The modified inception modules and small
scales are in place.

method RMSE DAB-stage2 DAB-stage3 DAB-stage4 DAB-mincep-1 DAB-mincep-2 DAB-mincep-3

ShuffleNet-SSD-512 63.57 - - - - - -
ShuffleDet 49.26 - - - - - -
ShuffleDet 44.17 X - - - - -
ShuffleDet 42.02 X X - - - -
ShuffleDet 40. 75 X X X - - -
ShuffleDet 39.81 X X X X - -
ShuffleDet 39.14 X X X X X -
ShuffleDet 38.46 X X X X X X

We choose smin = 0.05 and smax = 0.4 as minimum and maximum vehicle
scales with ratio of 2, 3, 1/2, 1/3 as hyper-parameters in the original SSD. This
improves the performance significantly according to Table 1 by almost 7 RMSE
points. It is worth noting that ShuffleNet-SSD-512 has 2.94 GFLOPs as com-
plexity cost while ShuffleDet has 3.8 GFLOPs. This shows ShuffleDet adds only
a marginal computation cost while achieving a significant boost in the accu-
racy. Figure 2 shows sample results of ShuffleDet on the CARPK and PUCPR+
datasets.

3.3 Comparison with the benchmark

In this part, compare our method with the benchmark. Tables 3 and 4 show that
our method can achieve competitive performance while having significantly less
computation cost compared with the state of the art. In comparison with the
original implementation of Faster-RCNN [19] and Yolo [16], our method achieves
significantly better results. ShuffleDet achieves comparative result with the state
of the art with only about less 2 RMSE points in the CARPK dataset. The
reason for the big gap between SSD-512, MobileNet-SSD-512 and shuffleDet is

8 Seyed Majid Azimi

(a) (b)

Fig. 2: Sample vehicle detection results using ShuffleDet on the CARPK(a)
dataset and the PUCPR+ dataset(b).
mostly due to our tuned scales and aspect ratios. This effect can also be observed
between the original implementation of Faster-RCNN with and without small
RPNs.

Table 3: Evaluation of ShuffleDet with the benchmark on the PUCPR+ dataset.
The less is better.

method backbone GFLOPs MAE RMSE

YOLO[16] custom 26.49 156.00 200.42
Faster-RCNN[19] VGG16 118.61 111.40 149.35

Faster R-CNN (RPN-small)[19] VGG16 118.61 39.88 47.67
One-Look Regression[15] - - 21.88 36.73

Hsieh et al.[8] VGG16 - 22.76 34.46
SSD-512[14] VGG16 88.16 123.75 168.24

MobileNet-SSD-512[9] MobileNet 3.2 175.26 225.12
our ShuffleDet ShuffleNet 3.8 41.58 49.68

Table 4: Evaluation of ShuffleDet with the benchmark on the CARPK dataset.
The less is better.

method backbone GFLOPs MAE RMSE

YOLO[16] custom 26.49 48.89 57.55
Faster-RCNN[19] VGG16 118.61 47.45 57.39

Faster R-CNN (RPN-small)[19] VGG16 118.61 24.32 37.62
One-Look Regression[15] - - 59.46 66.84

Hsieh et al.[8] VGG16 - 23.80 36.79
SSD-512[14] VGG16 88.16 48.02 57.42

MobileNet-SSD-512[9] MobileNet 3.2 57.34 65.24
our ShuffleDet ShuffleNet 3.8 26.75 38.46

Moreover, ShufflDet achieves its superiority to Faster-RCNN and Yolo while
it is significantly more computation efficient, 3.8 GFLOPs compared to 118 and
26.49 GFLOPs. While Faster-RCNN runs at Jetson TX2 with 1 FPS, tiny Yolov2
at 8 and Yolov2 at 4 FPS, and original SSD with 88.16 GFLOPs at 5 FPS, our
ShuffleDet network runs at 14 FPS showing a great potential to be deployed in
the real-time on-board processing in UAV imagery. In addition, our approach
achieves almost 70% and 50% better performance than MobileNet-SSD-512 and
the naive implementation of ShuffleNet-SSD on the CARPK dataset, relatively.

ShuffleDet 9

4 Generalization Ability

To evaluate the generalization ability of our method, we train it on the 3K-DLR-
Munich dataset [13]. This dataset contains aerial images of 5616 × 3744 pixels
over the Munich city. Due to the large size of each image similar to [5], we chop
the images into the patches of 512 × 512 pixels which have 100 pixels overlap.
To prepare the final results, for each image, we merge the detections results of
the patches and then apply none-maximum suppression. Figure 3 illustrates a
detection result of our algorithm for the 3K-DLR-Munich dataset.

Fig. 3: Vehicle detection result using ShuffleDet on the 3K-DLR-Munich dataset.

Table 5 compares the performance of ShuffleDet and two implementa-
tions of Faster-RCNN on the 3K-DLR-Munich dataset. According to the table,
ShuffleDet not only outperforms the Faster-RCNN methods but also its inference
is much more time efficient. The consistent behavior of our proposed approach
on the 3K-DLR-Munich dataset indicates that it could be generally applied to
different datasets. ShuffleDet is capable of 2 FPS processing of high-resolution
aerial images in Jetson TX2 platform while Faster-RCNN with VGG16 and
ResNet-50 takes a couple of seconds.

Table 5: Evaluation of ShuffleDet on 3K-DLR-Munich dataset. Inference time is
computed in Jetson TX2 as an edge device.

method backend GFLOPs mAP inference time

Faster-RCNN [19] VGG-16 118.61 67.45% 7.78s
Faster-RCNN [19] ResNet-50 22.06 69.23% 7.34s

our ShuffleDet ShuffleNet 3.8 62.89 524ms

10 Seyed Majid Azimi

5 Conclusions

In this paper, we presented ShuffleDet, a real-time vehicle detection algorithm
appropriate for on-board embedded UAV imagery. ShuffleDet is based on channel
shuffling and grouped convolution in its feature extraction stage. To evaluate the
effect of different modules of ShuffleDet, an ablation study is performed to discuss
its accuracy and time-efficiency. Joint channel shuffling and grouped convolution
significantly boost the inference time. Inception modules with depthwise convo-
lutions enhance the accuracy while introducing a marginal computation burden.
Moreover, we show residual modules with deformable convolutions are effec-
tive modules for semantic representation enhancement in the small number of
layers as well as domain adaptation. Experimental results on the CARPK and
PUCPR+ datasets indicate that ShuffleDet outperforms the state-of-the-arts
methods while it is much more time and computation efficient. Additionally, the
consistent behavior of ShuffleDet on the 3K-DLR-Munich dataset demonstrate
its generalization ability. Furthermore, the implementation of ShuffleDet on Jet-
son TX2, which runs at 14 FPS, showing a great potential of our approach to
be used in UAVs for on-board real-time vehicle detection.

References

[1] Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.:
Feature pyramid networks for object detection. CVPR (2017)

[2] Chollet, F.: Xception: Deep learning with depthwise separable convolutions.
arXiv preprint arXiv:1610.02357 (2017)

[3] Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based
fully convolutional networks. NIPS (2016)

[4] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable
convolutional networks. ICCV (2017)

[5] Azimi, S.M., Vig, E., Bahmanyar, R., Körner, M., Reinartz, P.: To-
wards multi-class object detection in unconstrained remote sensing imagery.
ACCV (2018)

[6] Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A
large-scale hierarchical image database. CVPR (2009)

[7] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861
(2017)

[8] Hsieh, M., Lin, Y., Hsu, W.H.: Drone-based object counting by spatially
regularized regional proposal network. ICCV (2017)

[9] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer,
I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-
offs for modern convolutional object detectors. CVPR (2017)

[10] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer,
K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <
0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

ShuffleDet 11

[11] Kim, K.H., Hong, S., Roh, B., Cheon, Y., Park, M.: PVANET: deep but
lightweight neural networks for real-time object detection. arXiv preprint
arXiv:1608.08021 (2016)

[12] Azimi, S.M., Vig, E., Kurz, F., Reinartz, P.: Segment-and-count: Vehicle
counting in aerial imagery using atrous convolutional neural networks. IS-
PRS (2018)

[13] Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images.
IEEE GRSL Letters (2015)

[14] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg,
A.C.: SSD: single shot multibox detector. ECCV (2016)

[15] Mundhenk, T.N., Konjevod, G., Sakla, W.A., Boakye, K.: A large con-
textual dataset for classification, detection and counting of cars with deep
learning. ECCV (2016)

[16] Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once:
Unified, real-time object detection. CVPR (2016)

[17] Azimi, S.M., Fischer, P., Körner, M., Reinartz, P.: Aerial lanenet: Lane
marking semantic segmentation in aerial imagery using wavelet-enhanced
cost-sensitive symmetric fully convolutional neural networks. arXiv preprint
arXiv:1803.06904 (2018)

[18] Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. CVPR (2017)
[19] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object

detection with region proposal networks. NIPS (2015)
[20] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,

D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CVPR
(2015)

[21] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-
resnet and the impact of residual connections on learning. ICLR (2016)

[22] Azimi, S.M., Britz, D., Engstler, M., Fritz, M., Mücklich, F.: Advanced steel
microstructural classification by deep learning methods. Scientific reports -
Nature (2018)

[23] Wang, R.J., Li, X., Ao, S., Ling, C.X.: Pelee: A real-time object detection
system on mobile devices. arXiv preprint arXiv:1804.06882 (2018)

[24] Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional
neural networks for mobile devices. CVPR (2016)

[25] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual trans-
formations for deep neural networks. CVPR (2017)

[26] Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely ef-
ficient convolutional neural network for mobile devices. arXiv preprint
arXiv:1707.01083 (2017)

D Azimi, S., Fischer, P., Körner, M. and Reinartz, P., 2018, Aerial LaneNet: Lane-marking Semantic Segmentation in
Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks, IEEE
Transactions on Geoscience and Remote Sensing (TGRS), 2018 225

D Azimi, S., Fischer, P., Körner, M. and Reinartz,
P., 2018, Aerial LaneNet: Lane-marking Se-
mantic Segmentation in Aerial Imagery Us-
ing Wavelet-Enhanced Cost-Sensitive Symmet-
ric Fully Convolutional Neural Networks, IEEE
Transactions on Geoscience and Remote Sens-
ing (TGRS), 2018

https://ieeexplore.ieee.org/document/8556373

https://ieeexplore.ieee.org/document/8556373

2920 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Aerial LaneNet: Lane-Marking Semantic
Segmentation in Aerial Imagery Using

Wavelet-Enhanced Cost-Sensitive Symmetric
Fully Convolutional Neural Networks

Seyed Majid Azimi , Peter Fischer, Marco Körner , Member, IEEE, and Peter Reinartz , Member, IEEE

Abstract— The knowledge about the placement and appear-
ance of lane markings is a prerequisite for the creation of
maps with high precision, necessary for autonomous driving,
infrastructure monitoring, lanewise traffic management, and
urban planning. Lane markings are one of the important compo-
nents of such maps. Lane markings convey the rules of roads to
drivers. While these rules are learned by humans, an autonomous
driving vehicle should be taught to learn them to localize
itself. Therefore, accurate and reliable lane-marking semantic
segmentation in the imagery of roads and highways is needed to
achieve such goals. We use airborne imagery that can capture a
large area in a short period of time by introducing an aerial lane
marking data set. In this paper, we propose a symmetric fully
convolutional neural network enhanced by wavelet transform in
order to automatically carry out lane-marking segmentation in
aerial imagery. Due to a heavily unbalanced problem in terms
of a number of lane-marking pixels compared with background
pixels, we use a customized loss function as well as a new type of
data augmentation step. We achieve a high accuracy in pixelwise
localization of lane markings compared with the state-of-the-
art methods without using the third-party information. In this
paper, we introduce the first high-quality data set used within
our experiments, which contains a broad range of situations and
classes of lane markings representative of today’s transportation
systems. This data set will be publicly available, and hence, it can
be used as the benchmark data set for future algorithms within
this domain.

Index Terms— Aerial imagery, autonomous driving, fully
convolutional neural networks (FCNNs), infrastructure monitor-

Manuscript received March 1, 2018; revised July 28, 2018; accepted
October 1, 2018. Date of publication December 3, 2018; date of current
version April 22, 2019. This work was supported by the German Aerospace
Center (DLR), Münchenerstr 20, 82234 Weßling, Germany. (Corresponding
author: Seyed Majid Azimi.)

S. M. Azimi is with the Department of Photogrammetry and Image
Analysis, Remote Sensing Technology Institute, German Aerospace Cen-
ter (DLR), 82234 Weßling, Germany, and also with the Department of
Civil, Geo and Environmental Engineering, Chair of Remote Sensing
Technology, Technical University of Munich, 80333 Munich, Germany
(e-mail: seyedmajid.azimi@dlr.de).

P. Fischer was with the Department of Photogrammetry and Image Analysis,
Remote Sensing Technology Institute, German Aerospace Center (DLR),
82234 Weßling, Germany. He is now with the Department of Sensor Data
Fusion (I/EF-24), AUDI AG, Ingolstadt, Germany.

M. Körner is with the Department of Civil, Geo and Environmental
Engineering, Chair of Remote Sensing Technology, Technical University of
Munich, 80333 Munich, Germany.

P. Reinartz is with the Department of Photogrammetry and Image Analysis,
Remote Sensing Technology Institute, German Aerospace Center (DLR),
82234 Weßling, Germany.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2878510

ing, lane-marking segmentation, mapping, remote sensing, traffic
monitoring, wavelet transform.

I. INTRODUCTION

NOWADAYS, the detailed description of the public trans-
portation network is essential for the generation of

accurate road maps and lane-based models. A broad range
of current services, e.g., navigation systems and assisted
driving, rely on such information. Future applications, such
as automated lanewise traffic monitoring, urban management,
and city planning, are also asking for high-precision maps
at centimeter-level accuracy, particularly built for autonomous
driving applications that are called high-definition (HD) maps.
At present, autonomous vehicles (AVs) are a research focus
in computer vision and remote sensing. In order to achieve
autonomy in AVs, one key factor is to localize the vehi-
cle precisely. Very accurate maps containing the location of
infrastructures, such as streets, sidewalks, traffic lights, and
even lane markings, are a necessity for reaching the goal
of fully autonomous driving. Advanced vehicle assistance
system comprising features, such as vehicle navigation and
lane departure warning, requires not only the road model
information but also the precise road lane-marking data, e.g.,
the lane-marking types and their locations.

Besides the current omnipresent topic of autonomous
driving, many more urgent topics can be addressed by HD
maps. For instance, the traffic monitoring systems could ben-
efit from the localization of lane markings as the base map.
Information about lane-marking locations in open-space park-
ing lots could also result in more complete and therefore more
efficient parking lot utilization. In addition, more applications
can arise, which will use high-precision maps, as the smart
and efficient management of transportation systems is one of
the main topics of the 21st century.

At present, the data collection for generating HD maps is
mainly carried out by the so-called mobile mapping systems
that comprise, in most cases, of a vehicle equipped with a
broad range of sensors (e.g., radar, lidar, and cameras). This
method comes with some drawbacks, for instance, the ground-
based systems can cover only a small part of the map due to
the sensor line of sight. Sensor drift and global positioning
system shadows in urban canyons lower the spatial accuracy,
and traffic flow leads to partial occlusions in the recorded data.

0196-2892 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2921

Fig. 1. Sample aerial image patch from AerialLanes18 data set in which
lane markings have been annotated. In this task, all classes of lane markings
have been considered for pixelwise semantic segmentation.

Fig. 2. Challenges in lane-marking segmentation. Light and strong shadow
caused by trees and buildings. Examples of rare cases, such as speed limit,
the disabled, and bus signs have been indicated. Partial or total occlusion by
other objects, such as bridge or tree branches, can be seen.

This issue can be addressed by remote sensing imagery that is
intrinsically motivated by the need to capture data from large
areas in a short time at a monetary competitive level. More
and more airborne and space-borne sensors are recording data
in the very-high resolution, e.g., ground sampling distance
(GSD) less than 50 cm are in now operational mode. The
public sector often offers its data under a free-and-open policy,
e.g., aerial imagery of the U.S. Geological Survey in urban
regions has ground sampling distance (GSD) less than 30 cm.
Data collected by flight campaign with the goal to monitor
infrastructure can offer even better GSD. Fig. 1 gives an
example of such imagery from the AerialLanes18 data set
introduced in this paper, which can be used for the purpose
of HD maps creation.

A. Challenges

Several issues raise the level of difficulty when it comes to
image segmentation of aerial imagery for creating HD maps.
Some of them are the well-known general problems in the
computer vision domain as follows.

Fig. 3. Different lane-marking classes. Single and double boundary, inter-
section, boxed junction, turn signs, separator, zigzag, bus and bike sign, speed
limit, no-parking zone, and pedestrian crossing.

1) Occlusion (partial or full) changes the appearance of
lane markings in the image. Some occlusion cases can
be observed in Fig. 2: full occlusion can be caused by
other objects such as bridge, tree and so on, while partial
occlusion that occurs more often is mostly caused by
trees.

2) Shadow creates a different illumination over lane mark-
ings causing changes in their appearance. It does not
happen often that lane markings are overshadowed,
making it a special case. This reason, such as the
previous one, could reduce the accuracy of automatic
lane-marking algorithms, especially deep learning meth-
ods that need a lot of training samples.

Some other challenges are specifically bound to the task of
lane-marking segmentation. A short overview is given in the
following itemization.

1) Different Classes: Generally, lane markings are catego-
rized into different classes, such as single and double
boundary, intersection, boxed junction, separator, zigzag,
special sign for the disabled, bus and bike sign, speed
limit, no-parking zone, pedestrian crossing, and so on.
Some of these classes can be seen in Fig. 3.

2) Small Size: In airborne imagery, the size of lane mark-
ings compared with other objects in the image is,
depending on the GSD, quite small. In some cases,
a sign of separator could be 5 × 5 pixels. This is one of
the biggest challenges within the lane-marking mapping
task in aerial imagery.

3) Washed Out Samples: Not all lane markings are vis-
ible in the image; some of them appear washed out
partially or completely. This imposes another challenge
for the accurate localization of lane markings. On the
one hand, in the case of completely washed out lane
markings, no visual feature may be captured. Therefore,
these cases are ignored. On the other hand, partially
occluded objects impose a difficult challenge both in
the prediction and data set annotation steps.

4) Rare Cases: Lane-marking classes are not equally dis-
tributed, as some classes are more frequent than others.
Speed limit, bus and bike signs, and parking place for

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2922 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Fig. 4. Complex background. Objects, such as those shown in this
figure, share a similar appearance with lane markings. As in some complex
background cases, one can name sport field lines, rail ways, roofs of buildings,
and so on.

the disabled can be named as rare cases, which can be
seen in Fig. 2.

5) The complex background represents an additional hin-
drance in accurate localization of lane markings.
Structures, such as those in Fig. 4, resemble with
high-similarity lane markings.

B. Related Work

In spite of the above-mentioned challenges concerning
semantic lane-marking segmentation of aerial imagery, another
challenge was identified in the early phase of this paper.
The usage of aerial images in order to extract valuable data
from transportation infrastructure has a rich literature in the
remote sensing domain, but as it comes to supervised learning
algorithms, we identified the lack of annotated, high-quality
data sets. As the lane markings are so small, annotating such
objects is difficult and time-consuming. We will, later on,
tackle this issue by making our data set easily available.

Concerning aerial imagery, Jin et al. [1] first extract the
roads. Then, they apply Gabor filters for highlighting the lane
markings followed by Otsu’s thresholding algorithm for raw
binary segmentation. The final result is then given by mor-
phological operators or by using support vector machines [2].
However, by using this approach, some white linear features,
such as the ridges of house roofs, may be misclassified if
the road extraction is not applied. Also, lines belonging to
vehicles or bridges may be misclassified as they are inside the
road areas. Furthermore, they did not investigate lane-marking
extraction into detail, providing only one resulting image. They
also mentioned that objects, such as trees above roads or worn-
out/dirty lane markings on the roads, decrease the accuracy of
the final results. In order to solve the problem, Jin and Feng [3]
propose an approach consisting of three steps to detect lane
markings.

1) First, the road centerline is extracted.
2) Then, the road surface is detected.
3) Finally, pavement markings are extracted.

Similar to the previous work, in this paper, also roads are
extracted first, and then, lane markings are detected. Even
though this method shows a better performance than the previ-
ous methods as claimed by the author, it still has the drawback
of the previous methods such as not being able to have a good
accuracy on lane-marking detection without road extraction.

Following this workflow, Jin et al. [4] use an unsupervised
algorithm to extract the road surface first. Second, Jin et al. [4]
employed co-occurrence contrast measurements to enhance the
lane markings, under the assumption that the contrast between
lane marking and road surface is strong and then localized lane
markings. Subsequently, morphological closings and openings
are applied in order to remove the enhanced edges in the
shadow regions. In the last step, the extracted lane-marking
features are narrowed by a modified Wang–Zangen algorithm
and further fitted to a line by least-square regression. This
paper extends lane-marking detection to rural areas. Similar
to the previously mentioned works, despite yielding good
results in the few provided test images, this paper also suffers
from a high rate of false positives in case of not using road
extraction step. Further works following this core approach
are given by Javanmardi et al. [5] and Huang et al. [6] who
used adaptive threshold in airborne images. Javanmardi et al.’s
approach [5] contains different steps, such as digital surface
model processing, removing vehicles using multiple images,
and in the end utilizing a simple adaptive thresholding to
extract lane marking. In this method, lane markings are not
detected directly as we have done in this paper and the
third-party data are used to remove nonlane-marking objects.

Hinz and Baumgartner [7] propose a method to extract lane
markings by multiview imagery and context cues and also
used the extracted thin lines as a hint for the presence of
a road. This method yields very good results. However, this
method works only when multiple images have been captured
with different views from a place of interest. This method is
also similar to previously mentioned works in using the road
mask, and therefore, it suffers from low accuracy in case of
not applying the road extraction step. Máttyus et al. [8] and
Gellert et al. [9] proposed a method based on Markov random
fields and a combined parsing of both ground and aerial images
to generate detailed maps. These road models could be used
for masking images in order to localize lane markings, but
it cannot be used directly for lane-marking localization and
only helps to find roads and the boundaries of each line in the
roads.

Tournaire et al. [10] extract the dashed line and zebra cross-
ing with the use of information obtained by the reconstruction
process from the extracted primitives of the image. In contrast
to this paper, they only considered rectangle line markings and
studied their geometric properties to be able to extract them.
Furthermore, they did not use a learning feature approach to
detect lane markings as we have done in this paper. More
complete overviews about the extraction of roads and road
features from airborne images can be found in [11] and [12].

As discussed, no previous work has tried to learn the fea-
tures of the lane marking through an end-to-end feature learn-
ing mechanism, e.g., deep learning methods, to the best of our
knowledge. Unlike in remote sensing community, researchers
in computer vision community have already applied deep
learning methods to extract road infrastructure features in
in situ images.

Deep learning methods, currently widely used in computer
vision, try to learn features rather than using engineered
features. During the last few years, deep learning methods

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2923

have shown an impressive performance in a variety of
computer vision tasks, such as object recognition [13]–[15],
detection [16]–[19], and semantic segmentation [20]–[23].
Convolutional neural networks (CNNs), as one of the widely
used deep learning methods, have been proven to be very
successful for object recognition in images [13]–[15].

However, pixelwise semantic segmentation is a more
challenging problem, as each pixel should be classified.
Kim and Park [24] propose a sequential transfer learning
method based on fully convolutional neural networks (FCNNs)
by segmenting the road in the first step and then lane-marking
segmentation on the road-masked image. This method is simi-
lar to the methodology used in current lane-marking detection
algorithms in remote sensing. The main difference is now
using FCNNs to extract roads first rather than using nondeep-
learning-based methods.

Gurghian et al. [25] propose a CNN classification method
to localize lane markings on both sides of a vehicle. However,
this method is not applicable to remote sensing applications as
we are interested to detect lane marking in all regions in the
images. Lee et al. [26] propose a multitask CNN to localize
and classify lane markings in the daytime with different
weather conditions as well as during nighttime. This is a very
interesting work where the author has developed a method to
detect lane markings in different weather conditions. However,
this method and other FCNN-based methods in lane-marking
detection have been developed for ground imagery processing.
Lane markings of small size in image data have not been
the focus of most works in this context. In imagery from
cars or poles (ground imagery), they are big enough and
therefore do not introduce a significant challenge. Having
said that in remote sensing imagery, lane markings can be
as small as 3 × 3 pixels, which are much more difficult to
detect.

In order to facilitate the application of supervised learning
methods, Caltech Lane [27] and tuSimple [28] data sets were
created for lane-marking segmentation, while large-scale data
sets for semantic understanding of roads containing a diverse
range of classes, including lane markings, have been defined
in [29] and [30]. The aforementioned data sets are in ground
imagery, and to the best of our knowledge, there is no public
data set available for research on lane-marking localization in
remote sensing data.

In this paper, we have created the first high-quality
annotated data set for lane-marking semantic segmentation
in remote sensing imagery specifically in airborne images.
We use FCNNs as the baselines of our method. Therefore,
this paper is, to our knowledge, the first time using FCNNs
to segment lane marking in remote sensing data in contrast
to previous methods that mostly detect road first as a hint
and second apply edge detection-based methods to segment
lane markings. This is one of the main differences of this
paper compared with previous works on this task. Unlike the
works are done in ground imagery, in this paper, we focus
on small-size lane markings by inserting discrete wavelet
transforms (DWTs) of input images in different steps into
FCNNs to preserve high-frequency information, including lane
markings. Wavelet transforms have been widely used both

in ground [31] and remote sensing imagery [32]. Recently,
Fujieda et al. [33] also used DWT combined with CNNs for
texture classification. They used CNNs for classification, while
in this paper, the focus is on the semantic segmentation task
that is a different task from classification. They inserted all
DWT decompositions with CNN only in two steps and in
the middle of the convolutional layers and did not investigate
which insertion place for DWT yields the best results, while
in this paper, we use three decompositions and also investigate
where is the best place to insert DWT to yield the best results.
In their work, DWT decompositions were inserted into CNNs
as an input, while in this paper, we still give the RGB image
as an input. More importantly, the effect of DWT was not
investigated from the point of preserving high-frequency data
such as very small objects for semantic segmentation. More-
over, we deploy a weighted loss function as well as symmetric
FCNN. Although FCNNs introduced by Long et al. [20]
are among the first deep learning methods for the semantic
segmentation task, its accuracies are still comparable with the
state of the art, such as DeepLabv3 [34], DeepLabv3+ [35],
PSPNet [22], and ICNet [36], and others with deep backbone
networks, such as ResNet [14], ResNext [37], Xception [38],
and DenseNet [39]. We choose the FCNN network proposed
by Long et al. [20] with VGG16 backbone as a baseline of our
method due to its simplicity and familiarity of the community
with its architecture and yet its accuracy is comparable with
the-state-of-the-art methods.

C. Our Contribution
In this paper, we focus on lane-marking pixelwise semantic

segmentation using aerial images. In high-resolution aerial
images, the lane markings are easy to identify. Our proposal
is based on combining FCNNs with DWT for lane-marking
pixelwise semantic segmentation in airborne images. The
motivation of using FCNNs as a deep learning method for
semantic segmentation is its higher performance compared
with nondeep-learning methods.

Unlike traditional methods in which feature extraction and
classification steps are performed separately, in FCNNs, fea-
tures are learned during an end-to-end training and there is
no separation between feature extraction and feature clas-
sification. FCNNs have been proposed first by Long et al.
[20] for semantic segmentation in in situ imagery with extra
upsampling layers (deconvolutional layers). The authors of
FCNNs propose multiple pooling layers to be fused with
upsampling layers (skip layers) to further refine segmentation
boundaries. The authors call their network and its variants
FCN32s, FCN16s, and FCN8s. We consider FCN32s as the
baseline of this paper.

In order to enhance current network performance, we com-
bine different input images with the FCNN network. The
motivation of using DWT is to provide the network with
different representations of input objects in different scales as
well as full-spectral analysis. DWTs can represent the input
image at different scales. While CNNs process the image
in the spatial domain and partially in the spectral domain,
DWT allows analyzing the images in the full-spectral domain.
Therefore, the properties of these algorithms are different.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2924 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Fig. 5. Aerial LaneNet. Overview of lane-marking segmentation approach using the wavelet-enhanced symmetric cost-sensitive FCNNs. The input image
is a high-resolution aerial image. It is cropped first and segmented using the Aerial LaneNet network. In the end, segmented patches are stitched together.
H and W represent height and width and the third number is the number of feature maps.

Integrating DWT will enable the network to access the
intensity frequency information that is lost in the convolution
and average pooling layers, carrying out limited spectral analy-
sis. The intensity frequency information lays in the frequency
domain for the pixel intensities variation and not in the
different image bands, e.g., in hyperspectral images. Wavelet
transform has been investigated for a long time for frequency
analysis and also image compression.

In this paper, we have carried out experiments with different
combinations of DWT decompositions to be used as an input
with a modified version of FCN32s, which we call “Symmetric
FCNN.” The final result is a pixelwise semantic segmentation
of lane marking. Due to the heavily unbalanced task in terms
of a number of lane-marking pixels compared with background
ones, we have applied a cost-sensitive loss function to impose
higher loss for the wrong classification of lane markings
as a minor class than loss for the wrong classification of
background. As mentioned earlier, we introduce the first
high-quality pixelwise annotated data set for lane-marking
segmentation and detection in aerial imagery, which shall
encourage future works in this area.

The following sections are organized as follows. Section II
represents the methodology to enhance FCNN with different
DWT decompositions, the cost-sensitive loss function used
during the training phase, and the symmetric FCNNs architec-
ture. In Section III, we introduce the data set and its features
and properties and report different experiments. In Section IV,
the results of the experiments are given and evaluated. In
Section V, a conclusion is drawn.

II. ARIAL LANENET: WAVELET-ENHANCED

COST-SENSITIVE SYMMETRIC FULLY

CONVOLUTIONAL NEURAL NETWORK

In this paper, we propose a cost-sensitive symmetric FCNN
enhanced by DWT, which we call Aerial LaneNet. The overall

workflow of our method is illustrated in Fig. 5. Due to the high
resolution of aerial images and hardware memory constraint,
the original images are chopped into small patches using a
sliding window [40]. Then, each patch is processed by Aerial
LaneNet in order to predict a semantic segmentation of the
input patch.

The output is a binary image that denotes which pixel
belongs to lane markings and which one to the background. In
the end, patches are stitched together to create the final output
with the same resolution as the input image. In the following,
we explain our proposed methods in detail.

CNNs are a combination of different layers, such as
convolution, pooling, activation function, dropout, and fully
connected layers. Input data are convolved with a linear
convolution filter in convolution layers

(hk)i j = (Wk ∗ X)i j + bk (1)

where k = 1, . . . , K is the kth feature map in the convolution
layer and (i, j) is the index of a neuron in it. X stands for
the input data and Wk and bk are the weights (trainable para-
meters) of the network and the biases (trainable parameters),
respectively.

The output of each neuron in the kth feature map has been
represented by (hk)i j at position (i, j). The 2-D convolution
between input data and filter mask in the spatial domain is
represented by “∗,” which partially includes spectral analysis
at low frequencies, while the remaining spectral information
is lost.

Considering Fig. 6, parts shown in red in the DWT algo-
rithm can be considered as a convolution function in the
traditional CNNs. On the other hand, a wavelet transform is
able to capture the full-spectral information of the input in the
frequency domain.

Moreover, wavelets can extract multiresolution spectral
information from input data at different decomposition levels,

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2925

Fig. 6. First-level DWT decomposition workflow. The input gray-scale image
is processed by low-pass and high-pass filter in different directions. The output
is with a half size of the original image. Afterward, the same operation is
applied to each part, resulting in four decomposition parts of the input image in
the first-level DWT. In conventional FCNNs, only the low-frequency analysis
is carried out shown in red, while DWT offers a full-spectral analysis shown
in blue.

Fig. 7. Different DWT decompositions. The input RGB image is converted
to gray scale first. Then, first DWT decomposition is computed followed by
next levels. High-pass and low-pass filters are represented by “H” and “L,”
respectively. LL stands for two-step low-pass filtering, where HL, LH, and
HH contain the horizontal, vertical, and diagonal details, respectively.

as shown in Fig. 7. A multiresolution analysis of the input
data would represent the input in different scales similar to a
pooling operation. Each subsampling step in wavelet transform
can be considered as a different pooling operation.

Therefore, pooling layers could also be replaced by wavelet
transforms. Instead of doing so, we merge (fuse) wavelet
information of the input with the traditional FCNNs together
with pooling layers, which can be done in different ways.
In order to add the wavelet decomposition to the network,
one can compute wavelet transforms for each image and
apply the output to FCNNs. However, in this case, multiscale
information of the data is lost. Therefore, the network is not
able to learn the lane-marking features at different resolutions.
This will lead to a nonscale-invariant method. To address this
problem, multiscale input processing is needed.

Each level of wavelet decomposition analyzes the data
at different resolutions. Therefore, by combining different
decomposition levels of wavelet transforms with FCNNs,
low- and high-frequency domain analyses as well as different
resolution analyses are achieved.

After applying a wavelet transform on the input image,
lane-marking boundaries appear as high-frequency objects in
vertical, horizontal, and partially in diagonal details in the

wavelet coefficients. Different parts from the first to the third
level of the DWT are illustrated in Fig. 7.

A. Discrete Wavelet Transform (Background)

DWT of a signal x is computed by applying a series of filters
and subsampling in subsequent levels [32]. For instance, in the
first level of DWT, a low-pass and a high-pass filter are applied
simultaneously with impulse responses of g and h resulting in
two convolutions of

ylowpass[n] = (x ∗ g)[n] =
+∞∑

x=−∞
x[k]g[n − k]

yhighpass[n] = (x ∗ h)[n] =
+∞∑

x=−∞
x[k]h[n − k] (2)

and the resulting signals are subsampled by a factor of 2, i.e.,

ylowpass = (x ∗ g) ↓ 2

yhighpass = (x ∗ h) ↓ 2. (3)

In order to further increase the approximation coefficients and
the frequency resolution resulting from low- and high-pass
filters and downsamplings, this decomposition is repeated.
This results in a tree representation of each decomposition
level known as a filter bank, which is illustrated for a two-level
decomposition in Fig. 6. We can consider the implementation
of wavelet filters as the wavelet coefficients calculation of
a discrete set of lower level wavelets for a mother wavelet
function �(x). By applying DWT, a discrete function f (x)
is converted into a signal of two variables [32]: scale and
translation, which can be described as

� j,k(x) := 1

2 j/2 �

(
x − k2 j

2 j

)
(4)

� j,k(x) := 1

2 j/2 �

(
x − k2 j

2 j

)
(5)

�(x) :=

⎧
⎪⎨
⎪⎩

1, for 0 ≤ x ≤ 1/2

−1, for 1/2 < x ≤ 1

0, otherwise

(6)

�(x) :=
{

1, for 0 ≤ x ≤ 1

0, otherwise
(7)

in which � j,k(x) is the scaling function for which the box
function � has been chosen. � j,k(x) and � j,k(x) have ranges
of [−(1/2 j/2), (1/2 j/2)] and [0, (1/2 j/2)] accordingly with
width 2 j that starts at k2 j . The scale level is represented by j
and the shift by k. � j,k(x) are scaled and shifted versions of
the continuous mother wavelet �(x). In the discrete domain,
for a signal of length N = 2n , one considers the N functions
�n,0,�n,0 . . . �1,2n−1−1. In this paper, we consider the Haar
wavelet transform as the first order of the Daubechies wavelet

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2926 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Fig. 8. Different first-level DWT fusions with symmetric FCNNs. There are three fusion variants. (Left) Before pooling layer. (Middle) After convolution
layer. (Right) After pooling layer.

family [41] with n = 2 and use the basis vectors

�2,0 = 1

2
(1, 1, 1, 1)T

�2,1 = 1

2
(1, 1,−1,−1)T

�1,0 = 1

2
(1,−1, 0, 0)T

�1,1 = 1

2
(0, 0, 1,−1)T (8)

that yield the coefficients

c j,k := f T � j,k

d j,k := f T � j,k (9)

in which c j,k are coefficients of the scaling vector � j,k , and
for coarse decomposition, these are low-pass filter coefficients.
Similarly, d j,k are the coefficients of the wavelet vector � j,k

for detailed decompositions, which are high-pass filter coeffi-
cients. In 2-D DWT, it starts first with calculating the wavelet
decomposition on a single level in the x-direction than in the
y-direction. Afterward, the next decomposition is performed
only in the quadrant part that contains the low-frequency parts
(scaling coefficients) for both directions. The decomposition
levels proceed until a single pixel is reached.

In order to compress the images as wavelet transform
injections, the orthonormal Daubechies wavelet family [41] is
selected for their proven success in decomposing images and
identifying borders. The Daubechies wavelet family is written
as dbN, where N is the order and db is the abbreviation
for the Daubechies wavelet family. The db1 wavelet is the
same as the Haar wavelet and the first order of Daubechies
family with lower computation cost and fewer wavelet filter
bank coefficients. The continuous wavelet transform has been
presented in (4).

As shown in Fig. 5, DWT decompositions are injected
as shown by the paths in pink. Given that the input data
are H (Height) and W (Weight) pixels after having changed
to gray-scale image shown in Fig. 7, using four levels of
the wavelet transform on the input image results in the
outputs with H/2 × W/2, H/4 × W/4, H/8 × W/8, and
H/16 × W/16 sizes. The input image is first converted to
gray scale before DWT computation. In contrast to usual

cases in which more data result in a better performance,
our preliminary results show that using an RGB input image
results in 1.78% intersection over union (IoU) performance
decrease. To further investigate this issue, we considered other
color spaces including hue, saturation, and value and observed
the same effect which we conjecture it could be due to
insertion of redundant input data. It is worth mentioning that
the parameters of DWT is fixed and are not updated during
the training phase. The first-level DWT has an input size of
H × W and four outputs (approximate, horizontal, vertical,
and diagonal) with half size capturing different details in the
image such as shown in Fig. 6.

The fusion of the first-level wavelet transform has to be
done after the first pooling. The reason is that the input size
of the image is H ×W , while the size of the first-level wavelet
decomposition is H/2×W/2. Hence, due to incompatible size
resolution, the first fusion layer is carried out after the first
pooling operation.

Inserting the first-level DWT decompositions with a half
size of the input image as an input to the network results in
losing spatial and spectral information of the original input.
Therefore, this scenario is not efficient.

There are different ways of wavelet transform fusion with
the FCNN network, as shown in Fig. 8. As mentioned,
the wavelet decompositions have to be placed after the pooling
layer. We have considered all three illustrated cases to combine
the first wavelet decomposition level to the network. The
same goes for other DWT levels. A typical cross-entropy loss
function in semantic segmentation treats pixels belonging to
different classes equally. For a binary classification problem,
this can be represented as

L(W) = − 1

N

N∑

n=1

yn log ŷ(xn, W)

+ (1 − yn)(1 − log ŷ(xn, W)) (10)

where xn ∈ [0, 255] is the input pixel value, yn ∈ {0, 1} is the
ground-truth label, ŷn ∈ [0, 1] is the prediction probability,
W is the weight matrix of the network, and L denotes the
loss function.

In order to classify each pixel, the softmax function is
widely used in multiclass classification tasks in FCNNs.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2927

Fig. 9. Aerial LaneNet architecture break down.

The vector of real values between [0, 1] generated by this
function denotes a categorical probability distribution.

The softmax function can be expressed as ŷ j =
softmax(X, W j) = ((eX T W j)/(

∑K
k=1 eX T W j)), in which W j

and X denote the weights of the network (including bias
values) and the input data, respectively. The well-known loss
layer using the softmax function for multiclass classification
is cross-entropy loss.

However, for lane-marking segmentation, the majority of
pixels belong to the nonlane-marking class. This makes the
problem highly unbalanced. Therefore, we modify the typical
cross-entropy loss function by imposing a higher cost on the
wrong classification of a lane-marking pixel compared with a
background pixel. The defined loss function is

L(W) = − 1

N

(
λlane

N∑

n=1

yn log ŷ(xn, W) +
N∑

n=1

(1 − yn)

× log (1 − ŷ(xn, W))

)
(11)

which is cost-sensitive, as it penalizes different class pixels
differently. This is done by introducing parameter λlane in
the cross-entropy loss function. This weighted loss function
can be easily extended to a multiclass segmentation scenario
by inserting a function 1cls(xn) which is equal to one if xn

belongs to class cls and zero if it does not. To leverage
the capacity of CNNs to perform semantic segmentation,
the networks can be modified by replacing fully connected
layers with convolution layers that allow CNNs to be applied
to images with variable sizes.

This approach will not lead to semantic segmentation
with the same resolution as the input image. There-
fore, extra upsampling layers (bilinear interpolation) are
applied in the baseline network. Bilinear interpolation is
differentiable, which makes applying backpropagation during
training feasible.

In order to grasp varied visual input information yet keeping
input feature map dimensions, the upsampling layer is applied

after the last convolution layer to upsample the extracted
features to the input dimension size. This can be considered
as the encoding of the input data to the first upsampling layer
and decoding by upsampling layers, as shown in Fig. 5.

By modification of FCNNs to be more robust to overfitting,
we design a symmetric FCNN network. In this methodology,
we add convolution and dropout layers after upsampling layers
in the baseline network of FCN32s. We do the same for
FCN16s and FCN8s network architectures. We also add one
additional upsampling layer, which can be seen as a new
FCN4s network.

Instead of using average pooling layers, we use max-pooling
layers. In FCN4s, we also apply the fusion technique used
in the baseline paper, which is a summation of the corre-
sponding pooling layers with the output of the upsampling
layers. The motivation to add more convolution layers comes
from [13], [14], and [42] where it has been shown that depth
has a key role in high-level feature extraction.

Aerial LaneNet is not limited to a fixed input size, i.e.,
there is no need to resize input images. The only preprocessing
step is the subtraction of image mean. Due to the heavily
unbalanced data sets for lane marking and the scarcity of such
data sets, more dropout layers have been added to the network
to prevent overfitting. The deep neural networks are prone to
overfitting according to the noise present in the training set
samples if that is small.

The inserted layers have been denoted in red in Table I.
In Fig. 9, the Aerial LaneNet network architecture is reported
in detail. In order to investigate the architecture of the network
and its properties such as input and output size, feature
map dimension, receptive field, and so on, Table I has been
prepared.

III. EXPERIMENTS

In this section, we introduce the data set used in the
experiments. Then, we explain the experiments and provide the
quantitative and qualitative results along with corresponding
discussions.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2928 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

TABLE I

SYMMETRIC FCNN INPUT AND OUTPUT SIZES FOR EACH LAYER AS WELL AS FILTER MAPS AND RECEPTIVE FIELDS.
ADDED LAYERS IN SYMMETRIC FCNN TO FCN8S HAVE BEEN SPECIFIED WITH RED COLORS

A. AerialLanes18 Data Set

The experiments were conducted using images acquired by
the German Aerospace Center (DLR) within a flight campaign
in the framework of the VABENE++ project. The campaign
was carried out over the greater area of the city of Munich on
April 26, 2012.

The 3K camera system [43] consisting of three Canon Eos
1Ds Mark III cameras was used for recording the raw data,
where two cameras are mounted side looking and one is
mounted nadir looking on a flexible platform.

The 3K system is a low-cost camera system used for various
remote sensing applications, such as real-time mapping [44],
disaster monitoring [45], traffic monitoring [46], and detection
of high-density crowds [47].

In total, 20 representative RGB images of size
5616 × 3744 pixels have been chosen. The flight height of
about 1000 m above ground led to a GSD of approximately
13 cm.

The images depict urban and partly rural areas with high-
ways and first-/second-order roads. Complex traffic situations,
such as crossings and congestions, are included. The images
served as a starting point for works in the domain of vehicle
detection by Liu and Mattyus [46].

B. Annotation of AerialLanes18

The ground truth has been annotated by human experts who
marked all kinds of lane markings over roads and highways,

such as separate line, continuous line, turn sign, speed limit
sign, and even bus and disabled people parking place signs.
The annotation was carried out manually by using an in-house
annotation software. During annotation, we ignored washed
out lane markings. Fig. 10 shows some patches of the
mentioned data set. Fig. 11 show the large training images
with the overlaid lane-marking annotations.

C. Implementation Details

As the data set does not consist of many images, most likely
training a deep neural network on such a small data set from
scratch with randomly initialized parameters will lead to over-
fitting. On the other hand, as annotating small lane-marking
objects is difficult and time-consuming, only images of the
mentioned data set have been annotated. To address this
problem, networks that have already been trained using large
data sets, such as ImageNet [48], are used as initialization of
parameters in order to transfer the learned information to a new
task. This technique is known as “Transfer Learning.” Using
this technique, we can initialize the weights more efficiently.

Therefore, it can be assumed that the network is already
close to one of the optimal solutions and needs far less
training data to converge, and by retraining the network known
as “fine-tuning” technique, the problem of overfitting can
decrease significantly. In our experiments with wavelet trans-
form fusion, we use FCN32s [20] as the baseline. VGG16 pro-
posed by Simonyan and Zisserman [13] is the backbone

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2929

Fig. 10. Sample training patches from the AerialLanes18 data set taken by aerial imagery over Munich, Germany. The original image patch is shown with
its corresponding annotation. GSD is 13 cm.

Fig. 11. Sample large training image from the AerialLanes18 data set. The original image patch is shown with its corresponding annotation.

main network. However, AlexNet [42], GoogleNet [49], and
ResNet-101 [14] are also considered.

We use the patches of 1024 × 1024 pixels as an input
to the network. We employ the 800 pixels cropping step in
the horizontal and vertical directions in the training phase
and 1000 pixels in the test phase. For the training step,
random flipping patches are applied for data augmentation. We
consider one random image as a validation set that consists
of 24 patches. In the test set, the number of test patches is
240. Networks are trained on the training set to find the best
hyperparameters, and then, both the training and the validation
set are used for the final training.

It should be mentioned that in the following experiments,
no extra information such as road segmentation or third-party
data such as OpenStreetMap [50] has been used.

Aerial LaneNet is trained end-to-end. The optimization
problem of finding the minimum value in the loss function

is solved by Adam optimizer [51] and backpropagation [52]
process. The learning rate of 0.0001 with a batch size of 1 is
used. We have trained the final network for about 10 epochs
on one Nvidia Titan X Pascal GPU using the Tensorflow [53]
framework.

IV. RESULTS AND EVALUATION

In our experiments, we compare the final output of the sys-
tem for each image (not patch) with the corresponding ground
truth. Therefore, in lane-marking segmentation, the goal is
to classify each pixel as lane-marking class (foreground) or
nonlane marking (background). The more pixels are classified
correctly, the more accurate the system is. Concerning the
evaluation criteria, we use the metrics used by Long et al. [20],
which are widely used in semantic segmentation tasks. In these
metrics, ni j is the pixel number belonging to class i , which

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2930 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

TABLE II

EVALUATION OF LANE-MARKING SEGMENTATION USING DIFFERENT BACKBONE NETWORKS FOR SEGMENTATION WITH ONE UPSAMPLING LAYER.
WITH VGG16 NETWORK, THIS IS EQUIVALENT WITH FCN32S. IN FINE-TUNING, THE PARAMETERS ARE INITIALIZED BY THE IMAGENET

PRETRAINED MODEL RATHER THAN RANDOM INITIALIZATION. IN THIS CASE, ALL OF THE LAYERS ARE RETRAINED.
MEAN IOU NUMBERS IN [%]. HIGHER VALUE IS BETTER. MAX STRIDE IS 32 PIXELS

has been predicted as class j , and ncl stands for the number
of classes with ti = ∑

j ni j representing the total number of
pixels belonging to class i . IoU means intersection over union,
i.e., it is proportional to the intersection between predictions
and ground truth.

We also use the dice similarity coefficient due to the heavy
unbalance in the data set. The number of pixels belonging to
each class does not have an effect on these two criteria. P and
T represent the prediction and ground truth, respectively. The
criteria are derived as follows.

1) Pixel Accuracy:
∑

i ni,i∑
i ti

. (12)

2) Mean Accuracy:
1

ncl

∑

i

ni,i

ti
. (13)

3) Mean IoU:
1

ncl

∑

i

ni,i

ti +∑ j n j,i − ni,i
. (14)

4) Frequency Weighted IoU:
(∑

k

tk

)−1∑

i

ti ni,i

ti +∑ j n j,i − ni,i
. (15)

5) Dice Similarity Coefficient:
2 | P ∩ T |
| P | + | T | (16)

and recall and precision are calculated using the criteria

Recall := True Positives

True Positives + False Negatives

Precision := True Positives

True Positives + False Positives
. (17)

The baseline network of FCN32s with AlexNet as a back-
bone network is trained from scratch, and due to the small and
highly unbalanced data set, it classifies lane-marking pixels
as background in most areas, with only 51.0% mean IoU
accuracy.

Employing weighted loss has increased the performance
by almost 2% by penalizing the wrong classification of
lane-marking pixels more than the wrong classification of

background pixels, alleviating to some extend the challenge
posed by an unbalanced data set.

Before applying the customized loss function, fine-tuning
using a pretrained model trained on ImageNet [48] and data
augmentation are applied due to the small training data set
available.

1) Different Base Network Investigation: Results in Table II
show the performance of Aerial LaneNet in lane-marking seg-
mentation with different network architectures. VGG16 out-
performs AlexNet as the shallower network and slightly
GoogleNet. The high pixel accuracy of this system should be
investigated, as most of pixels belong to the background class
rather than lane markings. This phenomenon has two main
reasons: first the network is overfitting to the background class
due to the small-size data set and second due to the heavily
unbalanced data set. As expected, due to the highly unbalanced
data set, pixel accuracy and frequency weighted IoU are larger
than 99%. These parameters, as mentioned earlier, are not
suitable to evaluate the performance of a network using a
highly unbalanced task. That is why mean IoU and Dice are
more reliable criteria to evaluate an algorithm in such cases.

2) Effect of λ: The value of λlane, which is a hyperparame-
ter, should be tuned. There is no automatic approach to find
the best value for this parameter. One approach is considering
the default value of λlane = 389 as the ratio of background
to lane-marking pixels in the training set. Another method is
the grid search that can be applied to refine the default value.
We considered the pixel ratio in the test set as well as other
setups ranging from 1 to 1000. With this approach, we noticed
that the pixel ratio is not the best value to get the best results
(Fig. 12). Considering Table III, the best value is achieved
with 400 that is higher than the default one and lower than
418 as the ratio in the trainval set. Performance degrades using
308 as the ratio in the test set. This shows that the network
has learned this hyperparameter based on the training set. In
this case, more research can be devoted to find the best value
of λlane automatically.

3) Importance of Symmetric FCNN: As mentioned in
Section II, in order to extract higher level features as well
as making the network robust to noise in the training set,
a symmetric FCNN is designed. The improvement introduced
by this algorithm shown in Table IV is almost 3% in terms of
mean IoU. Adding more convolution, dropout, and upsampling
layers seem to have almost the same impact of around 1%

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2931

TABLE III

NUMERICAL RESULTS OF FCN32S-ALEXNET USING DIFFERENT VALUES OF λLANE DURING TRAINING. THE BASE NETWORK IS VGG16

Fig. 12. Performance of FCN32s network with AlexNet as a backbone
network on different λlane values during training. The ratio between lane
marking and background pixels in train, trainval, and test sets are 389, 418,
and 308, respectively.

TABLE IV

IMPACT OF ADDED CONVOLUTIONS, DROPOUT, AND UPSAMPLING

LAYERS TO SHAPE SYMMETRIC FCNN ON THE AERIALLANES18
DATA SET. THE BASE NETWORK IS VGG16

point on the mean IoU. This indicates that even though
deeper network could basically improve the performance,
the major problem is not their depth. An observation of
symmetric FCNN networks shows that even if the network
is deep, the algorithm has some difficulty to segment small
lane markings. Due to the nature of low-frequency spectral
analysis of FCNN, lane markings are smoothed and removed
after convolution and average pooling operations. To address
this problem, wavelet transform of the input image is inserted
into the network.

4) The Effect of DWT: A multiresolution analysis using
different levels of wavelet transform augments the perfor-
mance by considering lane-marking objects at different scales.
Table V indicates that a combination of the first four DWT
decomposition levels results in the best performance, con-

Fig. 13. Evaluation of the Aerial LaneNet network with total recall and
precision values for each test image.

firming our motivation for multiresolution analysis. In our
experiments, we noticed that the addition of a fifth level
worsens the results, which could be due to small-size lane
markings, since most of their details have already been
discarded.

In order to further improve the performance, we replaced
the VGG16 base network with the ResNet-101 [14] network,
which has a better performance on the ImageNet data set in
comparison with VGG16. We inserted DWT levels after the
first pooling layer in stage 1 and after the first convolution
layer with a stride of 2 in each stage from stage 2 to stage 4.
We did not insert DWT’s fifth level to stage 5 due to our
observation in the DWT’s fifth-level insertion after the last
pooling layer in VGG16 (see Table V).

As wavelet transform decomposition is made of horizontal,
vertical, diagonal details, as well as an approximation compo-
nent, the investigation is carried out to investigate the effect
of each component.

5) Effect of DWT Components: According to Table VI,
horizontal and vertical components have considerably more
impact than the other two. Although the diagonal component
also increases mean IoU by almost 2% points, it has less effect
than the rather horizontal and vertical components of almost
5%. This indicates that the majority of lane markings are
present in the horizontal and the vertical DWT components.
The approximation part, however, worsens the performance.
This could be due to the fact that this part does not carry sparse
information about lane marking as other parts. Experiments
with orders of Daubeschies wavelet transforms higher than 1
have resulted in a lower performance of 1.45 mean IoU for

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2932 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

TABLE V

EVALUATION OF AERIAL LANENET FOR FUSION OF EACH LEVEL OF DWT TO SYMMETRIC FCNN WITH COST-SENSITIVE LOSS FUNCTION.
IN ADDITION, THE COMPARISON BETWEEN FCN-8S [20] WITH AND WITHOUT FIRST-LEVEL DWT IS PROVIDED

TABLE VI

EVALUATION OF IMPACT OF DIFFERENT DWT DECOMPOSITIONS IN THE FIRST LEVEL ON LANE-MARKING SEGMENTATION, INCLUDING HORIZONTAL,
HORIZONTAL AND VERTICAL, HORIZONTAL, VERTICAL, AND DIAGONAL DETAILS AS WELL AS ALL OF DECOMPOSITIONS

CONSISTING OF APPROXIMATION PART. THE BASE NETWORK IS VGG16

TABLE VII

EVALUATION OF FUSION OF DWT WITH SYMMETRIC FCNN IN

DIFFERENT LOCATIONS. THE BASE NETWORK IS VGG16.
THE FUSION IS CONCATENATION IN ALL CASES

TABLE VIII

CONFUSION MATRIX OF AERIAL LANENET WITH THE BEST

PERFORMANCE USING THE VGG16 BASE NETWORK. MATRIX SHOWS

THE NUMBER OF SAMPLES FOR EACH CLASS PREDICTED BY THE

SYSTEM. DUE TO THE UNBALANCED MULTICLASS PROBLEM,
PERCENTAGE NUMBERS FOR EACH CLASS SHOW THE

NORMALIZED RECALL RATES. CONFUSION MATRIX

SHOWS THE NUMBER OF CORRECT AND WRONG
CLASSIFIED PIXELS ALONG WITH

NORMALIZED VALUES

TABLE IX

AERIAL LANENET COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHMS. ALL NUMBERS ARE IN [%]

db2, which could be due to less appearance of the lane marking
in higher Daubeschies orders.

Fig. 14. Evaluation of the Aerial LaneNet network on each test image with
mean IoU, dice, and recall and precision values for each class.

6) Varied Possible Fusions: As shown in Fig. 8, Table VII
reports the result of different DWT fusions with symmetric
FCNN. We have considered three different fusion locations.
The fusion can be either after the pooling layers or convolution
layer or before the pooling layers. Before the first pooling
layer, due to dimension incompatibility, the fusion is not
possible. Results in Table VII show that placing the fusion
right after the pooling layers results in the best performance.
The reason for this phenomenon could be the extraction
of high-level features by the subsequent convolution layers.
On the contrary, the fusion of DWT decomposition before
pooling layers leads to a decrease in mean IoU. This could
be due to the reason that DWT representation is pooled
by the next pooling layer that smooths the representation.
However, this degradation is not significant, as lane-marking

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2933

Fig. 15. Examples of results using the Aerial LaneNet approach with the best performance. (Left column) Input images. (Middle column) Ground truth.
(Right column) Images are predictions.

Fig. 16. Qualitative comparison of Aerial LaneNet with ground truth and the state-of-the-art algorithms DeepLabv3 and DeepLabv3+. (a) Input patch.
(b) Ground truth. (c) DeepLabv3. (d) DeepLabv3+. (e) Aerial LaneNet.

pixels have higher values compared with neighboring pixels,
and in max-pooling operation, the maximum value is
chosen.

7) Confusion Matrix Investigation: In order to evaluate true
and false positives/negatives in our method as well as precision
and recall, we have considered the confusion matrix of the
configuration for the best performance. Table VIII indicates

that in spite of a heavily unbalanced data set, the system
is able to achieve a lane-marking pixel (pixelwise) accuracy
of 71.55%.

In spite of different illumination conditions introduced by
shadows, different shapes, and sizes, the network is able to
classify background pixels with 0.1% false positive compared
with 99.8% true negative pixels. This indicates how robust the

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2934 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Fig. 17. Test image with overlaid prediction and ground truth. Ground truth that has not been predicted has been illustrated with dark blue and prediction
is depicted with pink.

system is in the presence of the very complex background and
objects similar to lane marking. However, the false negatives
are still high.

The majority of false negative cases come from straight
and dot-shaped lane markings. In the straight lane markings,
the output width of the system is almost in all of cases

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2935

Fig. 18. New test patch images taken in different days, GSD, and camera angles in comparison with the AerialLanes18 data set. Each patch has been shown
with the corresponding lane-marking segmentation.

narrower than ground truth. This indicates that this architecture
is not able to segment boundaries accurately. Although a
morphological operation could increase the performance in

this case dramatically, it is not interesting from a research
point of view and we do encourage other researchers not to
use it in next studies on this data set for benchmarking.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

Fig. 19. New test patch images taken in different days, GSD, and camera angles in comparison with the AerialLanes18 data set. Lane-Marking prediction
has been overlaid on patches in order to illustrate the localization accuracy of the Aerial LaneNet network.

As mentioned, dot-shaped objects yield a considerable num-
ber of false negatives. These objects are as small as 5×5 pixels,
which makes them difficult to segment. However, as we do not
have access to the information of which pixel belongs to which
class in the current annotation, we cannot report a number in
this case.

Another and important source of false negative is shadows.
As shadows occur rarely, the network has not been able to
learn shadows to segment lane markings accordingly. Regard-
ing rare objects, such as “BUS” signs, speed limits, disabled
parking places, turn signs, and so on, the same phenomenon
is happening. These classes do not occur often, and as in
deep convolutional neural networks, a big number of training
samples are needed to train the network; the performance in
these cases is not high.

8) Comparison With the State of the Art: We also compared
Aerial LaneNet with FCN-8s, DeepLab [21], UNet [23], and
the state-of-the-art method DeepLabv3 [34]1, and its newer
version DeepLabv3+ [35]1 in Table IX. Interestingly, there is
a big gap between DeepLabv3+ and DeepLabv3. The reason
is that DeepLabv3 uses monotonically increasing atrous rates,
in which in spite of being effective to obtain large recep-
tive field to segment large-size objects, it severely damages
information from small objects, such as lane markings. In
contrast, DeepLabv3+ uses a multiscale encoder containing
atrous convolutions to obtain a multiscale contextual informa-
tion, and in the decoder part, a simple yet effective module
refines the segmentation outputs to improve the boundary
segmentation. The qualitative comparison has been provided
in Fig. 16. The multiscale processing helps the DeepLabv3+
to achieve significantly better results than its previous version.
This is mostly due to the decoder part that improves the
boundary region segmentation. However, it does not have a
satisfactory performance on tiny lanemarkings despite its very
good performance in the terrestrial images. The results shows

1https://github.com/tensorflow/models/tree/master/research/deeplab

that recovering high-frequency information of image pixels
by inserting DWT into different levels of CNNs leads to a
considerably better performance of 4% mIOU in comparison
with the DeepLabv3+ algorithm. Aerial LaneNet outperforms
all of these networks in Table IX, showing the high accuracy
of our method.

9) Qualitative Analysis: In Fig. 13, recall and precision
values for each test image are reported. These values are
consistent and there is not a big difference between recall
and precision. In Fig. 14, mean IoU and dice for each test
image as well as recall and precision for each class have been
reported. As for total recall and precision values, these criteria
are consistent among test images. Recall and precision values
for each class have also been computed.

One can notice that precision and recall for background
class is very high, which is due to the unbalanced task: there
is a big gap between recall and precision for the lane-marking
class and for the background class. In order to evaluate
the results qualitatively, Fig. 15 illustrates the lane-marking
segmentations of different patches of size 1024 × 1024 pixels
compared with the ground truth. The left images are input test
patches. The middle patches are the ground truth. The patches
on the right are the corresponding predictions. Fig. 15 shows
a very good performance in the segmentation of both straight
and dashed lines in highways. It is very interesting that in
some cases, the network has localized correct lane marking,
which is not even annotated in the ground truth. However,
there are also some failure cases. In the same figures, one
can note that shadows, narrower straight lines, very small
lane markings, and similar objects in the background are
the main reasons for false negative and positive outputs.
Fig. 15(a) shows that the shadow caused by a truck has caused
degradation in lane-marking segmentation. Objects with a
similar appearance still are a challenge, e.g., the roof structures
at the bottom-left part of the image in Fig. 15(b), which
look similar to lane markings, have been classified as lane
marking. Also, in the same image, when it comes to smaller

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

AZIMI et al.: AERIAL LaneNet: LANE-MARKING SEMANTIC SEGMENTATION IN AERIAL IMAGERY 2937

lane-marking objects, the network is not performing as good.
In spite of these failure cases, the overall performance proves
the concept of effective semantic segmentation of lane marking
using enhanced FCNNs with DWT information. In Fig. 17,
predictions have been overlaid on the original test images
after stitching prediction patches together. In these images,
predicted lane-marking pixels and undetected ones are reported
in red and blue, respectively. In shadow areas, the network has
difficulties to segment lane markings.

10) Cross-Domain Generalization: In order to evaluate the
robustness of our algorithm to variations: GSD, camera angle
view, and illumination conditions, we have considered multiple
flights on different days, altitudes, and angles with the DLR
3K camera. Results are reported in Fig. 18.

We have overlaid predictions on the test patches of a
new data set in Fig. 19. The performance shows a good
generalization capability of the network, which appears robust
to most of the challenges mentioned earlier such as small size,
different camera angles, and presence of objects similar to lane
marking such as lanes in soccer fields.

V. CONCLUSION

In this paper, we have introduced a reliable and fast algo-
rithm to segment very small objects, such as lane markings
in aerial imagery with high accuracy and robustness. We
presented the Aerial LaneNet network based on the idea of
enhancing FCNNs with wavelet transformation coefficients for
pixelwise semantic segmentation, which enables a full-spectral
and multiscale analysis resulting in the considerable improve-
ment compared with our FCNN based-line network. We have
shown that although using subsampling layers or atrous convo-
lutions to obtain large receptive fields yields a very good per-
formance in terrestrial images, they cause a vital data lost for
pixelwise semantic segmentation of tiny objects, which leads
to a considerable performance degradation. Therefore, the lost
information should be either injected into the network or be
kept by removing subsampling layers to recover the lost data.
In this paper, we selected the first strategy showing impressive
performance improvement in comparison with the state-of-the-
art methods. We conclude that for tiny object segmentation,
both high- and low-frequency information of pixels should be
analyzed, while CNNs perform mostly low-frequency analysis
due to using pooling and convolution layers. The limitations
of Aerial LaneNet are in shadow areas, semantic signs on
the roads, as well as washed out lane markings. We also
introduced the AerialLanes18 data set the first high-quality
aerial lane marking data set as a benchmark in this domain.
Using different levels of wavelet decomposition leads to a
multiresolution data analysis which is important in extracting
lane markings, as objects appear at different scales. In the
future, we will investigate improving the performance by
processing shadow areas differently.

REFERENCES

[1] H. Jin, M. Miska, E. Chung, X. Li, and Y. Feng, “Road feature
extraction from high resolution aerial images upon rural regions based
on multi-resolution image analysis and Gabor filters,” in Remote Sensing
Advanced Techniques and Platforms. Rijeka, Croatia: Intechopen, 2012.
[Online]. Available: https://www.intechopen.com/download/pdf/37525

[2] C. J. C. Burges, “A tutorial on support vector machines for pat-
tern recognition,” Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[3] H. Jin and Y. Feng, “Automated road pavement marking detection
from high resolution aerial images based on multi-resolution image
analysis and anisotropic Gaussian filtering,” in Proc. ICSPS, 2010,
pp. V1-337–V1-341.

[4] H. Jin, Y. Feng, and M. Li, “Towards an automatic system for road lane
marking extraction in large-scale aerial images acquired over rural areas
by hierarchical image analysis and Gabor filter,” Int. J. Remote Sens.,
vol. 33, no. 9, pp. 2747–2769, 2012.

[5] M. Javanmardi, E. Javanmardi, Y. Gu, and S. Kamijo, “Towards high-
definition 3D urban mapping: Road feature-based registration of mobile
mapping systems and aerial imagery,” Remote Sens., vol. 9, no. 10,
p. 975, 2017.

[6] J. Huang, H. Liang, Z. Wang, Y. Song, and Y. Deng, “Lane marking
detection based on adaptive threshold segmentation and road classifica-
tion,” in Proc. ROBIO, 2014, pp. 291–296.

[7] S. Hinz and A. Baumgartner, “Automatic extraction of urban road
networks from multi-view aerial imagery,” J. Photogramm. Remote
Sens., vol. 58, nos. 1–2, pp. 83–98, 2003.

[8] G. Máttyus, S. Wang, S. Fidler, and R. Urtasun, “HD maps: Fine-grained
road segmentation by parsing ground and aerial images,” in Proc. CVPR,
2016, pp. 3611–3619.

[9] M. Gellert, L. Wenjie, and U. Raquel, “Deeproadmapper: Extracting road
topology from aerial images,” in Proc. ICCV, 2017, pp. 3458–3466.

[10] O. Tournaire, N. Paparoditis, and F. Lafarge, “Rectangular road marking
detection with marked point processes,” in Proc. Conf. Photogramm.
Image Anal., vol. 3, 2007. [Online]. Available: http://www.isprs.org/
proceedings/XXXVI/3-W49/PartA/papers/149_pia07.pdf

[11] H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias, “A test of automatic
road extraction approaches,” in Proc. Int. Arch. Photogram., Remote
Sens. Spatial Inf. Sci., 2006, pp. 209–214.

[12] W. Wang, N. Yang, Y. Zhang, F. Wang, T. Cao, and P. Eklund, “A review
of road extraction from remote sensing images,” J. Traffic Transp. Eng.,
vol. 3, no. 3, pp. 271–282, 2016.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICRL, 2015.[Online]. Available:
https://iclr.cc/archive/www/2015.html

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR, 2017,
pp. 4700–4708.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
ICCV, 2017, pp. 2980–2988.

[18] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. ECCV,
2016, pp. 21–37.

[19] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. CVPR, 2017, pp. 6517–6525.

[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. CVPR, 2015, pp. 3431–3440.

[21] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” in Proc. ICLR, 2014. [Online]. Available: https://
arxiv.org/pdf/1412.7062.pdf and https://iclr.cc/archive/www/doku.
php%3Fid=iclr2015:accepted-main.htmlunfortunately

[22] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. CVPR, 2017.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention—MICCAI. Cham, Switzerland:
Springer, 2015, pp. 234–241.

[24] J. Kim and C. Park, “End-to-end ego lane estimation based on sequential
transfer learning for self-driving cars,” in Proc. CVPR Workshops, 2017,
pp. 1194–1202.

[25] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali,
“DeepLanes: End-to-end lane position estimation using deep neural
networks,” in Proc. CVPR Workshops, 2016, pp. 38–45.

[26] S. Lee et al., “VPGNet: Vanishing point guided network for lane
and road marking detection and recognition,” in Proc. ICCV, 2017,
pp. 1965–1973.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

2938 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019

[27] M. Aly, “Real time detection of lane markers in urban streets,” in Proc.
IEEE Intell. Vehicles Symp., Jun. 2008, pp. 7–12.

[28] (2017). Tusimple Benchmark. [Online]. Available: http://benchmark.
tusimple.ai

[29] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. CVPR, 2016, pp. 3213–3223.

[30] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The mapillary
vistas dataset for semantic understanding of street scenes,” in Proc.
ICCV, 2017, pp. 5000–5009.

[31] C. Hu, L.-J. Jiang, and J. Bo, “Wavelet transform and morphology image
segmentation algorism for blood cell,” in Proc. 4th IEEE Conf. Ind.
Electron. Appl., May 2009, pp. 542–545.

[32] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA, USA:
Academic, 2009.

[33] S. Fujieda, K. Takayama, and T. Hachisuka. (2017). “Wavelet convo-
lutional neural networks for texture classification.” [Online]. Available:
http://arxiv.org/abs/1707.07394

[34] L. Chen, G. Papandreou, F. Schroff, and H. Adam. (2017). “Rethinking
atrous convolution for semantic image segmentation.” [Online]. Avail-
able: https://arxiv.org/abs/1706.05587

[35] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. (2018).
“Encoder-decoder with atrous separable convolution for semantic image
segmentation.” [Online]. Available: http://arxiv.org/abs/1802.02611

[36] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. (2017). “ICNet for real-time
semantic segmentation on high-resolution images.” [Online]. Available:
http://arxiv.org/abs/1704.08545

[37] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. (2016). “Aggregated
residual transformations for deep neural networks.” [Online]. Available:
http://arxiv.org/abs/1611.05431

[38] F. Chollet. (2016). “Xception: Deep learning with depthwise sep-
arable convolutions.” [Online]. Available: http://arxiv.org/abs/1610.
02357

[39] G. Huang, Z. Liu, and K. Q. Weinberger. (2016). “Densely con-
nected convolutional networks.” [Online]. Available: http://arxiv.org/
abs/1608.06993

[40] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. CVPR, 2005, pp. 886–893.

[41] I. Daubechies, “Ten lectures on wavelets,” in Proc. CBMS-NSF Regional
Conf. Ser. Appl. Math., vol. 61, 1992, no. 4. [Online]. Available:
http://bookstore.siam.org/cb61/

[42] A. Krizhevsky, I. Sutskever, and H. E. Geoffrey, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[43] P. Reinartz, J. Tian, H. Arefi, T. Krauß, G. Kuschk, T. Partovi, and
P. d’Angelo, “Advances in DSM generation and higher level information
extraction from high resolution optical stereo satellite datam,” in Proc.
34th Earsel Symp., Warsaw, Poland, 2014, pp. 16–20.

[44] F. Kurz, S. Türmer, O. Meynberg, D. Rosenbaum, H. Runge,
P. Reinartz, and J. Leitloff, “Low-cost optical camera systems for
real-time mapping applications,” Photogrammetrie-Fernerkundung-
Geoinf., vol. 2012, no. 2, pp. 159–176, 2012. [Online]. Available:
https://www.ingentaconnect.com/content/schweiz/pfg/2012/00002012/
00000002/art00007

[45] F. Kurz, O. Meynberg, D. Rosenbaum, S. Türmer, P. Reinartz, and
M. Schroeder, “Low-cost optical camera system for disaster monitoring,”
Int. Arch. Photogram., Remote Sens. Spatial Inf. Sci, vol. B8, pp. 33–37,
Jul. 2012.

[46] K. Liu and G. Mattyus, “Fast multiclass vehicle detection on aer-
ial images,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9,
pp. 1938–1942, Sep. 2015.

[47] O. Meynberg, S. Cui, and P. Reinartz, “Detection of high-density crowds
in aerial images using texture classification,” Remote Sens., vol. 8, no. 6,
p. 470, 2016.

[48] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, Jun. 2009,
pp. 248–255.

[49] C. Szegedy et al., “Going deeper with convolutions,” in Proc. CVPR,
Jun. 2015, pp. 1–9.

[50] OpenStreetMap Contributors. (2017). Planet Dump Retrieved From.
[Online]. Available: https://planet.osm.org

[51] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Represent., 2015.

[52] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[53] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

Seyed Majid Azimi received the B.Sc. degree in
electronics engineering from the University of Zan-
jan, Zanjan, Iran, in 2009, and the M.Sc. degree
in computer and communications technology from
the University of Saarland, Saarbrücken, Germany,
in 2016. He is currently pursuing the Ph.D. degree
with the Technical University of Munich, Munich,
Germany, with a focus on traffic and infrastructure
monitoring from remote sensing data using deep
learning methods.

Since 2016, he has been a Scientific Researcher
with the Department of Photogrammetry and Image Analysis, Remote Sensing
Technology Institute, German Aerospace Center, Weßling, German. His
research interests include (embedded) computer vision and machine learning
for object detection, segmentation, and tracking.

Peter Fischer received the Dipl.Ing. (FH) degree in
cartography from the University of Applied Science
Munich, Munich, Germany, in 2010, and the M.Sc.
degree in geodesy from the Technical University of
Munich, Munich, in 2013.

From 2013 to 2017, he was a Scientific Assis-
tant and Project Manager with the Remote Sens-
ing Technology Institute, German Aerospace Center,
Weßling, Germany, for five years. In 2018, he joined
the Department of Sensor Data Fusion (I/EF-24),
AUDI AG, Ingolstadt, Germany. Besides of this

he is contributing to the Master course of Geoinformatics at University
of Augsburg, Augsburg, Germany. His research interests include machine
learning and computational intelligence, especially its applications in the field
of cartography and remote sensing.

Marco Körner (M’15) received the Diploma
(Dipl.Inf.) and Ph.D. (Dr. rer. nat.) degrees in
computer sciences (with minor in psychology)
from Friedrich Schiller University, Jena, Germany,
in 2009 and 2016, respectively.

From 2009 to 2015, he was a member of the
Computer Vision Group, Jena. He was a Visiting
Researcher with the Centro de Investigación en
Computación, Instituto Politecnico Nacional, Mex-
ico City, Mexico, in 2012, and the University of
California at San Diego, San Diego, CA, USA,

in 2014. Since 2015, he has been a Senior Researcher and the Deputy
Head with the Chair of Remote Sensing Technology, Technical University of
Munich, Munich, Germany. His research interests include machine learning
in computer vision, particularly for application in automotive, remote sensing,
and biomedical scenarios.

Peter Reinartz (M’09) received the Diploma
(Dipl.Phys.) degree in theoretical physics from the
University of Munich, Munich, Germany, in 1983,
and the Ph.D. (Dr.Ing.) degree in civil engineering
from the University of Hannover, Hanover, Germany,
in 1989. His Ph.D. dissertation was on optimization
of classification methods for multispectral image
data.

He is currently with the Head of the Department
of Photogrammetry and Image Analysis, Remote
Sensing Technology Institute, German Aerospace

Center, Weßling, Germany. He holds a professorship for computer science
at the University of Osnabrueck, Osnabrück, Germany. He has more than
30 years of experience in image processing and remote sensing. He has over
400 publications in these fields. He is involved in using remote sensing data for
disaster management and using high-frequency time series of airborne image
data for real-time image processing and for operational use in case of disasters
and for traffic monitoring. His research interests include machine learning,
stereophotogrammetry and data fusion using space borne and airborne image
data, generation of digital elevation models, and interpretation of very-high-
resolution data from sensors, such as WorldView, GeoEye, and Pleiades.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on March 09,2020 at 12:44:50 UTC from IEEE Xplore. Restrictions apply.

E Azimi, S., Henry, C., Sommer, L., Schumann, A. and Vig, E., Skyscapes - Fine-Grained Semantic Understanding of
Aerial Scenes, IEEE International Conference on Computer Vision (ICCV), 2019 245

E Azimi, S., Henry, C., Sommer, L., Schumann, A.
and Vig, E., Skyscapes - Fine-Grained Semantic
Understanding of Aerial Scenes, IEEE Interna-
tional Conference on Computer Vision (ICCV),
2019

https://openaccess.thecvf.com/content_ICCV_2019/html/Azimi_SkyScapes__Fine-
Grained_Semantic_Understanding_of_Aerial_Scenes_ICCV_2019_paper.html

https://openaccess.thecvf.com/content_ICCV_2019/html/Azimi_SkyScapes__Fine-Grained_Semantic_Understanding_of_Aerial_Scenes_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Azimi_SkyScapes__Fine-Grained_Semantic_Understanding_of_Aerial_Scenes_ICCV_2019_paper.html

SkyScapes – Fine-Grained Semantic Understanding of Aerial Scenes

Seyed Majid Azimi1 Corentin Henry1 Lars Sommer2 Arne Schumann2 Eleonora Vig1

1German Aerospace Center (DLR), Wessling, Germany 2Fraunhofer IOSB, Karlsruhe, Germany
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760

Aerial image with overlaid annotation: dense (19 classes) and lane markings (12 classes); the dataset covers 5.7 km2.

Abstract

Understanding the complex urban infrastructure with
centimeter-level accuracy is essential for many applications
from autonomous driving to mapping, infrastructure mon-
itoring, and urban management. Aerial images provide
valuable information over a large area instantaneously;
nevertheless, no current dataset captures the complexity
of aerial scenes at the level of granularity required by
real-world applications. To address this, we introduce
SkyScapes, an aerial image dataset with highly-accurate,
fine-grained annotations for pixel-level semantic labeling.
SkyScapes provides annotations for 31 semantic categories
ranging from large structures, such as buildings, roads
and vegetation, to fine details, such as 12 (sub-)categories
of lane markings. We have defined two main tasks on
this dataset: dense semantic segmentation and multi-class
lane-marking prediction. We carry out extensive exper-
iments to evaluate state-of-the-art segmentation methods
on SkyScapes. Existing methods struggle to deal with the
wide range of classes, object sizes, scales, and fine details
present. We therefore propose a novel multi-task model,
which incorporates semantic edge detection and is better
tuned for feature extraction from a wide range of scales.
This model achieves notable improvements over the base-
lines in region outlines and level of detail on both tasks.

1. Introduction
Automated methods for creating maps of today’s urban

and rural infrastructures with centimeter-level (cm-level)

accuracy are of great aid in handling their growing com-
plexity. Applications of such accurate maps include ur-
ban management, city planning, and infrastructure moni-
toring/maintenance. Another prominent example is the cre-
ation of high definition (HD) maps for autonomous driving.
Applications here include the use of a general road network
for navigation and more advanced automation tasks in Ad-
vanced driver assistance systems (ADAS), such as lane de-
parture warnings, which rely on precise information about
lane boundaries, sidewalks, etc. [37, 40, 33, 51, 31].

Currently, the data collection process to generate HD
maps is mainly carried out by so-called mobile mapping
systems, which comprise of a vehicle equipped with a broad
range of sensors (e.g., Radar, LiDAR, cameras) followed
by automated analysis of the collected data [17, 18, 5, 24].
The limited field-of-view and occlusions due to the oblique
sensor angle make this automated analysis complicated. In
addition, mapping large urban areas in this way requires
a lot of time and resources. An aerial perspective can
alleviate many of these problems and simultaneously al-
low for processing of much larger areas of cm-level geo-
referenced data in a short time. Existing aerial semantic
segmentation datasets, however, are limited in the range
of their annotations. They either focus on a few individ-
ual classes, such as roads or building footprints in the IN-
RIA [30], Massachusetts [35], SpaceNet [43], or Deep-
Globe [11] datasets, or they provide very coarse classes,
such as the GRSS DFC 2018 [1], or the ISPRS Vaihingen
and Potsdam datasets [20]. Other datasets are recorded at
sensor angles and at flight heights unsuitable for HD map-
ping [29, 15] or contain potentially inaccurate annotations

7393

generated automatically [44]. In addition, only few works
tackle lane-marking extraction in aerial imagery, and they
either rely on third-party sources such as OpenStreetMap,
or only provide a binary extraction in Azimi et al. [2].

Ground imagery has greatly benefited from large-scale
datasets, such as ImageNet [12], Pascal VOC [13], MS-
COCO [26], but in aerial imagery the annotation is scarce
and more tedious to obtain. In this work, we propose a
new aerial image dataset, called SkyScapes, which closes
this gap by providing detailed annotations of urban scenes
for established classes, such as buildings, vegetation, and
roads, as well as fine-grained classes, such as various types
of lane markings, vehicle entrance/exit zones, danger areas,
etc. Fig. 1 shows sample annotations offered by SkyScapes.

The dataset contains 31 classes and a rigorous annota-
tion process was established to provide a high degree of an-
notation accuracy. SkyScapes uniquely combines the fine-
grained annotation of road infrastructure with an overhead
viewing angle and coverage of large areas, thus enabling the
generation of HD maps for various applications. We eval-
uate several state-of-the-art semantic segmentation models
as baselines on SkyScapes. Existing models achieve a sig-
nificantly lower accuracy on our dataset than on established
benchmarks with either ground-views or a much coarser set
of classes. Our analysis of the most common errors hints at
many merged regions and inaccurate boundaries. We there-
fore propose a novel segmentation model, which incorpo-
rates semantic edge detection as an auxiliary task. The sec-
ondary loss function emphasizes edges more strongly dur-
ing the learning process, leading to a clear reduction of the
prominent error cases. Furthermore, the proposed architec-
ture takes both large- and small-scale objects into account.

In summary: i) we provide a new aerial dataset for se-
mantic segmentation with highly accurate annotations and
fine-grained classes, thus enabling the development of mod-
els for previously unsupported tasks, such as aerial HD-
mapping; ii) we carry out extensive evaluations of current
state-of-the-art models and show that existing approaches
struggle to handle the large number of classes and level of
detail in the dataset; iii) hence, we propose a new multi-task
model, which combines semantic segmentation with edge
detection, yielding more precise region outlines.

2. The SkyScapes Dataset
The data collection was carried out with a helicopter

flying over the greater area of Munich, Germany. A low-
cost camera system [23, 16] consisting of three standard
DSLR cameras and mounted on a flexible platform was
used for recording the data, with only the nadir-looking cap-
turing images. In total, 16 non-overlapping RGB images of
size 5616 × 3744 pixels were chosen. The flight altitude
of about 1000 m above ground led to a ground sampling
distance (GSD) of approximately 13 cm/pixel. The im-

ages represent urban and partly rural areas with highways,
first/second order roads, and complex traffic situations, such
as crossings and congestion, as exemplified in fig. 1.

2.1. Classes and Annotations

Thirty-one semantic categories were annotated: low veg-
etation, paved road, non-paved road, paved parking place,
non-paved parking place, bike-way, sidewalk, entrance/exit,
danger area, building, car, trailer, van, truck, large truck,
bus, clutter, impervious surface, tree, and 12 lane-marking
types. The considered lane-markings are the following:
dash-line, long-line, small dash-line, turn sign, plus sign,
other signs, crosswalk, stop-line, zebra zone, no parking
zone, parking zone, other lane-markings. The selection of
classes was influenced by their relevance to real-world ap-
plications, hence, road-like objects dominate. Class defini-
tions and visual examples for each class are given in the sup-
plementary materials, class statistics can be found in Fig. 2.

The SkyScapes dataset was manually annotated using
tools adapted to each object class and following a strict an-
notation policy. Annotating aerial images requires consid-
erable time and effort, especially when dealing with many
small objects, such as lane-markings. Shadows, occlusion,
and unclear object boundaries also add to the difficulty.
Due to the size and shape complexity, and to the large
number of classes/instances, annotation required consider-
ably more work than for ground-view benchmarks (such as
CityScapes [10]), also limiting the dataset size. To ensure
high quality, the annotation process was performed itera-
tively with a three-level quality check over each class, over-
all taking about 200 man-hours per image. We show one
such annotated image in Fig. 1.

In SkyScapes, we enforce pixel-accurate annotations, as
even small offsets lead to large localization errors in aerial
images (e.g., a 1-pixel offset in SkyScapes would lead to
a 13 cm error). As autonomous vehicles require a min. ac-
curacy of 20 cm for on-map localization [52], we chose the
highly accurate annotation of a smaller set of images over
coarser annotations of a much larger set. In fact, in sec-
tion 6, we show high generalization of our model when
trained on SkyScapes and tested on third-party data.

2.2. Dataset Splits and Tasks

We split the dataset into training, validation, and test sets
with 50%, 12.5%, and 37.5% portions respectively. We
chose this particular split due to the class imbalance and
to avoid splitting larger images. The training and validation
sets will be publicly available. Test images will be released
as an online benchmark with undisclosed ground-truth.

Lane-markings and the rest of the scene elements (such
as buildings, roads, vegetation, and vehicles) present dif-
ferent challenges, with lane-markings operating on much
finer scales and requiring a fine-grained differentiation,

7394

Figure 1: SkyScapes image with overlaid annotation and zoomed-in samples (×2: solid line, ×4: dashed line). Top to bottom:
RGB, dense annotation (20 classes), lane markings annotation (12 classes), multi-class edges. Class colors as in fig. 2.

whereas other scene elements are represented on a much
wider scale. Having considered these challenges, we de-
fined five different tasks: 1) SkyScapes-Dense with 20
classes as the lane-markings were merged into a sin-
gle class, 2) SkyScapes-Lane with 13 classes comprising
12 lane-marking classes and a non-lane-marking one, 3)
SkyScapes-Dense-Category with 11 merged classes com-
prising nature (low-vegetation, tree), driving-area (paved,
non-paved), parking-area (paved, non-paved), human-area
(bikeway, sidewalk, danger area), shared human and vehi-
cle area (entrance/exit), road-feature (lane-marking), resi-
dential area (building), dynamic-vehicle (car, van, truck,
large-truck, bus), static-vehicle (trailer), man-made sur-
face (impervious surface), and others objects (clutter),
4) SkyScapes-Dense-Edge-Binary, and 5) SkyScapes-
Dense-Edge-Multi. The two latter tasks are binary and
multi-class edge detection, respectively. Defining separate
tasks allows for more fine-grained control to fit the model to
the dense object regions, their boundaries, and their classes.
This is especially helpful when object boundary accuracy is
paramount and difficult to extract, e.g., for multi-class lane-
markings.

2.3. Statistical Properties

SkyScapes is comprised of more than 70K annotated in-
stances that are divided into 31 classes. The number of an-
notated pixels and instances per class for SkyScapes-Dense
and SkyScapes-Lane are given in fig. 2. The majority of
pixels are annotated as low vegetation, tree, or building,
whereas the most common classes are lane markings, tree,
low vegetation, and car. This illustrates the wide range
from classes with fewer large regions to those with many

(a) SkyScapes-Dense

na
tu

re
re

sid
en

tia
l

dr
ivi

ng
ar

ea
pa

rk
in

g
ar

ea ro
ad

-
fe

at
ur

e
hu

m
an

ar
ea

sh
ar

ed
ar

ea

dy
n.

 v
eh

icl
e

st
at

. v
eh

icl
e

hu
m

an
-m

ad
e

ot
he

rs

104

106

108

#P
ix

el
s L

V
 T B P
R

 n
PR n
PP B
W S

W

 L
T

 B
u

 C
l

101

103

105

#I
ns

ta
nc

es P
P L

M

 D
A

 E
E C

a
 V

 T
K

 T
R

 IS

(b) SkyScapes-Lane

LL DL TDL ZZ TS SL OS R PZ nPZ CW PS
103

104

105

106

#P
ix
el
s

102

103

104

#I
ns
ta
nc
es

Figure 2: Number of annotated pixels (filled) and instances
(non-filled) per class in SkyScapes-Dense and SkyScapes-
Lane for low-vegetation (LV), tree (T), building (B), paved-
road (PR), paved-parking-place (PP), non-paved-parking-
place (nPP), non-paved-road (nPR), lane-marking (LM),
sidewalk (SW), bikeway (BW), danger-area (DA), entrance-
exit (EE), car (Ca), van (V), truck (TK), trailer (TR), long-
truck (LT), bus (Bu), impervious-surface (IS), clutter (Cl),
long line (LL), dash line (DL), tiny dash line (TDL), zebra
zone (ZZ), turn sign (TS), stop line (SL), other signs (OS),
the rest of lane-markings (R), parking zone (PZ), no parking
zone (nPZ), crosswalk (CW), and plus sign (PS).

small regions. A similar range can be observed among
the lane markings within the more fine-grained SkyScapes-
Lane task. With an average pixel area of about 9 pixels,

7395

‘tiny dash lines’ are the smallest instances.
A quantitative comparison of SkyScapes against existing

aerial segmentation datasets is provided in table 1. Exist-
ing datasets lack the high detail level and annotation quality
of SkyScapes. Potsdam contains fewer classes (6 vs 31),
less accurate labels, and image distortions due to subopti-
mal orthorectification. TorontoCity focuses on quantity: its
wider spatial coverage requires (a less precise) automated
labeling. SkyScapes offers the largest number of classes
including various fine-structures (e.g., lane markings). In
absolute terms, SkyScapes contains also notably more re-
gion instances, which emphasizes the higher complexity of
SkyScapes. Handling this range of classes and variety of
object instance sizes is one of the main challenges. The ca-
pability of state-of-the-art segmentation methods to address
these challenges has not yet been thoroughly explored.

3. Semantic Benchmarks
In the following, we review several state-of-the-art seg-

mentation methods and benchmark these on SkyScapes.

3.1. Metrics

To assess the segmentation performance, we use the Jac-
card Index, known as the PASCAL VOC Intersection over
Union (IoU) metric: TP

TP+FP+FN [13], where TP, FP, and
FN stand for the numbers of true positive, false positive,
and false negative pixels for each class, determined over the
test set. We also report other metrics, such as frequency
weighted IoU, pixel accuracy, average recall/precision, and
mean IoU, i.e., the average of IoUs over all classes as
defined in [28]. In the supplementary material, we re-
port IoUclass for SkyScapes-Dense and IoUcategory for the
best baseline on SkyScapes-Dense-Category. Unlike in the
street scenes of CityScapes [10], in aerial scenes the objects
can be as long as the image size (roads or long-line lane-
markings). Therefore, we do not report IoUinstance.

3.2. State of the Art in Semantic Segmentation

As detection results have matured, reaching around 80%
mean AP on Pascal VOC [22] and on the DOTA aerial
object detection dataset [45, 3], the interest has shifted to
pixel-level segmentation, which yields a more detailed lo-
calization of an object and handles occlusion better than
bounding boxes. In recent years, fully-convolutional neu-
ral networks (FCNs) [28, 41] achieved remarkable perfor-
mance on several semantic segmentation benchmarks. Cur-
rent state-of-the-art methods include Auto-Deeplab [27],
DenseASPP [46], BiSeNet [47], Context-Encoding [49],
and OcNet [48]. While specific architecture choices offer a
good baseline performance, the integration of a multi-scale
context aggregation module is key to competitive perfor-
mance. Indeed, context information is crucial in pixel label-
ing tasks. It is best leveraged by so-called “pyramid pooling

modules”, using either stacks of input images at different
scales, as in PSPNet [50], or stacks of convolutional lay-
ers with different dilation rates, as in DeepLab [6]. How-
ever, context aggregation is often performed at the expense
of fine-grained details. As a remedy, FRRN [38] imple-
ments an architecture comprising a full-resolution stream
for segmenting the details and a separate pooling stream
for analyzing the context. Similarly, GridNet [14] uses
multiple interconnected streams working at several resolu-
tions. For our benchmark, in addition to the aforementioned
models, we train several other popular segmentation net-
works: FCN [28], U-Net [39], MobileNet [19], SegNet [4],
RefineNet [25], Deeplabv3+ [9], AdapNet [42], and FC-
DenseNet [21], as well as a custom U-Net-like MobileNet
and custom Decoder-Encoder with skip-connections.

In tables 2 and 4, we report our benchmarking results
for the above methods. As anticipated, all methods strug-
gle on SkyScapes due to the significant differences between
ground and aerial imagery exposed in the introduction. On
the SkyScapes-Dense task (table 2), classification mistakes
are for the most part found around the inter-class bound-
aries. We observe the same inter-class misclassification on
the SkyScapes-Lane task (table 4), and furthermore notice
that many lane-markings are entirely missed and classified
as background, certainly due to their few-pixel size. Both
tasks hence represent a new type of challenge. This is rein-
forced by the fact that the performance of the networks re-
mained consistent from one task to the other, showing that
none are specialized enough to obtain a significant advan-
tage on either task. In our method, we tackled this challenge
by focusing on object boundaries.

4. Method
Thirty-one highly similar classes and small complex

objects in SkyScapes necessitate a specialized architec-
ture that unifies latest architectural improvements (FC-
DenseNet [21], auxiliary tasks, etc.) and proves more effec-
tive than the state of the art. Motivated by the major errors
from our benchmarking analysis, we propose a multi-task
method that tackles both dense prediction and edge detec-
tion to improve performance on boundary regions. In the
case of multi-class lane-markings, we modify the method to
enable both multi-class and binary lane-marking segmenta-
tion to decrease the number of false positives in non-lane
areas. We consider FC-DenseNet [21] as the main base-
line. SkyScapesNet, illustrated in fig. 3, can be seen as
a modified case of FC-DenseNet, but more generally as
a multi-task ensemble-model network, encapsulating units
from [21, 38, 7, 36]. Thus, it also shares their advantages,
such as alleviating the gradient-vanishing problem. Figure 4
illustrates the building blocks, which are explained below.

FDB: in fully dense block (FDB), we use more residual
connections compared to the existing Dense Blocks (DBs)

7396

Table 1: Statistics of SkyScapes and other aerial datasets. To date, TorontoCity is not publicly available.

SkyScapes Potsdam [20] Vaihingen [20] Aerial KITTI [32] TorontoCity [44]
Classes 31 6 6 4 2+8
Images 16 38 33 20 N/A
Image dimension (px) 5616×3744 6000×6000 2493×2063 (avg) variable N/A
GSD (cm/pixel) 13 5 9 9 10
Aerial coverage (km2) 5.69 (urban&rural) 3.42 1.36 3.23 712
Instances 70,346 42,389 10,700 2,814 N/A

Figure 3: The architecture of SkyScapesNet. Three branches are used to predict dense semantics and multi-class/binary
edges. For multi-class lane-marking prediction, two branches are used to predict multi-class and binary lane-markings.

Figure 4: Configuration of SkyScapesNet building blocks.
SL, DoS, and UpS are Separable, Downsampling, and Up-
sampling blocks, UpS-NN is a Nearest-Neighbor Upsam-
pling layer. Add/Cat are addition/concatenation operators.

in the baseline, as inspired by DenseASPP [46]. However,
instead of using atrous convolutions, we add separable-
convolutions due to their recent success [7]. Moreover,
as SkyScapes contains large scale variation, making recep-
tive fields larger by using larger atrous rates deteriorates

the feature extraction from very small objects such as lane-
markings. The number of sub-blocks, referred to as Separa-
ble Layer (SL), is the same as in the DBs from the baseline.

FRSR: inspired by [38] and the comparable perfor-
mance of this model with DenseNet, we add a residual-
pooling stream (similar to the full-resolution residual unit
– FRRU from [38]) as full-resolution separable residual
(FRSR) unit to the main stream. Similar to FDB, we uti-
lize separable convolutions. As the original FRRU, FRSR
has two processing streams: a residual stream (for bet-
ter localization) and a pooling stream (for better recog-
nition). Inside the pooling stream, the downsampled re-
sults go through several depth-wise separable convolutions,
batch-normalization, and ReLU layers and, after applying
a 1 × 1 convolution, the output is upsampled and added to
FDB. We limit the number of downsamplings in FRSR to
one as the main stream applies consecutive downsampling.

CRASPP: inspired by the success of atrous spatial pyra-
mid pooling block (ASPP) [46, 9], after five downsampling
steps, we add the concatenated reverse ASPP (CRASPP) to
enhance the feature extraction of large objects. In CRASPP,
we ‘reverse’ the original ASPP (i.e., the order of atrous
rates) and concatenate it with the original ASPP, so as to
obtain receptive fields optimal for both small/large objects.

LKBR: for boundary refinement and to improve the ex-
traction of tiny objects, we apply – in addition to five skip-
connections – large-kernels with boundary refinements (LK-
BRs). LKBR [36] is composed of two streams including a
boundary refinement module. Unlike [21], we apply a resid-
ual path from the output of the last downsampling module
to the input of the first upsampling module.

7397

Multi-task learning: we use three separate branches to
predict dense semantics and multi-class and binary edges
simultaneously. The streams are separated from each other
after the second upsampling layer. The motivation is to
allow the auxiliary tasks to modify the shared weights so
as to augment the network performance on boundary re-
gions. For multi-class lane-marking segmentation, we con-
sider two streams with similar configuration.

Loss functions: instead of relying only on cross-
entropy, we propose to add either the Soft-IoU-loss [31] or
the Soft-Dice-loss [34] to it (taking the sum of indiv. losses).

By the direct application of the cost-aware cross-entropy
loss, the network tries to fill in lane-marking areas which
leads to a high TP rate for the lane-marking classes, but
also high FP for the non-lane class. However, due to the
very high number of non-lane pixels, the resulting FP does
not have much effect on the overall accuracy. To allevi-
ate this, we propose the scheduled weighting mechanism in
which the costs of corresponding classes gradually move to-
wards the final weighted coefficients as the training process
evolves. Further details about the architecture as well as
loss formulas are included in the supplementary material.

5. Evaluation
For our experiments, we crop the images into

512 × 512 patches, as the original 21 MP images would not
fit into GPUs. As data augmentation, we carry out hori-
zontal and vertical flipping, and use 50% overlap between
neighboring crops both in vertical and horizontal directions.
During inference we use 10% overlap as a partial solution to
the lower performance at image boundaries. We use Titan
XP and Quadro P6000 GPUs for training. The learning rate
was 0.0001 and a batch size of 1 was chosen. We trained
the algorithms for 60 epochs to make the comparison fair
(the majority of the methods converged at this step). In to-
tal, there are 8820 training images. Our model has 137 M
parameters. As we deal with offline mapping, inference at
355 ms per 512 × 512 image patch is of little concern.

SkyScapes-Dense – 20 main classes: The benchmarking
results reported in table 2 demonstrate the complexity of the
task. Our method described above achieves 1.93% mIoU
improvement over the best benchmark. Qualitative exam-
ples of the best baselines and our proposed algorithm are
depicted in fig. 5. Our algorithm exhibits the best trade-off
between accurately segmented coarse and fine structures.
Ablation studies in table 3 quantifying the effect of several
components show that the main improvement is achieved
by including both binary and multi-class edge detection.

SkyScapes-Lane – multi-class lane prediction: Here, a
further challenge is the highly imbalanced dataset. Results

Table 2: Benchmark of the state of the art on the SkyScapes-
Dense task over all 20 classes; ‘-’ means no specific back-
bone; ‘f.w.’ is frequency weighted IoU; * skip connections.

Method Base IoU [%] average [%]
mean f.w. recall prec.

FCN-8s [28] ResNet50 33.06 67.02 40.78 65.01
SegNet [4] – 23.14 61.32 29.21 59.56
U-Net [39] – 14.15 36.33 21.88 22.87

BiSeNet [47] ResNet50 30.82 59.62 40.25 49.42
DenseASPP [46] ResNet101 24.73 56.58 32.21 40.82

Encoder-Decoder* – 37.16 67.18 48.26 50.16
FC-DenseNet-103 [21] – 37.78 67.44 46.66 53.89

FRRNA [38] – 37.20 65.10 46.44 53.22
GCN [36] ResNet152 32.92 65.12 41.60 49.65

Mobile-U-Net* – 34.96 65.26 44.52 49.49
PSPNet [50] ResNet101 30.44 61.62 40.48 43.63

RefineNet [25] ResNet152 36.39 65.52 46.12 52.17
DeepLabv3+ [7] Xception65 38.20 68.81 47.97 55.34
SkyScapesNet – 40.13 72.67 47.85 65.93

Table 3: Evaluation of different parts of SkyScapesNet.
‘Baseline’ was trained only with cross-entropy (i.e., no IoU
loss added). Max stride is 32 pixels. * using original num-
ber of sub-sampling as in the baseline in SkyScapesNet.

N
et

w
or

k

lo
ss

Io
U

se
p.

br
an

ch
.

FD
B

FS
R

R
B

C
R

A
SP

P

L
K

B
R

m
Io

U
[%

]

Baseline* [21] 37.78
Baseline 36.88

SkyScapesNet X 37.08
SkyScapesNet X X 38.55
SkyScapesNet X X X 38.77
SkyScapesNet X X X X 38.90
SkyScapesNet X X X X X 39.09
SkyScapesNet X X X X X X 39.30
SkyScapesNet* X X X X X X 40.13

in table 4 show that despite the tiny object sizes, our al-
gorithm achieves 51.93% mIoU, outperforming the state of
the art by 3.06%. Qualitative examples in fig. 6 highlight
that our algorithm generates fewer decomposed segments.

SkyScapes-Dense – auxiliary tasks: We further pro-
vide results for the three auxiliary tasks SkyScapes-
Dense-Category, SkyScapes-Dense-Edge-Binary, and
SkyScapes-Dense-Edge-Multi in table 5 (cf. sec. 2.2 for
task definitions). As multiple categories are merged into
a single category, e.g., low vegetation and tree into na-
ture, the mIoU for SkyScapes-Dense-Category is notably
higher than for the more challenging SkyScapes-Dense. For
the edge detection branches, used to enforce the learning
of more accurate boundaries, high mIoU is obtained for
SkyScapes-Dense-Edge-Binary, while still a low one for the
more challenging multi-class edge detection.

7398

(a) RGB Image (b) Ground Truth (c) SkyScapesNet (d) DeepLabv3+ (e) FC-DenseNet103

Figure 5: Result samples for SkyScapes-Dense task by SkyScapesNet and the two best baselines. For class colors, cf. fig. 2.

Table 4: Benchmark of the state of the art on the SkyScapes-
Lane task over all 13 classes. Cf. table 2 for abbreviations.

Method Base IoU [%] average [%]
mean f.w. recall precision

FCN-8s [28] ResNet50 13.74 99.69 15.23 77.96
U-Net [39] – 8.97 99.62 12.73 88.26

AdapNet [42] – 20.20 99.67 22.21 53.60
BiSeNet [47] ResNet50 23.77 99.66 28.71 51.42

DeepLabv3 [8] Res50 16.15 99.62 18.94 55.44
DenseASPP [46] ResNet101 17.00 99.65 18.74 46.02

FC-DenseNet-103 [21] – 48.42 99.85 55.32 69.01
FRRN-B [38] – 47.02 99.85 54.72 66.19

GCN [36] Res50 35.65 99.82 43.09 55.65
Mobile-U-Net* – 41.21 99.84 47.48 64.60

PSPNet [50] Res101 35.85 99.82 42.64 58.23
DeepLabv3+ [7] Xception65 37.14 99.77 43.14 62.07

Encoder-Decoder* – 48.87 99.85 55.31 70.63
SkyScapesNet – 51.93 99.87 60.53 72.29

(a) Image (b) GT (c) Ours (d) Enc-Dec*

Figure 6: Result samples for the SkyScapes-Lane task by
SkyScapesNet and the best baseline. Class colors: cf. fig. 2.

6. Generalization

Our aim in this paper is to promote aerial imagery (in
its widest sense) as a means to create HD-maps. Hence,

Table 5: Results on SkyScapes-Dense-Category, multi-class
edge, and binary edge prediction tasks.

Method Task IoU [%] average [%]
mean f.w. recall prec.

SkyScapesNet Category 52.27 77.77 63.49 65.65
SkyScapesNet Multi-class Edge 13.00 88.74 16.82 22.74
SkyScapesNet Binary Edge 58.72 89.52 64.81 71.99

Table 6: Generalization of our model trained on SkyScapes-
Dense and evaluated on Potsdam and DFC2018.

training data test data IoU [%] average [%]
mean f.w. recall prec.

SkyScapes Potsdam 47.46 70.58 62.28 66.09
SkyScapes Data Fusion Contest 2018 26.42 47.58 55.67 37.64

our method is not restricted to aerial images captured by a
helicopter, but would work for satellites and lower-flying
drones, too. To demonstrate the good generalization capa-
bility of our method, here we show results on four addi-
tional data types covering a wide range of sensors (camera
and platform), spatial resolutions, and geographic locations.

For quantitative evaluation we consider the Potsdam [20]
and GRSS DFC 2018 datasets [1], and show qualitative re-
sults also on an aerial images of Perth, Australia. Quali-
tative results can be seen in figs. 7 to 9. By adjusting the
GSD of the test images (through scaling) to match that of
our dataset, our model trained on SkyScapes indicates good
generalization even without fine-tuning. This is demon-
strated also in the quantitative results on Potsdam (see ta-
ble 6) as the mean IoU is in the range of SkyScapes-Dense-
Category. For the quantitative evaluation, we merged our
categories according to the Potsdam categories.

Moreover, fig. 10 demonstrates the generalization capa-
bility of our algorithm for binary lane-marking extraction
at a widely different scale (30 cm/pixel) on a WorldView-4

7399

Figure 7: Results of our model trained on SkyScapes and
tested on the Potsdam dataset with GSD adjustment and no
fine-tuning. Patches from left to right: RGB, ground truth,
prediction. Potsdam classes: ����������������� impervious, ����������������� building,
����������������� low vegetation, ����������������� tree, ����������������� car, ����������������� clutter.

Figure 8: Results of our model trained on SkyScapes
and tested on the GRSS DFC 2018 dataset (over Houston,
USA) with GSD adjustment and without fine-tuning.

satellite image. To the best of our knowledge, satellite im-
ages have not been used for lane-marking extraction before.

7. Conclusion

In this paper, we introduced SkyScapes, an image dataset
for cm-level semantic labeling of aerial scenes to facilitate
the creation of HD maps for autonomous driving, urban
management, city planning, and infrastructure monitoring.
We presented an extensive evaluation of several state-of-
the-art methods on SkyScapes and proposed a novel multi-
task network that, thanks to its specialized architecture and
auxiliary tasks, proves more effective than all tested base-
lines. Finally, we demonstrated good generalization of our
method on four additional image types ranging from high-
resolution aerial images to even satellite images.

Figure 9: Segmentation result samples of our model trained
on SkyScapes and tested on an aerial image over Perth, Aus-
tralia, with GSD adjustment and without fine-tuning.

Figure 10: Binary lane segmentation on a Worldview4
satellite image over Munich using our model trained on
SkyScapes, and tested on a highway scene with GSD ad-
justment and no fine-tuning.

Acknowledgements We thank (1) Spookfish/EagleView for
the aerial image over Perth; (2) the National Center for Airborne
Laser Mapping and the Hyperspectral Image Analysis Lab at the
Univ. Houston for acquiring and providing the GRSS DFC 2018
data in the generalization study, the IEEE GRSS Image Anal-
ysis and Data Fusion Technical Committee; (3) Ternow A.I.
GmbH for labeling process assistance. E. Vig was funded by
a Helmholtz Young Investigators Group grant (VH-NG-1311).

7400

References
[1] 2018 IEEE GRSS. Data Fusion Contest.

http://www.grss-ieee.org/community/
technical-committees/data-fusion/
2018-ieee-grss-data-fusion-contest/.
[Online; accessed 22-March-2019]. 1, 7

[2] Seyed Majid Azimi, Peter Fischer, Marco Körner, and Pe-
ter Reinartz. Aerial LaneNet: lane marking semantic seg-
mentation in aerial imagery using wavelet-enhanced cost-
sensitive symmetric fully convolutional neural networks.
arXiv preprint arXiv:1803.06904, 2018. 2

[3] Seyed Majid Azimi, Eleonora Vig, Reza Bahmanyar, Marco
Körner, and Peter Reinartz. Towards multi-class object
detection in unconstrained remote sensing imagery. In
Proceedings of the Asian Conference of Computer Vision
(ACCV), 2018. 4

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(12):2481–2495, 2017. 4,
6

[5] Raphael V Carneiro, Rafael C Nascimento, Rânik Guidolini,
Vinicius B Cardoso, Thiago Oliveira-Santos, Claudine
Badue, and Alberto F De Souza. Mapping road lanes using
laser remission and deep neural networks. In 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2018. 1

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Semantic Image Segmen-
tation With Deep Convolutional Nets And Fully Connected
CRFs. arXiv preprint arXiv:1412.7062, 2014. 4

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4):834–
848, 2018. 4, 5, 6, 7

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 7

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 801–818, 2018. 4, 5

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, 2016. 2, 4

[11] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan
Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia,
and Ramesh Raska. Deepglobe 2018: A challenge to parse

the earth through satellite images. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 172–17209. IEEE, 2018. 1

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 2, 4

[14] Damien Fourure, Rémi Emonet, Elisa Fromont, Damien
Muselet, Alain Trémeau, and Christian Wolf. Residual conv-
deconv grid network for semantic segmentation. In Proceed-
ings of the British Machine Vision Conference, 2017, 2017.
4

[15] ICGV TU Graz. Semantic Drone Dataset. http://
dronedataset.icg.tugraz.at/. [Online; accessed
01-March-2019]. 1

[16] Veronika Gstaiger, Hannes Römer, Dominik Rosenbaum,
and Fabian Henkel. Airborne camera system for real-
time applications-support of a national civil protection exer-
cise. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 40(7):1189, 2015.
2

[17] Chunzhao Guo, Kiyosumi Kidono, Junichi Meguro, Yoshiko
Kojima, Masaru Ogawa, and Takashi Naito. A low-cost so-
lution for automatic lane-level map generation using con-
ventional in-car sensors. IEEE Transactions on Intelligent
Transportation Systems, 17(8):2355–2366, 2016. 1

[18] Gi-Poong Gwon, Woo-Sol Hur, Seong-Woo Kim, and
Seung-Woo Seo. Generation of a precise and efficient lane-
level road map for intelligent vehicle systems. IEEE Trans-
actions on Vehicular Technology, 66(6):4517–4533, 2017. 1

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[20] ISPRS. 2D Semantic Labeling Dataset. http:
//www2.isprs.org/commissions/comm3/wg4/
semantic-labeling.html. [Online; accessed
01-March-2019]. 1, 5, 7

[21] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana
Romero, and Yoshua Bengio. The One Hundred Layers
Tiramisu: Fully Convolutional DenseNets for Semantic Seg-
mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 11–
19, 2017. 4, 5, 6, 7

[22] Seung-Wook Kim, Hyong-Keun Kook, Jee-Young Sun,
Mun-Cheon Kang, and Sung-Jea Ko. Parallel feature pyra-
mid network for object detection. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 234–
250, 2018. 4

[23] Franz Kurz, Dominik Rosenbaum, Jens Leitloff, Oliver
Meynberg, and Peter Reinartz. Real time camera system
for disaster and traffic monitoring. In International Confer-

7401

ence on Sensors and Models in Photogrammetry and Remote
Sensing, 2011. 2

[24] Pierre Lamon, Cyrill Stachniss, Rudolph Triebel, Patrick
Pfaff, Christian Plagemann, Giorgio Grisetti, Sascha Kolski,
Wolfram Burgard, and Roland Siegwart. Mapping with an
autonomous car. In IEEE/RSJ IROS Workshop: Safe Naviga-
tion in Open and Dynamic Environments, volume 26, 2006.
1

[25] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian
Reid. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017. 4, 6

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2

[27] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for seman-
tic image segmentation. arXiv preprint arXiv:1901.02985,
2019. 4

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 4, 6, 7

[29] Ye Lyu, George Vosselman, Guisong Xia, Alper Yilmaz, and
Michael Ying Yang. The uavid dataset for video semantic
segmentation. arXiv preprint arXiv:1810.10438, 2018. 1

[30] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat,
and Pierre Alliez. Can semantic labeling methods generalize
to any city? the inria aerial image labeling benchmark. In
IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS). IEEE, 2017. 1

[31] Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3438–3446, 2017. 1, 6

[32] Gellért Máttyus, Shenlong Wang, Sanja Fidler, and Raquel
Urtasun. Enhancing road maps by parsing aerial images
around the world. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1689–1697, 2015. 5

[33] Gellért Máttyus, Shenlong Wang, Sanja Fidler, and Raquel
Urtasun. HD Maps: Fine-Grained Road Segmentation by
Parsing Ground and Aerial Images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3611–3619, 2016. 1

[34] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-Net: Fully Convolutional Neural Networks for Volumet-
ric Medical Image Segmentation. In 4th Inter. Conf. on 3D
Vision, 2016. 6

[35] Volodymyr Mnih. Machine Learning for Aerial Image La-
beling. PhD thesis, University of Toronto, 2013. 1

[36] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and
Jian Sun. Large kernel matters–improve semantic segmen-
tation by global convolutional network. In Proceedings of

the IEEE conference on computer vision and pattern recog-
nition, pages 4353–4361, 2017. 4, 5, 6, 7

[37] Fabian Poggenhans, Jan-Hendrik Pauls, Johannes Janoso-
vits, Stefan Orf, Maximilian Naumann, Florian Kuhnt, and
Matthias Mayr. Lanelet2: A high-definition map framework
for the future of automated driving. In 2018 21st Inter-
national Conference on Intelligent Transportation Systems
(ITSC), pages 1672–1679. IEEE, 2018. 1

[38] Tobias Pohlen, Alexander Hermans, Markus Mathias, and
Bastian Leibe. Full-resolution residual networks for seman-
tic segmentation in street scenes. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3309–3318, July 2017. 4, 5, 6, 7

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In Medical Image Computing and Computer-
Assisted Intervention, pages 234–241, Cham, 2015. Springer
International Publishing. 4, 6, 7

[40] Heiko G Seif and Xiaolong Hu. Autonomous driving in the
iCityHD maps as a key challenge of the automotive industry.
Engineering, 2(2):159–162, 2016. 1

[41] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional
networks. arXiv preprint arXiv:1312.6229, 2013. 4

[42] Abhinav Valada, Johan Vertens, Ankit Dhall, and Wol-
fram Burgard. Adapnet: Adaptive semantic segmentation
in adverse environmental conditions. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 4644–4651, May 2017. 4, 7

[43] Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow.
Spacenet: A remote sensing dataset and challenge series.
arXiv preprint arXiv:1807.01232, 2018. 1

[44] Shenlong Wang, Min Bai, Gellért Máttyus, Hang Chu, Wen-
jie Luo, Bin Yang, Justin Liang, Joel Cheverie, Sanja Fidler,
and Raquel Urtasun. TorontoCity: Seeing the World with
a Million Eyes. In Proceedings of the IEEE International
Conference on Computer Vision, 2017. 2, 5

[45] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-
longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-
pei Zhang. Dota: A large-scale dataset for object detection
in aerial images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3974–
3983, 2018. 4

[46] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and
Kuiyuan Yang Deepmotion. DenseASPP for Semantic Seg-
mentation in Street Scenes. In CVPR, pages 3684–3692, Salt
Lake City, 2018. 4, 5, 6, 7

[47] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-
tion network for real-time semantic segmentation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 325–341, September 2018. 4, 6, 7

[48] Yuhui Yuan and Jingdong Wang. Ocnet: Object context net-
work for scene parsing. arXiv preprint arXiv:1809.00916,
2018. 4

7402

[49] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018. 4

[50] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid Scene Parsing Network. In
CVPR, Honolulu, 2017. 4, 6, 7

[51] Ling Zheng, Bijun Li, Hongjuan Zhang, Yunxiao Shan,
and Jian Zhou. A high-definition road-network model for
self-driving vehicles. ISPRS International Journal of Geo-
Information, 7(11):417, 2018. 1

[52] Julius Ziegler, Philipp Bender, Markus Schreiber, Hen-
ning Lategahn, Tobias Strau, Christoph Stiller, Thao Dang,
Uwe Franke, Nils Appenrodt, Christoph Keller, Eberhard
Kaus, Ralf Herrtwich, Clemens Rabe, David Pfeiffer, Frank
Lindner, Fridtjof Stein, Friedrich Erbs, Markus Enzweiler,
Carsten Knoeppel, and Eberhard Zeeb. Making Bertha Drive
– An Autonomous Journey on a Historic Route. IEEE Intell.
Transp. Syst., 2014. 2

7403

SkyScapes – Fine-Grained Semantic Understanding of Aerial Scenes
– Supplementary Material –

Seyed Majid Azimi1 Corentin Henry1 Lars Sommer2 Arne Schumann2 Eleonora Vig1

1German Aerospace Center (DLR), Wessling, Germany 2Fraunhofer IOSB, Karlsruhe, Germany
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760

1. Annotation techniques
Several annotators worked on the creation of the ground

truth, each focusing on a separate set of classes. To ensure
annotation consistency, a list of rules was established and
extended as special cases were discovered. These guide-
lines relate to two aspects of the annotation work: target
identification and boundary topology. For the former, the
annotators referred to the comprehensive class definitions
found in section 2 to assign every object in the image to a
semantic category. The vertical ordering of classes (or class
overlays) was based on the natural physical ordering found
in the real world, and as also considered in transportation
systems, i.e., vehicles were put on top of all road-like ob-
jects, etc. Some classes were annotated together to ensure
that inter-object borders were not overlapping, but only after
fixing the vertical class order, similarly to CityScapes [2]:
the object boundaries of low-level classes were drawn more
coarsely at places where they would be overlaid with the
accurate masks of higher-level classes. This sped up the
annotation process while still satisfying our quality require-
ments. Other objects such as vehicles were annotated sep-
arately. As a consequence, their borders did not necessar-
ily match the boundaries of other classes in the resulting
merged ground truth. In the final verification step, these
seams were corrected pixel by pixel by the annotators.

2. Semantic classes
In table 10, we provide detailed definitions of the 31 an-

notated classes, including a typical visual example per class.

3. Further details on SkyScapesNet
In SkyScapesNet, we use the same number of pooling

and unpooling steps as in the FC-DenseNet [3] baseline,
i.e., 5 pooling and 5 unpooling steps. Between the encoder
and decoder we use an extra fully dense block (FDB) mod-
ule similar to the DenseBlock (DB) module in the baseline
together with concatenated reverse ASPP (CRASPP). The

Table 1. Architecture details of SkyScapesNet. The abbreviations
stand for: FDB: Fully DenseBlock, DoS: Down-sampling, UpS:
Up-sampling, SL: separable layer, and fm: number of feature
maps. Note that skip-connections and LKBR modules have not
been illustrated for simplicity.

Network Architecture
Input, fm=3

Convolution (3x3), fm:48
FDB (4 SLs), MaxPool→FRSR

Concatenation→DoS→Concatenation
FDB (5 SLs), Conv(3x3) + MaxPool→FRSR

Concatenation→DoS→Concatenation
FDB (7 SLs), Conv(3x3) + MaxPool→FRSR

Concatenation→DoS→Concatenation
FDB (10 SLs), Conv(3x3) + MaxPool→FRSR

Concatenation→DoS→Concatenation
FDB (12 SLs), Conv(3x3) + MaxPool→FRSR

Concatenation→DoS→Concatenation
FDB (15 SLs)

CRASPP
repeated in parallel for each task

UpS + FDB (12 SLs)
UpS + FDB (10 SLs)
UpS + FDB (7 SLs)
UpS + FDB (5 SLs)
UpS + FDB (4 SLs)

Convolution (1x1), fm=No. of classes
Softmax

number of Separable Layers (SL) is similar to the baseline:
4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4. However, for the majority
of the ablation studies we used the SL sequence 1, 2, 3, 4,
5, 6, 5, 4, 3, 2, 1 due to limited GPU memory in Titan XPs.
The experiments marked with ‘*’ in the ablation study table
were carried out with the same number of SL modules as in
the baseline.

We use HeUniform to initialize our model and train it
with ADAM using a constant learning rate of 0.0001. We

1

did not use any learning rate scheduler for the sake of fair
benchmarking of several architectures. We train all mod-
els on the augmented data with horizontal and vertical flips.
We use current batch statistics for batch normalization in
all three phases: training, validation, and test. The number
of features in SL modules is the multiplication of the num-
ber of SL modules and the growth-rate. We used the same
growth-rate of 16 as the baseline. The number of feature
maps in separable-convolutions is the same as in the stan-
dard convolution layers. We use a stride of 1 in separable
convolutions. MaxPooling is done with a kernel size of 2×2
with a stride of 2. For convolutions, we use a kernel size of
3 × 3 throughout the network. In the full-resolution sepa-
rable residual (FRSR) module, the number of feature maps
in the first convolution and in the separable convolution is
twice as many as the number of feature maps in FDB at the
same step. The last convolution has equal number of feature
maps as the corresponding FDB.

The input convolution of the FRSR modules (except the
first one) is 1 × 1 and the number of feature maps is equal
to growth rate ∗ number of SL modules. We use 21
feature maps in the large-kernels with boundary refinements
(LKBRs) modules.

In our experiments, we combine the Soft-IoU loss [4]
as well as the Soft-Dice loss [5] with the cross-entropy
loss function. For the multi-class segmentation task, cross-
entropy is defined as

Lcross−entropy = − 1
C

∑C
c=1

∑
N ync log ŷnc (1)

where ync ∈ {0, 19} is the ground-truth value for class c
at location n, ŷnc ∈ [0, 19] is the prediction probability, C
stands for the total number of classes, N is the total number
of pixel locations and L stands for the loss function. The
Soft-IoU loss is computed as:

Lsoft−IOU = − 1
C

∑C
c=1

∑
N ync∗ŷnc∑

N ync+ŷnc−ync∗ŷnc
(2)

The total loss is then defined as

Ltotal = Lsoft−IOU + Lcross−entropy (3)

When the Soft-Dice loss is used, we compute the follow-
ing:

Lsoft−Dice = − 1
C

∑C
c=1

2∗|∑N ync∗ŷnc|
|∑N ync|2+|

∑
N ŷnc|2 (4)

In table 2, we evaluate the above losses on SkyScapes-
Dense, both separately and in combination, and show that
the combination of soft-IoU loss with cross-entropy is more
beneficial than soft-Dice with cross-entropy.

4. Class merging policy for the Potsdam and
GRSS DFC 2018 datasets

In order to be able to evaluate the performance of
our method trained on SkyScapes on the Potsdam and

Table 2. Evaluation of the different losses and their combinations
on the SkyScapes-Dense benchmark. mIoU numbers are in [%].
Higher value is better. SSNet stands for SkyScapesNet.

Network cross-entropy soft-IoU soft-Dice mIoU [%]
Baseline [3] X 36.88

SSNet X 36.95
SSNet X 36.93
SSNet X X 37.08
SSNet X X 37.01

Table 3. The class merging policy we used to make the results of
our model comparable with the ground-truth labels in Potsdam.

SkyScapes-Dense Potsdam
low-vegetation low-vegetation
paved-road impervious-surface
non-paved-road impervious-surface
paved-parking-place impervious-surface
non paved-parking-place impervious-surface
bikeways impervious-surface
sidewalks impervious-surface
entrance-exit impervious-surface
danger-area impervious-surface
lane-markings impervious-surface
danger-area impervious-surface
car vehicle
trailer clutter
van vehicle
truck vehicle
large-truck vehicle
bus vehicle
clutter clutter
impervious-surface impervious-surface
tree tree

GRSS DFC 2018 datasets with different class defini-
tions, we adopt the class merging policy shown in ta-
ble 3 on the SkyScapes-Dense prediction task. For the
GRSS DFC 2018 dataset, we applied a similar policy.

5. Further quantitative results

In table 4, we present an extensive benchmark on
SkyScapes-Dense using several different methods ranging
from the initial FCN8, as the first semantic segmentation
method that uses fully convolutional neural networks, to
the very recent DenseASPP, BiSeNet, and DeepLabv3+ al-
gorithms. Table 5 shows the IoUclass, i.e., the IoU for
each of the 20 classes separately. Similarly, table 6 and ta-
ble 7 show the benchmark results on SkyScapes-Lane (over-
all and for each class separately). Finally, results for the
merged dense classes (the SkyScapes-Dense-Category task)
are given in table 8 and table 9.

Table 4. Benchmark of the state-of-the-art methods on the SkyScapes-Dense dataset considering the performance over all 20 classes as a
whole. ‘-’ means no specific backbone network is used. ‘IoU’ and ‘f.w.’ represent intersection over union and frequency weighted IoU.
Models: best and second best.

method base pixel IoU [%] average [%]
scheme modularities accuracy [%] mean f.w. recall precision

FCN-8s VGG19 76.95 32.11 63.45 40.73 50.63
FCN-8s ResNet50 79.19 33.06 67.02 40.78 65.01
Dilation – 72.41 25.65 58.65 34.49 38.48
SegNet – 74.24 23.14 61.32 29.21 59.56
U-Net – 52.74 14.15 36.33 21.88 22.87

AdapNet – 74.52 30.23 61.09 38.38 47.73
BiSeNet ResNet50 73.25 30.82 59.62 40.25 49.42
BiSeNet ResNet101 74.62 29.98 61.27 39.21 46.44
BiSeNet ResNet152 75.41 29.84 62.17 39.30 45.08

DeepLabv3 Res50 68.43 23.36 53.60 30.76 43.98
DeepLabv3 Res101 71.32 25.30 57.30 33.29 41.92
DeepLabv3 Res152 70.27 26.38 56.11 34.39 46.84
DeepLabv3 InceptionV4 26.58 2.44 11.38 5.61 28.83
DenseASPP MobileNetV2 19.67 2.17 9.01 4.86 19.57
DenseASPP ResNet50 70.96 24.70 56.60 32.35 39.46
DenseASPP ResNet101 71.27 24.73 56.58 32.21 40.82
DenseASPP ResNet152 67.67 24.53 52.58 32.49 40.11

Encoder-Decoder – 77.83 30.35 65.65 39.91 43.28
Encoder-Decoder-Skip – 79.08 37.16 67.18 48.26 50.16

FC-DenseNet-56 – 77.28 33.22 64.86 42.92 46.98
FC-DenseNet-67 – 78.45 34.67 66.26 44.38 47.71
FC-DenseNet-103 – 79.21 37.78 67.44 46.66 53.89

FRRNA – 77.59 37.20 65.10 46.44 53.22
FRRNB – 76.78 32.49 64.10 40.85 49.07

GCN Res50 77.88 32.88 65.82 43.26 46.99
GCN Res101 77.57 32.80 65.55 42.14 48.06
GCN Res152 77.50 32.92 65.12 41.60 49.65

Mobile-U-Net – 75.25 26.01 62.35 34.01 39.70
Mobile-U-Net-Skip – 77.56 34.96 65.26 44.52 49.49

PSPNet Res50 74.49 30.31 61.45 40.02 44.51
PSPNet Res101 74.62 30.44 61.62 40.48 43.63
PSPNet Res152 74.09 30.20 60.95 39.76 43.91

RefineNet Res50 77.02 34.23 64.68 44.15 49.54
RefineNet Res101 77.08 33.27 64.66 42.23 48.46
RefineNet Res152 77.75 36.39 65.52 46.12 52.17

DeepLabv3+ Res50 75.88 31.95 63.00 40.20 49.76
DeepLabv3+ Res101 75.94 31.95 63.25 41.48 48.61
DeepLabv3+ Res152 76.14 31.91 63.29 42.48 46.85
DeepLabv3+ Xception65 80.25 38.20 68.81 47.97 55.34

SkyScapesNet – 83.56 40.13 72.67 47.85 65.93

6. Further qualitative results

We also provide more qualitative results to demonstrate
the generalization capability of our method. Figure 1 shows
the satellite image of the whole area of Munich, Germany.
This image was taken by the WorldView4 satellite with a
ground sampling distance (GSD) of 30 cm.

The patches in fig. 2 highlight binary lane-marking seg-

mentation results on the satellite image, the feasibility of
which is, to our knowledge, demonstrated here for the first
time. In this work, we expanded the work of Azimi et al. [1]
on binary lane-marking extraction. It is thus feasible to ex-
tract whole-city lane-marking maps from a single satellite
image.

Figure 3, fig. 4, and fig. 5 show further qualitative re-

Table 5. Evaluation of the state-of-the-art methods on the SkyScapes-Dense dataset for each class separately. ‘-’ means no specific back-
bone network is used. ‘IoU’ represents intersection over union. LV, PR, nPR, PPC, nPPC, BW, SW, EE, DA, LM, B, Ca, TR, V, TK, LT, Bu,
Cl, IS, and T represent low-vegetation, paved-road, non-paved-road, paved-parking-place, non-paved-parking-place, bikeway, sidewalk,
entrance-exit, danger area, lane-marking, building, car, trailer, van, truck, long truck, bus, clutter, impervious surface, and tree. Models:
best and second best.

method base IoU [%]
mean LV PR nPR PPC nPPC BW SW EE DA LM B C TR V TK LT Bu Cl IS T

FCN-8s VGG19 32.11 67.11 63.74 6.82 29.11 0.12 25.9 32.64 7.14 43.99 36.46 81.2 64.09 0.08 32.67 7.86 0.0 2.01 50.47 17.24 73.53
FCN-8s ResNet50 33.06 68.45 67.71 6.41 34.71 0.0 32.08 40.72 17.8 36.53 8.31 86.7 67.88 0.0 29.87 8.65 5.27 0.0 50.64 23.75 75.65
Dilation – 25.65 58.11 58.84 1.78 25.74 0.02 19.74 31.87 17.15 0.0 1.49 80.55 47.5 0.0 21.87 15.1 4.62 1.21 40.24 19.64 67.48
SegNet – 23.14 63.96 61.9 0.94 27.5 1.19 7.7 30.65 0.72 0.0 4.99 81.92 43.94 0.0 0.0 0.0 0.0 0.0 44.73 21.7 70.86
U-Net – 14.15 46.68 37.17 1.6 14.89 0.07 0.07 8.81 0.0 0.0 37.66 49.63 23.0 0.44 2.34 0.91 0.11 0.0 15.84 6.83 36.87

AdapNet – 30.23 59.99 65.28 1.49 27.4 0.19 28.7 36.86 19.08 34.08 21.49 80.74 54.7 3.07 26.04 11.5 0.92 11.4 31.27 19.95 70.5
BiSeNet ResNet50 30.82 59.68 65.43 2.14 25.25 0.95 25.9 38.5 15.2 47.01 22.93 82.76 60.9 3.99 31.34 12.85 0.71 8.42 27.26 22.07 63.0
BiSeNet ResNet101 29.98 61.55 65.39 0.62 21.99 0.52 24.39 37.71 13.12 23.59 20.62 82.7 63.84 4.07 32.16 17.5 0.68 2.7 34.52 23.85 68.13
BiSeNet ResNet152 29.84 63.02 65.87 1.99 25.5 0.05 27.4 38.77 17.65 8.58 19.93 84.19 62.79 1.74 32.81 15.57 0.01 10.03 28.79 24.13 67.89

DeepLabv3 Res50 23.36 57.12 55.25 1.7 20.86 0.64 14.41 27.7 10.49 3.49 4.27 75.17 52.43 1.24 25.14 7.07 0.0 8.24 26.28 18.56 57.06
DeepLabv3 Res101 25.30 59.69 57.28 0.85 22.39 0.31 14.24 29.28 9.85 9.43 6.91 78.65 53.57 0.25 26.66 6.43 1.63 14.73 30.02 19.14 64.61
DeepLabv3 Res152 26.38 56.96 60.2 2.86 20.61 0.42 17.76 31.76 10.55 19.21 8.85 80.38 56.38 1.43 27.78 8.77 6.47 7.57 29.7 20.75 59.15
DeepLabv3 InceptionV4 2.44 5.13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.72 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.93
DenseASPP MobileNetV2 2.17 17.64 0.06 0.21 1.11 0.19 0.0 1.03 0.04 0.0 0.0 13.95 0.0 0.0 0.09 0.0 0.0 0.0 0.73 1.08 7.35
DenseASPP ResNet50 24.70 58.19 60.79 1.44 23.31 0.06 16.88 31.85 11.96 0.2 20.65 76.57 57.3 0.44 19.4 5.32 0.0 1.98 24.22 21.18 62.23
DenseASPP ResNet101 24.73 59.05 60.85 1.47 23.07 0.09 16.92 31.51 12.85 4.56 18.96 76.59 56.12 0.55 17.84 4.81 0.01 8.92 18.22 20.28 61.87
DenseASPP ResNet152 24.53 51.53 59.83 2.47 22.74 0.04 19.55 31.92 11.66 2.64 22.44 77.94 56.86 0.66 18.32 9.84 0.96 2.27 27.92 18.96 52.08

Encoder-Decoder – 30.35 67.6 65.69 2.28 31.27 0.05 30.7 40.71 19.72 0.5 23.87 84.59 55.64 0.75 20.72 15.84 2.67 8.3 34.55 26.44 75.02
Encoder-Decoder-Skip – 37.16 67.48 69.7 3.68 33.54 0.37 36.83 42.88 23.14 33.77 65.13 86.47 69.86 1.09 33.33 22.81 3.27 4.47 44.3 25.87 75.26

FC-DenseNet-56 – 33.22 66.47 65.47 1.74 29.89 0.34 26.26 38.25 17.01 26.48 61.56 83.99 63.51 0.13 24.95 11.07 0.31 11.37 39.21 21.88 74.54
FC-DenseNet-67 – 34.67 68.4 66.71 2.28 29.84 0.06 30.78 41.28 18.14 25.15 64.93 84.65 66.33 0.42 29.04 18.87 1.12 0.01 45.53 24.24 75.52

FC-DenseNet-103 – 37.78 69.18 68.19 0.79 33.4 0.01 31.97 42.67 20.28 56.5 66.69 85.53 66.94 1.21 31.81 20.51 3.61 4.26 49.84 25.88 76.42
FRRN-A – 37.20 61.59 67.23 3.61 19.17 0.7 32.28 38.65 11.53 8.55 63.45 83.28 68.83 1.99 32.92 20.74 4.03 7.74 37.39 23.66 64.66
FRRN-B – 32.49 65.53 67.04 1.62 27.86 0.0 31.94 39.27 18.82 15.38 61.62 82.4 62.3 1.95 26.28 11.05 1.61 13.01 24.03 24.92 73.09

GCN Res50 32.88 67.28 67.24 1.08 31.87 0.08 22.75 38.84 14.16 20.32 55.47 85.12 66.68 0.1 29.67 13.25 0.18 6.23 37.04 25.59 74.75
GCN Res101 32.80 66.95 66.47 4.97 25.36 0.52 24.43 40.04 17.04 18.48 52.98 85.85 67.39 2.1 30.41 13.24 2.07 2.41 34.25 26.26 74.77
GCN Res152 32.92 66.44 64.86 2.27 25.81 0.0 28.21 39.48 16.4 19.67 54.41 85.38 66.72 2.39 30.8 8.63 0.87 4.16 42.28 25.19 74.4

Mobile-U-Net – 26.01 64.3 63.87 2.93 27.31 0.37 23.36 36.18 18.84 0.0 5.68 80.98 43.9 0.04 15.67 15.5 0.98 6.48 18.11 22.61 73.02
Mobile-U-Net-Skip – 34.96 66.49 67.49 2.5 30.94 0.5 26.26 38.46 19.95 38.01 62.15 84.5 64.75 3.67 31.05 15.67 0.41 10.4 37.88 24.06 74.01

PSPNet Res50 30.31 64.11 60.03 1.01 21.88 0.91 17.46 31.74 10.6 16.83 50.08 80.36 63.94 1.68 28.76 18.09 1.29 7.65 36.66 20.74 72.34
PSPNet Res101 30.44 64.2 59.72 0.79 22.61 0.28 19.53 32.42 10.52 31.29 50.22 80.53 62.78 0.8 27.48 15.42 3.09 0.04 34.09 20.13 72.81
PSPNet Res152 30.20 64.04 57.95 3.75 22.14 0.79 19.91 31.45 10.62 27.78 51.29 79.96 63.45 0.95 27.87 13.23 0.35 4.0 31.49 21.47 71.53

RefineNet Res50 34.23 66.78 63.34 3.58 29.77 0.07 26.41 36.11 14.97 32.31 41.48 83.62 69.29 2.07 37.82 15.91 2.43 13.61 46.32 24.59 74.12
RefineNet Res101 33.27 66.19 64.63 4.28 29.91 0.21 28.68 35.6 14.3 17.41 41.92 84.08 69.41 0.57 38.12 17.31 3.02 7.21 44.08 24.79 73.72
RefineNet Res152 36.39 67.05 65.41 3.26 32.83 0.3 32.19 38.08 17.19 56.6 44.79 84.23 69.06 2.39 37.4 16.77 3.45 15.85 42.31 23.86 74.75

DeepLabv3+ Res50 31.95 64.36 63.69 2.68 29.05 0.56 25.32 35.69 15.12 31.4 42.54 81.97 65.27 1.22 31.69 13.97 4.4 1.78 34.82 21.02 72.56
DeepLabv3+ Res101 31.95 64.61 63.7 1.58 29.5 0.59 23.85 35.22 15.34 27.76 41.3 82.25 65.01 2.93 29.81 11.07 0.0 13.58 35.38 22.73 72.83
DeepLabv3+ Res152 31.91 64.78 63.88 2.42 27.86 0.23 24.8 36.55 14.22 17.19 45.27 83.0 66.59 2.37 33.24 16.28 2.74 4.87 36.98 23.04 71.97
DeepLabv3+ Xception65 38.20 69.92 69.79 2.62 34.85 0.67 28.72 43.98 25.84 46.43 46.73 88.12 70.73 2.44 39.25 15.99 5.33 16.64 50.38 28.45 77.16

SkyScapesNet – 40.13 72.33 78.48 5.86 52.04 4.13 51.39 52.9 27.24 4.33 65.26 89.16 72.01 1.03 38.33 19.33 0.0 0.0 56.02 35.39 77.41

sults on three aerial images with different scales, GSD, il-
lumination conditions, and from different geographical ar-
eas. These figures show the whole-image dense prediction
and zoomed-in sample areas with dense, multi-class lane-
marking, and multi-class edge segmentations.

Table 6. Benchmark of the state-of-the-art methods on the SkyScapes-Lane dataset considering the performance over all 13 classes as a
whole. ‘-’ means no specific backbone network is used. ‘IoU’ and ‘f.w.’ represent intersection over union and frequency weighted IoU.
Models: best and second best.

method base pixel IoU [%] average [%]
scheme modularities accuracy [%] mean f.w. recall precision

FCN-8s VGG19 99.81 10.86 99.66 11.66 92.84
FCN-8s ResNet50 99.83 13.74 99.69 15.23 77.96
Dilation – 99.77 8.56 99.57 8.90 50.80
SegNet – 99.80 9.02 99.64 10.11 94.45
U-Net – 99.73 8.97 99.62 12.73 88.26

AdapNet – 99.82 20.20 99.67 22.21 53.60
BiSeNet ResNet50 99.81 23.77 99.66 28.71 51.42
BiSeNet ResNet101 99.81 18.30 99.64 20.22 52.66
BiSeNet ResNet152 99.81 17.85 99.65 19.78 49.54

DeepLabv3 Res50 99.80 16.15 99.62 18.94 55.44
DeepLabv3 Res101 99.80 13.27 99.61 14.35 45.67
DeepLabv3 Res152 99.80 12.64 99.61 13.42 60.52
DeepLabv3 InceptionV4 58.60 4.51 58.54 5.47 23.06
DenseASPP MobileNetV2 99.80 7.68 99.60 7.69 69.22
DenseASPP ResNet50 99.81 16.16 99.65 17.50 52.98
DenseASPP ResNet101 99.81 17.00 99.65 18.74 46.02

Encoder-Decoder – 99.85 21.87 99.74 25.51 40.27
Encoder-Decoder-Skip – 99.92 48.87 99.85 55.31 70.63

FRRN-A – 99.92 46.85 99.85 55.06 67.11
FRRN-B – 99.92 47.02 99.85 54.72 66.19

GCN Res50 99.90 35.65 99.82 43.09 55.65
GCN Res101 99.90 34.71 99.82 41.42 56.49
GCN Res152 99.90 33.43 99.82 39.88 56.61

Mobile-U-Net-Skip – 99.91 41.21 99.84 47.48 64.60
PSPNet Res50 99.90 35.44 99.82 42.80 57.15
PSPNet Res101 99.90 35.85 99.82 42.64 58.23
PSPNet Res152 99.90 34.09 99.82 40.56 56.32

RefineNet Res152 99.80 7.68 99.60 7.69 99.98
DeepLabv3+ Res50 99.86 27.68 99.75 31.82 55.81
DeepLabv3+ Res101 99.86 27.36 99.74 32.61 50.54
DeepLabv3+ Res152 99.86 31.88 99.75 36.82 59.16
DeepLabv3+ Xception65 99.87 37.14 99.77 43.14 62.07

FC-DenseNet-56 – 99.92 44.91 99.85 52.47 65.67
FC-DenseNet-67 – 99.92 47.35 99.85 54.83 69.01
FC-DenseNet-103 – 99.92 48.42 99.85 55.32 69.01

SkyScapesNet – 99.93 51.93 99.87 60.53 72.29

Table 7. Evaluation of the state-of-the-art methods on the SkyScapes-Lane dataset for each class separately. ‘-’ means no specific back-
bone network is used. ‘IoU’ represents intersection over union. NL, DL, LL, TDL, TS, OS, PS, CW, SL, ZZ, nPZ, PZ, and R represent
non lane-marking, dash line, long line, tiny dash line, turn sign, other signs, plus sign, crosswalk, stop line, zebra zone, no parking zone,
parking zone, and the rest of lane-markings.

method base IoU [%]
mean NL DL LL TDL TS OS PS CW SL ZZ nPZ PZ R

FCN-8s VGG19 10.86 99.83 22.39 18.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FCN-8s ResNet50 13.74 99.84 39.86 27.24 0.0 0.0 0.0 0.0 11.66 0.0 0.02 0.0 0.0 0.0
Dilation – 8.56 99.77 0.03 5.41 0.65 1.26 2.51 0.0 0.0 1.68 0.0 0.0 0.0 0.0
SegNet – 9.02 99.83 0.0 17.39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U-Net – 8.97 99.81 0.23 16.56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AdapNet – 20.20 99.83 23.78 27.07 12.62 15.08 9.96 2.07 24.44 46.42 0.65 0.16 0.53 0.0
BiSeNet ResNet50 23.77 99.82 22.62 22.47 13.55 13.72 20.2 1.91 46.1 42.7 16.2 8.81 0.88 0.0
BiSeNet ResNet101 18.30 99.81 14.5 20.1 9.32 10.71 15.14 0.58 30.65 21.29 13.45 1.86 0.46 0.0
BiSeNet ResNet152 17.85 99.81 18.1 21.4 8.3 14.3 15.8 0.0 4.26 29.4 18.57 1.78 0.32 0.0

DeepLabv3 Res50 16.15 99.8 6.79 14.64 1.34 2.65 11.9 0.0 49.48 21.44 0.78 1.09 0.0 0.0
DeepLabv3 Res101 13.27 99.8 2.58 10.27 0.26 1.3 8.86 0.0 32.08 17.19 0.09 0.12 0.0 0.0
DeepLabv3 Res152 12.64 99.8 3.1 10.51 1.28 0.35 11.36 0.0 18.44 17.81 1.61 0.05 0.0 0.0
DeepLabv3 InceptionV4 4.51 58.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DenseASPP MobileNetV2 7.68 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DenseASPP ResNet50 16.16 99.82 21.9 21.87 13.03 13.77 0.37 5.9 0.0 32.47 0.17 0.51 0.27 0.0
DenseASPP ResNet101 17.00 99.82 21.46 21.31 12.7 16.58 0.12 4.5 8.45 34.35 1.43 0.02 0.25 0.0

Encoder-Decoder – 21.87 99.86 51.2 42.73 13.62 8.02 10.1 11.57 2.13 34.48 6.5 1.97 2.0 0.11
Encoder-Decoder-Skip – 48.87 99.93 71.14 53.83 62.16 58.67 65.75 28.48 79.07 65.75 22.57 20.77 6.99 0.22

FRRN-A InceptionV4 46.85 99.93 71.27 58.89 60.05 57.74 56.1 31.5 64.2 66.74 13.53 20.06 8.93 0.12
FRRN-B – 47.02 99.93 72.19 58.32 57.25 61.18 58.75 31.68 66.36 69.18 9.61 22.14 4.65 0.0

GCN Res50 35.65 99.92 67.16 54.3 47.53 35.22 25.37 18.2 51.71 46.87 5.6 10.05 1.51 0.0
GCN Res101 34.71 99.91 66.58 50.47 43.64 38.56 20.88 11.13 56.4 47.21 4.05 10.29 2.1 0.0
GCN Res152 33.43 99.91 65.42 53.32 45.21 28.63 24.47 6.63 51.43 39.34 2.02 15.51 2.71 0.0

Mobile-U-Net – 19.84 99.84 42.11 39.21 11.6 6.26 16.2 6.83 0.5 32.48 0.92 1.34 0.67 0.0
PSPNet Res50 35.44 99.91 64.35 52.99 42.44 35.17 22.48 17.5 42.78 56.16 13.41 9.74 3.77 0.06
PSPNet Res101 35.85 99.91 65.57 52.15 42.23 37.87 18.65 20.86 44.24 58.55 13.84 8.32 3.81 0.11
PSPNet Res152 34.09 99.91 64.41 53.39 43.07 36.46 11.54 20.59 33.84 56.42 14.46 7.69 1.33 0.0

RefineNet Res152 7.68 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepLabv3+ Res50 27.68 99.87 46.04 47.53 27.41 25.31 27.84 8.84 14.53 50.11 6.66 3.67 1.72 0.33
DeepLabv3+ Res101 27.36 99.87 42.93 46.32 26.86 26.35 22.04 1.32 34.79 48.02 1.12 4.69 1.41 0.0
DeepLabv3+ Res152 31.88 99.87 42.51 43.16 26.74 29.55 33.12 11.97 49.03 58.63 5.74 9.39 4.69 0.0
DeepLabv3+ Xception65 37.14 99.88 47.75 52.32 31.07 39.88 37.19 12.14 53.6 66.46 17.22 22.39 2.04 0.87

FC-DenseNet-56 – 44.91 99.93 70.01 56.23 63.14 53.86 59.74 34.86 51.98 59.75 14.35 13.67 6.32 0.0
FC-DenseNet-67 – 47.35 99.93 70.91 56.06 64.61 59.9 51.98 30.09 69.29 65.6 13.8 21.16 12.14 0.06
FC-DenseNet-103 – 48.42 99.93 72.25 57.47 64.16 59.9 54.62 34.89 74.34 66.47 19.04 20.65 5.73 0.0

SkyScapesNet – 51.93 99.94 72.56 68.72 67.63 63.59 64.22 30.97 54.55 68.48 38.53 36.88 9.01 0.0

Table 8. Result of SkyScapesNet on the SkyScapes-Dense-Category task over all 11 classes as a whole. ‘-’ means no specific backbone
network used. ‘IoU’ and ‘f.w.’ represent intersection over union and frequency weighted IoU.

method base pixel IoU [%] average [%]
scheme modularities accuracy [%] mean f.w. recall precision

SkyScapesNet – 86.10 52.27 77.77 63.49 65.65

Table 9. Result of SkyScapesNet on SkyScapes-Dense-Category task for each class separately. ‘-’ represents no specific back-bone network
used. ‘IoU’ represents intersection over union. The abbreviations for classes are N: nature, D: driving-area, P: parking-area, H: human-
area, SH: shared human and vehicle area, RF: road-feature, R: residential, DV: dynamic-vehicle, SV: static-vehicle, HS: man-made surface,
and O: others.

method base IoU [%]
mean N D P H SH RF R DV SV HS O

SkyScapesNet – 52.27 90.79 68.86 36.8 50.95 25.87 66.09 86.84 72.79 3.45 44.67 27.84

Table 10: List of categories including their definition and a typical ex-
ample.

Category Class Definition Examples

nature low vegetation Includes all natural areas without
large plants, e.g., lawns.

tree Areas covered by large plants, such
as trees or large bushes.

residential building
Structures with walls and a roof,
such as houses, factories, and
garages.

vehicle area paved-road Includes all roads that are as-
phalted.

non-paved-road
All roads that are not paved, e.g.,
forest roads, dirt roads, and unsur-
faced roads.

paved-parking-place

includes all asphalted areas for
parking vehicles, such as car parks.
The parking area include the ve-
hicle as well which has not been
shown in the figure

non-paved-parking-
place

Unsurfaced areas used for parking.
The parking area include the ve-
hicle as well which has not been
shown in the figure.

lane-markings long line Thin solid lines, such as no passing
lines or roadside markings.

dash line Any broken line with long line seg-
ments, e.g., lane separators.

tiny dash line
Any broken line with tiny line seg-
ments, e.g., lines enclosing pedes-
trian crossings.

zebra zone Areas with diagonal lines, e.g., re-
stricted zones.

turn sign Arrows on the road, such as inter-
section arrows or merge arrows.

stop line Thick solid line across lanes that
signal to stop behind the line.

parking zone Includes any lines that mark park-
ing spots.

no parking zone
Zig-zag lines next to the curb mark
that indicate that stopping or park-
ing is forbidden.

crosswalk
Zebra-striped markings across the
roadway mark a pedestrian cross-
walk.

plus sign All crossing tiny lines.

other signs Includes all other signs, e.g., num-
bers that indicate the speed limit.

rest of lane-markings Any other lane-marking.

human area sidewalk Path with a hard surface on one or
both sides of a road for pedestrians.

bikeway Includes all lanes or roads for bikes.

danger-area

The intersection of bikeways with
road marked with red, blue or green
in Germany and some other coun-
tries

shared area entrance-exit All entrance and exit areas that are
shared with pedestrians.

vehicle car Includes all cars except vans.

van Any vehicles with box-like shapes.

truck Includes all small trucks such as de-
livery trucks.

long-truck All long trucks such as heavy goods
vehicles.

trailer
Includes all trailers that can be at-
tached to any vehicle, e.g., trucks or
cars.

bus
Any buses including tourist
coaches, school buses, and public
buses.

other impervious surface

Includes all other surfaces, such
as construction sites, and non-
temporary obstacles road users can-
not go through (e.g., low wall,
rocky terrain, river).

clutter
Includes all other human made
structures, such as garbage bins,
fences, or outdoor furniture.

References
[1] Seyed Majid Azimi, Peter Fischer, Marco Körner, and Peter

Reinartz. Aerial LaneNet: lane marking semantic segmen-
tation in aerial imagery using wavelet-enhanced cost-sensitive
symmetric fully convolutional neural networks. arXiv preprint
arXiv:1803.06904, 2018. 3

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for
Semantic Urban Scene Understanding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3213–3223, 2016. 1

[3] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana
Romero, and Yoshua Bengio. The One Hundred Layers
Tiramisu: Fully Convolutional DenseNets for Semantic Seg-
mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 11–
19, 2017. 1, 2

[4] Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3438–3446, 2017. 2

[5] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-Net: Fully Convolutional Neural Networks for Volumetric
Medical Image Segmentation. In 4th Inter. Conf. on 3D Vision,
2016. 2

Figure 1. A satellite image – acquired by WorldView4 – over the whole area of Munich, Germany. The size of the image is 45386 ×
33753 pixels which is about 173 MP.

Figure 2. Sample patches from the lane-marking map of the whole area of Munich extracted using our SkyScapesNet algorithm applied to
a WorldView4 satellite image.

Figure 3. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination
conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Kitzingen, Germany,
taken in 2015. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense segmentation,
lane markings segmentation, borders segmentation.

Figure 4. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination
conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Frankfurt, Germany,
taken in 2013. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense segmentation,
lane markings segmentation, borders segmentation.

Figure 5. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination
conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Braunschweig,
Germany, taken in 2017. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense
segmentation, lane markings segmentation, borders segmentation.

F Azimi, S., Kraus, M., Bahmanyar, R. and Reinartz, P., Multiple Pedestrians and Vehicles Tracking in Aerial Imagery
Using a Convolutional Neural Network, Remote Sensing MDPI (RS-MDPI), 2021 273

F Azimi, S., Kraus, M., Bahmanyar, R. and
Reinartz, P., Multiple Pedestrians and Vehicles
Tracking in Aerial Imagery Using a Convolu-
tional Neural Network, Remote Sensing MDPI
(RS-MDPI), 2021

https://www.mdpi.com/2072-4292/13/10/1953

https://www.mdpi.com/2072-4292/13/10/1953

remote sensing

Article

Multiple Pedestrians and Vehicles Tracking in Aerial Imagery
Using a Convolutional Neural Network

Seyed Majid Azimi 1,2,* , Maximilian Kraus 3 , Reza Bahmanyar 1 and Peter Reinartz 1

����������
�������

Citation: Azimi, S.; Kraus, M.;

Bahmanyar, R.; Reinartz, P. Multiple

Pedestrians and Vehicles Tracking in

Aerial Imagery Using a

Convolutional Neural Network.

Remote Sens. 2021, 1, 0.

https://doi.org/

Academic Editor: Melanie

Vanderhoof

Received: 6 April 2021

Accepted: 4 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), 82234 Wessling, Germany;
reza.bahmanyar@dlr.de (R.B.); peter.reinartz@dlr.de (P.R.)

2 Department of Aerospace and Geodesy, Technical University of Munich, 80333 Munich, Germany
3 Department of Informatics, Technical University of Munich, 85748 Garching, Germany;

maximilian.kraus@tum.de
* Correspondence: seyedmajid.azimi@dlr.de

Abstract: In this paper, we address various challenges in multi-pedestrian and vehicle tracking in
high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning
based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning
based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical
information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolu-
tional Neural Network module for more accurate and stable tracking. Moreover, we investigate the
influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance
of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based
Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions.
In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking
datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantita-
tive results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets
and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and
Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using
Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while
degrades the results for other cases. In addition, according to the results, L1 yields better results
with respect to Huber loss for most of the scenarios. The presented results provide a deep insight
into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for
future research.

Keywords: aerial imagery; deep neural networks; GraphCNN; recurrent neural networks; multi-
object tracking

1. Introduction

Visual Object Tracking (VOT), that is, locating objects in video frames over time,
is a dynamic field of research with a wide variety of practical applications such as in
autonomous driving, robot aided surgery, security, and safety. The recent advances in
machine and deep learning techniques have drastically boosted the performance of VOT
methods by solving long-standing issues such as modeling appearance feature changes
and relocating the lost objects [1–3]. Nevertheless, the performance of the existing VOT
methods is not always satisfactory due to hindrances such as heavy occlusions, difference
in scales, background clutter or high-density in the crowded scenes. Thus, developing
more sophisticated VOT methods overcoming these challenges is highly demanded.

The VOT methods can be categorized into Single-Object Tracking (SOT) and Multi-
Object Tracking (MOT) methods, which track single and multiple objects throughout
subsequent video frames, respectively. The MOT scenarios are often more complex than
the SOT because the trackers must handle a larger number of objects in a reasonable time

Remote Sens. 2021, 1, 0. https://doi.org/10.3390/rs1010000 https://www.mdpi.com/journal/remotesensing

Remote Sens. 2021, 1, 0 2 of 40

(e.g., ideally real-time). Most previous VOT works using traditional approaches such as
Kalman and particle filters [4,5], Discriminative Correlation Filter (DCF) [6], or silhou-
ette tracking [7], simplify the tracking procedure by constraining the tracking scenarios
with, for example, stationary cameras, limited number of objects, limited occlusions, or
absence of sudden background or object appearance changes. These methods usually
use handcrafted feature representations (e.g., Histogram of Gradients (HOG) [8], color,
position) and their target modeling is not dynamic [9]. In real-world scenarios, however,
such constraints are often not applicable and VOT methods based on these traditional
approaches perform poorly.

The rise of Deep Learning (DL) offered several advantages in object detection, seg-
mentation, and classification [10–12]. Approaches based on DL have also been successfully
applied to VOT problems, and significantly enhancing the performance, especially in un-
constrained scenarios. Examples include the Convolutional Neural Network (CNN) [13,14],
Recurrent Neural Network (RNN) [15], Siamese Neural Network (SNN) [16,17], Generative
Adversarial Network (GAN) [20] and several customized architectures [21].

Despite the many progress made for VOT in ground imagery, in the remote sensing
domain, VOT has not been fully exploited, due to the limited available volume of images
with high enough resolution and level of details. In recent years, the development of more
advanced camera systems and the availability of very high-resolution aerial images have
opened new opportunities for research and applications in the aerial VOT domain ranging
from the analysis of ecological systems to aerial surveillance [22,23].

Aerial imagery allows collecting very high-resolution data from wide open areas in a
cost- and time-efficient manner. Performing MOT based on such images (e.g., with Ground
Sampling Distance (GSD) < 20 cm/pixel) allows us to track and monitor the movement
behaviours of multiple small objects such as pedestrians and vehicles for numerous appli-
cations such as disaster management and predictive traffic and event monitoring. However,
few works have addressed aerial MOT [18,24,25], and the aerial MOT datasets are rare.
The large number and the small sizes of moving objects compared to the ground imagery
scenarios together with large image sizes, moving cameras, multiple image scale, low
frame rates as well as various visibility levels and weather conditions makes MOT in aerial
imagery especially complicate. Existing drone or ground surveillance datasets frequently
used as MOT benchmarks, such as MOT16 and MOT17 [26], are very different from aerial
MOT scenarios with respect to their image and object characteristics. For example, the
objects are bigger and the scenes are less crowded, with the objects appearance features
usually being discriminative enough to distinguish the objects. Moreover, the videos have
higher frame rates and better qualities and contrasts.

In this paper, we aim at investigating various existing challenges in the tracking of
multiple pedestrian and vehicles in aerial imagery through intensive experiments with
a number of traditional and DL-based SOT and MOT methods. This paper extends our
recent work [19], in which we introduced a new MOT dataset, the so-called Aerial Multi-
Pedestrian Tracking (AerialMPT), as well as a novel DL-based MOT method, the so-called
AerialMPTNet, that fuses appearance, temporal, and graphical information for a more
accurate MOT. In this paper, we also extensively evaluate the effectiveness of different
parts of AerialMPTNet and compare it to traditional and state-of-the-art DL-based MOT
methods. Additionally, we propose a MOT method inspired by the SORT method [27],
the so-called Euclidean Online Tracking (EOT), which employs GSD adapted Euclidean
distance for object association in consecutive frames.

We conduct our experiments on three aerial MOT datasets, namely AerialMPT and
KIT AIS (https://www.ipf.kit.edu/code.php, accessed on 10 May 2021) pedestrian and
vehicle datasets. All image sequences were captured by an airborne platform during
different flight campaigns of the German Aerospace Center (DLR) (https://www.dlr.de,
accessed on 10 May 2021) and vary significantly in object density, movement patterns, and
image size and quality. Figure 1 shows sample images from the AerialMPT dataset with
the tracking results of our AerialMPTNet. The images were captured at different flight

Remote Sens. 2021, 1, 0 3 of 40

altitudes and their GSD (reflecting the spatial size of a pixel) varies between 8 cm and
13 cm. The total number of objects per sequence ranges up to 609. Pedestrians in these
datasets appear as small points, hardly exceeding an area of 4 × 4 pixels. Even for human
experts, distinguishing multiple pedestrians based on their appearance is laborious and
challenging. Vehicles appear as bigger objects and are easier to distinguish based on their
appearance features. However, different vehicle sizes, fast movements together with the
low frame rates (e.g., 2 fps) and occlusions by bridges, trees, or other vehicles presents
challenges to the vehicle tracking algorithm, illustrated in Figure 2.

Figure 1. Multi-Pedestrian tracking results of AerialMPTNet on the frame 18 of the “Munich02” (left)
and frame 10 of the “Bauma3” (right) sequences of the AerialMPT dataset. Different pedestrians are
depicted in different colors with the corresponding trajectories.

(a) (b) (c) (d)

Figure 2. Illustrations of some challenges in aerial MOT datasets. The examples are from the KIT AIS pedestrian (a),
AerialMPT (b), and KIT AIS vehicle datasets (c,d). Multiple pedestrians which are hard to distinguish due to their similar
appearance features and low image contrast (a). Multiple pedestrians at a trade fair walking closely together with occlusions,
shadows, and strong background colors (b). Multiple vehicles at a stop light where the shadow on the right hand side can
be problematic (c). Multiple vehicles with some of them occluded by trees (d).

AerialMPTNet is an end-to-end trainable regression-based neural network comprising
a SNN module which takes two image patches as inputs, a target and a search patch,
cropped from a previous and a current frame, respectively. The object location is known
in the target patch and should be predicted for the search patch. In order to overcome
the tracking challenges of the aerial MOT such as the objects with similar appearance
features and densely moving together, AerialMPTNet incorporates temporal and graphical
information in addition to the appearance information provided by the SNN module. Our
AerialMPTNet employs a Long Short-Term Memory (LSTM) for temporal information
extraction and movement prediction, and a Graph Convolutional Neural Network (GCNN)

Remote Sens. 2021, 1, 0 4 of 40

for modeling the spatial and temporal relationships between adjacent objects (graphical
information). AerialMPTNet outputs four values indicating the coordinates of the top-left
and bottom-right corners of each object’s bounding box in the search patch. In this paper,
we also investigate the influence of Squeeze-and-Excitation (SE) and Online Hard Example
Mining (OHEM) [28] on the tracking performance of AerialMPTNet. To the best of our
knowledge, we are the first work applying adaptive weighting of convolutional channels
by SE and employ OHEM for the training of a DL-based tracking-by-regression method.

According to the results, our AerialMPTNet outperforms all previous methods for the
pedestrian datasets and achieves competitive results for the vehicle dataset. Furthermore,
LSTM and GCNN modules adds value to the tracking performance. Moreover, while
using SE and OHEM can significantly help in some scenarios, in other cases they may
degrade the tracking results. In summary, the contributions of this paper over our previous
work [19] are:

• We apply OHEM and SE to a MOT task for the first time.
• We propose EOT which outperforms tracking methods with Intersection over Union

(IoU)-based association strategy.
• We conduct an ablation study to evaluate the role of all different parts of AerialMPTNet.
• We evaluate the role of loss functions in the tracking performance by comparing L1

and Huber loss functions.
• We evaluated and compared various MOT methods for pedestrian tracking in

aerial imagery.
• We conduct intensive qualitative and quantitative evaluations of AerialMPTNet on

two aerial pedestrian and one aerial vehicle tracking datasets.

We believe that our paper can promote research on aerial MOT (esp. for pedestrians
and vehicles) by providing a deep insight into its challenges and opportunities.

The rest of the paper is organized as follows: Section 2 presents an overviews on related
works; Section 3 introduces the datasets used in our experiments; Section 4 represents the
metrics used for our quantitative evaluations; Section 5 provides a comprehensive study
on previous traditional and DL-based tracking methods on the aerial MOT datasets, with
Section 8.4 explaining our AerialMPTNet with all its configurations; Section 7 represents
our experimental setups; Section 8 provides an extensive evaluation of our AerialMPTNet
and compares it to the other methods; and Section 10 concludes our paper and gives ideas
for future works.

2. Related Works

Visual object tracking is defined as locating one or multiple objects in videos or image
sequences over time. The traditional tracking process comprises four phases including
initialization, appearance modeling, motion modeling, and object finding. During ini-
tialization, the targets are detected manually or by an object detector. In the appearance
modeling step, visual features of the region of interest are extracted by various learning-
based methods for detecting the target objects. The variety of scales, rotations, shifts, and
occlusions makes this step challenging. Image features play a key role in the tracking algo-
rithms. They can be mainly categorized into handcrafted and deep features. In recent years,
research studies and applications have focused on developing and using deep features
based on DNNs which have shown to be able to incorporate multi-level information and
more robustness against appearance variations [29]. Nevertheless, DNNs require large
enough training datasets, which are not always available. Thus, for many applications,
the handcrafted features are still preferable. The motion modeling step aims at predicting
the object movement in time and estimate the object locations in the next frames. This
procedure effectively reduces the search space and consequently the computation cost.
Widely used methods for motion modeling include Kalman filter [30], Sequential Monte
Carlo methods [31] and RNNs. In the last step, object locations are found as the ones close
to the estimated locations by the motion model.

Remote Sens. 2021, 1, 0 5 of 40

2.1. Various Categorizations of VOT

Visual object tracking methods can be divided into SOT [32,33] and MOT [18,34]
methods. While SOTs only track a single predetermined object throughout a video, even if
there are multiple objects, MOTs can track multiple objects at the same time. Thus, MOTs
can face exponential complexity and runtime increase based on the number of objects as
compared to SOTs.

Object tracking methods also can be categorized into detection-based [35] and detection-
free methods [36]. While the detection-based methods utilize object detectors to detect
objects in each frame, the detection-free methods only need the initial object detection.
Therefore, detection-free methods are usually faster than the detection-based ones; however,
they are not able to detect new objects entering the scene and require manual initialization.

Object tracking methods can be further divided based on their training strategies using
either online or offline learning strategy. The methods with an online learning strategy can
learn about the tracked objects during runtime. Thus, they can track generic objects [37].
The methods with offline learning strategy are trained beforehand and are therefore faster
during runtime [38].

Tracking methods can be categorized into online and offline. Offline trackers take
advantage of past and futures frames, while online ones can only infer from past frames.
Although having all frames by offline tracking methods can increase the performance, in
real-world scenarios future frames are not available.

Most existing tracking approaches are based on a two-stage tracking-by-detection
paradigm [39,40]. In the first stage, a set of target samples is generated around the pre-
viously estimated position using region proposal, random sampling, or similar methods.
In the second stage, each target sample is either classified as background or as the target
object. In one-stage-tracking, however, the model receives a search sample together with a
target sample as two inputs and directly predicts a response map or object coordinates by a
previously trained regressor [17,18].

Object tracking methods can be categorized into the Traditional and DL-Based ones.
Traditional tracking methods mostly rely on the Kalman and particle filters to estimate
object locations. They use velocity and location information to perform tracking [4,5,41].
Tracking methods only relying on such approaches have shown poor performance in un-
constrained environments. Nevertheless, such filters can be advantageous in limiting the
search space (decreasing the complexity and computational cost) by predicting and propa-
gating object movements to the following frames. A number of traditional tracking methods
follow a tracking-by-detection paradigm based on template matching [42]. A given target
patch models the appearance of the region of interest in the first frame. Matched regions
are then found in the next frame using correlation, normalized cross-correlation, or the sum
of squared distances methods [43,44]. Scale, illumination, and rotation changes can cause
difficulties with these methods. More advanced tracking-by-detection-based methods rely
on discriminative modeling, separating targets from their backgrounds within a specific
search space. Various methods have been proposed for discriminative modeling, such as
boosting methods and Support Vector Machines (SVMs) [45,46]. A series of traditional
tracking algorithms, such as MOSSE and KCF [6,47], utilizes correlation filters, which
model the target’s appearance by a set of filters trained on the images. In these methods,
the target object is initially selected by cropping a small patch from the first frame centered
at the object. For the tracking, the filters are convolved with a search window in the next
frame. The output response map assumes to have a peak at the target’s next location.
As the correlation can be computed in the Fourier domain, such trackers achieve high
frame rates.

Recently, many research works and applications have focused on using DL-based
tracking methods. The great advantage of DL-based features over handcrafted ones such
as HOG, raw pixels values or grey-scale templates have been presented previously for
a variety of computer vision applications. These features are robust against appearance
changes, occlusions, and dynamic environments. Examples of DL-based tracking methods

Remote Sens. 2021, 1, 0 6 of 40

include re-identification with appearance modeling and deep features [34], position regres-
sion mainly based on SNNs [16,17], path prediction based on RNN-like networks [48], and
object detection with DNNs such as YOLO [49].

2.2. SOTs and MOTs

Among various categorizations, in this section, we consider the SOT and MOT one for
reviewing the existing object tracking methods. We believe that this is the fundamental
categorization of the tracking methods which significantly affects the method design.
In the following, we briefly introduce a few recent methods from both categories and
experimentally discuss their strengths and limitations on aerial imagery in Section 5.

2.2.1. SOT Methods

Kalal et al. proposed Median Flow [50], which utilizes point and optical flow tracking.
The inputs to the tracker are two consecutive images together with the initial bounding
box of the target object. The tracker calculates a set of points from a rectangular grid within
the bounding box. Each of these points is tracked by a Lucas-Kanade tracker generating a
sparse motion flow. Afterwards, the framework evaluates the quality of the predictions
and filters out the worst 50%. The remaining point predictions are used to calculate the
new bounding box positions considering the displacement.

MOSSE [6], KFC [47] and CSRT [51] are based upon DCFs. Bolme et al. [6] proposed
MOSSE which uses a new type of correlation filter called Minimum Output Sum of Squared
Errors (MOSSE), which aims at producing stable filters when initialized using only one
frame and grey-scale templates. MOSSE is trained with a set of training images fi and
training outputs gi, where gi is generated from the ground truth as a 2D Gaussian centered
on the target. This method can achieve state-of-the-art performances while running with
high frame rates. Henriques et al. [47] replaced the grey-scale templates with HOG features
and proposed the idea of Kernelized Correlation Filter (KCF). KCF works with multiple
channel-like correlation filters. Additionally, the authors proposed using non-linear re-
gression functions which are stronger than linear functions and provide non-linear filters
that can be trained and evaluated as efficiently as linear correlation filters. Similar to KCF,
dual correlation filters use multiple channels. However, they are based on linear kernels to
reduce the computational complexity while maintaining almost the same performance as
the non-linear kernels. Recently, Lukezic et al. [51] proposed to use channel and reliability
concepts to improve tracking based on DCFs. In this method, the channel-wise reliability
scores weight the influence of the learned filters based on their quality to improve the
localization performance. Furthermore, a spatial reliability map concentrates the filters to
the relevant part of the object for tacking. This makes it possible to widen the search space
and improves the tracking performance for non-rectangular objects.

As we stated before, the choice of appearance features plays a crucial role in object
tracking. Most previous DCF-based works utilize handcrafted features such as HOG,
grey-scale features, raw pixels, and color names or the deep features trained independently
for other tasks. Wang et al. [32] proposed an end-to-end trainable network architecture able
to learn convolutional features and perform the correlation-based tracking simultaneously.
The authors encode a DCF as a correlation filter layer into the network, making it possible to
backpropagate the weights through it. Since the calculations remain in the Fourier domain,
the runtime complexity of the filter is not increased. The convolutional layers in front of
the DCF encode the prior tracking knowledge learned during an offline training process.
The DCF defines the network output as the probability heatmaps of object locations.

In the case of generic object tracking, the learning strategy is typically entirely online.
However, online training of neural networks is slow due to backpropagation leading to a
high run time complexity. However, Held et al. [17] developed a regression-based tracking
method, called GOTURN, based on a SNN, which uses an offline training approach helping
the network to learn the relationship between appearance and motion. This makes the
tracking process significantly faster. This method utilizes the knowledge gained during the

Remote Sens. 2021, 1, 0 7 of 40

offline training to track new unknown objects online. The authors showed that without
online backpropagation, GOTURN can track generic objects at 100 fps. The inputs to the
network are two image patches cropped from the previous and current frames, centered at
the known object position in the previous frame. The size of the patches depends on the
object bounding box sizes and can be controlled by a hyperparameter. This determines
the amount of contextual information given to the network. The network output is the
coordinates of the object in the current image patch, which is then transformed to the image
coordinates. GOTURN achieves state-of-the-art performance on common SOT benchmarks
such as VOT 2014 (https://www.votchallenge.net/vot2014/, accessed on 10 May 2021).

2.2.2. MOT Methods

Bewley et al. [27] proposed a simple multi-object tracking approach, called SORT, for
online tracking applications. Bounding box position and size are the only values used for
motion estimation and assigning the objects to their new positions in the next frame. In the
first step, objects are detected using Faster R-CNN [12]. Subsequently, a linear constant
velocity model approximates the movements of each object individually in consecutive
frames. Afterwards, the algorithm compares the detected bounding boxes to the predicted
ones based on IoU, resulting in a distance matrix. The Hungarian algorithm [52] then
assigns each detected bounding box to a predicted (target) bounding box. Finally, the
states of the assigned targets are updated using a Kalman filter. SORT runs with more than
250 Frames per Second (fps) with almost state-of-the-art accuracy. Nevertheless, occlusion
scenarios and re-identification issues are not considered for this method, which makes it
inappropriate for long-term tracking.

Wojke et al. [34] extended SORT to DeepSORT and tackled the occlusion and re-
identification challenges, keeping the track handling and Kalman filtering modules almost
unaltered. The main improvement takes place into the assignment process, in which two
additional metrics are used: (1) motion information provided based on the Mahalanobis
distance between the detected and predicted bounding boxes, (2) appearance information
by calculating the cosine distance between the appearance features of a detected object
and the already tracked object. The appearance features are computed by a deep neural
network trained on a large person re-identification dataset [53]. A cascade strategy then
determines object-to-track assignments. This strategy effectively encodes the probability
spread in the association likelihood. DeepSORT performs poorly if the cascade strategy
cannot match the detected and predicted bounding boxes.

Recently, Bergmann et al. [1] introduced Tracktor++ which is based on the Faster
R-CNN object detection method. Faster R-CNN classifies region proposals to target and
background and fits the selected bounding boxes to object contours by a regression head.
The authors trained Faster R-CNN on the MOT17Det pedestrian dataset [26]. The first step
is an object detection by Faster R-CNN. The detected objects in the first frame are then
initialized as tracks. Afterwards, the tracks are tracked in the next frame by regressing
their bounding boxes using the regression head. In this method, the lost or deactivated
tracks can be re-identified in the following frames using a SNN and a constant velocity
motion model.

2.3. Tracking in Satellite and Aerial Imagery

The reviewed object tracking methods in the previous sections have been mainly
developed for computer vision datasets and challenges. In this section, we focus on the
proposed methods for satellite and aerial imagery. Visual object tracking for targets such
as pedestrians and vehicles in satellite and aerial imagery is a challenging task that has
been addressed by only few works, compared to the huge number addressing pedestrian
and vehicle tracking in ground imagery [13,54].Tracking in satellite and aerial imagery is
much more complex. This is due to the moving cameras, large image sizes, different scales,
large number of moving objects, tiny size of the objects (e.g., 4 × 4 pixels for pedestrians,

Remote Sens. 2021, 1, 0 8 of 40

30 × 15 for vehicles), low frame rates, different visibility levels, and different atmospheric
and weather conditions [26,55].

2.3.1. Tracking by Moving Object Detection

Most of the previous works in satellite and aerial object tracking are based on moving
object detection [24,25,56]. Reilly et al. [24] proposed one of the earliest aerial object tracking
approaches focusing on vehicle tracking mainly in highways. They compensate camera
motion by a correction method based on point correspondence. A median background
image is then modeled from ten frames and subtracted from the original frame for motion
detection, resulting in the moving object positions. All images are split into overlapping
grids, with each one defining an independent tracking problem. Objects are tracked using
bipartite graph, matching a set of label nodes and a set of target nodes. The Hungarian
algorithm solves the cost matrix afterwards to determine the assignments. The usage of
the grids allows tracking large number of objects with the O(n3) runtime complexity for
the Hungarian algorithm.

Meng et al. [25] followed the same direction. They addressed the tracking of ships and
grounded aircrafts. Their method detects moving objects by calculating an Accumulative
Difference Image (ADI) from frame to frame. Pixels with high values in the ADI are likely
to be moving objects. Each target is afterwards modeled by extracting its spectral and
spatial features, where spectral features refer to the target probability density functions
and the spatial features to the target geometric areas. Given the target model, matching
candidates are found in the following frames via regional feature matching using a sliding
window paradigm.

Tracking methods based on moving object detection are not applicable for our pedes-
trian and vehicle tracking scenarios. For instance, Reilly et al. [24] use a road orientation
estimate to constrain the assignment problem. Such estimations which may work for
vehicles moving along predetermined paths (e.g., highways and streets), do not work
for pedestrian tracking with much more diverse and complex movement behaviors (e.g.,
crowded situations and multiple crossings). In general, such methods perform poorly
in unconstrained environments, are sensitive to illumination change and atmospheric
conditions (e.g., clouds, shadows, or fog), suffer from the parallax effect, and cannot handle
small or static objects. Additionally, since finding the moving objects requires considering
multiple frames, these methods cannot be used for the real-time object tracking.

2.3.2. Tracking by Appearance Features

The methods based on appearance-like features overcome the issues of the tracking
by moving object detection approaches [18,57–60], making it possible to detect small and
static objects on single images. Butenuth et al. [57] deal with pedestrian tracking in aerial
image sequences. They employ an iterative Bayesian tracking approach to track numerous
pedestrians, where each pedestrian is described by its position, appearance features, and
direction. A linear dynamic model then predicts futures states. Each link between a
prediction and a detection is weighted by evaluating the state similarity and associated
with the direct link method described in [35]. Schmidt et al. [58] developed a tracking-by-
detection framework based on Haar-like features. They use a Gentle AdaBoost classifier for
object detection and an iterative Bayesian tracking approach, similar to [57]. Additionally,
they calculate the optical flow between consecutive frames to extract motion information.
However, due to the difficulties of detecting small objects in aerial imagery, the performance
of the method is degraded by a large number of false positives and negatives.

Bahmanyar et al. [18] proposed Stack of Multiple Single Object Tracking CNNs (SMSOT-
CNN) and extended the GOTURN method, a SOT method developed by Held et al. [17], by
stacking the architecture of GOTURN to track multiple pedestrians and vehicles in aerial
image sequences. SMSOT-CNN is the only previous DL-based work dealing with MOT.
SMSOT-CNN expands the GOTURN network by three additional convolutional layers
to improve the tracker’s performance in locating the object in the search area. In their

Remote Sens. 2021, 1, 0 9 of 40

architecture, each SOT-CNN is responsible for tracking one object individually leading
to a linear increase in the tracking complexity by the number of objects. They evaluate
their approach on the vehicle and pedestrian sets of the KIT AIS aerial image sequence
dataset. Experimental results show that SMSOT-CNN significantly outperforms GOTURN.
Nevertheless, SMSOT-CNN performs poorly in crowded situations and when objects share
similar appearance features.

In Section 5, we experimentally investigate a set of the reviewed visual object tracking
methods on three aerial object tracking datasets.

3. Datasets

In this section, we introduce the datasets used in our experiments, namely the KIT AIS
(pedestrian and vehicle sets), the Aerial Multi-Pedestrian Tracking (AerialMPT) [19], and
DLR’s Aerial Crowd Dataset (DLR-ACD) [61]. All these datasets are the first of their
kind and aim at promoting pedestrian and vehicle detection and tracking based on aerial
imagery. The images of all these datasetes have been acquired by the German Aerospace
Center (DLR) using the 3K camera system, comprising a nadir-looking and two side-
looking DSLR cameras, mounted on an airborne platform flying at different altitudes. The
different flight altitudes and camera configurations allow capturing images with multiple
spatial resolutions (ground sampling distances-GSDs) and viewing angles.

For the tracking datasets, since the camera is continuously moving, in a post-processing
step, all images were orthorectified with a digital elevation model, co-registered, and geo-
referenced with a GPS/IMU system. Afterwards, images taken at the same time were fused
into a single image and cropped to the region of interest. This process caused small errors
visible in the frame alignments. Moreover, the frame rate of all sequences is 2 Hz. The
image sequences were captured during different flight campaigns and differ significantly
in object density, movement patterns, qualities, image sizes, viewing angles, and terrains.
Furthermore, different sequences are composed by a varying number of frames ranging
from 4 to 47. The number of frames per sequence depends on the image overlap in flight
direction and the camera configuration.

3.1. KIT AIS

The KIT AIS dataset is generated for two tasks, vehicle and pedestrian tracking. The
data have been annotated manually by human experts and suffer from a few human
errors. Vehicles are annotated by the smallest enclosing rectangle (i.e., bounding box)
oriented in the direction of their travel, while individual pedestrians are marked by point
annotations on their heads. In our experiments, we used bounding boxes of sizes 4× 4
and 5× 5 pixels for the pedestrians according to the GSDs of the images, ranging from
12 to 17 cm. As objects may leave the scene or be occluded by other objects, the tracks
are not labeled continuously for all cases. For the vehicle set cars, trucks, and buses are
annotated if they lie entirely within the image region with more than 2

3 of their bodies
visible. In the pedestrian set only pedestrians are labeled. Due to crowded scenarios or
adverse atmospheric conditions in some frames, pedestrians can be hardly visible. In
these cases, the tracks have been estimated by the annotators as precisely as possible.
Tables 1 and 2 represent the statistics of the pedestrian and vehicle sets of the KIT AIS
dataset, respectively.

The KIT AIS pedestrian is composed of 13 sequences with 2649 pedestrians (Pedest.),
annotated by 32,760 annotation points (Anno.) throughout the frames Table 1. The dataset
is split into 7 training and 6 testing sequences with 104 and 85 frames (Fr.), respectively. The
sequences are characterized by different lengths ranging from 4 to 31 frames. The image
sequences come from different flight campaigns over Allianz Arena (Munich, Germany),
Rock am Ring concert (Nuremberg, Germany), and Karlsplatz (Munich, Germany).

Remote Sens. 2021, 1, 0 10 of 40

Table 1. Statistics of the KIT AIS pedestrian dataset.

Train
Seq. Image Size #Fr. #Pedest. #Anno. #Anno./Fr. GSD

AA_Crossing_01 309 × 487 18 164 2618 145.4 15.0
AA_Easy_01 161 × 168 14 8 112 8.0 15.0
AA_Easy_02 338 × 507 12 16 185 15.4 15.0

AA_Easy_Entrance 165 × 125 19 83 1105 58.3 15.0
AA_Walking_01 227 × 297 13 40 445 34.2 15.0

Munich01 509 × 579 24 100 1308 54.5 12.0
RaR_Snack_Zone_01 443 × 535 4 237 930 232.5 15.0

Total 104 633 6703 64.4
Test

AA_Crossing_02 322 × 537 13 94 1135 87.3 15.0
AA_Entrance_01 835 × 798 16 973 14,031 876.9 15.0
AA_Walking_02 516 × 445 17 188 2671 157.1 15.0

Munich02 702 × 790 31 230 6125 197.6 12.0
RaR_Snack_Zone_02 509 × 474 4 220 865 216.2 15.0
RaR_Snack_Zone_04 669 × 542 4 311 1230 307.5 15.0

Total 85 2016 26,057 306.5

The KIT AIS vehicle comprises nine sequences with 464 vehicles annotated by 10,817
bounding boxes throughout 239 frames. It has no pre-defined train/test split. For our
experiments, we split the dataset into five training and four testing sequences with 131 and
108 frames, respectively, similarly to [18]. According to Table 2, the lengths of the sequences
vary between 14 and 47 frames. The image sequences have been acquired from a few
highways, crossroads, and streets in Munich and Stuttgart, Germany. The dataset presents
several tracking challenges such as lane change, overtaking, and turning maneuvers as
well as partial and total occlusions by big objects (e.g., bridges). Figure 3 demonstrates
sample images from the KIT AIS vehicle dataset.

Table 2. Statistics of the KIT AIS vehicle dataset.

Train
Seq. Image Size #Fr. #Vehic. #Anno. #Anno./Fr. GSD

MunichAutobahn1 633 × 988 16 16 161 10.1 15.0
MunichCrossroad1 684 × 547 20 30 509 25.5 12.0

MunichStreet1 1764 × 430 25 57 1338 53.5 12.0
MunichStreet3 1771 × 422 47 88 3071 65.3 12.0

StuttgartAutobahn1 767 × 669 23 43 764 33.2 17.0
Total 131 234 5843 44.6

Test
MunichCrossroad2 895 × 1036 45 66 2155 47.9 12.0

MunichStreet2 1284 × 377 20 47 746 37.3 12.0
MunichStreet4 1284 × 388 29 68 1519 52.4 12.0

StuttgartCrossroad1 724 × 708 14 49 554 39.6 17.0
Total 108 230 4974 46.1

Remote Sens. 2021, 1, 0 11 of 40

Figure 3. Sample images from the KIT AIS vehicle dataset acquired at different locations in Munich
and Stuttgart, Germany.

3.2. AerialMPT

The Aerial Multi-Pedestrian Tracking (AerialMPT) dataset [19] is newly introduced to
the community, and deals with the shortcomings of the KIT AIS dataset such as the poor
image quality and limited diversity. AerialMPT consists of 14 sequences with 2528 pedestri-
ans annotated by 44,740 annotation points throughout 307 frames Table 3. Since the images
have been acquired by a newer version of the DLR’s 3K camera system, their quality and
contrast are much better than the images of KIT AIS dataset. Figure 4 compares a few
sample images from the AerialMPT and KIT AIS datasets.

Table 3. Statistics of the AerialMPT dataset.

Train
Seq. Image Size #Fr. #Pedest. #Anno. #Anno./Fr. GSD

Bauma1 462 × 306 19 270 4448 234.1 11.5
Bauma2 310 × 249 29 148 3627 125.1 11.5
Bauma4 281 × 243 22 127 2399 109.1 11.5
Bauma5 281 × 243 17 94 1410 82.9 11.5

Marienplatz 316 × 355 30 215 5158 171.9 10.5
Pasing1L 614 × 366 28 100 2327 83.1 10.5
Pasing1R 667 × 220 16 86 1196 74.7 10.5

OAC 186 × 163 18 92 1287 71.5 8.0
Total 179 1132 21,852 122.1

Test
Bauma3 611 × 552 16 609 8788 549.2 11.5
Bauma6 310 × 249 26 270 5314 204.4 11.5

Karlsplatz 283 × 275 27 146 3374 125.0 10.0
Pasing7 667 × 220 24 103 2064 86.0 10.5
Pasing8 614 × 366 27 83 1932 71.6 10.5

Witt 353 × 1202 8 185 1416 177.0 13.0
Total 128 1396 22,888 178.8

AerialMPT is split into 8 training and 6 testing sequences with 179 and 128 frames,
respectively. The lengths of the sequences vary between 8 and 30 frames. The image
sequences were selected from different crowd scenarios, for example, from moving pedes-
trians on mass events and fairs to sparser crowds in the city centers. Figure 1 demonstrates
an image from the AerialMPT dataset with the overlaid annotations.

3.2.1. AerialMPT vs. KIT AIS

The AerialMPT has been generated in order to mitigate the limitations of the KIT AIS
pedestrian dataset. In addition to the higher quality of the images, the numbers of minimum
annotations per frame and the total annotations of AerialMPT are significantly larger than
those of the KIT AIS dataset. All sequences in AerialMPT contain at least 50 pedestrians,

Remote Sens. 2021, 1, 0 12 of 40

while more than 20% of the sequences of KIT AIS include less than ten pedestrians. Based on
our visual inspection, not only the pedestrian movements in AerialMPT are more complex
and realistic, but also the diversity of the crowd densities are greater than those of KIT AIS.
The sequences in AerialMPT differ in weather conditions and visibility, incorporating
more diverse kinds of shadows as compared to KIT AIS. Furthermore, the sequences of
AerialMPT are longer in average, with 60% longer than 20 frames (less than 20% in KIT AIS).
Further details on these datasets can be found in [19].

Figure 4. Sample images from the AerialMPT and KIT AIS datasets. “Bauma3”, “Witt”, “Pasing1”
are from AerialMPT. “Entrance_01”, “Walking_02”, and “Munich02” are from KIT AIS.

3.3. DLR-ACD

DLR-ACD is the first aerial crowd image dataset [61] comprises 33 large aerial RGB
images with average size of 3619× 5226 pixels from different mass events and urban scenes
containing crowds such as sports events, city centers, open-air fairs, and festivals. The
GSDs of the images vary between 4.5 and 15 cm/pixel. In DLR-ACD 226,291 pedestrians
have been manually labeled by point annotations, with the number of pedestrians ranging
from 285 to 24,368 per image. In addition to its unique viewing angle, the large number of
pedestrians in most of the images (>2 K) makes DLR-ACD stand out among the existing
crowd datasets. Moreover, the crowd density can vary significantly within each image due
to the large field of view of the images. Figure 5 demonstrates example images from the
DLR-ACD dataset. For further details on this dataset, the interested reader is remanded
to [61].

(a) (b)

Figure 5. Example images of the DLR-ACD dataset. The images are from an open-air (a) festival (b) and music concert.

Remote Sens. 2021, 1, 0 13 of 40

4. Evaluation Metrics

In this section, we introduce the most important metrics we use for our quantitative
evaluations. We adopted widely-used metrics in the MOT domain based on [26] which
are listed in Table 4. In this table, ↑ and ↓ denote higher or lower values being better,
respectively. The objective of MOT is finding the spatial positions of p objects as bounding
boxes throughout an image sequence (object trajectories). Each bounding box is defined
by the x and y coordinates of its top-left and bottom-right corners in each frame. Tracking
performances are evaluated based on true positives (TP), correctly predicting the object
positions, false positives (FP), predicting the position of another object instead of the target
object’s position, and false negatives (FN), where an object position is totally missed. In our
experiments, a prediction (tracklet) is considered as TP if the intersection over union (IoU)
of the predicted and the corresponding ground truth bounding boxes is greater than 0.5.
Moreover, an identity switch (IDS) occurs if an annotated object a is associated with a
tracklet t, and the assignment in the previous frame was a 6= t. The fragmentation metric
shows the total number of times a trajectory is interrupted during tracking.

Table 4. Description of the metrics used for quantitative evaluations.

Metric Description
IDF1 ↑ ID F1-Score
IDP ↑ ID Global Min-Cost Precision
IDR ↑ ID Global Min-Cost Recall
Rcll ↑ Recall
Prcn ↑ Precision
FAR ↓ False Acceptance Rate
MT ↑ Ratio of Mostly Tracked Objects
PT ↑ Ratio of Partially Tracked Objects
ML ↓ Ratio of Mostly Lost Objects
FP ↓ False Positives
FN ↓ False Negatives
IDS ↓ Number of Identity Switches
FM ↓ Number of Fragmented Tracks

MOTA ↑ Multiple Object Tracker Accuracy
MOTP ↑ Multiple Object Tracker Precision

MOTAL ↑ Multiple Object Tracker Accuracy Log

Among these metrics, the crucial ones are the Multiple-Object Tracker Accuracy
(MOTA) and the Multiple-Object Tracker Precision (MOTP). MOTA represents the ability
of trackers in following the trajectories throughout the frames t, independently from the
precision of the predictions:

MOTA = 1− ∑t(FNt + FPt + IDSt)

∑t GTt
. (1)

The Multiple-Object Tracker Accuracy Log (MOTAL) is similar to MOTA; however,
ID switches are considered on a logarithmic scale.

MOTAL = 1− ∑ FNT + FPt + log10(IDSt + 1)
∑ GTt

. (2)

MOTP measures the performance of the trackers in precisely estimating object locations:

MOTP =
∑t,i dt,i

∑t ct
, (3)

where dt,i is the distance between a matched object i and the ground truth annotation in
frame t, and c is the total number of matched objects.

Remote Sens. 2021, 1, 0 14 of 40

Each tracklet can be considered as mostly tracked (MT), partially tracked (PT), or mostly
lost (ML), based on how successful an object is tracked during its whole lifetime. A tracklet
is mostly lost if it is only tracked less than 20% of its lifetime and mostly tracked if it is
tracked more than 80% of its lifetime. Partially tracked applies to all remaining tracklets.
We report MT, PT, and ML as percentages of the total amount of tracks. The false accep-
tance rate (FAR) for an image sequence with f frames describes the average amount of FPs
per frame:

FAR =
∑ FPt

f
. (4)

In addition, we use recall and precision measures, defined as follows:

Rcll = ∑ TPt

∑(TPt + FNt)
, (5)

Prcn =
∑ TPt

∑(TPt + FPt)
. (6)

Identification precision (IDP), identification recall (IDR), and IDF1 are similar to preci-
sion and recall; however, they take into account how long the tracker correctly identifies
the targets. IDP and IDR are the ratios of computed and ground-truth detections that
are correctly identified, respectively. IDF1 is calculated as the ratio of correctly identified
detections over the average number of computed and ground-truth detections. IDF1 allows
ranking different trackers based on a single scalar value. For any further information on
these metrics, the interested reader is remanded to [62].

5. Preliminary Experiments

This section empirically shows the existing challenges in aerial pedestrian tracking.
We study the performance of a number of existing tracking methods including KCF [47],
MOSSE [6], CSRT [51], Median Flow [50], SORT, DeepSORT [34], Stacked-DCFNet [32],
Tracktor++ [1], SMSOT-CNN [18], and Euclidean Online Tracking on aerial data, and show
their strengths and limitations. Since in the early phase of our research, only the KIT AIS
pedestrian dataset was available to us, the experiments of this section have been conducted
on this dataset. However, our findings also hold for the AerialMPT dataset.

The tracking performance is usually correlated to the detection accuracy for both
detection-free and detection-based methods. As our main focus is at tracking performance,
in most of our experiments we assume perfect detection results and use the ground
truth data. While for the object locations in the first frame are given to the detection-free
methods, the detection-based methods are provided with the object locations in every frame.
Therefore, for the detection-based methods, the most substantial measure is the number of
ID switches, while for the other methods all metrics are considered in our evaluations.

5.1. From Single- to Multi-Object Tracking

Many tracking methods have been initially designed to track only single objects.
However, according to [18], most of them can be extended to handle MOT. Tracking
management is an essential function in MOT which stores and exploits multiple active
tracks at the same time, in order to remove and initialize the tracks of objects leaving from
and entering into the scenes. For our experiments we developed a tracking management
module for extending the SOT methods to MOT. It unites memory management, including
the assignment of unique track IDs and individual object position storage, with track
initialization, aging and removing functionalities.

OpenCV provides several built-in object tracking algorithms. Among them, we
investigate the KCF, MOSSE, CSRT, and Median Flow SOT methods. We extend them to
the MOT scenarios within the OpenCV framework. We initialize the trackers by the ground
truth bounding box positions.

Remote Sens. 2021, 1, 0 15 of 40

DCFNet [32] is also an SOT on a DCF. However, the DCF is implemented as part of
a DNN and uses the features extracted by a light-weight CNN. Therefore, DCFNet is a
perfect choice to study whether deep features improve the tracking performance compared
to the handcrafted ones. For our experiments, we took the PyTorch implementation
(https://github.com/foolwood/DCFNet_pytorch, accessed on 10 May 2021) of DCFNet
and modified its network structure to handle multi-object tracking, and we refer to it as
“Stacked-DCFNet”. From the KIT AIS pedestrian training set we crop a total of 20,666 image
patches centered at every pedestrian. The patch size is the bounding box size multiplied by
10 in order to consider contextual information to some degree. Then we scale the patches
to 125 × 125 pixels to match the network input size. Using the patches, we retrain the
convolutional layers of the network for 50 epochs with ADAM [63] optimizer, MSE loss,
initial learning rate of 0.01, and a batch size of 64. Moreover, we set the spatial bandwidth
to 0.1 for both online tracking and offline training. Furthermore, in order to adapt it to
MOT, we use our developed Python module. Multiple targets are given to the network
within one batch. For each target object, the network receives two image patches, from
previous and current frames, centered on the known previous position of the object. The
network output is the probability heatmap in which the highest value represents the most
likely object location in the image patch of the current frame (search patch). If this value
is below a certain threshold, we consider the object as lost. Furthermore, we propose a
simple linear motion model and set the center point of the search patch to the position
estimate of this model instead of the position of the object in the previous frame patch (as
in the original work). Based on the latest movement vt(x, y) of a target, we estimate its
position as:

pest(x, y) = p(x, y) + k · vt(x, y), (7)

where k determines the influence of the last movement. For all of the methods, we remove
the objects if they leave the scene and their track ages are greater than 3 frames.

Tables 5 and 6 show the overall and sequence-wise tracking results of these methods
on the KIT AIS pedestrian dataset, respectively. The results of Table 5 indicate the poor
performance of all of these methods with a total MOTA scores varying between −85.8 and
−55.9. The results of KCF and MOSSE are very similar. However, the use of HOG features
and non-linear kernels in KCF improves MOTA by 0.9 and MOTP by 0.5 points respectively,
compared to MOSSE. Moreover, both methods mostly track about 1% of the pedestrians in
average. However, they have the first and second best MOTP values among the compared
methods in Table 5. This indicates that although they lose track of many objects (partially or
totally), their tracking localization is relatively precise. Moreover, according to the results,
Stacked-DCFNet significantly outperforms the method with handcrafted features by a
MOTA score of −37.3 (18.6 points higher than that of the CSRT). The MT and ML rates
are also improving with only losing 23.6% of all tracks while mostly tracking the 13.8% of
the pedestrians.

CSRT (which is also DCF-based) outperforms both prior methods significantly, reach-
ing a total MOTA and MOTP of −55.9 and 78.4. The smaller MOTP value of CSRT
indicates its slightly worse tracklet localization precision as compared to KCF and MOSSE.
Furthermore, it mostly tracks about 10% of the pedestrians in average and proves the effec-
tiveness of the channel and reliability scores. According to the table, Median Flow achieves
comparable results to CSRT with total MOTA and MOTP scores of −63.8 and 77.7, respec-
tively. Comparing the results of different sequences in Table 6 indicates that all algorithms
perform significantly better on the “RaR_Snack_Zone_02” and “RaR_Snack_Zone_04”
sequences. Based on visual inspection, we argue that this is due to their short length
resulting in fewer lost objects and ID switches. Comparing their performances on the
longer sequences (“AA_Crossing_02”, “AA_Walking_02” and “Munich02”) demonstrates
that Stacked-DCFNet performs much better than the other methods on these sequences,
showing the ability of the method in tracking objects for a longer time.

Altogether, according to the results, we argue that the deep features outperform the
handcrafted ones by a large margin.

Remote Sens. 2021, 1, 0 16 of 40

Table 5. Results of KCF, MOSSE, CSRT, Median Flow, and Stacked-DCFNet on the KIT AIS pedestrian
dataset. The first and second best values are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KCF 9.0 8.8 9.3 10.3 9.8 165.6 1.1 53.8 45.1 11,426 10,782 32 116 −84.9 87.2 −84.7

MOSSE 9.1 8.9 9.3 10.5 10.0 163.8 0.8 54.0 45.2 11,303 10,765 31 133 −85.8 86.7 −83.5
CSRT 16.0 16.9 15.2 17.5 19.4 126.5 9.6 51.0 39.4 8732 9924 91 254 −55.9 78.4 −55.1

Median Flow 18.5 18.3 18.8 19.5 19.0 144.7 7.7 55.8 36.5 9986 9678 30 161 −63.8 77.7 −63.5
Stacked-DCFNet 30.0 30.2 30.9 33.1 32.3 120.5 13.8 62.6 23.6 8316 8051 139 651 −37.3 71.6 −36.1

Table 6. Results of KCF, MOSSE, CSRT, Median Flow, and Stacked-DCFNet on different sequences
of KIT AIS pedestrian dataset. The first and second best values of each method on the sequences
are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KCF

AA_Crossing_02 13 94 8.1 8.1 8.0 9.1 9.2 78.1 1.1 6.4 92.5 1015 1032 0 8 −80.4 97.3 −80.4
AA_Walking_02 17 188 6.5 6.3 6.7 7.8 7.3 154.9 1.6 10.6 87.8 2633 2463 3 14 −90.9 96.9 −90.8

Munich02 31 230 4.3 4.1 4.4 5.6 5.2 201.7 0.9 3.9 95.2 6254 5781 29 75 −97.0 62.2 −96.5
RaR_Snack_Zone_02 4 220 29.3 29.1 29.5 29.8 29.5 154.5 1.8 98.2 0.0 618 607 0 8 −41.6 95.1 −41.6
RaR_Snack_Zone_04 4 311 25.8 25.7 25.9 26.9 26.8 226.5 0.3 99.7 0.0 906 899 0 11 −46.7 97.9 −46.7

MOSSE
AA_Crossing_02 13 94 8.0 8.1 7.9 9.1 9.2 78.1 1.1 5.3 93.6 1015 1032 0 9 −80.4 96.9 -80.4
AA_Walking_02 17 188 6.6 6.4 6.7 8.0 7.6 151.8 1.6 10.1 88.3 2580 2458 2 20 −88.7 95.7 −88.6

Munich02 31 230 4.3 4.2 4.5 5.7 5.4 199.7 0.9 4.3 94.8 6190 5775 29 78 −95.8 61.9 −95.4
RaR_Snack_Zone_02 4 220 29.4 29.2 29.6 30.4 30.0 153.2 0.5 99.5 0.0 613 602 0 14 −40.5 94.9 −40.5
RaR_Snack_Zone_04 4 311 25.8 25.7 25.9 27.0 26.8 226.2 0.3 99.7 0.0 905 898 0 12 −46.6 97.5 −46.6

CSRT
AA_Crossing_02 13 94 12.9 13.2 12.5 15.1 15.9 69.5 1.1 30.9 68.0 904 964 10 29 −65.5 84.6 −64.7
AA_Walking_02 17 188 9.2 10.0 8.5 11 12.9 116.9 2.7 15.4 81.9 187 2378 12 41 −63.9 88.0 −63.5

Munich02 31 230 9.2 9.9 8.7 10.9 12.5 151.4 1.8 14.3 83.9 4696 5455 66 137 −66.8 61.2 −65.8
RaR_Snack_Zone_02 4 220 43.2 42.0 42.5 43.8 43.3 124.2 17.3 82.7 0.0 497 486 0 16 −13.6 87.9 −13.6
RaR_Snack_Zone_04 4 311 45.6 45.5 45.0 47.9 47.6 162.0 16.7 83.3 0.0 648 641 3 31 −5.0 85.2 −4.8

Median Flow
AA_Crossing_02 13 94 27.3 27.3 27.4 28.5 28.3 62.8 1.1 68.1 30.8 817 812 4 49 −43.9 74.9 −43.6
AA_Walking_02 17 188 10.0 9.9 10.0 11.1 11.0 141.1 1.6 21.3 77.1 2398 2374 8 16 −79.0 86.3 −78.7

Munich02 31 230 9.2 9.0 9.4 9.9 9.5 186.4 1.3 8.7 90.0 5778 5517 10 53 −84.6 64.7 −84.4
RaR_Snack_Zone_02 4 220 51.7 51.4 52.0 52.8 52.2 104.7 8.6 91.4 0.0 419 408 2 14 4.2 83.7 4.3
RaR_Snack_Zone_04 4 311 53.1 53.0 53.3 53.9 53.6 143.5 17.4 82.6 0.0 574 567 6 29 6.7 83.0 7.2

Stacked-DCFNet
AA_Crossing_02 13 94 41.9 42.4 41.3 42.7 43.9 47.8 12.8 58.5 28.7 621 650 15 71 −13.3 74.7 -12.1
AA_Walking_02 17 188 31.4 31.6 31.2 32.3 32.7 104.3 5.9 45.7 48.4 1773 1809 23 184 −35.0 74.1 −34.2

Munich02 31 230 21.2 20.6 21.9 25.0 23.6 160.4 1.7 50.0 48.3 4974 4591 97 322 −57.7 60.5 −56.2
RaR_Snack_Zone_02 4 220 51.8 52.3 51.3 52.4 53.4 99.0 22.3 74.5 3.2 396 412 4 35 6.1 84.0 6.5
RaR_Snack_Zone_04 4 311 51.8 52.6 51.0 52.1 53.7 138.0 21.9 74.9 3.2 552 589 0 39 7.2 83.6 7.2

5.2. Multi-Object Trackers

In this section, we study a number of MOT methods including SORT, DeepSORT, and
Tracktor++. Additionally, we propose a new tracking algorithm called Euclidean Online
Tracking (EOT) which uses the Euclidean distance for object matching.

5.2.1. DeepSORT and SORT

DeepSORT [34] is a MOT method comprising deep features and an IoU-based tracking
strategy. For our experiments, we use the PyTorch implementation (https://github.com/
ZQPei/deep_sort_pytorch, accessed on 10 May 2021) of DeepSORT and adapt it for the KIT
AIS dataset by changing the bounding box size and IoU threshold, as well as fine-tuning the
network on the training set of the KIT AIS dataset. As mentioned, for the object locations
we use the ground truth and do not use the DeepSORT’s object detector. Tables 7 and 8
show the tracking results of our experiments in which Rcll, Prcn, FAR, MT, PT, ML, FN,
FM, and MOTP are not important in our evaluations as the ground truth is used instead of
the detection results. Therefore, the best values for these metrics are not highlighted for
non of the methods in Table 7 and for DeepSORTs and SORTs in Table 8.

Table 7. Results of DeepSORT, SORT, Tracktor++, and SMSOT-CNN on the KIT AIS pedestrian
dataset. The first and second best values are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
DeepSORT 10.0 9.8 10.2 100.0 95.8 7.6 100.0 0.0 0.0 523 0 8627 9 23.9 81.1 98.6

DeepSORT-BBX2× 38.4 36.9 39.9 100.0 92.6 13.9 100.0 0.0 0.0 958 0 5073 9 49.9 78.7 92.0
DeepSORT-IoU99 43.3 40.8 44.0 98.3 91.1 16.7 99.8 0.2 0.0 1152 205 4009 189 55.4 73.7 88.7

DeepSORT-BBX2×-IoU99 82.1 80.7 83.6 99.4 96.0 7.3 99.8 0.2 0.0 502 75 738 70 89.1 74.7 95.2
DeepSORT-BBX2×-IoU99-FT 82.4 81.0 83.8 99.4 96.0 7.1 99.8 0.2 0.0 493 71 734 68 89.2 74.7 95.3

SORT-IoU99 42.9 41.8 44.2 98.7 93.4 12.2 99.8 0.2 0.0 840 151 3805 141 60.1 73.6 91.7
SORT-BBX2×-IoU99 86.5 85.5 87.2 99.6 98.1 3.3 99.8 0.2 0.0 231 46 438 48 94.1 74.7 97.7

Tracktor++ 13.7 27.3 9.2 28.5 85.0 – 13.2 44.2 42.6 604 8593 2188 725 5.3 0.1 –
SMSOT-CNN 34.0 33.2 34.9 38.2 36.4 116.4 25.0 52.5 22.5 8028 7427 157 614 −29.8 71.0 −28.5

EOT-D17 85.2 84.9 85.5 86.5 86.0 24.5 80.2 19.6 0.2 1692 1619 37 1074 72.2 69.3 72.5

Remote Sens. 2021, 1, 0 17 of 40

Table 8. Results of DeepSORT, SORT, Tracktor++, and SMSOT-CNN on the KIT AIS pedestrian
dataset. The first and second best values of each method on the sequences are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
DeepSORT

AA_Crossing_02 13 94 3.1 3.1 3.1 100.0 100.0 0.0 100.0 0.0 0.0 0 0 940 1 17.2 99.7 99.7
AA_Walking_02 17 188 7.7 7.7 7.8 100.0 98.9 1.7 100.0 0.0 0.0 29 0 2145 5 18.6 99.0 98.8

Munich02 31 230 9.1 8.8 9.4 100.0 92.8 15.4 100.0 0.0 0.0 478 0 4681 1 15.8 64.0 92.1
RaR_Snack_Zone_02 4 220 21.0 20.9 21.2 100.0 98.7 2.7 100.0 0.0 0.0 11 0 351 2 58.2 98.1 98.4
RaR_Snack_Zone_04 4 311 17.9 17.9 18.0 100.0 99.6 1.2 100.0 0.0 0.0 5 0 510 0 58.1 98.6 99.4

DeepSORT-BBX2×
AA_Crossing_02 13 94 34.8 34.5 35.1 100.0 98.4 1.4 100.0 0.0 0.0 18 0 566 1 48.5 94.3 98.2
AA_Walking_02 17 188 46.6 46.0 47.1 100.0 98.8 3.6 100.0 0.0 0.0 61 0 1073 5 57.5 93.1 97.6

Munich02 31 230 29.5 27.6 31.5 100.0 87.7 27.7 100.0 0.0 0.0 859 0 2989 1 37.2 63.9 85.9
RaR_Snack_Zone_02 4 220 52.2 51.9 52.5 100.0 98.9 2.5 100.0 0.0 0.0 10 0 203 2 75.4 95.7 98.6
RaR_Snack_Zone_04 4 311 61.2 61.0 61.5 100.0 99.2 2.5 100.0 0.0 0.0 10 0 242 0 79.5 94.4 99.0

DeepSORT-IoU99
AA_Crossing_02 13 94 55.0 54.4 55.6 99.0 96.9 2.8 100.0 0.0 0.0 36 11 347 10 65.3 83.6 95.6
AA_Walking_02 17 188 63.4 62.5 64.3 99.1 96.3 6.1 100.0 0.0 0.0 103 23 557 25 74.4 82.0 95.2

Munich02 31 230 24.2 22.8 25.8 97.2 85.8 31.8 99.6 0.4 0.0 985 170 2737 151 36.5 62.9 81.1
RaR_Snack_Zone_02 4 220 57.7 57.3 58.2 100.0 98.5 3.2 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 311 69.1 68.7 69.5 99.9 98.8 3.7 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

DeepSORT-BBX2×-IoU99
AA_Crossing_02 13 94 93.8 92.5 95.2 99.8 96.9 2.8 100.0 0.0 0.0 36 2 45 2 93.8 85.0 96.5
AA_Walking_02 17 188 88.7 84.4 93.4 99.7 90.0 17.3 100.0 0.0 0.0 295 8 42 12 87.0 86.4 88.6

Munich02 31 230 73.1 70.9 75.3 98.9 93.2 14.2 100.0 0.0 0.0 441 67 565 56 82.5 62.9 91.7
RaR_Snack_Zone_02 4 220 90.1 89.9 90.4 99.8 99.2 1.7 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 311 90.2 90.1 90.3 100.0 99.8 0.7 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

DeepSORT-BBX2×-IoU99-FT
AA_Crossing_02 13 94 93.1 92.7 93.4 100.0 99.3 0.6 100.0 0.0 0.0 8 0 43 1 95.5 85.1 99.2
AA_Walking_02 17 188 93.1 92.4 93.7 99.8 98.4 2.5 100.0 0.0 0.0 43 6 42 9 96.6 86.5 98.1

Munich02 31 230 73.3 71.2 75.5 99.0 93.3 13.9 100.0 0.0 0.0 432 63 563 54 82.7 62.9 91.9
RaR_Snack_Zone_02 4 220 90.1 89.9 90.4 99.8 99.2 1.7 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 311 90.2 90.1 90.3 100.0 99.8 0.7 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

SORT-IoU99
AA_Crossing_02 13 94 55.9 55.4 56.5 99.1 97.2 5.5 100.0 0.0 0.0 33 10 343 9 66.0 83.5 96.0
AA_Walking_02 17 188 64.0 63.2 64.9 99.3 96.7 5.3 100.0 0.0 0.0 90 19 550 21 75.3 82.0 95.8

Munich02 31 230 24.6 23.6 25.8 98.0 89.7 22.2 99.6 0.4 0.0 689 122 2544 108 45.2 62.8 86.7
RaR_Snack_Zone_02 4 220 57.7 57.3 58.2 100.0 98.5 3.2 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 311 69.1 68.7 69.5 99.9 98.8 3.7 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

SORT-BBX2×-IoU99
AA_Crossing_02 13 94 93.1 92.7 93.4 100.0 99.3 0.6 100.0 0.0 0.0 8 0 45 1 95.3 85.0 99.1
AA_Walking_02 17 188 94.5 93.9 95.1 99.3 98.6 2.2 100.0 0.0 0.0 37 2 30 6 97.4 86.5 98.5

Munich02 31 230 80.4 79.6 81.3 99.3 97.2 5.7 100.0 0.0 0.0 176 42 284 37 91.8 63.0 96.4
RaR_Snack_Zone_02 4 220 90.5 90.2 90.8 99.8 99.2 1.7 99.1 0.9 0.0 7 2 34 4 95.0 87.9 98.8
RaR_Snack_Zone_04 4 311 90.5 90.4 90.7 100.0 99.8 0.7 100.0 0.0 0.0 3 0 45 0 96.1 88.4 99.6

Tracktor++
AA_Crossing_02 13 94 12.7 19.6 9.4 48.2 100.0 – 20.1 51.1 28.8 0 588 432 107 10.1 0.13 –
AA_Walking_02 17 188 10.7 27.5 6.7 23.2 95.8 – 3.2 43.1 53.7 27 2050 426 154 6.3 0.13 –

Munich02 31 230 7.8 16.7 5.1 22.7 74.5 – 2.2 41.3 56.6 746 4736 965 412 −0.8 0.08 –
RaR_Snack_Zone_02 4 220 33.8 54.5 24.5 40.2 89.5 – 17.7 45.5 36.8 41 517 134 27 20.0 0.09 –
RaR_Snack_Zone_04 4 311 32.5 50.2 24.0 42.9 89.8 – 22.2 44.1 33.7 60 702 231 25 19.3 0.06 –

SMSOT-CNN
AA_Crossing_02 13 94 49.9 49.7 50.1 52.1 51.6 42.6 24.5 52.1 23.4 554 544 11 71 2.3 68.8 3.2
AA_Walking_02 17 188 30.7 30.2 31.3 33.8 32.7 109.6 15.5 38.9 45.6 1864 1767 34 140 −32.7 68.0 −36.0

Munich02 31 230 23.6 22.7 24.5 28.8 26.7 156.3 8.6 38.3 53.1 4846 4363 105 316 −52.1 68.4 −50.4
RaR_Snack_Zone_02 4 220 61.6 61.4 61.8 64.4 63.9 78.5 37.3 62.3 0.4 314 308 2 39 27.9 77.9 28.0
RaR_Snack_Zone_04 4 311 61.2 61.1 61.3 63.8 63.6 112.5 34.4 64.6 1.0 450 445 5 48 26.8 76.7 27.2

EOT-D17
AA_Crossing_02 13 94 94.4 94.4 94.4 95.3 95.2 4.1 91.5 8.5 0.0 54 53 4 34 90.2 73.8 90.5
AA_Walking_02 17 188 94.6 94.0 95.1 96.9 95.8 6.7 96.8 2.7 0.5 114 82 10 63 92.3 76.6 92.6

Munich02 31 230 76.0 75.8 76.2 77.0 76.5 46.6 44.3 54.8 0.9 1446 1409 15 930 53.1 60.4 53.4
RaR_Snack_Zone_02 4 220 95.0 94.9 95.1 96.5 96.3 8.0 87.7 12.3 0.0 32 30 3 16 92.5 77.6 92.8
RaR_Snack_Zone_04 4 311 95.2 95.1 95.2 96.3 96.3 11.5 76.2 23.8 0.0 46 45 5 31 92.2 78.6 92.5

In the first experiment, we employ DeepSORT with its original parameter settings.
As the results show, this configuration is not suitable for tracking small objects (pedestrians)
in aerial imagery. DeepSORT utilizes deep appearance features to associate objects to
tracklets; however, for the first few frames, it relies on IoU metric until enough appearance
features are available. The original IoU threshold is 0.5. The standard DeepSORT uses a
Kalman filter for each object to estimate its position in the next frame. However, due to small
IoU overlaps between most predictions and detections, many tracks can not be associated
with any detection, making it impossible to use the deep features afterwards. The main
cause of minor overlaps is the small size of the bounding boxes. For example, if the Kalman
filter estimates the object position only 2 pixels off the detection’s position, for a bounding
box of 4× 4 pixels, the overlap would be below the threshold and, consequently, the tracklet
and the object cannot be matched. These mismatches result in a large number of falsely
initiated new tracks, leading to a total amount of 8627 ID switches, an average amount of
8.27 ID switches per person, and an average amount of 0.71 ID switches per detection.

We tackle this problem by enlarging the bounding boxes by a factor of two in order to
increase the IoU overlaps, increase the number of matched tracklets and detections, and
enable the use of appearance features. According to Table 7, this configuration (DeepSORT-
BBX2×) results in a 41.19% decrease in the total number of ID switches (from 8627 to 5073),
a 56.38% decrease in the average number of ID switches per person (from 8.62 to 4.86),
and a 59.15% decrease in the average number of ID switches per detection (from 0.71 to
0.42). We further analyze the impact of using different IoU thresholds on the tracking
performance. Figure 6 illustrates the number of ID switches with different IoU thresholds.
It can be observed that by increasing the threshold (minimizing the required overlap for

Remote Sens. 2021, 1, 0 18 of 40

object matching) the number of ID switches reduces. The least number of ID switches (738
switches) is achieved by the IoU threshold of 0.99, as can be seen in Table 7 for DeepSORT-
IoU99. Based on the results, enlarging the bounding boxes and changing the IoU threshold
significantly improves the tracking results of DeepSORT-BBX2×-IoU99 as compared to
the original settings of DeepSORT (ID switches by 91.44% and MOTA by 3.7 times). This
confirms that the missing IoU overlap is the main issue with the standard DeepSORT.

0.6 0.7 0.8 0.9 1.0
IoU Threshold

7K

0.6 0.7 0.8 0.9 1.0
IoU Threshold

1

3

5

7

0.6 0.7 0.8 0.9 1.0
IoU Threshold

0.1

0.3

0.5

5K

3K

1K

ID
 S

w
itc

he
s

ID
 S

w
itc

he
s

ID
 S

w
itc

he
s

Figure 6. ID Switches versus IoU thresholds in DeepSORT. From left to right: total, average per
person, and average per detection ID Switches.

After adapting the IoU object matching, the deep appearance features play a prominent
role in the object tracking after the first few frames. Thus, a fine-tuning of the DeepSORT’s
neural network on the training set of the KIT AIS pedestrian dataset can further improve
the results (DeepSORT-BBX2×-IoU99-FT). Originally, the network has been trained on a
large person re-identification dataset, which is very different from our scenario, especially
in the looking angle and the object sizes, as the bounding boxes in aerial images are much
smaller than in the person re-identification dataset (4× 4 vs. 128× 64 pixels). Scaling
the bounding boxes of our aerial dataset to fit the network input size leads to relevant
interpolation errors. For our experiments we initialize the last re-identification layers from
scratch, and the rest of the network using the pre-trained weights and biases. We also
changed the number of classes to 610, representing the number of different pedestrians after
cropping the images into the patches with the size of the bounding boxes, and ignoring
the patches located at the image border. Instead of scaling the patches to 128× 64 pixels,
we only scale them to 50× 50. We trained the classifier for 20 epochs with SGD optimizer,
Cross-Entropy loss function, batch size of 128, and an initial learning rate of 0.01. Moreover,
we doubled the bounding box sizes for our experiment. The results in Table 7 show
that the total number of ID switches only decreases from 738 to 734. This indicates that
the deep appearance features of DeepSORT are not useful for our problem. While for a
large object a small deviation of the bounding box position is tolerable (as the bounding
box still mostly contains object-relevant areas), for our very small objects this can cause
significant changes in object relevance. The extracted features mostly contain background
information. Consequently, in the appearance matching step, the object features from
its previous and currently estimated positions can differ significantly. Additionally, the
appearance features of different pedestrians in aerial images are often not discriminative
enough to distinguish them.

In order to better demonstrate this effect, we evaluate DeepSORT without any appear-
ance feature, also known as SORT. Table 7 shows the tracking results with original and
doubled bounding box sizes and an IoU threshold of 0.99. According to the results, SORT
outperforms the fine-tuned DeepSORT with 438 ID switches. Nevertheless, the number of
ID switches is still high, given that we use the ground truth object positions. This could be
due to the low frame rate of the dataset and the small sizes of the the objects. Although
enlarging the bounding boxes improved the performance significantly (60% and 56% better
MOTA for DeepSORT and SORT, respectively), it leads to a poor localization accuracy.

Remote Sens. 2021, 1, 0 19 of 40

5.2.2. Tracktor++

Tracktor++ [1] is an MOT method based on deep features. It employs a Faster-
RCNN to perform object detection and tracking through regression. We use its PyTorch
implementation (https://github.com/phil-bergmann/tracking_wo_bnw, accessed on 10
May 2021) and adapt it to our aerial dataset. We tested Tracktor++ with the ground truth
object positions instead of using its detection module; however, it totally failed the tracking
task with these settings. Faster-RCNN has been trained on the datasets which are very
different to our aerial dataset, for example in looking angle, number and size of the objects.
Therefore, we fine-tune Faster-RCNN on the KIT AIS dataset. To this end, we had to adjust
the training procedure to the specification of our dataset.

We use Faster-RCNN with a ResNet50 backbone, pre-trained on the ImageNet dataset.
We change the anchor sizes to {2, 3, 4, 5, 6} and the aspect ratios to {0.7, 1.0, 1.3}, enabling
it to detect small objects. Additionally, we increase the maximum detections per image
to 300, set the minimum size of an image to be rescaled to 400 pixels, the region proposal
non-maximum suppression (NMS) threshold to 0.3, and the box predictor NMS threshold
to 0.1. The NMS thresholds influence the amount of overlap for region proposals and
box predictions. Instead of SGD, we use an ADAM optimizer with an initial learning rate
of 0.0001 and a weight decay of 0.0005. Moreover, we decrease the learning rate every
40 epochs by a factor of 10 and set the number of classes to 2, corresponding to background
and pedestrians. We also apply substantial online data augmentation including random
flipping of every second image horizontally and vertically, color jitter, and random scaling
in a range of 10%.

The tracking results of Tracktor++ with the fine-tuned Faster-RCNN are presented
in Table 7. The detection precision and recall of Faster-RCNN are 25% and 31%, respec-
tively, with this poor detection performance potentially propagated to the tracking part.
According to the table, Tracktor++ only achieves an overall MOTA of 5.3 and 2188 ID
switches even when we use ground truth object positions. We conclude by assuming that
Tracktor++ has difficulties with the low frame rate of the dataset and the small object sizes.

5.2.3. SMSOT-CNN

SMSOT-CNN [18] is the first DL-based method for multi-object tracking in aerial
imagery. It is an extension to GOTURN [17], an SOT regression-based method using CNNs
to track generic objects at high speed. SMSOT-CNN adapts GOTURN for MOT scenarios
by three additional convolution layers and a tacking management module. The network
receives two image patches from the previous and current frames, where both are centered
at the object position in the previous frame. The size of the image patches (the amount
of contextual information) is adjusted by a hyperparameter. The network regresses the
object position in the coordinates of the current frame’s image patch. SMSOT-CNN has
been evaluated on the KIT AIS pedestrian dataset in [18], where the objects’ first positions
are given based on the ground truth data. The tracking results can be seen in Table 7.
Due to the use of a deep network and the local search for the next position of the objects,
the number of ID switches by SMSOT-CNN is 157, which is small, relative to the other
methods. Moreover, this algorithm achieves an overall MOTA and MOTP of −29.8 and
71.0, respectively. Based on our visual inspections, SMSOT-CNN has some difficulties in
densely crowded situations where the objects share similar appearance features. In these
cases, multiple similarly looking objects can be present in an image patch, resulting in
ID switches and losing track of the target objects. Furthermore, the small sizes of the
pedestrians make them similar to many non-pedestrian objects in the feature space causing
a large number of FPs and FNs.

5.2.4. Euclidean Online Tracking

Inspired by the tracking results of SORT besides its simplicity, we propose EOT based
on the architecture of SORT for pedestrian tracking in aerial imagery. EOT uses a Kalman
filter similarly to SORT. Then it calculates the euclidean distance between all predictions

Remote Sens. 2021, 1, 0 20 of 40

(xi, yi) and detections (xj, yj), and normalizes them w.r.t. the GSD of the frame to construct
a cost matrix as follows:

Di,j = GSD ·
√
(xi − xj)2 + (yi − yj)2. (8)

After that, as in SORT, we use the Hungarian algorithm to look for global minima.
However, if objects enter or leave the scene, the Hungarian algorithm can propagate an
error to the whole prediction-detection matching procedure: therefore, we constrain the
cost matrix so that all distances greater than a certain threshold are ignored and set to
an infinity cost. We empirically set the threshold to 17.GSD pixels. Furthermore, only
objects successfully tracked in the previous frame are considered for the matching process.
According to Table 7, while the total MOTA score is competitive with the previously
studied methods, EOT achieves the least ID switches (only 37). Compared to SORT, as
EOT keeps better track of the objects, the deviations in the Kalman filter predictions are
smaller. Therefore, Euclidean distance is a better option as compared to IoU for our aerial
image sequences.

5.3. Conclusion of the Experiments

In this section, we conclude our preliminary study. According to the results, our EOT
is the best performing tracking method. Figure 7 illustrates a major case of success by our
EOT method. We can observe that almost all pedestrians are tracked successfully, even
though the sequence is crowded and people walk in different directions. Furthermore,
the significant cases of false positives and negatives are caused by the limitation of the
evaluation approach. In other words, while EOT tracks most of the objects, since the
evaluation approach is constrained to the minimum 50% overlap (4 pixels), the correctly
tracked objects with smaller overlaps are not considered.

25 26 27 28 29 30

Figure 7. A success case processed by Stacked-DCFNet on the sequence “Munich02”. The tracking results and ground truth
are depicted in green and black, respectively.

Figure 8 shows a typical failure case of the Stacked-DCFNet method. In the first two
frames, most of the objects are tracked correctly; however, after that, the diagonal line in
the patch center is confused with the people walking across it. We assume that the line
shares similar appearance features with the crossing people. Figure 9 demonstrates a suc-
cessful tracking case by Stacked-DCFNet. People are not walking closely together and the
background is more distinguishable from the people. Figure 10 illustrates another typical
failure case of DCFNet. The image includes several people walking closely in different
directions, introducing confusion into the tracking method due to the people’s similar
appearance features. We closely investigate these failure cases in Figure 11. In this figure,
we visualize the activation map of the last convolution layer of the network. Although the
convolutional layers of Stacked-DCFNet are supposed to be trained only for people, the
line and the people (considering their shadows) appear indistinguishable. Moreover, based
on the features, different people cannot be discriminated. We also evaluated SMSOT-CNN
and found that it shares similar failure and success cases with Stacked-DCFNet, as both
take advantage of convolutional layers for extracting appearance features.

Remote Sens. 2021, 1, 0 21 of 40

54 55 56 57 58 59

Figure 8. A failure case by Stacked-DCFNet on the sequence “AA_Walking_02”. The tracking results and ground truth are
depicted in green and black, respectively.

180 181 182 183 184 185

Figure 9. A success case by Stacked-DCFNet on the sequence “AA_Crossing_02”. The tracking results and ground truth are
depicted in green and black, respectively.

141 142 143 144

Figure 10. A failure case by Stacked-DCFNet on the test sequence “RaR_Snack_Zone_04”. The
tracking results and the ground truth are depicted in green and black, respectively.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a)
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b)

Figure 11. (a) An input image patch to the last convolutional layer of Stacked-DCFNetand and (b) its
corresponding activation map.

Altogether, the Euclidean distance paired with trajectory information in EOT works
better than IoU for tracking in aerial imagery. However, detection-based trackers such
as EOT require object detection in every frame. As shown for Tracktor++, the detec-
tion accuracy of the object detectors is very poor for pedestrians in aerial images. Thus,
detection-based methods are not appropriate for our scenarios. Moreover, the approaches

Remote Sens. 2021, 1, 0 22 of 40

which employ deep appearance features for re-identification share similar problems with
object detectors, features with poor discrimination abilities in the presence of similarly
looking objects, leading to ID switches and loosing track of objects. The tracking methods
based on regression and correlation (e.g., Stacked-DCFNet and SMSOT-CNN) show, in
general, better performances than the methods based on re-identification because they
track objects by local image patches that errors to be propagated to the whole image. Fur-
thermore, according to our investigations, the path taken by every pedestrian is influenced
by three factors: (1) the pedestrian’s path history, (2) the positions and movements of the
surrounding people, (3) the arrangement of the scene.

We conclude that both regression- and correlation-based tracking methods are good
choices for our scenario. They can be improved by considering trajectory information and
the pedestrians movement relationships.

6. AerialMPTNet

In this section we explain our proposed AerialMPTNet tracking algorithm with its
different configurations. Part of its architecture and configurations has been presented
in [19].

As stated in Section 5, a pedestrian’s movement trajectory is influenced by its move-
ment history, its motion relationships to its neighbours, and scene arrangements. The same
holds for the vehicles in traffic scenarios. For the vehicles, there are other constraints such
as moving along predetermined paths (e.g., streets, highways, railways) in most of the
time. Different objects have different motion characteristics such as speed and acceleration.
For example, several studies have shown that walking speed of pedestrians are strongly
influenced by their age, gender, temporal variations as well as distractions (e.g., cell phone
usage), whether the individual is moving in a group or not, and even the size of the city
where the event takes place [64,65]. Regarding road traffic, similar factors could influence
driving behaviors and movement characteristics (e.g., cell phone usage, age, stress level,
and fatigue) [66,67]. Furthermore, similar to the pedestrians, maneuvers of a vehicle can
directly affect the movements of other neighbouring vehicles: for example, if the vehicle
brakes, all the following vehicles must brake, too.

The understanding of individual motion patterns is crucial for tracking algorithms,
especially when only limited visual information about target objects is available. However,
current regression-based tracking methods such as GOTURN and SMSOT-CNN do not
incorporate movement histories or relationships between adjacent objects. These networks
locate the next position of objects by monitoring a search area in their immediate proximity.
Thus, the contextual information provided to the network is limited. Additionally, during
the training phase, the networks do not learn how to differentiate the targets from simi-
larly looking objects within the search area. Thus, as discussed in Section 5, ID switches
and losing of object tracks happen often for these networks in crowded situations or by
object intersections.

In order to tackle the limitations of previous works we propose to fuse visual features,
track history, and the movement relationships of adjacent objects in an end-to-end fashion
within a regression-based DNN, which we refer to as AerialMPTNet. Figure 12 shows
an overview of the network architecture. AerialMPTNet takes advantage of a Siamese
Neural Network (SNN) for visual features, a Long Short-Term Memory (LSTM) module
for movement histories, and a GraphCNN for movement relationships. The network takes
two local image patches cropped from two consecutive images (previous and current),
called target and search patch in which the object location is known and has to be predicted,
respectively. Both patches are centered at the object coordinates known from the previous
frame. Their size (the degree of contextual information) is correlated with the size of the
objects, and it is set to 227× 227 pixels to be compatible to the network’s input. Both
patches are then given to the SNN module (retained from [18]) composed of two branches
of five 2D convolutional, two local response normalization, and three max-pooling layers
with shared weights. Afterwards, the two output features OutSNN are concatenated and

Remote Sens. 2021, 1, 0 23 of 40

given to three 2D convolutional layers and, finally, four fully connected layers regressing
the object position in the search patch coordinates. We use ReLU activations for all these
convolutional layers.

227 x 227 x 3
Cropped Patch

27 x 27 x 64
13 x 13 x 192 13 x 13 x 256

13 x 13 x 384 6 x 6 x 256

FC Layer Max Pool 2D Conv +
ReLU

Sequence
Un - or Padding Dropout Track

Memory
Global

Average
Pooling

Local
Response

Norm
Concat

Local ContextGlobal Context

LSTM Neighbor
Calculation

Previous Frame

Current Frame

6 x 6 x 512

6 x 6 x 512

6 x 6 x 512
4096 4096 4096

4

128
64 64

1D Conv +
ReLU

Kernel Size 1

3264128

LSTM Module

GCNN Module

SE

Figure 12. Overview of the network’s architecture composing a SNN, a LSTM and a GraphCNN module. The inputs are two
consecutive images cropped and centered to a target object, while the output is the object location in search crop coordinates.

The network output is a vector of four values indicating the x and y coordinates of the
top-left and bottom-right corners of the objects’ bounding boxes. These coordinates are then
transformed into image coordinates. In our network, the LSTM module and the GraphCNN
module use the object coordinates in the search patch and image domain, respectively.

6.1. Long Short-Term Memory Module

In order to encode movement histories and predict object trajectories, recent works
mainly relied on LSTM- and RNN-based structures [68–70]. While these structures have
been mostly used for individual objects, due to the large number of objects, we cannot
apply these structures directly to our scenarios. Thus, we propose using a structure which
treats all object by only one model and predicts the movements (movement vectors) instead
of positions.

In order to test our idea, we built an LSTM comprising two bidirectional LSTM layers
with 64 dimensions, a dropout layer with p = 0.5 in between, and a linear layer which
generates two-dimensional outputs, representing the x and y values of the movement
vector. The input of the LSTM module are two-dimensional movement vectors with
dynamic lengths up to five steps of the objects’ movement histories. We applied this
module to our pedestrian tracking datasets. The results of this experiment show that our
LSTM module can predict the next movement vector of multiple pedestrians with about
3.6 pixels (0.43 m) precision, which is acceptable for our scenarios. Therefore, training a
single LSTM on multiple objects would be enough for predicting the objects’ movement vectors.

We embed a similar LSTM module into our network as shown in Figure 12. For the
training of the module, the network first generates a sequence of object movement vectors
based on the object location predictions. In our experiments, each track has a dynamic
history of up to five last predictions. As tracks are not assumed to start at the same time, the
length of each track history can be different. Thus, we use zero-padding to make the lengths
of track histories similar, allowing to process them together as a batch. These sequences
are fed into the first LSTM layer with a hidden size of 64. A dropout with p = 0.5 is then
applied to the hidden state of the first LSTM layer, and passes the results to the second
LSTM layer. The output features of the second LSTM layer are fed into a linear layer of
size 128. The 128-dimensional output of the LSTM module OutLSTM is then concatenated
with OutSNN and OutGraph, the output of the GCNN module. The concatenation allows

Remote Sens. 2021, 1, 0 24 of 40

the network to predict object locations more precisely based on a fusion of appearance and
movement features.

6.2. GraphCNN Module

The GraphCNN module consists of three 1D convolution layers with 1× 1 kernels
and respectively 32, 64, and 128 channels. We generate each object’s adjacency graph based
on the location prediction of all objects. To this end, the eight closest neighbors in a radius
of 7.5 m from the object are considered and modeled as a directed graph by a set of vectors
vi from the neighbouring objects to the target object’s position (x, y). The resulting graph
is represented as [x, y, xv1 , yv1 , . . . , xv8 , yv8]. If less than eight neighbors are existing, we
zero-pad the rest of the vectors.

The GraphCNN module also uses historical information by considering five previous
graph configurations. Similarly to the LSTM module, we use zero-padding if less than five
previous configurations are available. The resulting graph sequences are described by a
18× 5 matrix which is fed into the first convolution layer. In our setup, graph sequences
of multiple objects are given to the network as a batch of matrices. The output of the last
convolutional layer is gone through a global average pooling in order to generate the final
128-dimensional output of the module OutGraph, which is concatenated to OutSNN and
OutLSTM. The features of the GraphCNN module enable the network to better understand
group movements.

6.3. Squeeze-and-Excitation Layers

During our preliminary experiments in Section 5, we experienced a high deviation in
the quality of activation maps produced by the convolution layers in DCFNet and SMSOT-
CNN. This deviation shows the direct impact of single channels and their importance for
the final result of the network. In order to consider this factor in our approach, we model
the dominance of the single channels by Squeeze-And-Excitation (SE) layers [71].

CNNs extract image information by sliding spatial filters across the inputs to different
layers. While the lower layers extract detailed features such as edges and corners, the
higher layers can extract more abstract structures such as object parts. In this process,
each filter at each layer has a different relevance to the network output. However, all
filters (channels) are usually weighted equally. Adding the SE layers to a network helps
weighting each channel adaptively based on their relevance. In the SE layers, each channel
is squeezed to a single value by using global average pooling [72], resulting in a vector
with k entries. This vector is given to a fully connected layer reducing the size of the output
vector by a certain ratio, followed by a ReLu activation function. The result is fed into
a second fully connected layer scaling the vector back to its original size and applying a
sigmoid activation afterwards. In the final step, each channel of the convolution block is
multiplied by the results of the SE layer. This channel weighting step adds less than 1%
to the overall computational cost. As can bee seen in Figure 12, we add one SE layer after
each branch of the SNN module, and one SE layer after the fusion of OutSNN , OutLSTM,
and OutGraph.

6.4. Online Hard Example Mining

In the object detection domain, datasets usually contain a large number of easy cases
with respect to cases which are challenging for the algorithms. Several strategies have been
developed in order to account for this, such as sample-aware loss functions (e.g., Focal
Loss [73]), where the easy and hard samples are weighted based on their frequencies, and
online hard example mining (OHEM) [28], which gives hard examples to the network if
they are previously failed to be correctly predicted. The selection and focusing on such
hard examples can make the training more effective. OHEM have been explored in the
object detection task [74,75], however, its usage has not been investigated for the object
tracking task. In the multi-object tracking domain, such strategies have been rarely used
although the tracking datasets suffer from the sample problem as the detection datasets.

Remote Sens. 2021, 1, 0 25 of 40

To the best of our knowledge, none of the previous works in the regression-based tracking
used OHEM during their training process.

Thus, in order to deal with the sample imbalance problem of our datasets, we propose
adapting and employing OHEM for our training process. To this end, if the tracker loses an
object during training, we reset the object to its original starting position and the starting
frame, and feed it to the network in the next iteration again. If the tracker fails again, we
ignore the sample by removing it from the batch.

7. Experimental Setup

For all of our experiments, we used PyTorch and one Nvidia Titan XP GPU. We trained
all networks with an SGD optimizer and an initial learning rate of 10−6. For all training
setups, unless indicated otherwise, we use the L1 loss, L(x, x̂) = |x− x̂|, where x and x̂
represent the output of the network and ground truth, respectively. The batch size of all
our experiments is 150; however, during offline feedback training, the batch size can differ
due to unsuccessful tracking cases and subsequent removal of the object from the batch.

In our experiments, we consider SMSOT-CNN as baseline network and compare
different parts of our approach to it. The original SMSOT-CNN is described in Caffe. In
order to make it completely comparable to our approach, we re-implement it in PyTorch.
For the training of SMSOT-CNN, we assign different fractions of the initial learning rate to
each layer, as in the original Caffe implementation, inspired by the GOTURN’s implemen-
tation. In more detail, we assign the initial learning rate to each convolutional layer, and
assign a learning rate 10 times larger to the fully connected layers. Weights are initialized
by Gaussians with different standard deviations, while biases are initialized by constant
values (zero or one), as in the Caffe version. The training process of SMSOT-CNN is based
on a so-called Example Generator. Provided with one target image with known object
coordinates, this creates multiple examples by creating and shifting the search crop to
create different kinds of movements. It is also possible to give the true target and search
images. A hyperparameter set to 10 controls the number of examples generated for each
image. For the pedestrian tracking, we use DLR-ACD to increase the number of available
training samples. SMSOT-CNN is trained completely offline and learns to regress the object
location based on only the previous location of the object.

For AerialMPTNet, we train the SNN module and the fully connected layers as
in SMSOT-CNN. After that, the layers are initialized with the learnt weights, and the
remaining layers are initialized with the standard PyTorch initialization. Moreover, we
decay the learning rate by a factor of 0.1 for every twenty thousand iterations and train
AerialMPTNet in an end-to-end fashion by using feedback loops to integrate previous
movement and relationship information between adjacent objects. In contrast to the
training process of SMSOT-CNN, which is based on artificial movements created by the
example generator, we train our networks based on real tracks.

In the training process, a batch of 150 random tracks (i.e., objects from random
sequences of the training set) is first selected starting at a random time step between 0 and
the track end tend − 1. We give the network the target and search patches for these objects.
The network’s goal is to regress each object position in the search patches consecutively
until either the object is lost or the track ends. The target and search patches are generated
based on the network predictions in consecutive frames. The object will remain in the batch
as long as the network tracks it successfully. If the ground truth object position lies outside
of the predicted search area or the track reaches its end frame, we remove the object from
the batch and replace it with a new randomly selected object.

For each track and each time step, the network’s prediction is stored and used from
the LSTM and GraphCNN module. For each object in the batch, the LSTM module is given
the objects’ movement vectors from the latest time steps up to a maximum number of five,
as explained in Section 6. This process provides the network with an understanding of
each object’s movement characteristics by a prediction of the next movement. As a result,
our network uses its predictions as feedback to improve its performance. Furthermore, we

Remote Sens. 2021, 1, 0 26 of 40

perform gradient clipping for the LSTM during training to prevent exploding gradients.
The neighbor calculation of the GraphCNN module is also based on the network’s predic-
tion of each object’s position, as mentioned in Section 6. Based on the network’s prediction
of the object position, we search for the nearest neighbors in the ground truth annotation of
that frame. However, during the testing phase, we search nearest neighbors based on the
network’s prediction of the object positions.

For the pedestrian dataset, we set the context factor to 4, with each object with a
bounding box size of 4× 4 pixel resulting in an image patch of 16× 16 pixels. For vehicle
tracking, however, due to the larger sizes of their bounding boxes, we reduce the context
factor to 3. This helps avoiding multiple vehicles in a single image patch which could cause
track confusion.

8. Evaluation and Discussion

In this section, we evaluate different parts of our proposed AerialMPTNet on the
KIT AIS and AerialMPT datasets through a set of ablation studies. Furthermore, we
compare our results to the tracking methods discussed in Section 5. Table 9 reports the
different network configurations for our ablation studies.

Table 9. Different network configurations.

Name SNN LSTM GCNN SE Layers OHEM

SMSOT-CNN X × × × ×
AerialMPTNetLSTM X X × × ×
AerialMPTNetGCNN X × X × ×

AerialMPTNet X X X × ×
AerialMPTNetSE X X X X ×
AerialMPTNetOHEM X X X × X

8.1. SMSOT-CNN (PyTorch)

The tracking results of our PyTorch SMOST-CNN on the ArialMPT and KIT AIS
pedestrian and vehicle datasets are presented in Table 10. Therein, SMSOT-CNN achieves
MOTA and MOTP scores of −35.0 and 70.0 for the KIT AIS pedestrian, and 37.1 and 75.8
for the KIT AIS vehicle dataset, respectively. It achieves, respectively, a MOTA and MOTP
of −37.2 and 68.0 on the AerialMPT dataset. It can be seen that IDF is highest for the
RaR_Snach_Zone and Pasing7 for the AerialMPT and KIT AIS dataset by achieving about
63.1 and 57.7 respectively. This is due to the less persons on those sequences, lowering
the possibility of falsely tracking an ID. This shows its affect on other parameters such
as IDP, IDR, FAR, MT, PT, ML as well. Regarding FP, FN and ID switch, Munich02 and
Bauma3 have the highest wrong detections and id switches, however, the performance of
algorithm on Bauma3 is comparable with other sequences to the less noise in the dataset.
A comparison of the results to [18] shows that our PyTorch implementation works rather
similarly to the original Caffe version, with only 5.2 and 4.0 points smaller MOTA for the
KIT AIS pedestrian and vehicle, respectively. For the rest of our experiments, we consider
the results of this implementation of SMOST-CNN as the baseline for our evaluations.

Remote Sens. 2021, 1, 0 27 of 40

Table 10. SMSOT-CNN on the KIT AIS and AerialMPT datasets.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

AA_Crossing_02 13 94 49.4 49.2 49.6 51.7 51.3 42.92 22.4 60.6 17.0 558 548 15 88 1.2 66.8 2.4
AA_Walking_02 17 188 29.6 29.0 30.2 31.9 30.6 113.76 9.1 45.7 45.2 1934 1820 25 139 −41.5 65.7 −40.6

Munich02 31 20.7 230 19.9 21.5 24.5 22.6 165.45 3.5 44.3 52.2 5129 4625 91 271 −60.7 67.1 −59.3
RaR_Snack_Zone_02 4 220 63.1 62.9 63.4 64.2 63.7 79.0 35.0 63.6 1.4 316 310 1 39 27.5 78.2 27.6
RaR_Snack_Zone_04 4 311 63.5 63.3 63.7 65.3 64.9 108.5 35.0 64.0 1.0 434 427 3 48 29.8 76.7 30.0

Overall 69 1043 32.5 31.7 33.4 35.7 33.9 121.32 22.2 56.0 21.8 8371 7730 135 585 −35.0 70.0 −33.9
AerialMPT Dataset

Bauma3 16 609 29.3 28.6 30.0 34.6 33.0 385.69 9.9 47.1 43.0 6171 5748 200 458 −37.9 69.1 −35.7
Bauma6 26 270 30.8 28.6 33.3 37.7 32.3 161.23 12.2 57.4 30.4 4192 3311 115 302 −43.4 67.7 −41.2

Karlsplatz 27 146 30.7 29.4 32.2 33.8 30.8 94.93 6.9 58.2 34.9 2563 2233 26 95 −42.9 67.9 −42.2
Pasing7 24 103 57.7 54.5 61.3 61.9 55.1 43.42 35.9 54.4 9.7 1042 786 7 136 11.1 67.6 11.4
Pasing8 27 83 33.5 32.6 34.4 35.1 33.3 50.30 8.4 54.2 37.4 1358 1253 10 82 −35.7 67.0 −35.2

Witt 8 185 15.8 15.7 15.9 16.4 16.2 150.38 1.1 20.5 78.4 1203 1184 1 9 −68.6 61.5 −68.6
Overall 128 1396 32.0 30.7 33.4 36.6 33.6 129.13 10.7 47.7 41.6 16,529 14,515 359 1082 −37.2 68.0 −35.6

KIT AIS Vehicle Dataset
MunichStreet02 20 47 87.4 85.0 90.1 90.5 85.3 5.80 87.2 8.5 4.3 116 71 1 7 74.8 80.6 74.9

StuttgartCrossroad01 14 49 67.3 63.6 71.5 74.9 66.6 14.86 57.1 30.6 12.3 208 139 3 17 36.8 75.3 37.3
MunichCrossroad02 45 66 50.6 49.5 51.7 53.5 51.3 24.38 45.5 27.3 27.2 1097 1001 17 41 1.9 69.4 2.6

MunichStreet04 29 68 83.5 82.4 84.7 85.8 83.6 8.83 76.5 14.7 8.8 256 215 6 15 68.6 79.7 68.9
Overall 108 230 68.0 66.4 69.7 71.3 67.9 15.53 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6

8.2. AerialMPTNet (LSTM Only)

In this step, we evaluate the influence of the LSTM module on the tracking perfor-
mance of our AerialMPTNet. Table 11 reports the tracking result of AerialMPTNetLSTM on
our experimental datasets. We use the pre-trained weights of SMSOT-CNN to initialize
the convolutional weights and biases. For the KIT AIS pedestrian dataset, we evaluate the
effects of freezing the weights during the training of LSTM. The tracking results with frozen
and trainable convolutional weights in Table 11 show that the latter improves MOTA and
MOTP values by 8.2 and 0.5, respectively. Moreover, the network trained with trainable
weights tracks 6.9% more objects mostly during their lifetimes (MT). We can observe that
this increase in performance holds for all sequences with different number of frames and
objects with regard to IDF, IDPR, IDR, MT, ML, FP and FN. Having said that by not freeźing
the initial weights, the number of ID switches (IDs) from 231 increases to 270, which we
contemplate this is due to the small size of dataset and high number of trainable weights.
However, after further investigation we notice that after visual inspections that although
the network with the trainable weights can track objects for a longer time; however, when
the objects get into crowded scenarios, it loses their track by switching their IDs. Based
on these comparisons, we can argue that the computed features in SNN need fine tuning
to some degree in order to work jointly with the LSTM module. That could be the reason
why the training with the trainable weights outperforms the setting employing frozen
weights. Thus, for the rest of our experiments, we use trainable weights. Consequently,
Table 11 shows only the results with trainable weights for the AerialMPT and KIT AIS
vehicle datasets.

Table 11. AerialMPTNetLSTM on the KIT AIS and AerialMPT datasets. The best overall values of the
two configurations on the KIT AIS pedestrian dataset are highlighted.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset—Frozen Weights

AA_Crossing_02 13 94 42.0 41.8 42.2 44.8 44.5 48.92 13.8 59.6 26.6 636 626 13 99 −12.3 68.4 −11.3
AA_Walking_02 17 188 34.7 34.0 35.4 37.2 35.8 104.94 8.0 55.3 36.7 1784 1678 22 227 −30.4 67.4 −29.7

Munich02 31 230 26.0 25.1 26.9 33.1 30.8 146.81 6.1 57.8 36.1 4551 4098 191 463 −44.3 67.8 −41.2
RaR_Snack_Zone_02 4 220 57.1 56.9 57.3 59.0 58.6 90.25 29.1 69.5 1.4 361 355 1 42 17.1 72.9 17.2
RaR_Snack_Zone_04 4 311 64.7 64.4 64.9 66.3 65.9 105.25 39.6 58.8 1.6 421 415 4 52 31.7 73.8 32.0

Overall 69 1043 35.5 34.6 36.3 40.4 38.5 112.36 22.0 60.3 17.7 7753 7172 231 883 −26.0 69.3 −24.1
KIT AIS Pedestrian Dataset—Trainable Weights

AA_Crossing_02 13 94 47.1 49.9 47.3 49.6 49.2 44.77 23.4 48.9 27.7 582 572 11 91 −2.6 68.2 −1.8
AA_Walking_02 17 188 39.8 39.2 40.5 41.9 40.5 96.47 18.6 46.8 34.6 1640 1553 31 215 −20.7 67.2 −19.6

Munich02 31 230 29.6 28.6 30.8 37.1 34.5 139.10 8.3 59.6 32.1 4312 3852 221 506 −36.9 67.1 −33.3
RaR_Snack_Zone_02 4 220 63.0 62.8 63.2 64.9 64.4 77.50 37.3 60.0 2.7 310 304 4 31 28.6 72.2 28.9
RaR_Snack_Zone_04 4 311 67.6 67.5 67.8 69.1 68.8 96.50 46.0 50.8 3.2 386 380 3 43 37.5 73.3 37.7

Overall 69 1043 39.7 38.8 40.6 44.6 42.6 104.78 28.9 53.8 17.3 7230 6661 270 886 −17.8 68.8 −15.5
AerialMPT Dataset

Bauma3 16 609 28.3 27.7 29.0 34.6 33.0 386.00 8.4 51.2 40.4 6176 5745 246 608 −38.5 71.0 −35.7
Bauma6 26 270 33.2 31.2 35.5 39.3 34.5 152.35 13.0 58.5 28.5 3961 3225 135 387 −37.8 70.1 −35.3

Karlsplatz 27 146 48.4 47.0 50.0 51.4 48.2 68.89 24.7 55.5 19.8 1860 1641 16 140 −4.2 69.7 −3.8
Pasing7 24 103 61.0 58.5 63.6 64.3 59.2 38.08 35.9 56.3 7.8 914 737 5 127 19.8 70.5 20.0
Pasing8 27 83 41.3 40.6 42.1 42.7 41.4 43.78 18.1 50.6 31.3 1182 1108 4 90 −18.7 69.4 −18.6

Witt 8 185 15.6 15.5 15.7 17.3 17.1 148.75 2.7 23.8 73.5 1190 1171 3 24 −66.9 61.1 −66.8
Overall 128 1396 35.7 34.5 37.0 40.5 37.7 119.40 12.8 49.8 37.4 15,283 13,627 409 1376 −28.1 70.1 −26.3

KIT AIS Vehicle Dataset
MunichStreet02 20 47 81.9 79.9 84.0 84.9 80.6 7.60 74.5 10.6 14.9 152 113 4 3 63.9 79.6 64.4

StuttgartCrossroad01 14 49 65.9 62.4 69.9 72.7 65.0 15.50 59.2 26.5 14.3 217 151 2 11 33.2 76.2 33.5
MunichCrossroad02 45 66 57.7 56.0 59.5 60.6 56.9 21.93 48.5 33.3 18.2 987 850 22 43 13.7 69.4 14.7

MunichStreet04 29 68 88.7 88.3 89.1 89.9 89.0 5.79 86.8 7.4 5.8 168 153 2 3 78.7 79.8 78.8
Overall 108 230 71.6 69.8 73.4 74.5 70.9 14.11 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9

Table 12 represents the overall performances of different tracking methods on the
KIT AIS and AerialMPT datasets. According to the table, AerialMPTNetLSTM outperforms

Remote Sens. 2021, 1, 0 28 of 40

SMSOT-CNN with significant larger MOTA on all experimental datasets. In particular,
based on Tables 10 and 11, the main improvements happen for complex sequences such as
the “AA_Walking_02” and “Munich02” sequences of the KIT AIS pedestrian dataset, with
a 20.8 and 23.8 points larger MOTA, respectively.

On the AerialMPT dataset, the most complex sequences are “Bauma3” and “Bauma6”
presenting overcrowded scenarios with many pedestrians intersecting. According to the
results, using the LSTM module does not help the performance relevantly. In such complex
sequences, the trajectory information of the LSTM module is not enough for distinguishing
pedestrians and tracking them within the crowds. Furthermore, the increase in the number
of mostly and partially tracked objects (MT and PT) and the decrease in the number of
mostly lost ones (ML) indicate that the LSTM module helps AerialMPTNet in the tracking
of the objects for a longer time. This, however, causes a larger number of ID switches as
discussed before. On the KIT AIS vehicle dataset, although the results show a significant
improvement of AerialMPTNetLSTM over SMSOT-CNN, the performance improvements
are minor compared to the pedestrian datasets. This could be due the more distinguishable
appearance features of the vehicles, leading to a good performance even when relying
solely on the SNN module.

Table 12. Overall Performances of Different Tracking Methods on the KIT AIS and AerialMPT
Datasets. The first and second best values on each dataset are highlighted.

Methods IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

KCF 9.0 8.8 9.3 10.3 9.8 165.6 1.1 53.8 45.1 11,426 10,782 32 116 −84.9 87.2 −84.7
Median Flow 18.5 18.3 18.8 19.5 19.0 144.7 7.7 55.8 36.5 9986 9678 30 161 −63.8 77.7 −63.5

CSRT 16.0 16.9 15.2 17.5 19.4 126.5 9.6 51.0 39.4 8732 9924 91 254 −55.9 78.4 −55.1
MOSSE 9.1 8.9 9.3 10.5 10.0 163.8 0.8 54.0 45.2 11,303 10,765 31 133 −85.8 86.7 −83.5

Tracktor++ 6.6 9.0 5.2 10.8 18.7 81.7 1.1 28.4 70.5 5648 10,723 648 367 −41.5 40.5 –
Stacked-DCFNet 30.0 30.2 30.9 33.1 32.3 120.5 13.8 62.6 23.6 8316 8051 139 651 −37.3 71.6 −36.1

SMSOT-CNN 32.5 31.7 33.4 35.7 33.9 121.3 22.2 56.0 21.8 8371 7730 135 585 −35.0 70.0 −33.9
AerialMPTNetLSTM (Ours) 39.7 38.8 40.6 44.6 42.6 104.8 28.9 53.8 17.3 7230 6661 270 886 −17.8 68.8 −15.5
AerialMPTNetGCNN (Ours) 37.5 36.7 38.4 42.0 40.0 109.5 25.3 55.3 19.4 7555 6980 259 814 −23.0 69.6 −20.9

AerialMPTNet (Ours) 40.6 39.7 41.5 45.1 43.2 103.4 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2
AerialMPTNetSE (Ours) 38.3 37.5 39.1 42.8 41.1 107.2 27.4 54.5 18.1 7395 6876 250 818 −20.7 69.9 −18.7

AerialMPTNetOHEM (Ours) 38.6 37.7 39.4 42.7 40.9 107.7 26.1 55.8 18.1 7435 6889 254 854 −21.2 69.5 −19.1
AerialMPT Dataset

KCF 11.9 11.5 12.3 13.4 12.5 167.2 3.7 17.0 79.3 21,407 19,820 86 212 −80.5 77.2 −80.1
Median Flow 12.2 12.0 12.4 13.1 12.7 162.0 1.7 20.2 78.1 20,732 19,883 46 144 −77.7 77.8 −77.5

CSRT 16.9 16.6 17.1 20.3 19.7 148.5 2.9 37.8 59.3 19,011 18,235 426 668 −64.6 74.6 −62.7
MOSSE 12.1 11.7 12.4 13.7 12.9 165.7 3.8 17.9 78.3 21,204 19,749 85 194 −79.3 80.0 −78.9

Tracktor++ 4.0 8.8 3.1 5.0 8.7 93.0 0.1 7.6 92.3 11,907 21,752 399 345 −48.8 40.3 –
Stacked-DCFNet 28.0 27.6 28.5 31.4 30.4 128.3 9.4 44.2 46.4 16,422 15,712 322 944 −41.8 72.3 −40.4

SMSOT-CNN 32.0 30.7 33.4 36.6 33.6 129.1 10.7 47.7 41.6 16,529 14,515 359 1082 −37.2 68.0 −35.6
AerialMPTNetLSTM (Ours) 35.7 34.5 37.0 40.5 37.7 119.4 12.8 49.8 37.4 15,283 13,627 409 1376 −28.1 70.1 −26.3
AerialMPTNetGCNN(Ours) 37.0 35.7 38.3 42.0 39.1 117.0 15.6 46.0 38.4 14,983 13,279 433 1229 −25.4 69.7 −23.5

AerialMPTNet (Ours) 37.8 36.5 39.3 43.1 40.0 115.5 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5
AerialMPTNetSE (Ours) 38.9 37.5 40.4 44.1 40.9 113.8 17.0 48.1 34.9 14,568 12,799 430 1212 −21.4 69.8 −19.6

AerialMPTNetOHEM (Ours) 37.2 35.8 38.7 42.4 39.3 117.3 16.0 46.8 37.2 15,016 13,181 430 1284 −25.1 69.8 −23.2
KIT AIS Vehicle Dataset

KCF 41.3 39.0 43.9 45.6 40.4 30.9 27.0 33.5 39.5 3339 2708 53 96 −22.6 72.3 −21.6
Median Flow 42.0 39.5 44.9 46.3 40.8 31.0 32.2 40.0 27.8 3348 2669 23 47 −21.4 82.0 −21.0

CSRT 76.7 72.1 81.9 83.1 73.1 14.1 72.6 21.7 5.7 1520 841 21 46 52.1 80.7 52.5
MOSSE 29.0 27.4 30.8 32.4 28.8 36.8 19.6 30.0 50.4 3977 3364 56 81 −48.7 75.0 −47.6

Tracktor++ 55.3 66.6 47.2 57.3 80.7 6.3 30.0 47.4 22.6 681 2125 323 204 37.1 77.4 –
Stacked-DCFNet 73.8 71.2 76.6 77.2 71.8 14.0 69.1 15.2 15.7 1512 1133 9 39 46.6 82.0 46.8

SMSOT-CNN 68.0 66.4 69.7 71.3 67.9 15.5 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6
AerialMPTNetLSTM (Ours) 71.6 69.8 73.4 74.5 70.9 14.1 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9
AerialMPTNetGCNN (Ours) 71.1 69.4 72.9 74.1 70.6 14.2 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

AerialMPTNet (Ours) 70.0 68.3 71.8 73.9 70.3 14.4 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
AerialMPTNetSE (Ours) 70.0 68.4 71.7 73.2 69.8 14.6 63.5 24.8 11.7 1574 1334 23 84 41.1 75.6 41.5

AerialMPTNetOHEM (Ours) 71.7 70.0 73.4 74.6 71.2 13.9 67.0 19.6 13.4 1505 1262 27 66 43.8 75.5 44.3

8.3. AerialMPTNet (GCNN Only)

In this step, we focus on the modeling of the movement relationships between adjacent
objects by AerialMPTNetGCNN . As described in Table 9, we only consider the SNN and
GCNN modules, and train the network on our experimental datasets. The tracking results
on the test sequences of the datasets are shown in Table 13, and the comparisons to the
other methods are provided in Table 12. By adding GCNN the AerialMPTNet performance
increases compared to the SMSOT-CNN significantly. MOTA is improved by 11.8, 12.0,
and 5.7 points on the AerialMPT and KIT AIS pedestrian and vehicle datasets, respec-
tively. MT, PT, and ML values also improve for the pedestrian datasets. However, MT is
only enhanced on the vehicle dataset. IDF, IDP and IDR is improved on three datasets
indicating GCNN can improve the performance when objects are close to each other and
keeping the track of each object as a graph node is effective. Altogether, these results
indicate that the relational information is more important for the pedestrians than the
vehicles. Moreover, according to Table 13, as in LSTM results, the use of GCNN helps more

Remote Sens. 2021, 1, 0 29 of 40

for complex sequences. For example, MOTA on the “AA_Walking_02” and “Munich02”
sequences increase by 13.9 and 20.5, respectively; however, it decreases respectively by
12.1 and 14.8 on “AA_Crossing_02” and “RaR_Snack_Zone_02”. This could be due to the
negative impact of the large number of zero paddings in the less crowded sequences with
smaller number of adjacent objects. Compared to AerialMPTNetLSTM, for the AerialMPT,
AerialMPTNetGCNN performs slightly better while on the other two datasets it performs
worse with a narrow margin. We assume that, due to the higher crowd densities in the
AerialMPT dataset, the relationships between adjacent objects are more critical with respect
to their movement histories.

Table 13. AerialMPTNetGCNN on the KIT AIS and AerialMPT datasets.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

AA_Crossing_02 13 94 43.5 43.3 43.7 45.5 45.1 48.4 18.1 51.1 30.8 629 619 11 90 −10.9 68.5 −10.1
AA_Walking_02 17 188 35.8 35.3 36.2 38.2 37.2 101.3 14.9 47.9 37.2 1723 1650 35 204 −27.6 68.1 −26.3

Munich02 31 230 29.1 28 30.2 35.5 32.9 142.9 8.3 53.9 37.8 4431 3951 204 434 −40.2 68.1 −36.9
RaR_Snack_Zone_02 4 220 55.2 55.0 55.4 56.9 56.5 94.7 28.2 69.5 2.3 379 373 3 41 12.7 73.3 13.0
RaR_Snack_Zone_04 4 311 67.2 67 67.3 68.5 68.2 98.2 44.4 52.1 3.5 393 387 6 45 36.1 73.9 36.5

Overall 69 1043 37.5 36.7 38.4 42.0 40.0 109.5 25.3 55.3 19.4 7555 6980 259 814 −23.0 69.6 −20.9
AerialMPT Dataset

Bauma3 16 609 29.6 28.9 30.4 36.5 34.7 376.7 11.3 48.3 40.4 6028 5581 276 550 −35.2 70.0 −32.1
Bauma6 26 270 36.7 34.4 39.3 43.7 38.2 144.2 20.4 50.4 29.2 3750 2994 126 329 −29.3 70.6 −26.9

Karlsplatz 27 146 43.7 72.3 45.2 46.4 43.4 75.6 15.8 63.0 21.2 2042 1809 25 145 −14.9 68.5 −14.2
Pasing7 24 103 68.6 66.0 71.4 71.6 66.1 31.5 51.5 39.8 8.7 756 857 4 96 34.7 71.0 34.9
Pasing8 27 83 41.2 40.4 42.1 42.7 41.0 44.0 18.1 51.8 30.1 1188 1108 2 94 −18.9 68.2 −18.9

Witt 8 185 14.1 14.0 14.2 15.3 15.1 152.4 1.6 19.5 78.9 1219 1200 0 15 −70.8 60.8 −70.8
Overall 128 1396 37.0 35.7 38.3 42.0 39.1 117.1 15.6 46.0 38.4 14,983 13,279 433 1229 −25.4 69.7 −23.5

KIT AIS Vehicle Dataset
MunichStreet02 20 47 82.6 80.5 84.7 85.4 81.1 7.4 76.6 6.4 17.0 148 109 4 3 65.0 79.5 65.5

StuttgartCrossroad01 14 49 70.0 66.5 73.8 76.7 69.1 13.6 65.3 22.4 12.3 190 129 2 11 42.1 75.7 42.3
MunichCrossroad02 45 66 56.3 54.7 58.0 59.4 56.0 22.3 44.0 34.8 21.2 1005 876 14 41 12.1 70.0 12.7

MunichStreet04 29 68 87.3 86.8 87.8 88.5 87.4 6.7 83.8 8.8 7.4 193 175 2 3 75.6 79.7 75.7
Overall 108 230 71.1 69.4 72.9 74.1 70.6 14.2 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

8.4. AerialMPTNet

In this step, we evaluate the complete AerialMPTNet by fusing the SNN, LSTM, and
GCNN modules. Table 14 represents the tracking results of AerialMPTNet on the test sets
of our experimental datasets, and Table 12 compares its overall performance to the other
tracking methods.

According to the results, the AerialMPTNet outperforms AerialMPTnetLSTM and
AerialMPTNetGCNN for both pedestrian datasets. However, this is not the case for the
vehicle dataset. This is due to the main idea behind the development of the network. Since
AerialMPTNet is initially designed for pedestrian tracking, it needs to be further adapted to
domain specific challenges posed by vehicle tracking. For example, the distance threshold
for the modeling if the adjacent object relationships (in GCNN) which considers objects
within a distance of 50 pixels from the target object might miss many neighbouring vehicles,
as usually the distances between vehicles are larger than those between pedestrians. Finally,
AerialMPTNet achieves better tracking results than SMSOT-CNN on all three datasets.

Table 14. AerialMPTNet on the KIT AIS and AerialMPT datasets.

Sequences # Imgs GT IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

AA_Crossing_02 13 94 46.7 45.6 46.9 49.3 48.8 45.1 23.4 51.1 25.5 586 576 12 92 −3.4 69.7 −2.5
AA_Walking_02 17 188 41.4 40.8 42.1 43.7 42.3 93.6 17.0 51.6 31.4 1591 1504 25 231 −16.8 68.5 −15.9

Munich02 31 230 31.2 30.2 32.3 37.8 35.3 136.8 10.4 55.7 33.9 4240 3808 192 498 −34.5 67.6 −31.4
RaR_Snack_Zone_02 4 220 59.0 58.8 59.2 60.9 60.5 86.0 33.2 65.0 1.8 344 3338 4 34 20.7 73.4 21.1
RaR_Snack_Zone_04 4 311 68.5 68.3 68.6 69.8 69.5 94.2 45.7 51.8 2.5 377 371 3 42 38.9 74.2 39.1

Overall 69 1043 40.6 39.7 41.5 45.1 43.2 103.4 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2
AerialMPT Dataset

Bauma3 16 606 31.2 30.4 32.0 38.2 36.3 368.1 11.6 51.7 36.7 5890 5435 277 582 −32.0 70.8 −28.9
Bauma6 26 270 37.2 34.8 39.9 44.2 38.6 143.7 17.0 58.1 24.9 3736 2964 123 333 −28.4 70.2 −26.1

Karlsplatz 27 146 45.6 44.2 47.1 48.6 45.6 72.4 19.9 61.6 18.5 1954 1733 25 153 −10.0 67.4 −9.3
Pasing7 24 103 67.6 64.8 70.7 71.3 65.3 32.6 49.5 43.7 6.8 782 593 5 93 33.1 70.7 33.3
Pasing8 27 83 39.7 38.7 40.8 41.3 39.2 45.8 15.7 55.4 28.9 1238 1134 2 83 −22.9 68.9 −22.8

Witt 8 185 16.0 15.9 16.1 17.9 17.6 147.7 2.7 24.3 73.0 1182 1163 4 25 −65.9 60.1 −65.7
Overall 128 1396 37.8 36.5 39.3 43.1 40.0 115.5 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5

KIT AIS Vehicle Dataset
MunichStreet02 20 47 83.2 81.1 85.4 86.3 82.0 07.1 76.6 10.6 12.7 141 102 4 3 66.9 80.1 67.3

StuttgartCrossroad01 14 49 68.4 65.0 72.2 75.3 67.8 14.14 61.2 26.5 12.3 198 137 1 16 39.4 76.3 39.5
MunichCrossroad02 45 66 54.5 52.9 56.3 58.5 54.9 22.9 43.9 37.9 18.2 1033 895 20 45 9.6 70.1 10.5

MunichStreet04 29 68 86.5 86.0 87.0 89.1 88.0 6.3 85.3 7.4 7.3 184 165 4 3 76.8 80.2 77.0
Overall 108 230 70.0 68.3 71.8 73.9 70.3 14.4 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6

8.4.1. Pedestrian Tracking

In more detail, AerialMPTNet yields the best MOTA among the studied methods on
the “AA_Walking_ 02”, “Munich02”, and “RaR_Snack_Zone_02” sequences of the KIT AIS
pedestrian dataset (−16.8, −34.5, and 38.9, respectively.) These sequences are the most

Remote Sens. 2021, 1, 0 30 of 40

complex ones in this dataset with respect to the length and number of objects, thing which
could significantly influence the MOTA value. Longer sequences and a higher number of
objects usually cause the MOTA value to decrease, as it is more probable that the tracking
methods lose track of the objects or confuse their IDs in these cases. Figure 13 illustrates
the tracking results on two frames of the “AA_Walking_ 02” sequence of the KIT AIS
pedestrian dataset by AerialMPTNet and SMSOT-CNN. Comparing the predictions and
ground truth points demonstrates that SMSOT-CNN loses track of a considerably higher
number of pedestrians between these two frames. While SMSOT-CNN’s predictions are
stuck at the diagonal background lines due to their similar appearance features to the
pedestrians, AerialMPTNet can easily handle this situation due to the LSTM module.

8 14

8 14

Figure 13. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames
8 and 14 of the “AA_Walking_ 02” sequence of the KIT AIS pedestrian dataset. The predictions and
ground truth are depicted in blue and white, respectively.

We also visualized a cropped part of four frames from the “AA_Crossing_02” sequence
of the KIT AIS pedestrian dataset in Figure 14. As in the previous example, AerialMPT-
Net clearly outperforms SMSOT-CNN on the tracking of the pedestrians crossing the
background lines.

4 6 8 10

4 6 8 10

Figure 14. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 4, 6, 8, and 10 of the “AA_Crossing_02” sequence of the KIT AIS pedestrian dataset. The
predictions and ground truth are depicted in blue and white, respectively.

On the AerialMPT dataset, AerialMPTNet achieves the best MOTA scores among
all studied methods in this paper on the “Bauma3”, “Bauma6”, and “Witt” sequences
(−32.0, −28.4, −65.9), which contain the most complex scenarios regarding crowd density,

Remote Sens. 2021, 1, 0 31 of 40

pedestrian movements, variety of the GSDs, and complexity of the terrain. However, in
contrast to the KIT AIS pedestrian dataset, the MOTA scores are not correlated with the
sequence lengths, indicating the impact of other complexities on the tracking results and
the better distribution of complexities over the sequences of the AerialMPT dataset as
compared to the KIT AIS pedestrian dataset.

Figure 15 exemplifies the role of the LSTM module in enhancing the tracking per-
formance in AerialMPTNet. This figure shows an intersection of two pedestrians in the
cropped patches from four frames of the “Pasing8” sequence of the AerialMPT dataset.
According to the results, SMOT-CNN (bottom row) loses one of the pedestrians after
their intersection leading to an ID switch. However, AerialMPTNet (top row) can track
both pedestrians correctly, mainly relying on the pedestrians’ movement histories (their
movement directions) provided by the LSTM module.

11 13 15 17

11 13 15 17

Figure 15. Tracking results by the AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 11, 13, 15, and 17 of the “Pasing8” sequence of the AerialMPT dataset. The predictions and
ground truth are depicted in blue and white, respectively.

Figure 16 illustrates a case in which the advantage of the GCNN module can be clearly
observed. The images are cropped from four frames of the “Karlsplatz” sequence of the
AerialMPT dataset. It can be seen that SMSOT-CNN has difficulties in tracking the pedestri-
ans in such crowded scenarios, where the pedestrians move in various directions. However,
AerialMPTNet can handle this scenario mainly based on the pedestrian relationship models
provided by the GCNN module.

21 23 25 27

21 23 25 27

Figure 16. Tracking results by the AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 21, 23, 25, and 27 of the “Karlsplatz” sequence of the AerialMPT dataset. The predictions and
ground truth are depicted in blue and white, respectively.

In addition, there are sequences where both methods reach their limits and per-
form poorly. Figure 17 illustrates the tracking results of AerialMPTNet (top row) and
of SMSOT-CNN (bottom row) on two frames of the “Witt” sequence of the AerialMPT
dataset. Comparing the predictions and ground truth object tracks indicates the large

Remote Sens. 2021, 1, 0 32 of 40

number of lost objects by both methods. According to Tables 10 and 14, despite the small
number of frames in the “Witt” sequence, the MOTA scores are low for both methods
(−68.6 and −65.9). Further investigations show that these poor performances are caused
by the non-adaptive search window size. In the “Witt” sequence, pedestrians move out
of the search window and are lost by the tracker as a consequence. In order to solve this
issue, the GSD of the frames as well as the pedestrian velocities should be considered in
determining the search window size.

3 6

3 6

Figure 17. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 3 and 6 of the “Witt” sequence of the AerialMPT dataset. The predictions and ground truth
are depicted in blue and white, respectively.

In order to show the complexity of the pedestrian tracking task in the AerialMPT
dataset, we report the tracking results of AerialMPTNet on the frames 18 and 10 of the
“Munich02” and “Bauma3” sequences, respectively, in Figure 1.

8.4.2. Vehicle Tracking

According to Table 12, AerialMPTNet outperforms SMSOT-CNN also on the KIT AIS
vehicle dataset, although the increase in performance is lower compared to the pedestrian
tracking results. Results on different sequences in Tables 10 and 14 show that both methods
perform poorly on the “MunichCrossroad02” sequence. Figure 18 visualizes the challenges
that the tracking methods face in this sequence. For the visualization, we selected an early
and a late frame to demonstrate the strong camera movements and changes in the viewing
angle, which affect scene arrangements and object appearances. In addition, vehicles are
partly or completely occluded by shadows and other objects such as trees. Finally, in this
crossroad the movement patterns of the vehicles are complex.

4 31

Figure 18. Tracking results by AerialMPTNet on the frames 4 and 31 of the “MunichCrossroad02”
sequence of the KIT AIS vehicle dataset. The predictions and ground truth bounding boxes are
depicted in blue and white, respectively. Several hindrances such as changing viewing angle,
shadows, and occlusions (e.g., by trees) are visible.

In Figure 19, we compare the performances of AerialMPTNet and SMSOT-CNN on
the “MunichCrossroad02” sequence. Both methods track AerialMPTNet tracks a few

Remote Sens. 2021, 1, 0 33 of 40

vehicles better than SMSOT-CNN such as the ones located densely at the traffic lights.
AerialMPTNet loses track of a few vehicles which are tracked correctly by SMSOT-CNN.
These failures could be solved by a parameter adjustment in our AerialMPTNet.

2 8

2 8

Figure 19. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the frames
2 and 8 of the “MunichCrossroad02” sequence of the KIT AIS vehicle dataset. The predictions and
ground truth bounding boxes are depicted in blue and white, respectively.

In Figure 20 we compare performances on the “MunichStreet04” sequence. In this
example, AerialMPTNet tracks the long vehicle much better than SMSOT-CNN.

Based on Tables 10 and 14, SMSOT-CNN outperforms our AerialMPTNet on the
“MunichStreet02” sequence. In Figure 21, we exemplify the existing problems with our
AerialMPTNet in this sequence. A background object (in the middle of the scene) has been
recognized as a vehicle in frame 7, while the vehicle of interest is lost. A similar failure
happens at the intersection. This is due to the parameter configurations of AerialMPTNet.
As mentioned before, our method was initially proposed for pedestrian tracking, taking
into account the characteristics and challenges of this task. Thus, we believe that by further
investigations and parameter tuning, such issues should be solved.

20 29

20 29

Figure 20. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 20 and 29 of the “MunichStreet04” sequence of the KIT AIS vehicle dataset. The predictions
and ground truth bounding boxes are depicted in blue and white, respectively.

8.4.3. Localization Preciseness

In order to evaluate the preciseness of the object locations predicted by AerialMPTNet
with respect to SMSOT-CNN, we vary the overlap criterion (IoU threshold) of the evaluation
metrics for the Prcn, MOTA, MT, and ML metrics in Figure 22.

Remote Sens. 2021, 1, 0 34 of 40

1 7

1 7

Figure 21. Tracking results by AerialMPTNet (top row) and SMSOT-CNN (bottom row) on the
frames 1 and 7 of the “MunichStreet02” sequence of the KIT AIS vehicle dataset. The predictions and
ground truth bounding boxes are depicted in blue and white, respectively.

According to the plots, the performance of both methods decreases by increasing
the IoU threshold, requiring more overlap between the predicted and ground truth bond-
ing boxes (more precise localization.) For all presented metrics, the preciseness of our
ArialMPTNet surpasses that of the SMSOT-CNN. However, for the vehicle dataset the
performance increase by our AerialMPTNet over SMSOT-CNN is lower than for the case
of the pedestrian datasets.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

10

30

50

70

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60
AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

M
L

AerialMPTNet
SMSOT-CNN

M
T

0

80

0.7 0.8 0.9
IoU Threshold

10

30

50

70

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

10

30

50

M
T

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

60

100

M
L

AerialMPTNet
SMSOT-CNN

0.1 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

80

Pr
cn

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

-80

-40

0

40

M
O

TA

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

0

20

40

60

80

M
T

AerialMPTNet
SMSOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

20

40

60

80

M
L

AerialMPTNet
SMSOT-CNN

Figure 22. Comparing the Prcn, MOTA, MT, and ML of the AerialMPTNet and SMSOT-CNN on the KIT AIS pedestrian
(first row), AerialMPT (second row), and KIT AIS vehicle (third row) datasets by changing the IoU thresholds of the
evaluation metrics.

8.5. AerialMPTNet (with Squeeze-and-Excitation Layers)

In this step, we evaluate the improvement achieved by adding SE layers to our
AerialMPTNet, as described in Section 6.3. We train the network on our three experimental
datasets and report the tracking results in Table 12. Using the SE layers in AerialMPTNetSE
degrades the results marginally for most of the metrics on the KIT AIS pedestrian and
vehicle datasets as compared to AerialMPTNet. For the vehicle dataset, the SE layers
improves the number of the mostly lost (ML) and partially tracked (PT) vehicles by 0.9%
and 3.9%, respectively. On the AerialMPT dataset, however, the network behaviour is

Remote Sens. 2021, 1, 0 35 of 40

totally different. AerialMPTNetSE outperforms AerialMPTNet for most of the metrics.
SE layers improve MOTA and MOTP by 2 and 0.1 points, respectively. Moreover, the
number of mostly tracked (MT) pedestrians increases by 1.7%. These inconstant behaviours
could be due to the different image quality and contrast of the datasets. Since the images
of the AerialMPT dataset are characterized by a higher quality, the adaptive channel
weighting would be more meaningful.

8.6. Training with OHEM

We evaluate the influence of Online Hard Example Mining (OHEM) on the training of
our AerialMPTNet as described in Section 6.4. The results are compared to those of the
AerialMPTNet with its standard training procedure in Table 12. The use of OHEM in the
training procedure reduces the performance marginally on both pedestrian datasets. For
example, MOTA decreases by 5 and 1.7 points for the KIT AIS pedestrian and AerialMPT
datasets, respectively. For the KIT AIS vehicle dataset, however, results show small im-
provements in the tracking results. For instance, MOTA rises by 1.8 points and the num-
ber of mostly tracked objects increases by 1.4%. We argue that pedestrian movement is
highly complex and therefore, providing in input a similar situation multiple times to
the tracker based on OHEM does not help the performance. For the vehicles, however,
since they mostly moves in straight paths, OHEM can improve the training by retrying
the failure cases. This is the first experiment on the benefits of OHEM in regression-based
tracking. Further experiments have to be conducted in order to better understand the
underlying reasons.

8.7. Huber Loss Function

We assess the effects of loss function in the tracking performance by using the Huber
loss [76] instead of the traditional L1 loss function. The Huber loss is a mixture of the L1
and L2 losses, both commonly used for regression problems, and combines their strengths.
The L1 loss measures the Mean Absolute Error (MAE) between the output of the network
x and the ground truth x̂:

L1(x, x̂) = ∑
i
|xi − x̂i|. (9)

The L2 loss calculates the Mean Squared Error (MSE) between the network output
and the ground truth value:

L2(x, x̂) = ∑
i
(xi − x̂i)

2. (10)

The L1 loss is less affected by outliers with respect to the L2 loss. The Huber loss acts
as a MSE when the error is small, and as a MAE when the error is large:

LH(x, x̂) = ∑
i

zi, (11)

zi =

{
0.5(xi − x̂i)

2, i f |xi − x̂i| < 1
|xi − x̂i| − 0.5, otherwise.

The Huber loss is more robust to outliers with respect to L2 and improves the L1 loss
for the missing minima at the end of the training.

Table 15 compares results obtained by L1 and Huber loss functions. The model trained
with the L1 loss outperforms the one trained with the Huber loss in general on all three
datasets. There are a few metrics for which the Huber loss shows an improvement over
L1, such as MT in the vehicle dataset or IDS in the AerialMPT dataset; however, these are
marginal. Altogether, we can conclude that the L1 loss is a better option for our method in
these tracking scenarios.

Remote Sens. 2021, 1, 0 36 of 40

Table 15. Comparison of AerialMPTNet trained with the L1 and Huber Losses.

Loss IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
KIT AIS Pedestrian Dataset

L1 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 −16.2 69.6 −14.2
Huber 38.8 37.9 39.7 43.1 41.1 107.42 1043 25.0 56.5 18.5 7412 6845 212 866 −20.3 69.4 −18.6

AerialMPT Dataset
L1 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14,782 13,022 436 1269 −23.4 69.7 −21.5

Huber 38.0 36.7 39.5 43.0 39.9 115.70 1396 15.6 48.4 36.0 14,809 13,051 415 1196 −23.5 69.9 −21.7
KIT AIS Vehicle Dataset

L1 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
Huber 67.2 65.5 69.0 70.6 67.1 15.98 230 67.0 17.4 15.6 1726 1461 34 65 35.2 76.1 35.9

9. Comparing AerialMPTNet to Other Methods

In this section, we compare the results of our AerialMPTNet with a set of traditional
methods including KCF, Median Flow, CSRT, and MOSSE as well as DL-based methods
such as Tracktor++, Stacked-DCFNet, and SMSOT-CNN. Table 12 reports the results of
different tracking methods on the KIT AIS and AerialMPT datasets. In general, the DL-
based methods outperform the traditional ones, with MOTA scores varying between −16.2
and −48.8 rather then between −55.9 and −85.8, respectively. The percentages of mostly
tracked and mostly lost objects vary between 0.8% and 9.6% for the DL-based methods,
while they lie between 36.5% and 78.3% for the traditional ones.

9.1. Pedestrian Tracking

Among the traditional methods, CSRT is the best performing one on the AerialMPT
and KIT AIS pedestrian datasets, with MOTA values of −55.9 and −64.6. CSRT mostly
tracks 9.6% and 2.9%, and of the pedestrians while it mostly loses 39.4% and 59.3% of
the objects in these datasets. The DL-based methods, apart from Tracktor++, track much
more pedestrians mostly (>13.8%) and lose much less pedestrians (<23.6%) with respect
to traditional methods. The poor performances of Tracktor++ is due to its limitations
in working with small objects. AerialMPTNet outperforms all other methods according
to most of the adopted figures of merit on the pedestrian datasets with significantly
larger MOTA values (−16.2 and −23.4) and competitive MOTP (69.6 and 69.7) values. It
mostly tracks 5.9% and 4.6% more pedestrians and loses 5.2% and 6.8% less pedestrians
with respect to the best performing previous method, SMSOT-CNN on the KIT AIS and
AerialMPT pedestrian datasets, respectively.

9.2. Vehicle Tracking

As Table 12 demonstrates, the DL-based methods and CSRT outperform KCF, Median
Flow, and MOSSE significantly, with average MOTA value of 42.9 versus -30.9. The DL-
based methods and CSRT are also better with respect to the number of mostly tracked
and mostly lost vehicles, varying between 30.0% and 69.1% and between 22.6% and 12.6%,
respectively. These values for KCF, MOSSE, and Median Flow are between 19.6% and
32.2% and between 50.4% and 27.8%. Among the DL-based methods, Stacked-DCFNet
has the best performance in terms of MOTA and MOTP, outperforming AerialMPTNet
by 4.6 and 5.7 points, respectively. While the number of mostly tracked vehicles by
Stacked-DCFNet is 2.6% larger than in the case of AerialMPTNet, it mostly loses 3.1% more
vehicles. The performance of Tracktor++ increases significantly compared to the pedestrian
scenarios, due to the ability of its object detector in detecting vehicles. Tracktor++ achieves
a competitive MOTA of 37.1 without any ground truth initialization. The best performing
method in terms of MOTA, MT, and ML is CSRT. It outperforms all other methods with a
MOTA of 51.1 and MOTP of 80.7.

We rank the studied tracking methods based on their MOTA and MOTP values in
Figure 23, with the diagrams offering a clear overview on their performance. AerialMPT-
Net appears the best method in terms of MOTA for both pedestrian datasets, and achieves
competitive MOTP values. Median Flow, for example, achieves a very high MOTP values;
however, because of the low number of matched track-object pairs after the first frame, it is
not able to track many objects. Hence, the MOTP value solely is not a good performance
indicator. For the KIT AIS vehicle dataset, AerialMPTNet shows worse performance than

Remote Sens. 2021, 1, 0 37 of 40

the other methods according to the MOTA and MOTP values. CSRT and Stacked-DCFNet,
however, perform favorably for vehicle tracking.

40 50 60 70 80
MOTP

-80

-70

-60

-50

-40

-30

-20

M
O

TA

(a)

40 45 50 55 60 65 70 75 80
MOTP

-80

-70

-60

-50

-40

-30

M
O

TA

(b)

72 74 76 78 80 82
MOTP

-40

-20

0

20

40

M
O

TA

(c)

'KCF'
'Median Flow'
'CSRT'
'MOSSE'
'Tracktor++'
'Stacked-DCFNet'
'SMSOT-CNN'
'AerialMPTNetLSTM'
'AerialMPTNetGCNN'
'AerialMPTNet'

Figure 23. Ranking the tracking methods based on their MOTA and MOTP values on the (a) KIT AIS pedestrian,
(b) AerialMPT, and (c) KIT AIS vehicle datasets.

10. Conclusions and Future Works

In this paper, we investigate the challenges posed by the tracking of pedestrians and
vehicles in aerial imagery by applying a number of traditional and DL-based SOT and
MOT methods on three aerial MOT datasets. We also describe our proposed DL-based
aerial MOT method, the so-called AerialMPTNet. Our proposed network fuses appearance,
temporal, and graphical information for a more accurate and stable tracking by employing
a SNN, a LSTM, and a GCNN module. The influence of SE and OHEM on the performance
of AerialMPTNet is investigated, as well as the impact of adopting an L1 rather than a
Huber loss function. An extensive qualitative and quantitative evaluation shows that
the proposed AerialMPTNet outperforms both traditional and state-of-the-art DL-based
MOT methods for the pedestrian datasets, and achieves competitive results for the vehicle
dataset. On the one hand, it is verified that LSTM and GCNN modules enhance the tracking
performance; on the other hand, the use of SE and OHEM significantly helps only in some
cases, while degrading the tracking results in other cases. The comparison of L1 and Huber
loss shows that L1 is a better option for most of the scenarios in our experimental datasets.

We believe that the present paper can promote research on aerial MOT by providing a
deep insight into its challenges and opportunities, and pave the path for future works in
this domain. In the future, within the framework of AerialMPTNet, the search area size
can be adapted to the image GSDs and object velocities and accelerations. Additionally,
the SNN module can be modified in order to improve the appearance features extraction.
The training process of most DL-based tracking methods relies on common loss functions,
which do not correlate with tracking evaluation metrics such as MOTA and MOTP, as they
are usually differentiable. Recently, differentiable proxies of MOTA and MOTP have been
proposed [77], which can be also investigated for the aerial MOT scenarios.

Author Contributions: S.M.A., M.K. and R.B. designed the algorithm. S.M.A. and M.K. prepared the
data. M.K. performed the experiments. S.M.A., M.K. and R.B. analyzed the results. R.B. wrote the
manuscript. S.M.A., M.K., R.B. and P.R. revised the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bergmann, P.; Meinhardt, T.; Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE International

Conference on Computer Vision (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 941–951.
2. Xiang, Y.; Alahi, A.; Savarese, S. Learning to track: Online multi-object tracking by decision making. In Proceedings of the IEEE

International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 4705–4713.

Remote Sens. 2021, 1, 0 38 of 40

3. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking.
In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherland, 8–16 October 2016;
pp. 850–865.

4. Cuevas, E.V.; Zaldivar, D.; Rojas, R. Kalman Filter for Vision Tracking; Technical Report; Freie Universität Berlin: Berlin, Germany,
2005; doi:10.17169/refubium-22852.

5. Cuevas, E.; Zaldivar, D.; Rojas, R. Particle filter in vision tracking. e-Gnosis 2007, 5, 1–11.
6. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550.
7. Boudoukh, G.; Leichter, I.; Rivlin, E. Visual tracking of object silhouettes. In Proceedings of the IEEE International Conference on

Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3625–3628.
8. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; pp. 886–893.
9. Marvasti-Zadeh, S.M.; Cheng, L.; Ghanei-Yakhdan, H.; Kasaei, S. Deep Learning for Visual Tracking: A Comprehensive Survey.

arXiv 2019, arXiv:1912.00535.
10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
11. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826.
12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,

arXiv:1506.01497.
13. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE

International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 3119–3127.
14. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.H. Robust visual tracking via convolutional networks without training. IEEE Trans. Image

Process. 2016, 25, 1779–1792.
15. Kim, H.I.; Park, R.H. Residual LSTM attention network for object tracking. IEEE Signal Process. Lett. 2018, 25, 1029–1033.
16. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with siamese region proposal network. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8971–8980.
17. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of the European

Conference on Computer Vision (ECCV), Amsterdam, The Netherland, 8–16 October 2016; pp. 749–765.
18. Bahmanyar, R.; Azimi, S.M.; Reinartz, P. Multiple vehicle and people tracking in aerial imagery using stack of micro single-object-

tracking CNNs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 163–170.
19. Kraus, M.; Azimi, S.M.; Ercelik, E.; Bahmanyar, R.; Reinartz, P.; Knoll, A. AerialMPTNet: Multi-Pedestrian Tracking in Aerial

Imagery Using Temporal and Graphical Features. In Proceedings of the International Conference on Pattern Recognition (ICPR),
Milan, Italy, 10–15 January 2020.

20. Song, Y.; Ma, C.; Wu, X.; Gong, L.; Bao, L.; Zuo, W.; Shen, C.; Lau, R.W.; Yang, M.H. Vital: Visual tracking via adversarial learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8990–8999.

21. Zhang, D.; Maei, H.; Wang, X.; Wang, Y.F. Deep reinforcement learning for visual object tracking in videos. arXiv 2017,
arXiv:1701.08936.

22. U.S. Government Printing Office. Remote Sensing Data: Applications and Benefits; Technical Report; Subcommittee on Space and
Aeronautics, Committee on Science and Technology, Serial No. 110-91; 2008. Available online: https://www.govinfo.gov/
content/pkg/CHRG-110hhrg41573/html/CHRG-110hhrg41573.html (accessed on 2 January 2020).

23. Everaerts, J. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2008, 37, 1187–1192.

24. Reilly, V.; Idrees, H.; Shah, M. Detection and tracking of large number of targets in wide area surveillance. In Proceedings of the
European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; pp. 186–199.

25. Meng, L.; Kerekes, J.P. Object tracking using high resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012,
5, 146–152.

26. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016,
arXiv:1603.00831.

27. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

28. Shrivastava, A.; Gupta, A.; Girshick, R. Training Region-Based Object Detectors with Online Hard Example Mining. In Proceed-
ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 761–769.

29. Fiaz, M.; Mahmood, A.; Javed, S.; Jung, S.K. Handcrafted and deep trackers: Recent visual object tracking approaches and trends.
Acm Comput. Surv. 2019, 52, 1–44.

30. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. Mar 1960, 82, 35–45, doi:10.1115/1.3662552.

Remote Sens. 2021, 1, 0 39 of 40

31. Mihaylova, L.; Carmi, A.Y.; Septier, F.; Gning, A.; Pang, S.K.; Godsill, S. Overview of Bayesian sequential Monte Carlo methods
for group and extended object tracking. Digit. Signal Process. 2014, 25, 1–16.

32. Wang, Q.; Gao, J.; Xing, J.; Zhang, M.; Hu, W. DCFNet: Discriminant Correlation Filters Network for Visual Tracking. arXiv 2017,
arXiv:1704.04057.

33. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 3074–3082.

34. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649, ISSN: 2381-8549,
doi:10.1109/ICIP.2017.8296962.

35. Huang, C.; Wu, B.; Nevatia, R. Robust object tracking by hierarchical association of detection responses. In Proceedings of the
European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 788–801.

36. Lu, X.; Ma, C.; Ni, B.; Yang, X.; Reid, I.; Yang, M.H. Deep Regression Tracking with Shrinkage Loss. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; p. 17.

37. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Stct: Sequentially training convolutional networks for visual tracking. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1373–1381.

38. Huang, C.; Lucey, S.; Ramanan, D. Learning policies for adaptive tracking with deep feature cascades. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 105–114.

39. Chahyati, D.; Fanany, M.I.; Arymurthy, A.M. Tracking people by detection using CNN features. Procedia Comput. Sci. 2017,
124, 167–172.

40. Zhang, Y.; Wang, J.; Yang, X. Real-time vehicle detection and tracking in video based on faster R-CNN. J. Physics Conf. Ser. IOP
Publ. 2017, 887, 012068.

41. Okuma, K.; Taleghani, A.; De Freitas, N.; Little, J.J.; Lowe, D.G. A boosted particle filter: Multitarget detection and tracking.
In Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 28–39.

42. Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; John Wiley & Sons: Hobokon, NJ, USA, 2009.
43. Hager, G.D.; Belhumeur, P.N. Real-time tracking of image regions with changes in geometry and illumination. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 18–20 June 1996; pp. 403–410.
44. Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. In Optical Pattern Recognition XII;

International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4387, pp. 95–102.
45. Avidan, S. Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 261–271.
46. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output tracking with kernels.

IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109.
47. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern

Anal. Mach. Intell. 2014, 37, 583–596.
48. Sadeghian, A.; Alahi, A.; Savarese, S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 300–311.
49. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.
50. Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-backward error: Automatic detection of tracking failures. In Proceedings of the 2010

20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2756–2759.
51. Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, 22–29 October 2017; pp. 6309–6318.
52. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97.
53. Zheng, L.; Bie, Z.; Sun, Y.; Wang, J.; Su, C.; Wang, S.; Tian, Q. Mars: A video benchmark for large-scale person re-identification.

In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherland, 8–16 October 2016; pp. 868–884.
54. Yokoyama, M.; Poggio, T. A contour-based moving object detection and tracking. In Proceedings of the 2005 IEEE International

Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Breckenridge, CO, USA, 7 January
2005; pp. 271–276.

55. Jadhav, A.; Mukherjee, P.; Kaushik, V.; Lall, B. Aerial multi-object tracking by detection using deep association networks. arXiv
2019, arXiv:1909.01547.

56. Benedek, C.; Szirányi, T.; Kato, Z.; Zerubia, J. Detection of object motion regions in aerial image pairs with a multilayer Markovian
model. IEEE Trans. Image Process. 2009, 18, 2303–2315.

57. Butenuth, M.; Burkert, F.; Schmidt, F.; Hinz, S.; Hartmann, D.; Kneidl, A.; Borrmann, A.; Sirmacek, B. Integrating pedestrian
simulation, tracking and event detection for crowd analysis. In Proceedings of the IEEE International Conference on Computer
Vision Workshops (ICCVW), Barcelona, Spain, 8–13 November 2011; pp. 150–157.

58. Schmidt, F.; Hinz, S. A Scheme for the Detection and Tracking of People Tuned for Aerial Image Sequences. In Proceedings of the
ISPRS conference on Photogrammetric Image Analysis (PIA), Munich, Germany, 5–7 October 2011; Volume 6952, pp. 257–270.

59. Liu, K.; Mattyus, G. Fast multiclass vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1938–1942.
60. Qi, S.; Ma, J.; Lin, J.; Li, Y.; Tian, J. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite

images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1451–1455.

Remote Sens. 2021, 1, 0 40 of 40

61. Bahmanyar, R.; Vig, E.; Reinartz, P. MRCNet: Crowd Counting and Density Map Estimation in Aerial and Ground Imagery.
In Proceedings of the BMVC’s Workshop on Object Detection and Recognition for Security Screenin (BMVC-ODRSS), Cardiff,
UK, 9–12 September 2019.

62. Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance measures and a data set for multi-target, multi-camera
tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherland, 8–16 October 2016;
pp. 17–35.

63. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
64. Rastogi, R.; Thaniarasu, I.; Chandra, S. Design implications of walking speed for pedestrian facilities. J. Transp. Eng. 2011,

137, 687–696.
65. Finnis, K.; Walton, D. Field observations of factors influencing walking speeds. Ergonomics 2006, 51, 827–842.
66. Strayer, D.L.; Drew, F.A. Profiles in driver distraction: Effects of cell phone conversations on younger and older drivers. Hum.

Factors 2004, 46, 640–649.
67. Rakha, H.; El-Shawarby, I.; Setti, J.R. Characterizing driver behavior on signalized intersection approaches at the onset of a

yellow-phase trigger. IEEE Trans. Intell. Transp. Syst. 2007, 8, 630–640.
68. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human trajectory prediction in crowded

spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26
June–1 July 2016; pp. 961–971.

69. Xue, H.; Huynh, D.Q.; Reynolds, M. SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction. In Proceedings
of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Stateline, NV, USA, 12–14 March 2018;
pp. 1186–1194.

70. Vemula, A.; Muelling, K.; Oh, J. Social attention: Modeling attention in human crowds. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbone, Australia, 21–25 May 2018; pp. 1–7.

71. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

72. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
73. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
74. Lin, C.T.; Chen, S.P.; Santoso, P.S.; Lin, H.J.; Lai, S.H. Real-Time Single-Stage Vehicle Detector Optimized by Multi-Stage

Image-Based Online Hard Example Mining. IEEE Trans. Veh. Technol. 2019, 69, 1505–1518.
75. Koga, Y.; Miyazaki, H.; Shibasaki, R. A CNN-based method of vehicle detection from aerial images using hard example mining.

Remote Sens. 2018, 10, 124.
76. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992;

pp. 492–518.
77. Xu, Y.; Osep, A.; Ban, Y.; Horaud, R.; Leal-Taixé, L.; Alameda-Pineda, X. How To Train Your Deep Multi-Object Tracker.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020.

