DLR Design Challenge 2022

Welcome to the DLRK 2022 Session!

DLR Design Challenge 2022 on Advanced Aerial Firefighting

Tobias Dietl & Patrick Ratei

E-Mail: DesignChallenge@dlr.de

German Aerospace Center (DLR) Institute of System Architectures in Aeronautics Hamburg

Knowledge for Tomorrow

DLR Design Challenge 2022 Session

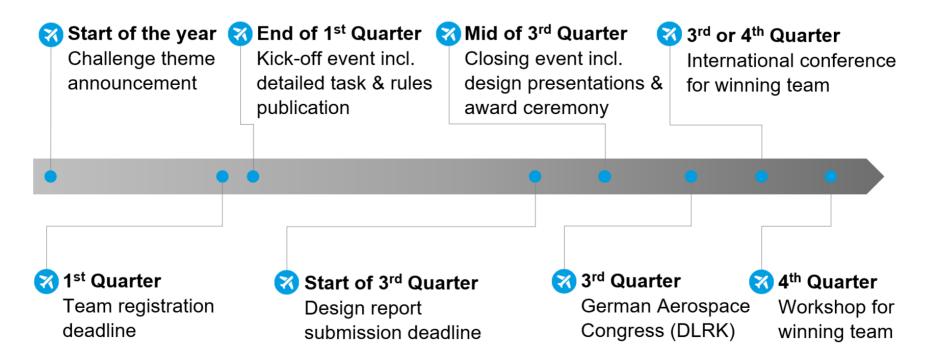
- 16:20-16:45
 General Overview and Task Description

 Tobias Dietl & Patrick Ratei
 - German Aerospace Center (DLR)
- 16:45-17:10 FireWasp
 - Mucahit Fatih Evliyaoglu, Selim Karakus, Dominik Kau & Robin Mörsch
 - RWTH Aachen University
- 17:10-17:35 PEL-E-FAN-T
 - Dominik Brunner, Hannes Jerzembek, Lennard Köhler, Paul Sanderbrand & Maximilian Wenk TU Dresden
- 17:35-18:00 INFERNO
 - Ahmet Günay Can, Hannes Kahlo, Benjamin Knoblauch, Nicolas Mandry, Prishit Modi & Johannes Ritter University of Stuttgart
- 18:00 Open Discussion and Exchange

Agenda

1. DLR Design Challenge

- Background
- History
- Organization
- 2. DLR Design Challenge 2022
 - Theme
 - Task
 - Field of Participants
 - Design Concepts



DLR Design Challenge – Background

DLR Design Challenge – Organization

- Yearly student competition on aircraft design of future concepts
- Geared towards current focus areas in aeronautics research

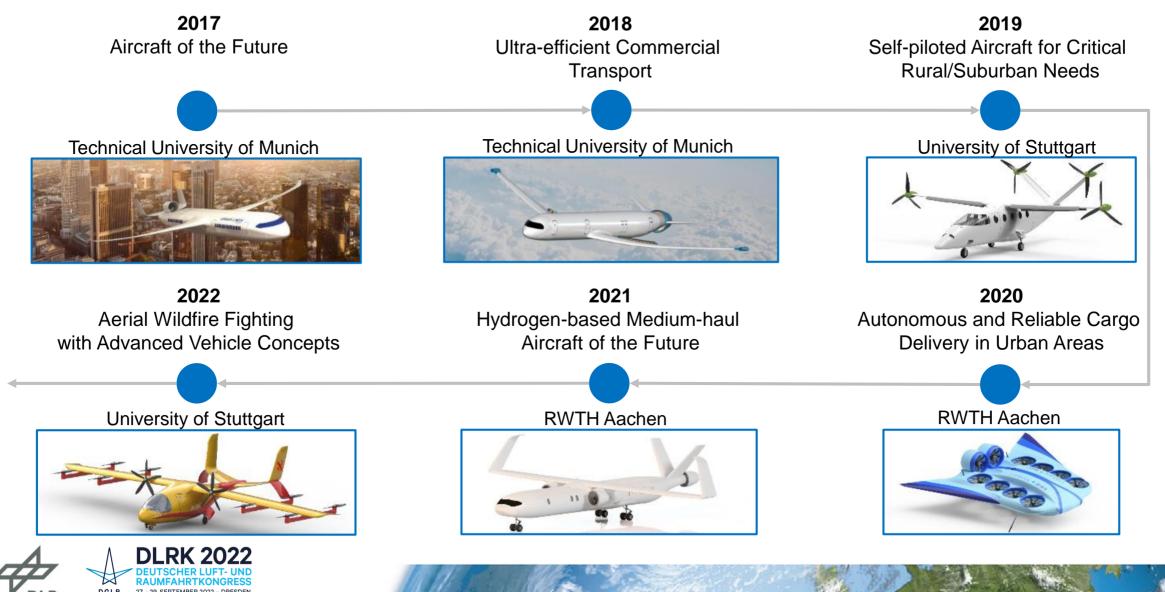
• Design work is conducted during summer term

Institute of Aerodynamics

• Challenge is organized on a rotating basis between:

Institute of System Architectures in Aeronautics

DLR Design Challenge – Organization



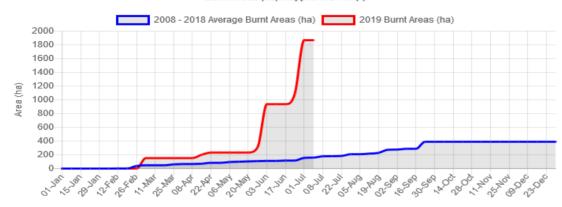
- Team size between 2 and 6 students
- All participants have to be enrolled in a German university (Bachelor and/or Master)
- Teams are ranked based on technical design reports, presentations and pitch-videos
- Evaluation by DLR expert jury is chaired by DLR's Divisional Board Member for Aeronautics
 Dr. Markus Fischer
- Winning teams are invited to aeronautics conference

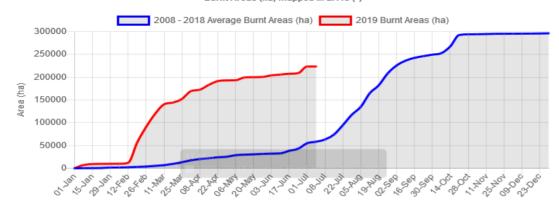
DLR Design Challenge – History

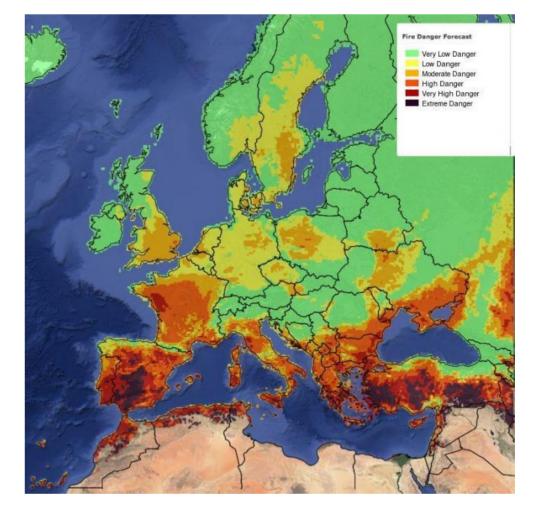
DLR Design Challenge 2022 – Theme The Global Threat of Wildfires

• UN (2022) warns of a worldwide increase of wildfires by 50% until 2100, including regions not prone to wildfires today

Matthew Abbott/The New York Times/laif

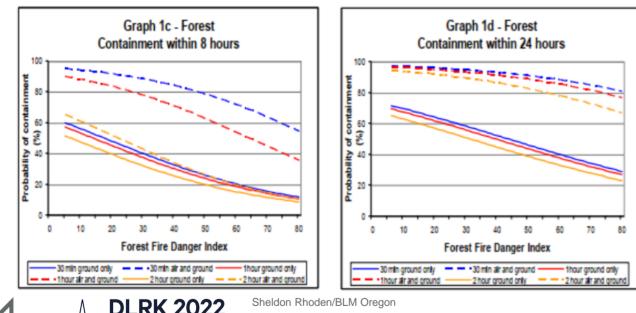

- Wildfires in Australia or California cost billions of dollars
- "True" costs:
 - Death of forest, humans and animals
 - Additional global warming: Copernicus (2021) reports global CO2 emissions of wildfires equal to 63% of the overall EU-wide CO2 emissions in 2021


Kent Porter/The Press Democrat/AP


DLR Design Challenge 2022 – Theme Wildfires in Europe

• Northern Europe (2019) Burnt Areas (ha) mapped in EFFIS (*)

• Southern Europe (2019) Burnt Areas (ha) mapped in EFFIS (*)



DLR Design Challenge 2022 – Theme Aerial Firefighting Strengths and Weaknesses

• Aerial suppression increases effectiveness and safety of firefighters on the ground

- Reduces fire-front intensity and slows down propagation
- Spot fires can be put out quickly
- Risks and limitations of existing tactics and fleet
 - Low and slow flight during suppression runs coupled with high winds leads to high risk
 - Low visibility limits operations to circa 8 hours per day (often daytime only)

Sheldon Rhoden/BLM Oregon

DLR Design Challenge 2022 – Theme Design and Deployment of Advanced Air Vehicles

- Opportunity to develop advanced aerial firefighting vehicles
- Expand as well as enhance existing capabilities and optimize effectiveness
- Motivated by the developments in the field of Advanced Air Mobility (AAM)
 - Passenger and cargo transport in urban, suburban and rural areas
 - Short or Vertical Take-Off and Landing (S/VTOL) capabilities
 - Novel air vehicle architectures and technologies
 - Entry into service in 2025-2030

DLR Design Challenge 2022 – Task Design Mission

- Operating base on 1,000 ft (MSL)
- Fire location and water source are located on 2,000 ft (MSL)
- Battery charging or refueling requires return to operating base
- Water tank refill at the operating basis is optional and can be part of the concept of operations
- Service ceiling of 8,000 ft
- In addition to the given scenario teams need to consider a self-chosen inland and coastal scenario

DLR Design Challenge 2022 – Task Air Vehicle

- Maximum Take-Off Mass: 5.670 kg
- V/STOL-Capabilities for utilization of small surface water sources (e.g. lake, river, etc.)
- Remote or single-pilot operations ability necessary
- Communality, modularity and retrofit to a passenger-/cargo variant have to be considered as well as application outside the wildfire season
- Entry into service in 2030

https://upload.wikimedia.org/wikipedia/commons/0/01 /Sikorsky_S-70A-27_Picking_Up_Water.jpg

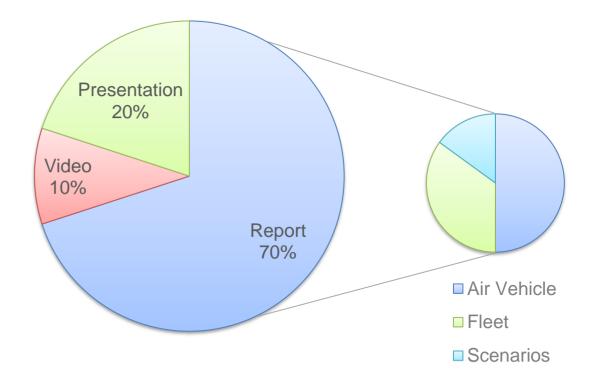
DLR Design Challenge 2022 – Task Air Vehicle Fleet and Concept of Operations

Design of a set of air vehicles, capable of delivering 11,000 liters water in a single firefighting attack to a fire location. The number of aircraft and the payload of each vehicle is part of the design space.

- Objective: Maximize the amount of water delivered to the fire location within a 24-h timespan
- Design space: number of flights, speed, energy, fleet size
- Optional: Use of fire retardant

https://upload.wikimedia.org/wikipedia/commons/7/73/I-DPCN_at_work_03_%284203528315%29.jpg

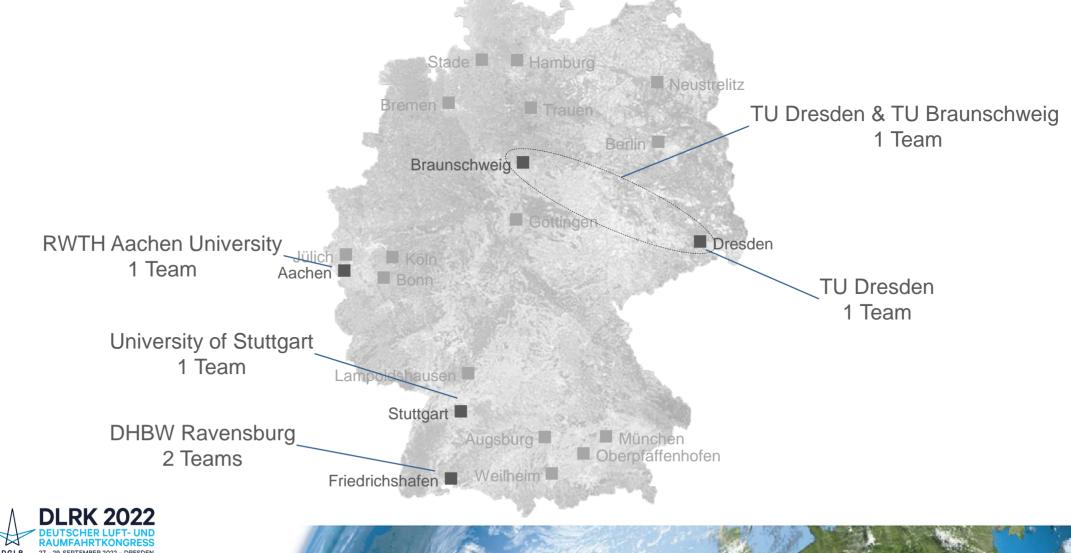
N. Cigal et al. (2022). Sensitivity Analysis for Aerial Wildfire Fighting Tactics with Heterogeneous Fleet via System of Systems Simulation Framework, Deutscher Luft- und Raumfahrtkongress 2022, Dresden.


DLR Design Challenge 2022 – Task Jury Evaluation and Incentives

Jury

- Chair: Dr. Markus Fischer
- Members: Experts from DLR's aeronautics research

Incentives


- All:
 - Invitation to kick-off and final event
 - Feedback on design concept
 - Certificate and design rendering print
- Top 3:
 - Invitation to DLRK 2022 incl. presentation
- Winning team:
 - Invitation to ICAS 2022 incl. Presentation
 - Invitation to DLR visit and workshop

DLR Design Challenge 2022 – Field of Participants

6 Teams, 5 Universities, 33 Students

DLR Design Challenge 2022 – Design Concepts

DHBW Ravensburg: Dipper & AEGIS

TU Dresden: PEL-E-FAN-T DLRK 2022 DGLR DLRK 2022 DGLR 2022 - ORESDEN

DHBW Ravensburg: FireF(I)ighter

TU Dresden & TU Braunschweig: GLAROS

RWTH Aachen: FireWasp

University of Stuttgart: INFERNO

Thank You and Enjoy the Design Presentations!

Tobias Dietl & Patrick Ratei

E-Mail: DesignChallenge@dlr.de

German Aerospace Center (DLR) Institute of System Architectures in Aeronautics Hamburg

http://s.dlr.de/DLR-Design-Challenge

Knowledge for Tomorrow