STRATEGIC POLICY TARGETS AND THE CONTRIBUTION OF HYDROGEN IN A 100% RENEWABLE EUROPEAN POWER SYSTEM

Shima Sasanpour, Karl-Kiên Cao, Hans Christian Gils, Patrick Jochem

IEA Energy Storage Technology Collaboration Programme Task 35 "Flexible Sector Coupling"

7th expert meeting, October 10-12, 2022

Project background

Source: Cao et al. (2021), 10.1002/ese3.891

- INTEEVER-II: Analysis of the integration of renewable energies in Germany and Europe, taking into account the security of supply and decentralized flexibilities
- **2018-2022**
- Collaboration with the University of Stuttgart and Fraunhofer IEE

Decarbonizing the energy system

Uncertainties

Utilization of hydrogen?

- Crucial applications
- Flexibility option

Hydrogen source?

- Import
- Domestic production

Infrastructure

- What is needed?
- How much is needed?
- When does it need to be available?

Modelling the decarbonization

Strategic policy targets

European Green Deal

"Further decarbonising the energy system is critical to reach climate objectives in 2030 and 2050."

National long-term strategies

More **independence** from energy imports

Diverse electricity production

Back-up capacity

Model setup

Region: Europe and Maghreb

Optimization model: REMix

Goal: Zero CO₂ emission in the power supply

Scenarios: with/ without H₂

+ additional policy targets

Base scenario: No strategic policy targets

Power plants: - Renewables

- Nuclear

- Gas turbines and fuel cells in H₂ scenarios

Setup – Scenarios with H₂

Setup – Scenarios without H₂

Scenario
Divers x%
Self x%
Secured x%

Max. share of x% per tech. Min. x% self-sufficiency Min. x% secured capacity

Restriction

System cost

Feasibility

Scenarios without hydrogen

15%

Divers 40%

☐ Self 80%

Self 100%

Secured 100%

Secured 120%

More policy targets can be implemented with hydrogen in the power sector

Impact on the structure of the energy system

- **Secured capacity** → more flexible gas power plants, less batteries
- Diversity → CSP and wind offshore substitute PV and wind onshore
- **Self-sufficiency** → less electricity grid expansion
- No $H_2 \rightarrow$ more biomass and nuclear power plants, more batteries

Capacity C [GW] in

"H2:base"

3

219

< 0.1

Technology

Nuclear

Hydro Geothermal

Power system with H₂ in Germany

- Without self-sufficiency: up to 60% of electricity demand imported
- With self-sufficiency: capacity doubled/tripled
- Hydrogen used for reconversion

Summary and outlook

- Strategic policy targets influence structure of energy system on an overall and national level
- Fully decarbonized energy system profits from H₂ in the power sector
 - Total system costs lower
 - More flexibilities and long term storage available
 - More strategic policy targets can be implemented
- Required hydrogen transport and import infrastructures need further attention
- Resilience of different system designs with sector coupling has to be assessed

Impressum

Topic: Strategic policy targets and the contribution of hydrogen in

a 100% renewable European power system

Date: 11.10.2022

Authors: Shima Sasanpour, Karl-Kiên Cao, Hans Christian Gils, Patrick

Jochem

Institute: Institute of Networked Energy Systems

Credits: All images "DLR (CC BY-NC-ND 3.0)"