# Value of diversification in 100% renewable energy scenarios

Hans Christian Gils, Thomas Pregger, Tobias Naegler

German Aerospace Center (DLR), Institute of Networked Energy Systems, Stuttgart 4<sup>th</sup> International Forum on Long-term Scenarios for the Clean Energy Transition

Session 4: Role of 100% renewable electricity for the energy system transition in scenarios

Bonn, 7 - 9 December 2022

Hans Christian Gils, DLR-VE, 08.12.2022

### DLR activities in energy scenario development and assessment



- Studies on the energy transition and green hydrogen supply since the 1970s, e.g. book "Hydrogen as an Energy Carrier" from Winter/Nitsch of 1988 (Springer)
- Lead scenarios for the German Ministry for the Environment starting around 2000, e.g. German "Long term scenarios 2012" with a first bottom-up outlook on 95% GHG reduction
- Development of global and country scenarios for NGOs since 2005, e.g. Teske et al. 2019 "Achieving the Paris Climate Agreement Goals..."
- Infrastructure modelling in high temporal and spatial resolution since around 2005 (REMix model)
- Research on methods for socio-technical scenarios, agent-based market analyses, prospective LCA-based assessment and analysis of critical resource demand, resilience, RE potentials, ...









#### Various technological options for future energy systems conceivable





Solar PV and wind electricity generation in TWh/yr in global 100% RE scenarios in the year 2050

### Which target system is to be preferred depends on numerous parameters, which can be weighted differently





Hans Christian Gils, DLR-VE, 08.12.2022

#### 100% renewable energy power supply systems: Example of cost optimization (1) vs. diversity approach (2)



Teske et al. 2019 scenarios (2) with diverse power generation structure from storyline & simulation approach:

- Higher security of supply through technological diversity
- Consideration of technology acceptance and thus lower societal risks
- Parallel expansion of technologies offers broader economic opportunities
- Possible co-benefits of esp. CSP\* (heat use, water desalination)
- Compared to optimized LUT scenarios (1), LCOE\*\* are 10% to 20% higher.



Europe in detail: diversity of supply reduces risks and increases resilience at comparably low additional cost



- Power supply diversity favorable in many regards
  - 2050 system cost for Europe 3-6% higher if no technology supplies more than 40%
  - Reduced vulnerability towards external stress cases (extreme weather, hacker attacks)
- Diversity in 100% RE power systems mostly through CSP and offshore technologies



## Energy scenarios pay too little attention to risks associated with costs and availability of scarce materials



- Increasing demand for critical raw materials in energy and transport technologies
- Short- to mid-term shortages possible for e.g. Lithium, Cobalt and Nickel required in stationary and mobile batteries
- Energy system transformation strategies should take into account potential raw material bottlenecks and price increases
- Efforts for recycling and lower specific demands required



### Role of material recycling and tradeoffs between costs and resource usage must be further explored



- Consideration of a criticality index in multi-objective system optimization
- Better data on resource availability and demands in future energy and transport systems and beyond?
- Uncertainties with regard to future recycling/circulation potentials and substitution possibilities

Tradeoff between implementation of a zero-emissions system and negative emissions need to be explored in more detail





- Specific cost of emission reductions increase sharply for high RE shares
- This contrasts with uncertain costs for CDR and CCS
- Conclusive assessment requires comprehensive consideration of infrastructure costs for RE, fossil fuel use, and negative emissions

Consideration of a highly stylized power system for central Europe, adopted from <u>Gils et al. (2022)</u>. The relative numbers provide an estimate of the additional costs of further increasing the RE share.

#### Import strategies will be important part of the solution for many countries: example net-zero scenario for Germany





- Scenarios should consider all energy needs and infrastructures
- Sector coupling addresses (in)direct electrification of heat and transport
- E-fuels for hard-to-abate activities drive electricity demand strongly
- Example Germany: from ~600 to approx. 1500-2500 TWh/yr in 2050

Imports must be considered in infrastructure development

Primary energy supply in the Net-zero scenario for Germany according to <u>Simon et al. (2022)</u>. Total (theoretical) green electricity demand in this high-efficient scenario reaches 1500 TWh in 2050, of which more than 500 TWh are imported as power,  $H_2$  or e-fuels. CDR measures are assumed for the last ~5% CO<sub>2</sub> reduction.

### While there is some flexibility in the regional use of RE, robust investments can be seen in different scenarios

- Decision on import strategy has high impact on RE allocation
- Repurposing CH<sub>4</sub> pipelines is no-regret option
- H<sub>2</sub> flows depending on scenario storyline





### Use of decentralized flexibility lowers supply costs and reduces the need for transport networks



2020 2030 2040 2050 Conventional power generation Electricity exchange within Germany Electricity storage output 595 TWh/a Controlled charging of BEVs 100 TWh/a 10 TWh/a Industrial and commercial DR 1 TWh/a Heat production by HP in CHP systems Thermal output of TES in CHP systems . Energy content of produced H<sub>2</sub> Energy content of produced CH<sub>4</sub> Energy content of H<sub>2</sub> transported via pipelines Energy content of CH<sub>4</sub> transported via pipelines

Decentralized power system flexibility is competitive and not displaced by large-scale grid expansion and hydrogen production

#### Dispatchable renewables to be combined with a broad range of flexibility options



Incentives for the installation and operation of decentralized flexibility technologies required

#### Conclusions



- Diversity of supply reduces risks and increases resilience at comparably low additional cost
- Tradeoff between implementation of a zero-emissions system and negative emissions need to be explored in more detail
- Energy scenarios pay too little attention to risks associated with costs and availability of scarce materials
- Role of material recycling and tradeoffs between costs and resource usage must be further explored
- Import strategies will be important part of the solution for many countries
- While there is some flexibility in the regional use of RE, robust investments can be seen in different scenarios
- Use of decentralized flexibility lowers supply costs and reduces the need for transport networks



Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

German Aerospace Center

Institute of Networked Energy Systems | Energy Systems Analysis | Curiestraße 4 | 70563 Stuttgart | Germany

Dr. Hans Christian Gils | Head of the Energy Systems Modelling Group Telefon +49 711 6862-477 | <u>hans-christian.gils@dlr.de</u> <u>www.DLR.de/ve</u>