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Anomaly Detection in Aerial Videos
With Transformers

Pu Jin"™', Member, IEEE, Lichao Mou

Abstract— Unmanned aerial vehicles (UAVs) are widely
applied for purposes of inspection, search, and rescue operations
by the virtue of low-cost, large-coverage, real-time, and
high-resolution data acquisition capacities. Massive volumes
of aerial videos are produced in these processes, in which
normal events often account for an overwhelming proportion.
It is extremely difficult to localize and extract abnormal events
containing potentially valuable information from long video
streams manually. Therefore, we are dedicated to developing
anomaly detection methods to solve this issue. In this article,
we create a new dataset, named Drone-Anomaly, for anomaly
detection in aerial videos. This dataset provides 37 training video
sequences and 22 testing video sequences from seven different
realistic scenes with various anomalous events. There are 87488
color video frames (51635 for training and 35853 for testing)
with the size of 640 x 640 at 30 frames/s. Based on this dataset,
we evaluate existing methods and offer a benchmark for this
task. Furthermore, we present a new baseline model, anomaly
detection with Transformers (ANDTSs), which treats consecutive
video frames as a sequence of tubelets, utilizes a Transformer
encoder to learn feature representations from the sequence, and
leverages a decoder to predict the next frame. Our network
models normality in the training phase and identifies an event
with unpredictable temporal dynamics as an anomaly in the test
phase. Moreover, to comprehensively evaluate the performance
of our proposed method, we use not only our Drone-Anomaly
dataset but also another dataset. We will make our dataset
and code publicly available. A demo video is available at
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I. INTRODUCTION

NOMALY detection refers to the detection of visual

instances that significantly deviate from the majority [1].
Due to the expanding demand in broad domains, such as
inspection [2], [3], [4], [5], [6], search operations [7], [8],
and security [9], [10], [11], [12], anomaly detection plays
increasingly important roles in various communities, includ-
ing computer vision, data mining, machine learning, and
remote sensing. With the proliferation of unmanned aerial
vehicles (UAVs) worldwide, massive produced aerial videos
spur the demand for detecting abnormal events in aerial video
sequences in a wide range of applications [13]. For example,
many long-endurance UAVs! are developed and utilized in
inspection operations [2], [3], [4], [5], [6]. Large amounts
of aerial videos are created by these UAVs, in which normal
video segments often account for an overwhelming proportion
of the whole video. It is time-consuming and costly to find
potentially valuable information from long and untrimmed
videos manually. Therefore, we are intended to adopt anomaly
detection methods to temporally localize anomalous events in
aerial videos automatically.

Usually, we cannot know beforehand what anomalies are
in a scene, because there are too many possibilities that are
impossible to be exhaustively listed. By contrast, it is easy
to have information on the nature of normality in advance.
Hence, most existing methods for anomaly detection only
use normal data to learn feature representations of normality
and consider test instances that cannot be well described
as anomalies. Massive studies [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26] are dedicated to
detecting and categorizing non-conforming patterns present in
images. These studies mainly focus on spatial occurrences of
anomalous patterns. In contrast, anomaly detection in videos
aims at identifying temporal occurrences (i.e., start and end
times) of abnormal events. In computer vision, many meth-
ods [27], [28], [29], [30], [31], [32], [33], [34] have been

Uhttps://www.airforce-technology.com/features/featurethe-top-10-longest-
range-unmanned-aerial-vehicles-uavs/
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Fig. 1. Abnormal and normal dynamics. We display some frames from the
crossroads scene for demonstrating the importance of temporal information
in detecting anomalous events in aerial videos. In the normal video clip (top),
all vehicles have a consistent moving direction. We use a yellow box with
an arrow to represent an example vehicle and its moving direction. In the
abnormal video snippet (bottom), a vehicle (in the red box) moves backward
on the road. We can see the importance of temporal context in this task.

proposed for this task in surveillance videos. In comparison
with surveillance videos, UAV videos bring the following
challenges: 1) moving camera instead of static camera and
2) variable spatial resolution due to changes in flight altitude.
Existing works [35], [36], [37] predefine several categories
of anomalous events, convert aerial video anomaly detec-
tion into an event recognition task, and utilize supervised
methods to address this problem. By contrast, in this work,
we are interested in unsupervised methodologies for this task.
Because in many real-world applications, it is not possible
to exhaustively list all anomalous events beforehand. More
specifically, we train a model for anomaly detection in aerial
videos using only normal data that can be collected easily in
advance.

In this article, we focus on detecting anomalous events in
aerial videos. To this end, we create a new dataset, named
Drone-Anomaly, providing 37 training video sequences and
22 testing video sequences from seven different realistic
scenes. The dataset contains real-world anomalous events that
are not staged by actors. Based on this dataset, we evaluate
existing methods and offer a benchmark. In addition, we note
that the modeling temporal context is critical (see Fig. 1). Most
existing anomaly detection methods utilize convolution-based
encoders for capturing spatiotemporal dependencies among
the input video frames. However, this is limited in learning
long-term relations due to limited temporal receptive fields
of these models. In this article, we present a new baseline
model, anomaly detection with Transformers (ANDTSs), which
takes as input several consecutive video frames, leverages a
Transformer encoder to model global context, and utilizes a
decoder to predict the next frame. More specifically, ANDT
treats a video as a sequence of tubelets and maps them
into tubelet embeddings by linear projection. For preserving
spatiotemporal information, the tubelet embeddings are added
with learnable spatiotemporal position embeddings and then
fed into a Transformer encoder to learn a spatiotemporal
feature. The decoder is subsequently combined with the
encoder for predicting the next frame based on the learned
spatiotemporal representation. Our network is able to well
predict an event with normal temporal dynamics and identifies
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an event with unpredictable temporal dynamics as an anomaly
in the test phase.

The main contributions of this article can be summarized
as follows.

1) We create an annotated dataset consisting of 37 training
videos and 22 testing videos involving seven realistic
scenes, covering a large variety of anomalous events.
This dataset expands the scope of anomaly detection
research. In addition, we extensively validate existing
methods to provide a benchmark for this task.

We extensively validate existing methods to provide a
challenging benchmark for anomaly detection in aerial
videos.

We present a new baseline model ANDT and conduct
extensive ablation studies and experiments for validating
the effectiveness of our approach. To the best of our
knowledge, this is the first time that a Transformer-based
network is proposed for video anomaly detection.

The remaining sections of this article are organized as
follows. The related works are introduced in Section II.
Then, we detail our new dataset in Section V-A. Also, our
network is described in Section IV. Section V shows and
discusses experimental results. Finally, this article is concluded
in Section VI

II. RELATED WORK

In remote sensing, there have been a number of works
for anomaly detection in hyperspectral imagery [40], [41],
[42], [43], [44], [45], [46], [47], [48]. These studies mainly
focus on locating pixels with significantly different spectral
signatures from their neighboring background pixels in the
spatial domain. For example, the Reed-Xiaoli (RX) algo-
rithm [40] uses a local Gaussian model to detect anomalies
in hyperspectral images and has become a baseline model.
In [41], a collaborative representation detector (CRD) is
proposed to detect pixels with unknown spectral signatures.
Recently, deep learning-based methods have drawn significant
attention. Chen et al. [42] propose to use an autoencoder to
learn representative features to detect anomalies in an unsu-
pervised manner. Hu ef al. [43] employ convolutional neural
networks (CNNs) to learn spectral—spatial features in this task
and achieve outstanding performance.

From static imagery to multitemporal images, much
effort [49], [50], [51], [52], [53], [54], [55], [56] has been made
to detect anomalies in the temporal domain. For instance, [49]
uses multispectral images over two years for locating and iden-
tifying crop anomalies in two soybean fields. Liu et al. [50]
leverage multitemporal thermal infrared (TIR) images for
detecting geothermal anomaly areas by spatiotemporal analy-
sis. In [51], multitemporal Landsat images are utilized to detect
normalized difference vegetation index (NDVI) anomalies for
mapping incongruous patches in coffee plantations.

Moreover, we notice that in computer vision, many anomaly
detection approaches [57], [58], [59], [60], [61], [62], [63]
have been developed for fixed camera surveillance videos.
By contrast, we think that anomaly detection in aerial videos
is more challenging, because the videos are usually acquired
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Fig. 2. Overview of the Drone-Anomaly dataset. We show four frames of each video. The anomalous frames are marked with red borders, and frames with

green borders are normal ones.

by moving cameras. There have been a few works for investi-
gating anomaly detection in aerial videos. These works [35],
[36], [37] regard this problem as an event recognition task.
Specifically, they first predefine several anomalous activities
and then leverage supervised methods to recognize the defined
events from aerial videos. For example, [35] leverages object
tracking and classification methods to obtain trajectories and
semantic information and then utilizes an ontology-based rea-
soning model to learn spatiotemporal relations among them for
detecting video events. Yang et al. [36] define three different
safety-related anomalies and propose a functional approach
that models temporal relations of time-to-collision safety
indicators to detect these anomalies from UAV-based traffic
videos. Furthermore, [37] proposes a hybrid approach that
integrates trajectories and semantic information of objects to
build high-level knowledge for extracting complicated critical
activities and events from UAV videos. Most recently, based on
the AU-AIR dataset [64] that is proposed for object detection
in UAV videos, [39] builds a dataset including several anom-
alous objects (hereafter, we call it AU-AIR-Anomaly dataset)
and proposes a supervised method, a deep neural network-
based context-aware anomaly detection method (CADNet),
to detect instances and contextual anomalies in aerial videos.
Compared with our dataset, the AU-AIR-Anomaly dataset only
contains a single scene, i.e., traffic, and its aerial video has a
relatively stable perspective.

In real-world applications, there are many possible anom-
alies existing in a scenario, which cannot be exhaustively
listed and defined in advance. Instead, the nature of normality
is relatively stable and easy to know beforehand. Therefore,
we propose an unsupervised method ANDT that learns feature
representations of genetic normality from merely normal data
and determines test data with large reconstruction errors as

anomalies. Moreover, methods [35], [36], [37], [39], [65] all
leverage convolution-based encoders for learning spatiotem-
poral dependencies among input video frames. Due to the
limited temporal receptive fields, these models are unable to
effectively capture long-term temporal relations. By contrast,
our method ANDT adopts a Transformer-based encoder that
confers our model with a global temporal receptive field and
enables it to capture temporal dependencies among all input
frames. With a global perspective, our model is adept at
distinguishing the movement of instances from the dynamic
background and provides rich contextual information for
detecting anomalies.

III. DATASET
To address the lack of available datasets for anomaly
detection in aerial videos, we present the Drone-Anomaly. This
section introduces the construction of our dataset, including
video collection and annotation. Finally, we present the overall
statistics of the dataset.

A. Video Collection

We collect aerial videos on YouTube® and Pexels® using
search queries (e.g., drone highway and UAV roundabout) for
each scene. To increase the diversity of anomalous events,
we retrieve aerial videos using different languages (e.g.,
English, Chinese, German, and French). Moreover, to ensure
the quality of aerial videos, we remove videos with any of
the following situations: too short duration, manually edited,
not captured by UAV cameras, and without clear anomalous
events. We show four frames of an example video from each
scene in Fig. 2.

Zhttps://www.youtube.com/
3https://www.pexels.com/
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TABLE I
DATASET DETAILS. WE PROVIDE VARIABLE DETAILS OF THE DRONE-ANOMALY DATASET

Scene ‘ # Video snippets (Train / Test)  # Frames (Train / Test) Example anomalies
Highway 6/3 9045 / 2820 Animals walking on the street; Car collision
Crossroads 10/5 15772 / 6244 Retrograde vehicles; Traffic congestion
Bike roundabout 6/7 7950 /7 18427 Moving vehicles
Vehicle roundabout 472 5266 / 2643 People crossing the road
Railway inspection 3/1 1206 / 882 Obstacles on the railway
Solar panel inspection 4/3 2848 / 2450 Unknown objects; Defects of panel
Farmland inspection 4171 9548 / 2387 Unidentified vehicles
TABLE II

COMPARISON WITH RELATED DATASETS. WE OFFER VARIOUS COMPARISIONS FOR EACH DATASETS

Dataset | # Videos # Frames # Scenes Type of task Type of anomalies Year
Mini-drone [38] 38 22,860 1 Event recognition and detection  Actor-staged anomalies 2015
AU-AIR-Anomaly“[39] 1 32,823 1 Anomaly detection Realistic anomalies 2021
Drone-Anomaly 59 87,488 7 Anomaly detection Realistic anomalies 2022

* The AU-AIR dataset is originally created for object detection tasks.

B. Annotation

We assign video-level labels for training data. In the test
phase, frame-level annotations are needed to evaluate the
performance. Thus, we provide frame-level labels with binary
values, where anomalous frames are labeled as 1, and O indi-
cates normal frames. For each scene, training videos and
testing videos with anomalies are provided. The details are
shown in Table L.

C. Statistics

Our Drone-Anomaly dataset consists of long, untrimmed
aerial videos that cover seven real-world scenes, including
highway, crossroads, bike roundabout, vehicle roundabout,
railway inspection, solar panel inspection, and farmland
inspection. Various anomalies in these scenes have impor-
tant practical significance and applications. We provide the
overview of our dataset in Table I. Basically, the dataset con-
sists of 37 training video sequences and 22 testing sequences.
Each of them is at 30 frames/s and with a spatial size of
640 x 640 pixels. There are a total of 87 488 color video frames
(51635 for training and 35 853 for testing).

D. Comparison With Related Datasets

We compare our dataset with related datasets in Table II.
Mini-drone dataset [38] consisting of 38 videos is proposed
to parse video contents for privacy protection. The dataset
contains three categories: normal, suspicious, and illicit behav-
iors. All events are staged by actors. This dataset can be
used for different tasks, e.g., action recognition, video clas-
sification, event recognition, and event detection. In addition,
based on the AU-AIR dataset [64], [39] annotates different
anomalous events for detecting anomalies in aerial videos. The
AU-AIR-Anomaly dataset contains four realistic anomalies,

i.e., a car on a bike road, a person on a road, a parked van
in front of a building, and a bicycle on a road.

IV. METHODOLOGY

In this section, we detail our model. First, we introduce
future frame prediction—the framework we use for anomaly
detection, in Section IV-A. Next, we give the detailed descrip-
tion of ANDT in Section IV-B.

A. Future Frame Prediction for Anomaly Detection

For anomaly detection in aerial videos, comparing with the
commonly used reconstruction-based framework [31], [66],
[67], [68], [69], [701, [71], [72], [73], [74] where target values
are equal to the inputs, it is more natural to predict the
next video frame conditioned on several consecutive frames
and compare the predicted one with its ground truth. In this
way, temporal context can be modeled. The assumption of
the future frame prediction framework is that temporal con-
sistency in normal events is maintained stably; thus, normal
events are temporally more predictable than anomalies. In the
training stage, a network is trained with only normal videos
to learn normal temporal patterns. In the test phase, events
and activities not perfectly predicted by the network are then
deemed as anomalies. Formally, given a video )V composed
of consecutive T frames, V = {I,I,,...,I7}. All frames
are stacked temporally and then utilized to predict the next
frame I7;. The predicted frame is denoted as i 7+1. We aim
to learn a mapping P as follows:

PW) — Iri. (1)

To make I7 closer to I7,;, we minimize their £, distance
in intensity space as follows:

L(ra)= 1.
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Fig. 3. Overview of ANDT. Our method treats a video as a sequence of tubelets and maps them into tubelet embeddings by linear projection. For preserving
spatiotemporal information, the tubelet embeddings are added with learnable spatiotemporal position embeddings and then fed into a Transformer encoder
to learn a spatiotemporal feature. The decoder is subsequently combined with the encoder for predicting the next frame based on the learned spatiotemporal

representation.

In the test phase, the ¢, distance between the predicted next
frame 1 r+1 and the true next frame Iry; is calculated for
identifying anomaly. The frames with relatively large £, dis-
tances are deemed as anomalies.

B. Anomaly Detection With Transformers

We propose a method ANDT as the mapping P. The
Transformer [75] was originally proposed for sequence-to-
sequence tasks in natural language processing (NLP), such
as language translation. Its main idea is to use self-attention
that enables the model to capture long-range dependencies
in a whole sequence. We observe that a video is naturally
a temporal sequence, but with spatial content. Therefore,
we interpret a video as a sequence of tubelets and process them
by a Transformer encoder to capture long-term spatiotemporal
dependencies. Furthermore, a 3-D convolutional decoder is
further attached for predicting the next frame based on the
learned spatiotemporal relations. An overview of the model is
depicted in Fig. 3.

Vision Transformer [76] performs tokenization by splitting
an image into a sequence of small patches. In this work, since
we deal with videos, we tokenize a video by extracting non-
overlapping, spatiotemporal tubes. Specifically, the input video
Y e RIT*HXWXC g ¢plit into a sequence of flattened 3-D
tubelets x;, € RO x@hwC) ywhere (H, W) is the spatial
size of video frames, C represents the number of channels, T
denotes the number of frames, (¢, &, w) is the dimension of
each tubelet, n, = [(T/t)],n, = [(H/h)],and n,, = [(W/w)].
N = n; - ny - n, is the number of tokens. Then, we map
the tubelets into a K-dimensional latent space by a trainable
linear projection with weights E € R0 OxK By doing so,
the spatiotemporal information can be preserved during the
tokenization.

We also prepend a learnable embedding x ., to the sequence
of tubelet embeddings. It also serves as the output feature p of
the Transformer encoder. Furthermore, to inject original spa-
tiotemporal position information into our model, we add learn-
able spatiotemporal position embeddings Ep,; € RM+DxK
to the tubelet embeddings. The equations are shown as

follows:

20 = [¥es; X, E; x{E; .. x) E] + Epos. A3)

Zo is subsequently fed into Transformer encoder layers,
each consisting of two sublayers. The first is a multihead
self-attention (MSA) mechanism, and the second is a simple
multilayer perceptron (MLP). Layer normalization (LN) is
applied before every sublayer, and residual connections are
used in every sublayer. The Transformer encoder takes these
embeddings as input and learns a spatiotemporal feature p via

z; = MSA(LN(z;-1)) + zi—1 4)
21 = MLP(LN(z))) + z; )
p = LN(z}) (6)

where [ =1, ..., L.

We leverage a convolutional decoder to predict the next
frame [;,; based on the learned spatiotemporal feature p.
First, we leverage two fully connected layers to increase the
dimension of p and then reshape it into a 3-D tensor of
8 x 8 x 512. This size is associated with the number of
convolutional layers in the decoder. Considering both com-
putational complexity and reconstruction accuracy, we use a
decoder with five convolutional layers and upsampling layers.
It progressively reconstructs the next frame with the size of
256 x 256 x 3 from the encoded feature tensor of 8§ x
8 x 512. In particular, we leverage a progressive upsampling
strategy that utilizes upsampling layers and convolution layers
alternately. The upsampling rate is restricted to 2x. The batch
normalization and ReLU are applied after each convolution
layer. This strategy enables our decoder to learn spatial depen-
dencies and upsample the learned features in a progressive
manner, which leads to a better reconstruction of details and
boundaries.

V. EXPERIMENTS

In this section, we present our experimental results.
In Section V-A, we introduce the datasets used in exper-
iments. Evaluation metrics are introduced in Section V-B.
Next, several ablation studies are conducted to investigate the
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effectiveness of our method, and we report their results in
Section V-D. Moreover, in Section V-E, we provide a bench-
mark on the Drone-Anomaly dataset for anomaly detection
in aerial videos by extensively validating existing methods,
and we compare our method with these baseline models.
In Section V-F, we assess the performance of our method on
AU-AIR-Anomaly dataset and compare our method with other
competitors. Finally, we visualize the learned features of our
method in Section V-G.

A. Dataset

To evaluate the performance of our method, we use not only
our Drone-Anomaly dataset but also the AU-AIR-Anomaly
dataset [39]. A statistic of the two datasets can be found
in Table II.

B. Evaluation Metrics

The receiver operation characteristic (ROC) is a popular
evaluation matrix in anomaly detection, and it is calculated
by gradually changing the threshold. In addition, we also
use area under curve (AUC) for the performance evaluation.
We leverage a strategy to determine a threshold that is used
to calculate recall, precision, F'1 score, and overall accuracy
(OA). Specifically, we feed the training set into the trained
model to obtain reconstruction errors for all training samples.
The threshold is determined as the sum of the mean value
and the standard deviation value of the reconstruction errors.
We note that AUC is the primary metric, as it can compre-
hensively evaluate the performance of a method.

C. Competitors

We compare our network with several state-of-the-art anom-
aly detection models.

1) Convolutional Autoencoder (CAE) [67]: The CAE aims
to leverage the convolutional encoder to map the input
frames into a latent space to learn features. A convolu-
tional decoder is then employed to reconstruct a frame
based on the learned features. Its reconstruction error is
used for detecting anomalies.

Convolutional Variational Autoencoder (CVAE) [69]:
The CVAE introduces a regularization into the repre-
sentation space. It utilizes a prior distribution over the
latent space to encode normal instances. This prevents
the overfitting problem and enables the generation of
meaningful frames for anomaly detection.
Self-Adversarial Variational Autoencoder (adVAE) [70]:
The adVAE assumes that both anomalous and nor-
mal prior distributions are Gaussian. It utilizes a
self-adversarial mechanism that adds discrimination
training objectives to the encoder and decoder.
GANomaly [71]: GANomaly leverages a condi-
tional generative adversarial network (GAN) to learn
high-dimensional visual representations. It employs an
encoder—decoder—encoder architecture in the generator
network to enable the model to learn discriminative
features of normality.

2)

3)

4)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

5) Skip-GANomaly [72]: Skip-GANomaly employs a con-
volutional encoder—decoder architecture with skip con-
nections to thoroughly capture the multiscale distribution
of normality.

6) Memory-Augmented Autoencoder (MemAE) [73]: The
MemAE introduces a memory block between the
encoder and the decoder. It records prototypical normal
patterns optimally and efficiently by the proposed sparse
addressing strategy.

7) Memory-Guided Normality for Anomaly Detection
(MNAD) [74]: MNAD uses a memory module to record
multiple prototypes that represent diverse representa-
tions of normalities for unsupervised anomaly detection.

8) Multiresolution Knowledge Distillation for Anomaly
Detection (MKD) [33]: MKD proposes to distill the
knowledge of a pretrained expert network into another
more compact network to concentrate solely on dis-
criminative features that are helpful in distinguishing
normality and anomaly.
Self-Supervised Predictive Convolutional Attentive Block
(SSPCAB) [34]: SSPCAB uses a convolutional layer
with dilated filters, where the center area of the receptive
field is masked. The block learns to reconstruct the
masked area using contextual information. It can be
incorporated into various existing models. In this article,
we equip it on the MNAD [74] model, which is still
denoted SSPCAB.

9)

D. Ablation Studies

We present a series of ablations for evaluating the effective-
ness of our model. All of them are conducted on the highway
scene with the most number of training and test frames.

1) Model Design: In the course of experiments, we find that
the design of the Transformer encoder matters. Hence, we want
to investigate different configurations and figure out optimal
settings. Concretely, the following hyperparameters are taken
into account: patch size, number of Transformer layers, num-
ber of attention heads, and MLP size. From Table IIl(a),
it can be observed that the model with a patch size of 16 x
16 achieves better comprehensive performance. The patch size
is actually associated with the extent to which the model
excavates inner information in patches and spatiotemporal
relations among patches. In Table III(b) and (c), we focus
on self-attention and find that using two Transformer layers
and six attention heads exhibits superior performance. MSA
enables the model to integrate multiple temporal information
from different representation patches. Also, the small number
of Transformer layers ensures a relatively small computational
complexity. Finally, MLP size determines the size of the
output spatiotemporal feature of the Transformer encoder.
In Table III(d), we can see that an MLP with a size of
4096 brings good results to our model, which could be caused
by the improved information capacity of the spatiotemporal
feature.

2) Prediction Versus Reconstruction: In our network,
future frame prediction is an important strategy to learn
temporal dependencies for effectively detecting anomalies.
To evaluate how it affects the performance, we compare
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TABLE III

ABLATIONS ON THE ANDT DESIGN. WE SHOW AUC, F'1 SCORE, AND OA OF SEVERAL TRANSFORMER DESIGNS WITH DIFFERENT CONFIGURATIONS.
THE BEST ACCURACIES ARE SHOWN IN BOLD. (a) PATCH SIZE. THE MODEL WITH 16 x 16 EXHIBITS SUPERIOR PERFORMANCE AND EFFECTIVELY
PRESERVES THE SPATIOTEMPORAL INFORMATION OF THE INPUT VIDEO. (b) NUMBER OF TRANSFORMER LAYERS. THE NETWORK WITH 2
LAYERS ACHIEVES A BETTER PERFORMANCE AND ALSO HAS RELATIVELY SMALL COMPUTATIONAL COMPLEXITY. (¢) NUMBER
OF ATTENTION HEADS. THE MODEL WITH 6 ATTENTION HEADS HAS A OUTSTANDING PERFORMANCE AND IS ABLE TO
LEARN LONG-TERM TEMPORAL FEATURES. (d) MLP S1ZE. THE MLP WITH THE SIZE OF 4096 ACHIEVES A BETTER
PERFORMANCE. LARGER SIZE MLP IMPROVES THE INFORMATION CAPACITY OF SPATIOTEMPORAL FEATURES

‘ AUC F1 OA ‘ AUC Fl1 OA

‘ AUC Fl1 OA ‘ AUC F1 OA

8 x8 60.54 57.13  53.93 1 6241 5832 56.06
16x16 | 6432 6351 61.56 2 67.48 68.53 63.29
32x32 | 62.78 5946 57.20 4 6432 63.51 61.56
64x64 | 64.07 6578 60.14 6 63.71 60.46 59.53

(a) (b)
TABLE IV

PREDICTION VERSUS RECONSTRUCTION. WE SHOW NUMERICAL
RESULTS OF THREE DIFFERENT ANOMALY DETECTION STRATEGIES.
THE BEST RESULTS ARE SHOWN IN BOLD

Model ‘ AUC Recall Precision F1 score OA Ag
Reconstruction-1' | 62.1 64.9 60.3 62.5 60.6 0.16
Reconstruction-62 | 66.7 64.4 62.5 63.4 63.1 0.19
Prediction-13 68.7 68.4 66.9 67.7 659 0.25

! Reconstruction-1 is the strategy of inputting 1 frame and reconstructing
itself.

2 Reconstruction-6 is the strategy of inputting 6 consecutive frames and
reconstructing themselves.

3 Prediction-1 is the strategy of inputting 6 consecutive frames and predict-
ing the next frame.

our prediction-based framework with a commonly used
reconstruction-based methodology [31], [66], [67], [68],
[69], [70], [71], [72], [73], [74]. More specifically, with
the same network architecture, we consider the follow-
ing models: 1) inputting one frame, reconstructing itself;
2) inputting six consecutive frames, reconstructing themselves;
and 3) inputting six consecutive frames, predicting the next
frame (i.e., the proposed method). We first report the results of
these models in the five evaluation metrics. Then, we calculate
the difference between the average anomaly score of normal
frames and that of abnormal frames, represented by A;. The
network with a relatively large A is more capable of distin-
guishing abnormal frames from normal frames. All results are
shown in Table IV. It can be seen that the prediction-based
framework can achieve better results in AUC, recall, F'1 score,
OA, and Aj.

3) Number of Input Frames: We further investigate how the
number of input frames affects the performance of our method.
We evaluate the performance of ANDT with a variant number
of input frames. The results are reported in Table V. We can
see that the method with six input frames exhibits superior
comprehensive performance. The performance of our model
gradually gets better, as the number of input frames goes
from 2 to 6 and then degrades with more input frames. This
observation demonstrates that a few frames are not enough for
modeling temporal context, but too many input frames bring
a deteriorated performance.

E. Results on the Drone-Anomaly Dataset
We evaluate various baseline models on all scenes
in our Drone-Anomaly dataset with standard evaluation

2 63.56 6147 60.75 768 65.18 65.86 63.79
4 67.48 68.53 63.29 1536 67.46 66.51 63.38
6 68.12 6740 64.18 3072 68.12 6740 64.18
8 66.24 6583 62.61 4096 68.65 67.68 63.87
() ()
TABLE V

NUMBER OF INPUT FRAMES. WE REPORT THE PERFORMANCE OF OUR
MODEL WITH A VARIANT NUMBER OF INPUT FRAMES. THE BEST
ACCURACIES ARE SHOWN IN BOLD

‘ AUC  Recall Precision F1 score OA
2 63.7 68.0 58.9 63.1 62.5
4 67.4 64.5 69.7 67.0 65.1
6 68.7 68.4 66.9 67.7 65.9
8 67.1 63.2 71.5 67.0 65.4
10 65.8 64.9 65.4 65.2 63.0
12 64.0 70.3 60.4 65.0 62.2

protocols and offer a benchmark. The results are reported
in Tables VI and VII. Also, we compare the proposed model
with other competitors.

1) Highway: This scene presents various kinds of anom-
alous events, e.g., a cow herd walking on the street, an acci-
dental car collision, and a road section covered by sand and
dust. These different anomalous events make this scenario very
challenging. Comparing with other competitors, our method
achieves the best results in AUC (68.7%) and recall (68.4%).
The main competitor in this scene is MemAE that also exhibits
very good results in some metrics. However, its accuracy in
AUC is relatively a bit low. Our method demonstrates the
capability of detecting different anomalous events and even
presents better performance than memory-based methods, such
as MemAE and MNAD, that are specially designed to deal
with various anomalies.

2) Crossroads: This scene focuses on distinguishing various
anomalous behaviors of vehicles and persons, such as persons
crossing the road irregularly and vehicles moving backward.
In this scene, capturing temporal dynamics of persons and
vehicles on the road is critical for identifying their anomalous
behaviors. From the reported results in Table VII, our method
achieves the best results in AUC (65.2%), precision (66.3%),
F1 score (64.6%), and OA (65.8%). This is mainly because
the Transformer encoder of our approach is able to effectively
model long-term temporal relations for distinguishing anom-
alous moving directions of persons or vehicles. We visualize
the prediction of our method on a video clip of this scenario
in Fig. 4 (the third row), in which an anomalous event is that a
person crosses the road not following the rule. We can observe
that the traffic is hindered by the person crossing the road
irregularly. In this case, dynamically sensing traffic speed is
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TABLE VI

COMPARING OUR APPROACH AGAINST OTHER METHODS. WE COMPARE OUR ANDT WITH OTHER COMPETITORS ON HIGHWAY, CROSSROADS, BIKE
ROUNDABOUT, AND VEHICLE ROUNDABOUT SCENES. THE BEST ACCURACIES ARE SHOWN IN BOLD

Model Highway Crossroads Bike roundabout Vehicle roundabout
P~} i~ p~l i~
s 5§ 5 s £ £ s £ 5 s 5§ 5
T & & & o0A|T & & & o0A|T & & & oa|< & & & oa
CAE [67] | 583 604 588 59.6 57.1]| 577 60.7 613 610 603 | 594 57.7 59.0 583 588 | 60.9 589 565 57.7 584
CVAE [69] | 61.7 64.1 634 637 61.0| 624 615 618 61.7 597 | 765 688 734 71.0 68.7 | 576 584 576 580 564
adVAE [70] | 61.1 59.7 603 600 59.1| 56.1 569 548 558 565 | 72.8 71.8 759 738 694 | 551 544 529 536 54.1
GANomaly [71] | 62.7 65.1 629 640 615|589 585 572 579 592 | 71.7 702 77.5 737 693 | 551 58.6 557 57.1 540
Skip-GAN [72] | 64.8 63.7 66.7 652 64.6| 59.3 603 60.6 604 62.1 | 77.7 735 743 739 677 | 585 593 628 610 57.1
MemAE [73] | 672 673 682 677 66.1| 641 638 633 636 0645 | 795 748 734 741 752 | 641 608 590 599 59.2
MNAD [74] | 669 659 665 662 657| 56.6 572 594 583 552 | 774 724 752 738 69.8 | 619 579 61.6 597 594
MKD [33] | 643 62.8 653 640 639 635 634 612 623 637 | 748 706 751 728 732 | 627 59.7 637 616 587
SSPCAB [34] | 67.8 67.5 69.7 68.6 663| 604 60.7 619 613 604 | 768 746 760 753 704 | 62.3 59.7 63.8 61.7 604
ANDT | 68.7 684 669 677 659 652 63.1 663 646 658 | 822 785 79.0 788 76.7 | 613 578 641 60.8 58.0
TABLE VII

COMPARING OUR APPROACH AGAINST OTHER METHODS. WE COMPARE OUR ANDT WITH OTHER COMPETITORS ON RAILWAY INSPECTION, SOLAR
PANEL INSPECTION, AND FARMLAND INSPECTION SCENES. THE BEST ACCURACIES ARE SHOWN IN BOLD

Model Railway inspection Solar panel inspection Farmland inspection
<] g 3]
< X " & OA | ¥ X Y & OA < X A , OA
CAE [67] | 61.2 59.7 548 57.1 56.7| 629 62.7 653 64.0 602 | 77.1 792 726 758 745
CVAE [69] | 59.1 62.8 64.7 622 59.3| 575 573 571 572 584 | 784 80.7 77.1 789 175.7
adVAE [70] | 62.1 562 579 57.1 564 661 586 60.9 598 605 | 73.8 779 76.6 773 72.6
GANomaly [71] | 61.7 557 562 56.0 53.8| 64.6 59.1 637 613 573 | 77.1 740 732 73.6 755
Skip-GAN [72] | 65.8 60.7 646 626 60.3| 657 588 57.5 581 602 | 71.7 754 733 743 726
MemAE [73] | 589 58.0 584 582 58.0| 658 62.1 576 59.8 577 | 741 797 717 787 744
MNAD [74] | 58.0 613 56.1 58.6 57.1| 647 58.6 580 583 59.6 | 78.6 785 742 763 745
MKD [33] | 624 59.7 603 60.0 60.8| 635 57.6 547 56.1 565 | 752 768 724 745 728
SSPCAB [34] | 59.1 62.0 58.7 60.3 594| 650 592 609 600 587 | 79.0 784 758 779 751
ANDT | 594 60.7 613 61.0 574| 642 612 660 635 608 | 79.5 769 776 772 735
TABLE VIII

crucial for the successful detection of anomalous events. The
numerical results demonstrate the effectiveness of our model.
For evaluating the performance of detecting different kinds
of anomalous events, we group anomalies into two categories:
person-related anomaly and vehicle-related anomaly. The AUC
results of each anomalous event are reported in Table VIIIL.
Compared with other methods, our approach achieves the best
AUC results in both two kinds of anomalies.

3) Bike Roundabout: Only one type of anomaly, i.e., mov-
ing vehicle on the bike roundabout, is presented in this scene.
However, more than one abnormal event may be present in the
test video sequence. This scenario can verify whether a method
is able to continuously detect all anomalous events in a test
sequence. Our method exhibits superior performance. We also
observe that memory-based methods have poor performance.
The reason for this may be that some feature representations
of abnormal video frames misidentified as normality are mem-
orized in the memory space, which deteriorates the perfor-
mance of these models in recognizing subsequent anomalous
frames.

AUC RESULTS OF DIFFERENT KINDS OF ANOMALIES IN CROSSROADS.
WE OFFER AUC RESULTS OF TwO KINDS OF ANOMALIES IN
CROSSROADS. THE BEST ACCURACIES ARE SHOWN IN BOLD

Model Crossroads
person-related vehicle-related

CAE [67] 61.8 55.0
CVAE [69] 59.9 64.1
adVAE [70] 572 554
GANomaly [71] 52.0 63.5
Skip-GAN [72] 56.4 61.2
MemAE [73] 64.7 63.7
MNAD [74] 57.3 56.1
MKD [33] 62.7 64.3
SSPCAB [34] 58.7 62.1
ANDT 65.8 64.8

4) Vehicle Roundabout: Various anomalous events, such as
traffic congestion and people crossing the road irregularly,
are present in this scene. Memory-based and GAN-based
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Fig. 4. Visualization of anomaly detection results of our method and a main competitor. We show frame-level anomaly scores (orange curves indicate ANDT,
and blue curves denote MemAE). Ten frames of each video are shown, and anomalous frames are marked with borders. Rectangles are ground-truth data.
A demo video is available at https://youtu.be/ancczYryOBY.

methods, namely, Skip-GAN, MemAE, and MNAD, show 5) Railway Inspection: This scene presents only one kind
superior performance in this scene. Our model suffers from of anomaly, i.e., obstacles on the railway. Determining the
insufficient training data and performs relatively poor. existence of obstacles on the railway is vital in practical
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TABLE IX

COMPARING OUR APPROACH AGAINST OTHER METHODS ON THE
AU-AIR-ANOMALY DATASET. WE COMPARE OUR ANDT WITH
OTHER COMPETITORS ON AU-AIR DATASET. THE BEST
ACCURACIES ARE SHOWN IN BOLD

Model \ AUC  Recall Precision F1 score OA

CAE [67] 69.3 70.2 64.7 67.3 66.4
CVAE [69] 70.8 63.7 72.1 67.6 67.1
adVAE [70] 72.2 70.7 74.9 72.7 70.6
GANomaly [71] 70.4 73.6 61.8 67.2 72.8
Skip-GAN [72] 74.8 60.8 84.1 70.6 72.1
MemAE [73] 81.4 87.6 74.8 80.7 82.4
MNAD [74] 78.4 76.9 79.4 78.1 76.2
MKD [33] 76.8 83.7 79.6 81.6 79.5
SSPCAB [34] 79.6 77.4 80.4 78.9 78.3
ANDT 86.7 80.7 84.9 82.7 82.0

applications. From the results in Table VII, there is no domi-
nant method. The reason might be the insufficient training data
(only 400 frames are available for training) cannot ensure that
these models learn strong feature representations of normality.

6) Solar Panel Inspection: Two anomalies, unknown
objects/animals and panel defects, appear in this scene. Our
model achieves the best accuracies in precision (66.0%) and
OA (60.8%) and provides relatively satisfactory results in this
scenario.

7) Farmland Inspection: One type of anomaly, i.e., uniden-
tified vehicles, exists in this scene. Searching anomalous
objects is the goal in this scene. From experimental results,
our network achieves the best accuracies in AUC (79.5%) and
exhibits superior performance in searching anomalous objects.

In summary, our model exhibits superior performance in
multiple scenes, including highway, crossroads, bike round-
about, and farmland inspection, in which many anomalous
events with temporal dynamics exist. Specifically, in the
highway scene, our method presents a better performance of
detecting different anomalies than memory-based methods,
i.e., MemAE and MNAD, which are specially designed to deal
with various anomalies. This is because the global temporal
receptive field enables our model to learn discriminative tem-
poral representations of normality, which is used to effectively
detecting different anomalies.

F. Results on the AU-AIR-Anomaly Dataset

Furthermore, we use the AU-AIR-Anomaly dataset [39] to
validate the performance of our approach and other methods.
Due to the non-availability of public ground-truth labels for
anomalies in the AU-AIR-Anomaly dataset, following [39],
we label four anomalous events: a car on a bike road, a person
on a road, a parked van in front of a building, and a bicycle
on a road. We report numerical results in Table IX. As we
can see, our model has a superb performance and achieves
the best accuracies in AUC (86.7%), precision (84.9%), and
F1 score (82.7%). The scene of this dataset is highly similar
to crossroads in our Drone-Anomaly dataset. Our network still
exhibits stable and superior performance, which demonstrates
its good generalization ability across different datasets.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

0.3 5

R Y
A &

0.2

.05 05
Fig. 5. Visualization of feature distribution. We visualize the distribution
of the learned spatiotemporal features from the Transformer encoder on the
highway scene. The features of normal frames are represented by blue points,
and features of anomalous frames are red points.

River inspection

Fig. 6. Sample frames in the scene of river inspection. We show four frames
in this scene. All normal frames are marked with green borders.

G. Visualization of the Learned Features

We visualize, in Fig. 5, the distribution Transformer features
of some randomly chosen test samples on the crossroads
scene in the Drone-Anomaly dataset. We leverage a principal
component analysis (PCA) to reduce the dimension of the
features to 3. From Fig. 5, it can be seen that normal instances
(blue points) are all concentrated in a relatively small area,
while abnormal samples are far away from the blue cluster.
This demonstrates that the spatiotemporal features learned by
our model are very discriminative.

H. Discussion

To verify whether our method raises too many false alarms
in practical applications that do not contain any anomalies,
we collect a new scene, i.e., river inspection, which does not
contain anomalous events. We use a DJI drone to inspect a
normal river and collect an aerial video for this validation.
We show four sample frames of the test data in Fig. 6.
We report mean-squared reconstruction error (MSRE) values
on training data and test data, and they are MSRE,, =
0.076 and MSRE,s = 0.078. We can see that these two
values are very close. Besides, we calculate false positive rate,
FPR = 0.0041, which is very low. These mean that in scenes
without any anomalies, our model also works well.

VI. CONCLUSION

In this article, we focus on detecting anomalous events in
aerial videos. To this end, we create a new dataset, termed
Drone-Anomaly, providing 37 training video sequences and
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22 testing video sequences, covering seven real-world scenes,
and providing various anomalous events. Based on this dataset,
we offer a benchmark for this task. Moreover, we present
a new baseline model, ANDT, which treats a video as a
sequence of tubelets and leverages a Transformer encoder
to learn a spatiotemporal feature. Afterward, a decoder is
combined with the encoder for predicting the next frame based
on the learned spatiotemporal representation. Also, we conduct
extensive ablation studies for validating the effectiveness of
our network. Moreover, we compare our model with other
baselines. The experimental results demonstrate its outstanding
performance. In the future, we will focus on spatiotemporally
detecting anomalous events in aerial videos.
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